JP4699827B2 - Main shaft support structure for tapered roller bearing and wind power generator - Google Patents

Main shaft support structure for tapered roller bearing and wind power generator Download PDF

Info

Publication number
JP4699827B2
JP4699827B2 JP2005211708A JP2005211708A JP4699827B2 JP 4699827 B2 JP4699827 B2 JP 4699827B2 JP 2005211708 A JP2005211708 A JP 2005211708A JP 2005211708 A JP2005211708 A JP 2005211708A JP 4699827 B2 JP4699827 B2 JP 4699827B2
Authority
JP
Japan
Prior art keywords
tapered roller
roller bearing
inner ring
large collar
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005211708A
Other languages
Japanese (ja)
Other versions
JP2007024294A (en
Inventor
達也 大本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2005211708A priority Critical patent/JP4699827B2/en
Publication of JP2007024294A publication Critical patent/JP2007024294A/en
Application granted granted Critical
Publication of JP4699827B2 publication Critical patent/JP4699827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Description

この発明は、円錐ころ軸受および風力発電機の主軸支持構造に関し、特に、大きなラジアル荷重やスラスト荷重、モーメント荷重を受けることができる円錐ころ軸受およびこのような軸受を使用した風力発電機の主軸支持構造に関する。   The present invention relates to a tapered roller bearing and a main shaft support structure of a wind power generator, and more particularly, a tapered roller bearing capable of receiving a large radial load, thrust load, and moment load, and a main shaft support of a wind power generator using such a bearing. Concerning structure.

風力発電機の主軸に使用される軸受は、ブレードの自重等に対するラジアル荷重、風力に対するスラスト荷重およびモーメント荷重を受ける必要がある。さらには、風力発電機の主軸は片持ちの梁構造であるため、主軸の撓みに対する自動調心性を備えた軸受が求められるため、自動調心ころ軸受および円筒ころ軸受を組み合わせた軸受が使用されていた。図5は、自動調心ころ軸受101を風力発電機の主軸に使用した場合の概略図である。図5を参照して、自動調心ころ軸受101は、内輪102と、左右の列に配置された複数の調心ころ103a、103bと、複数の調心ころ103a、103bの間隔を保持する保持器104と、外輪105とを有する。自動調心ころ軸受101は、風を受けるブレード111が一方端に設けられた主軸112に取り付けられ、ハウジング113に組み込まれる。このように取り付けられた自動調心ころ軸受101と円筒ころ軸受とを組み合わせて、風力発電機の主軸に使用していた。   The bearing used for the main shaft of the wind power generator needs to receive a radial load against the weight of the blade, a thrust load against the wind force, and a moment load. Furthermore, since the main shaft of a wind power generator has a cantilever beam structure, a bearing having self-alignment with respect to the deflection of the main shaft is required, and therefore, a combination of a self-aligning roller bearing and a cylindrical roller bearing is used. It was. FIG. 5 is a schematic view when the self-aligning roller bearing 101 is used as a main shaft of a wind power generator. Referring to FIG. 5, the self-aligning roller bearing 101 holds an inner ring 102, a plurality of aligning rollers 103 a and 103 b arranged in the left and right rows, and a plurality of aligning rollers 103 a and 103 b. A container 104 and an outer ring 105. The self-aligning roller bearing 101 is mounted on a main shaft 112 provided with a blade 111 for receiving wind at one end, and is incorporated in a housing 113. The self-aligning roller bearing 101 and the cylindrical roller bearing thus mounted are combined and used for the main shaft of the wind power generator.

しかし、上記の二つの転がり軸受を組み合わせた軸受については、部品点数が多く、その削減が求められている。また、軸受の小型化についても要求される。   However, a bearing that combines the above-mentioned two rolling bearings has a large number of parts and is required to be reduced. Moreover, it is requested | required also about size reduction of a bearing.

そのような要求に応じて、自動調心ころ軸受と比較して調心性は劣るものの、一つの軸受で大きなスラスト荷重及びラジアル荷重を受けることができる複列円錐ころ軸受が、風力発電機の主軸に使用されている。図6は、複列円錐ころ軸受121の断面図の一例である。図6を参照して、複列円錐ころ軸受121は、小径側端面が向き合うように配置された左右の内輪122a、122bと、内輪122a、122bの間に配置された内輪間座128と、外輪124と、内輪122a、122bと外輪124との間に配置された複数の円錐ころ123a、123bと、左右の列において複数の円錐ころ123a、123bの間隔を保持する左右の保持器とを有する。   In response to such demands, a double-row tapered roller bearing that can receive a large thrust load and radial load with a single bearing is inferior in alignment to a self-aligning roller bearing. Is used. FIG. 6 is an example of a cross-sectional view of the double row tapered roller bearing 121. Referring to FIG. 6, double-row tapered roller bearing 121 includes left and right inner rings 122a and 122b arranged so that the end surfaces on the small diameter side face each other, inner ring spacers 128 arranged between inner rings 122a and 122b, and outer rings. 124, a plurality of tapered rollers 123a, 123b disposed between the inner rings 122a, 122b and the outer ring 124, and left and right cages for holding the intervals between the plurality of tapered rollers 123a, 123b in the left and right rows.

各保持器については、大きなラジアル荷重に対する負荷容量を実現するために、円錐ころ123a、123bをより多く保持することができるピンタイプ保持器が用いられる。ピンタイプ保持器は、各円錐ころ123a、123bを貫通するピン125a、125bと、各円錐ころ123a、123bの大端面側に突出する複数のピン125a、125bの一方端を保持して環状に延びる大径側側板126a、126bと、各円錐ころ123a、123bの小端面側に突出する複数のピン125a、125bの他方端を保持して環状に延びる小径側側板127a、127bとを有する。   For each cage, a pin type cage that can hold more tapered rollers 123a and 123b is used in order to realize a load capacity against a large radial load. The pin type cage holds the ends of the pins 125a and 125b penetrating the tapered rollers 123a and 123b and the plurality of pins 125a and 125b protruding from the large end surfaces of the tapered rollers 123a and 123b, and extends in an annular shape. Large-diameter side plates 126a and 126b, and small-diameter side plates 127a and 127b that hold the other ends of the plurality of pins 125a and 125b protruding toward the small end surfaces of the tapered rollers 123a and 123b and extend annularly.

また、このようなピンタイプ保持器を使用した複列円錐ころ軸受が特開2003−49843号公報(特許文献1)に開示されており、複列円錐ころ軸受を主軸に使用した風力発電用風車が特開2005−105917号公報(特許文献2)に開示されている。
特開2003−49843号公報(段落番号0008〜0009、図1) 特開2005−105917号公報(段落番号0020〜0039、図2)
Further, a double row tapered roller bearing using such a pin type cage is disclosed in Japanese Patent Laid-Open No. 2003-49843 (Patent Document 1), and a wind turbine for wind power generation using the double row tapered roller bearing as a main shaft. Is disclosed in Japanese Patent Laying-Open No. 2005-105917 (Patent Document 2).
JP 2003-49843 A (paragraph numbers 0008 to 0009, FIG. 1) Japanese Patent Laying-Open No. 2005-105917 (paragraph numbers 0020 to 0039, FIG. 2)

より大きな発電量を得るためには、ブレード111がより大きな風を受ける必要があり、そのような環境下においては、主軸を支持する軸受は、より大きなラジアル荷重やスラスト荷重、モーメント荷重を受ける。より大きなラジアル荷重を受けるためには、上記した複列円錐ころ軸受121の円錐ころ123a、123bのころ長さをできるだけ大きくする必要がある。また、より大きなスラスト荷重、モーメント荷重を受けるためには、外輪軌道面と複列円錐ころ軸受121の回転軸線とのなす角度である接触角を大きくする必要がある。   In order to obtain a larger amount of power generation, the blade 111 needs to receive a larger wind. Under such circumstances, the bearing that supports the main shaft receives a larger radial load, thrust load, and moment load. In order to receive a larger radial load, it is necessary to make the roller lengths of the tapered rollers 123a and 123b of the double-row tapered roller bearing 121 as large as possible. Further, in order to receive a larger thrust load and moment load, it is necessary to increase a contact angle that is an angle formed by the outer ring raceway surface and the rotation axis of the double row tapered roller bearing 121.

図7は、接触角を大きくした場合の複列円錐ころ軸受121の断面図である。図7を参照して、外輪軌道面131と複列円錐ころ軸受121の回転軸線(図示せず)とのなす角度である接触角αを大きくすると、内輪122bの大鍔133bのうち、矢印Yの方向の肉厚が薄くなることになる。内輪122aの大鍔133aについても同様である。   FIG. 7 is a sectional view of the double-row tapered roller bearing 121 when the contact angle is increased. Referring to FIG. 7, when the contact angle α, which is the angle formed between the outer ring raceway surface 131 and the rotation axis (not shown) of the double row tapered roller bearing 121, is increased, the arrow Y of the large collar 133b of the inner ring 122b The thickness in the direction of will be reduced. The same applies to the large collar 133a of the inner ring 122a.

ここで、円錐ころ123bの大端面に接する内輪122bの大鍔面134bには、円錐ころ123bを大端面で案内するため、図7中、矢印Yの方向に荷重がかかることになる。具体的には、たとえば、外輪124に、ラジアル荷重やスラスト荷重、モーメント荷重等の外力が加わった場合、その分力が円錐ころ123bを経由して、内輪122bの大鍔面134bに伝わることになる。このような場合、大鍔133bには、大鍔面134bと軌道面との交わる部分に設けられたぬすみ溝135bを中心に、矢印Zの方向に大きな曲げ応力がかかることになり、肉厚が薄くなり剛性が低下した大鍔133bが、割れたり、欠けたりするおそれがある。   Here, since the tapered roller 123b is guided by the large end surface to the large collar surface 134b of the inner ring 122b in contact with the large end surface of the tapered roller 123b, a load is applied in the direction of arrow Y in FIG. Specifically, for example, when an external force such as a radial load, a thrust load, or a moment load is applied to the outer ring 124, the component force is transmitted to the large collar surface 134b of the inner ring 122b via the tapered roller 123b. Become. In such a case, a large bending stress is applied to the large collar 133b in the direction of the arrow Z around the thin groove 135b provided at the intersection of the large collar surface 134b and the raceway surface. There is a risk that the large spear 133b, which has become thin and has reduced rigidity, may crack or chip.

ここで、ころ長さを短くして、荷重作用方向である矢印Yの方向の大鍔133bの肉厚を確保することも可能であるが、上記したようにラジアル荷重に対する剛性を維持する観点から、円錐ころ123a、123bのころ長さを短くすることもできない。   Here, it is possible to shorten the roller length to secure the wall thickness of the large flange 133b in the direction of the arrow Y that is the load acting direction, but from the viewpoint of maintaining the rigidity against the radial load as described above. The roller lengths of the tapered rollers 123a and 123b cannot be shortened.

この発明は、内輪の大鍔が割れたり、欠けたりするおそれがない円錐ころ軸受およびこのような軸受を使用した風力発電機の主軸支持構造を提供することを目的とする。   An object of the present invention is to provide a tapered roller bearing that does not cause the inner ring to be cracked or chipped, and a main shaft support structure for a wind power generator using such a bearing.

この発明に係る円錐ころ軸受は、外輪と、内輪と、外輪と内輪との間に配置された複数の円錐ころと、複数の円錐ころの間隔を保持する保持器とを備える。ここで、上記した内輪は、円錐ころの大端面に接する大鍔面と、大鍔外径面との間に斜面部を設ける。   A tapered roller bearing according to the present invention includes an outer ring, an inner ring, a plurality of tapered rollers disposed between the outer ring and the inner ring, and a cage that holds a space between the plurality of tapered rollers. Here, the above-described inner ring is provided with a slope portion between a large collar surface in contact with the large end face of the tapered roller and a large collar outer diameter surface.

このような斜面部を設けることにより、荷重作用方向の大鍔の肉厚が増すことになり、荷重作用方向における大鍔の剛性をあげることができる。   By providing such a slope portion, the thickness of the large bowl in the load acting direction is increased, and the rigidity of the large bowl in the load acting direction can be increased.

好ましくは、斜面部は、円錐台形状の面を形成し、その母線は円錐ころの中心軸線方向に沿って延びている。このように構成することにより、簡単な構成で、荷重作用方向に対して荷重を受け易い方向の肉厚を増すことができる。   Preferably, the slope portion forms a truncated cone-shaped surface, and the generatrix thereof extends along the direction of the central axis of the tapered roller. By comprising in this way, the thickness of the direction which is easy to receive a load with respect to a load action direction can be increased with a simple structure.

より好ましくは、内輪の内径面から大鍔面の最大外径位置に至るまでの厚み寸法をAとし、内輪の内径面から大鍔外径面に至るまでの厚み寸法をBとしたときに、B≧1.05Aの関係が成立し、さらに好ましくは、B≦1.20Aの関係が成立する。   More preferably, when the thickness dimension from the inner diameter surface of the inner ring to the maximum outer diameter position of the large collar surface is A and the thickness dimension from the inner diameter surface of the inner ring to the outer diameter surface of the large collar is B, The relationship of B ≧ 1.05A is established, and more preferably, the relationship of B ≦ 1.20A is established.

このように構成することにより、大鍔が割れたり、欠けたりするおそれがない最低限の剛性を維持する肉厚を確保することができる。また、内輪の最大外径等その他の寸法も考慮して、肉厚を増す量を適当にすることができる。   By comprising in this way, the thickness which maintains the minimum rigidity which does not have a possibility that a big crack may be cracked or chipped can be ensured. In addition, the amount of increase in wall thickness can be made appropriate in consideration of other dimensions such as the maximum outer diameter of the inner ring.

さらに好ましくは、円錐ころの大端面側のピッチ円の直径と、大鍔外径面の直径とが等しい。こうすることにより、円錐ころをより安定して転動させることができる。ここで、「等しい」とは、円錐ころの大端面側のピッチ円の直径の値と、大鍔外径面の直径の値とが、ほぼ近似していることをいう。   More preferably, the diameter of the pitch circle on the large end face side of the tapered roller is equal to the diameter of the outer diameter surface of the large collar. By carrying out like this, a tapered roller can be rolled more stably. Here, “equal” means that the value of the diameter of the pitch circle on the large end face side of the tapered roller is approximately approximate to the value of the diameter of the outer diameter surface of the large collar.

この発明の他の局面においては、風力発電機の主軸支持構造は、風力を受けるブレードと、その一端がブレードに固定され、ブレードとともに回転する主軸と、固定部材に組み込まれ、主軸を回転自在に支持する円錐ころ軸受とを有する風力発電機の主軸支持構造である。上記した円錐ころ軸受は、外輪と、内輪と、外輪と内輪との間に配置された複数の円錐ころと、複数の円錐ころの間隔を保持する保持器とを備える。ここで、上記した内輪は、円錐ころの大端面に接する大鍔面と、大鍔外径面との間に斜面部を設ける。   In another aspect of the present invention, the main shaft support structure of the wind power generator includes a blade that receives wind power, one end of which is fixed to the blade, the main shaft that rotates together with the blade, and a fixed member that can rotate the main shaft. A main shaft support structure of a wind power generator having a tapered roller bearing to be supported. The above-mentioned tapered roller bearing includes an outer ring, an inner ring, a plurality of tapered rollers disposed between the outer ring and the inner ring, and a cage that holds the intervals between the plurality of tapered rollers. Here, the above-described inner ring is provided with a slope portion between a large collar surface in contact with the large end face of the tapered roller and a large collar outer diameter surface.

このように構成することにより、荷重作用方向における大鍔の剛性が増すことになり、内輪の大鍔が割れたり、欠けたりするおそれがなく接触角を大きくすることができ、より大きなスラスト荷重およびモーメント荷重を受けることができる。   By configuring in this way, the rigidity of the large cage in the load acting direction is increased, and the contact angle can be increased without the possibility of cracking or chipping of the inner race, so that a larger thrust load and Can receive moment load.

この発明によれば、内輪の大鍔面と大鍔外径面との間に斜面部を設けたので、荷重作用方向に対する大鍔の肉厚が増すことになることになり、大鍔の剛性をあげることができる。その結果、内輪の大鍔が割れたり、欠けたりするおそれがなく接触角を大きくすることができ、より大きなスラスト荷重を受けることができる。   According to the present invention, since the slope portion is provided between the large collar surface and the large collar outer diameter surface of the inner ring, the thickness of the large collar relative to the load acting direction is increased, and the rigidity of the large collar is increased. Can give. As a result, there is no fear that the inner ring is cracked or chipped, the contact angle can be increased, and a larger thrust load can be received.

また、このような円錐ころ軸受を風力発電機の主軸に使用すれば、内輪の大鍔が割れたり、欠けたりするおそれがなく接触角を大きくすることができるので、より大きなスラスト荷重およびモーメント荷重を受けることができる。   In addition, if such a tapered roller bearing is used for the main shaft of a wind power generator, the contact angle can be increased without the possibility of cracking or chipping the inner ring, so a larger thrust load and moment load. Can receive.

以下、この発明の実施の形態を図面を参照して説明する。図1は、この発明の一実施形態に係る円錐ころ軸受を複列で使用した場合の複列円錐ころ軸受11に含まれる内輪12bを示した断面図である。図1を参照して、内輪12bは円錐ころの大端面を案内する大鍔21bと、円錐ころの小端面を案内する小鍔22bと、円錐ころを転動させる軌道面23bとを有する。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing an inner ring 12b included in a double row tapered roller bearing 11 when the tapered roller bearing according to an embodiment of the present invention is used in a double row. Referring to FIG. 1, inner ring 12b has a large flange 21b for guiding the large end face of the tapered roller, a small flange 22b for guiding the small end face of the tapered roller, and a raceway surface 23b for rolling the tapered roller.

内輪12bには、円錐ころの大端面に接し、大端面を案内する面である大鍔面27bと、内輪12bの大鍔21b側の外径面である大鍔外径面26bとの間に、円周方向に連なった斜面部28bが設けられている。ここで、斜面部28bとは、大鍔面27bと大鍔外径面26bとの間に設けられた傾斜のことをいい、矢印Yの方向に大鍔21bの肉厚を増すことによって現れる領域をいう。この場合、斜面部28bは、一つの面でなく、多数の面で構成されていてもよく、また、緩やかな曲面等で構成されていてもよい。なお、大鍔面27bと斜面部28bとの境界部分Xには、C面やR面等の面取りがなされている。   The inner ring 12b is in contact with the large end surface of the tapered roller and between the large collar surface 27b that guides the large end surface and the large collar outer diameter surface 26b that is the outer diameter surface on the large collar 21b side of the inner ring 12b. In addition, a slope portion 28b that is continuous in the circumferential direction is provided. Here, the slope portion 28b refers to an inclination provided between the large collar surface 27b and the large collar outer diameter surface 26b, and is an area that appears by increasing the thickness of the large collar 21b in the direction of arrow Y. Say. In this case, the slope portion 28b may be configured by a number of surfaces instead of a single surface, or may be configured by a gently curved surface. A chamfer such as a C surface or an R surface is chamfered at the boundary portion X between the large collar surface 27b and the slope portion 28b.

内輪12bの大鍔面27bには、円錐ころ(図示せず)を介して、ラジアル荷重やスラスト荷重、モーメント荷重等の外力の作用した場合、また、内部アキシアルすき間が負の場合等において、矢印Yの方向に荷重がかかる。また、矢印Yの方向の荷重に対して、ぬすみ溝24bを中心に、大鍔21bに対して矢印Zの方向に大きな曲げ応力もかかる。しかし、大鍔21bは、斜面部28bを設けることにより、荷重作用方向である矢印Yの方向に肉厚を増しているため、大鍔21bの剛性をあげることができ、矢印Yの方向の荷重や、矢印Zの方向の大きな曲げ応力に対し、割れたり、欠けたりすることはない。   An arrow is applied to the large collar surface 27b of the inner ring 12b when an external force such as a radial load, a thrust load, or a moment load is applied via a tapered roller (not shown), or when the internal axial clearance is negative. A load is applied in the Y direction. Further, with respect to the load in the direction of the arrow Y, a large bending stress is also applied in the direction of the arrow Z with respect to the large collar 21b, centering on the thin groove 24b. However, since the large collar 21b is provided with the inclined surface portion 28b, the thickness of the large collar 21b is increased in the direction of the arrow Y, which is the direction of the load, so that the rigidity of the large collar 21b can be increased. Moreover, it does not crack or chip with respect to a large bending stress in the direction of arrow Z.

このように構成することにより、ラジアル荷重やスラスト荷重、モーメント荷重等の外力の作用時等における大鍔21bへの荷重や、曲げ応力に対する剛性を維持する肉厚を十分に確保しているため、大鍔21bが割れたり、欠けたりすることがない。したがって、大鍔21bが割れたり、欠けたりするおそれなく内輪12bを含んだ複列円錐ころ軸受の接触角を大きくすることができ、より大きなスラスト荷重を受けることができる。   By configuring in this way, a sufficient thickness is maintained to maintain the rigidity against the load and bending stress on the large collar 21b when an external force such as a radial load, a thrust load, and a moment load is applied. The large bowl 21b is not cracked or chipped. Therefore, the contact angle of the double-row tapered roller bearing including the inner ring 12b can be increased without fear of the large flange 21b being cracked or chipped, and a larger thrust load can be received.

なお、斜面部28bの寸法については、回転軸(図示せず)と当接する面である内輪12bの内径面25bから大鍔面27bの最大外径位置に至るまでの厚み寸法をAとし、内径面25bから大鍔外径面26bに至るまでの厚み寸法をBとしたときに、B≧1.05Aの関係が成立し、さらに好ましくは、B≦1.20Aの関係が成立する。   In addition, about the dimension of the slope part 28b, let A be the thickness dimension from the inner diameter surface 25b of the inner ring 12b, which is a surface in contact with the rotating shaft (not shown), to the maximum outer diameter position of the large collar surface 27b, and the inner diameter. When the thickness dimension from the surface 25b to the large outer diameter surface 26b is B, the relationship of B ≧ 1.05A is established, and more preferably, the relationship of B ≦ 1.20A is established.

Bが1.05A以下であると、ラジアル荷重やスラスト荷重、モーメント荷重等の外力の作用時における大鍔21bへの荷重や、曲げ応力に対して、大鍔21bの剛性を維持する肉厚を十分に確保することができず、大鍔21bが割れたり、欠けたりするおそれがある。また、Bが1.20A以上であると、内輪12bの寸法関係において、大鍔外径面26bが許容できる最大外径よりも大きくなるおそれがある。   When B is 1.05 A or less, the thickness to maintain the rigidity of the large flange 21b against the load on the large flange 21b or the bending stress when an external force such as a radial load, a thrust load, or a moment load is applied. It cannot be secured sufficiently, and there is a possibility that the large bowl 21b may be cracked or chipped. Further, if B is 1.20 A or more, there is a possibility that the large outer diameter surface 26b is larger than the allowable maximum outer diameter in the dimensional relationship of the inner ring 12b.

さらに好ましくは、内輪12bを組み込んだ円錐ころ軸受において、後述する円錐ころの大端面側のピッチ円の直径と、内輪12bの大鍔外径面26bの直径とを等しくする。こうすることにより、より最適な肉厚量とすることができる。ここで、ピッチ円とは、軸方向からみて、円錐ころの大端面の中心が、回転軸を中心に回転する際に描く円をいう。   More preferably, in the tapered roller bearing incorporating the inner ring 12b, the diameter of the pitch circle on the large end face side of the tapered roller, which will be described later, is made equal to the diameter of the large flange outer diameter surface 26b of the inner ring 12b. By carrying out like this, it can be set as more optimal wall thickness. Here, the pitch circle refers to a circle drawn when the center of the large end face of the tapered roller rotates around the rotation axis when viewed from the axial direction.

図2は、図1に示した内輪12bを含む円錐ころ軸受を複列で使用した場合の複列円錐ころ軸受11を表した断面図である。図2を参照して、複列円錐ころ軸受11は、小径側端面が互いに向き合うよう配置された左右の内輪12a、12bと、左右の内輪12a、12bの間に配置された内輪間座18と、左右の内輪12a、12bに対応する軌道面を有する外輪14と、内輪12a、12bと外輪14の間に配置された複数の円錐ころ13a、13bと、左右の列において複数の円錐ころ13a、13bの間隔を保持する左右の保持器とを有する。ここで、内輪12bに向き合うよう配置された内輪12aは、内輪12bと同じ構成であり、内輪12aの大鍔面27aと大鍔外径面26aとの間には、斜面部28aが設けられている。   FIG. 2 is a sectional view showing the double row tapered roller bearing 11 when the tapered roller bearing including the inner ring 12b shown in FIG. 1 is used in a double row. Referring to FIG. 2, double-row tapered roller bearing 11 includes left and right inner rings 12 a and 12 b arranged so that the end surfaces on the small diameter side face each other, and an inner ring spacer 18 arranged between left and right inner rings 12 a and 12 b. The outer ring 14 having a raceway corresponding to the left and right inner rings 12a, 12b, the plurality of tapered rollers 13a, 13b disposed between the inner rings 12a, 12b and the outer ring 14, and the plurality of tapered rollers 13a in the left and right rows, And left and right cages that hold a distance of 13b. Here, the inner ring 12a disposed so as to face the inner ring 12b has the same configuration as the inner ring 12b, and a slope portion 28a is provided between the large collar surface 27a and the large collar outer diameter surface 26a of the inner ring 12a. Yes.

内輪12a、12bは、大きなスラスト荷重およびモーメント荷重を受けるため、外輪軌道面と複列円錐ころ軸受11の回転軸線(図示せず)とのなす角度である接触角が大きく構成されている。好ましくは、接触角は40°〜47°の範囲内に設定されている。   Since the inner rings 12a and 12b receive a large thrust load and moment load, a contact angle that is an angle formed between the outer ring raceway surface and the rotation axis (not shown) of the double row tapered roller bearing 11 is configured to be large. Preferably, the contact angle is set within a range of 40 ° to 47 °.

内輪12aと12bの間には、小径側側板17a、17bとの干渉を避け得る形状を有する内輪間座18が配置されている。内輪間座18は、その両端面がそれぞれ左右の内輪12a、12bの小径側端面に接しており、軸受の組み込み時や、ラジアル荷重やスラスト荷重、モーメント荷重等の外力の作用時等に互いの内輪12a、12bから圧力がかかる。したがって、内輪間座18には、その圧力に耐えるだけの剛性が必要である。剛性を確保するためには、たとえば、内輪間座18の中央部の径方向の断面積を大きくする等、内輪間座18の径方向の厚みを増すことが必要である。   An inner ring spacer 18 having a shape capable of avoiding interference with the small-diameter side plates 17a and 17b is disposed between the inner rings 12a and 12b. Both end surfaces of the inner ring spacer 18 are in contact with the small-diameter side end surfaces of the left and right inner rings 12a and 12b, respectively. When the bearing is assembled or when an external force such as a radial load, a thrust load, or a moment load is applied, the inner ring spacer 18 Pressure is applied from the inner rings 12a, 12b. Therefore, the inner ring spacer 18 needs to be rigid enough to withstand the pressure. In order to ensure rigidity, it is necessary to increase the radial thickness of the inner ring spacer 18, for example, by increasing the radial sectional area of the central portion of the inner ring spacer 18.

外輪14は、中央部が径方向に凸状の断面形状をしており、内輪12a、12bとの間に複数の円錐ころ13a、13bを保持している。本実施形態では、外輪14は一つで構成されているが、内輪12a、12bに対してそれぞれ別個の外輪が設けられていてもよい。   The outer ring 14 has a cross-sectional shape whose central portion is convex in the radial direction, and holds a plurality of tapered rollers 13a and 13b between the inner rings 12a and 12b. In the present embodiment, one outer ring 14 is configured, but separate outer rings may be provided for the inner rings 12a and 12b, respectively.

円錐ころ13a、13bは、外輪14と内輪12a、12bとの間に配置されている。また、後述するピンタイプ保持器による保持を可能にするため、円錐ころ13a、13bには、小端面から大端面にかけてピンを挿通するための貫通穴が設けられている。   The tapered rollers 13a and 13b are disposed between the outer ring 14 and the inner rings 12a and 12b. Further, in order to enable holding by a pin type cage described later, the tapered rollers 13a and 13b are provided with through holes for inserting pins from the small end surface to the large end surface.

保持器は、円錐ころ13a、13bをより多く保持することができるピンタイプ保持器を使用している。左右の各保持器は、各円錐ころ13a、13bを貫通するピン15a、15bと、各円錐ころ13a、13bの小端面側に突出する複数のピン15a、15bの一方端を保持する小径側側板17a、17bと、各円錐ころ13a、13bの大端面側に突出する複数のピン15a、15bの他方端を保持する大径側側板16a、16bとを有する。   As the cage, a pin type cage that can hold more tapered rollers 13a and 13b is used. Each of the left and right cages includes a pin 15a, 15b that passes through each of the tapered rollers 13a, 13b, and a small-diameter side plate that holds one end of the plurality of pins 15a, 15b protruding toward the small end surface of each of the tapered rollers 13a, 13b. 17a, 17b and large-diameter side plates 16a, 16b that hold the other ends of the plurality of pins 15a, 15b protruding to the large end face side of the tapered rollers 13a, 13b.

ここで、斜面部28a、28bは、円錐台形状の面を形成し、その母線は円錐ころ13a、13bの中心軸線19a、19bの方向に沿って延びていることにしてもよい。こうすることにより、荷重を受け易い方向に大鍔21a、21bの肉厚を増すことができる。また、内輪12a、12bを含んだ複列円錐ころ軸受11の組み立てにおいて、大鍔21a、21bと近接する大径側側板16a、16bとの干渉を避けることができる。この場合、中心軸線19a、19bと母線とが平行であってもよいし、互いの線が若干の角度を有する関係であってもよい。   Here, the slope portions 28a and 28b may form a truncated cone shape, and the generatrix thereof may extend along the direction of the central axes 19a and 19b of the tapered rollers 13a and 13b. By doing so, the thickness of the large bowls 21a and 21b can be increased in the direction in which the load is easily received. Further, in assembling the double row tapered roller bearing 11 including the inner rings 12a and 12b, it is possible to avoid interference between the large flanges 21a and 21b and the large-diameter side plates 16a and 16b. In this case, the central axis lines 19a and 19b and the bus line may be parallel, or the mutual lines may have a slight angle.

小径側側板17a、17bおよび大径側側板16a、16bのいずれも複列円錐ころ軸受11の回転軸線を中心に環状に延びており、リング状である。小径側側板17a、17bは内輪12a、12bの小鍔側に配置されており、大鍔側に配置された大径側側板16a、16bよりも内径が小さい。また、小径側側板17a、17bおよび大径側側板16a、16bは、いずれも多量のピン15a、15bを保持するため、一定の剛性が必要である。剛性や生産性等の観点から、小径側側板17a、17bおよび大径側側板16a、16bの断面形状は四角形状であることが好適である。ここで、剛性等を確保することができれば、断面形状が円状や楕円状等、他の形状の小径側側板17a、17bおよび大径側側板16a、16bであっても、特に問題はない。   Each of the small-diameter side plates 17a and 17b and the large-diameter side plates 16a and 16b extends annularly around the rotation axis of the double row tapered roller bearing 11, and has a ring shape. The small-diameter side plates 17a and 17b are disposed on the small flange side of the inner rings 12a and 12b, and the inner diameter is smaller than the large-diameter side plates 16a and 16b disposed on the large collar side. In addition, the small-diameter side plates 17a and 17b and the large-diameter side plates 16a and 16b both hold a large amount of pins 15a and 15b, and therefore need a certain rigidity. From the viewpoint of rigidity, productivity, and the like, it is preferable that the cross-sectional shapes of the small-diameter side plates 17a and 17b and the large-diameter side plates 16a and 16b are rectangular. Here, there is no particular problem even if the small-diameter side plates 17a and 17b and the large-diameter side plates 16a and 16b have other shapes such as a circular shape and an elliptical shape as long as rigidity can be ensured.

特に、大径側側板16a、16bは、複列円錐ころ軸受11の組み立てる際に、斜面部28a、28bと近接する位置にある。そのため、斜面部28a、28bが大径側側板16a、16bの存する方向に角度を有する場合、大径側側板16a、16bと斜面部28a、28bとが干渉するおそれがある。このような場合、斜面部28a、28bと干渉しないよう、大径側側板16a、16bの干渉部分に逃げ部を設ける等、大径側側板16a、16bの形状について、多少の変形を行ってもよい。   In particular, the large-diameter side plates 16a and 16b are located close to the inclined surface portions 28a and 28b when the double row tapered roller bearing 11 is assembled. Therefore, when the slope portions 28a and 28b have an angle in the direction in which the large-diameter side plates 16a and 16b exist, the large-diameter side plates 16a and 16b and the slope portions 28a and 28b may interfere with each other. In such a case, even if the large-diameter side plates 16a and 16b are slightly deformed, for example, a relief portion is provided at the interference portion of the large-diameter side plates 16a and 16b so as not to interfere with the slope portions 28a and 28b. Good.

なお、先の実施の形態においては、円錐ころ13a、13bを保持する保持器としてピンタイプ保持器を使用したが、これに限らず、プレス保持器、成型保持器、揉みぬき保持器等を使用してもよい。このように構成することにより、用途等に応じて最適な保持器を選択して、複列円錐ころ軸受11を構成することができる。   In the previous embodiment, the pin type cage is used as the cage for holding the tapered rollers 13a and 13b. However, the present invention is not limited to this, and a press cage, a molded cage, a kneading cage, etc. are used. May be. By configuring in this way, it is possible to configure the double-row tapered roller bearing 11 by selecting an optimal cage according to the application.

また、先の実施の形態においては、複列円錐ころ軸受11が内輪間座18を含むこととしたが、これに限らず、内輪間座18を設けず、内輪の小鍔から軸方向に延びて内輪の小径側端面とが当接する内輪突合せ部を内輪12a、12bに設けてもよい。このように構成することにより、複列円錐ころ軸受11を構成する部材を削減することができる。   In the previous embodiment, the double row tapered roller bearing 11 includes the inner ring spacer 18. However, the present invention is not limited to this, and the inner ring spacer 18 is not provided, and extends in the axial direction from the inner ring of the inner ring. The inner rings 12a and 12b may be provided with inner ring butting portions that come into contact with the small-diameter side end surface of the inner ring. By comprising in this way, the member which comprises the double row tapered roller bearing 11 can be reduced.

なお、先の実施の形態においては、この発明の実施の形態にかかる円錐ころ軸受として複列円錐ころ軸受を用いて説明したが、これに限らず、単列の円錐ころ軸受を複数使用し、各円錐ころ軸受を組み合わせて用いる場合、さらには、単列の円錐ころ軸受を単独で用いた場合についても同様に適用される。具体的には、単列の円錐ころ軸受は、外輪と、内輪と、外輪と内輪との間に配置された複数の円錐ころと、複数の円錐ころの間隔を保持する保持器とを備え、内輪は、円錐ころの大端面に接する大鍔面と、大鍔外径面との間に斜面部が設けられている。   In the previous embodiment, the double-row tapered roller bearing has been described as the tapered roller bearing according to the embodiment of the present invention, but not limited thereto, a plurality of single-row tapered roller bearings are used, In the case where the tapered roller bearings are used in combination, the same applies to the case where a single row tapered roller bearing is used alone. Specifically, the single-row tapered roller bearing includes an outer ring, an inner ring, a plurality of tapered rollers disposed between the outer ring and the inner ring, and a cage that holds a space between the plurality of tapered rollers, The inner ring is provided with a slope portion between a large collar surface in contact with the large end surface of the tapered roller and a large collar outer diameter surface.

図3および図4は、上記した円錐ころ軸受を主軸支持軸受35として適用した、風力発電機の主軸支持構造の一例を示している。主軸支持構造の主要部品を支持するナセル32のケーシング33は、高い位置で、旋回座軸受31を介して支持台30上に水平旋回自在に設置されている。風力を受けるブレード37を一端に固定する主軸36は、ナセル32のケーシング33内で、軸受ハウジング34に組み込まれた主軸支持軸受35を介して、回転自在に支持されている、主軸36の他端は増速機38に接続され、この増速機38の出力軸が発電機39のロータ軸に結合されている。ナセル32は、旋回用モータ40により、減速機41を介して任意の角度に旋回させられる。   3 and 4 show an example of a main shaft support structure of a wind power generator in which the above-described tapered roller bearing is applied as a main shaft support bearing 35. FIG. The casing 33 of the nacelle 32 that supports the main components of the spindle support structure is installed on the support base 30 via a swivel bearing 31 at a high position so as to be able to turn horizontally. A main shaft 36 that fixes a blade 37 that receives wind power to one end is rotatably supported in a casing 33 of the nacelle 32 via a main shaft support bearing 35 incorporated in a bearing housing 34. Is connected to the speed increaser 38, and the output shaft of the speed increaser 38 is coupled to the rotor shaft of the generator 39. The nacelle 32 is turned at an arbitrary angle by the turning motor 40 via the speed reducer 41.

軸受ハウジング34に組み込まれた主軸支持軸受35は、この発明の一実施形態に係る円錐ころ軸受を複列で使用した場合の複列円錐ころ軸受であって、外輪と、小径側端面を向き合わせるよう配置された左右の内輪と、左右の内輪の間に配置された内輪間座と、外輪と左右の内輪との間に配置された複数の円錐ころと、左右の列において複数の円錐ころの間隔を保持する左右の保持器とを備える。上記した各保持器は、各円錐ころを貫通するピンと、各円錐ころの小端面側に突出する複数のピンの一方端を保持して環状に延びる小径側側板と、各円錐ころの大端面側に突出する複数のピンの他方端を保持して環状に延びる大径側側板とを有する。ここで、上記した各内輪は、円錐ころの大端面に接する大鍔面と、大鍔外径面との間に斜面部を設ける。   The main shaft support bearing 35 incorporated in the bearing housing 34 is a double row tapered roller bearing when the tapered roller bearing according to one embodiment of the present invention is used in a double row, and the outer ring faces the end surface on the small diameter side. Left and right inner rings, inner ring spacers arranged between the left and right inner rings, a plurality of tapered rollers arranged between the outer ring and the left and right inner rings, and a plurality of tapered rollers in the left and right rows And left and right cages for holding the gap. Each of the cages described above includes a pin that passes through each tapered roller, a small-diameter side plate that extends annularly while holding one end of a plurality of pins protruding to the small end surface side of each tapered roller, and a large end surface side of each tapered roller And a large-diameter side plate extending annularly while holding the other ends of the plurality of pins projecting. Here, each of the inner rings described above is provided with a slope portion between the large collar surface in contact with the large end face of the tapered roller and the large collar outer diameter surface.

主軸支持軸受35を、このような構成の複列円錐ころ軸受にすることにより、大鍔の肉厚を増すことができるので、内輪の大鍔が割れたり、欠けたりすることがなく接触角を大きくすることができ、より大きなスラスト荷重およびモーメント荷重を受けることができる。その結果、より大きなスラスト荷重およびモーメント荷重を受けることができる風力発電機の主軸支持構造を提供することができる。   By making the main shaft support bearing 35 into a double-row tapered roller bearing having such a configuration, the thickness of the large collar can be increased, so that the large diameter of the inner ring is not cracked or chipped, and the contact angle is increased. It can be increased and can receive larger thrust loads and moment loads. As a result, it is possible to provide a main shaft support structure for a wind power generator that can receive larger thrust loads and moment loads.

なお、この場合についても、この発明の実施の形態に係る主軸支持構造に用いる主軸支持軸受として複列円錐ころ軸受を使用したが、これに限らず、単列の円錐ころ軸受を複数使用し、各円錐ころ軸受を組み合わせて用いてもよいし、さらには、単列の円錐ころ軸受を単独で用いてもよい。   In this case as well, a double row tapered roller bearing was used as the main shaft support bearing used in the main shaft support structure according to the embodiment of the present invention, but not limited to this, a plurality of single row tapered roller bearings were used, The tapered roller bearings may be used in combination, or a single row tapered roller bearing may be used alone.

以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

この発明に係る円錐ころ軸受および風力発電機の主軸支持構造は、内輪の大鍔が割れたり、欠けたりすることなく接触角を大きくすることができるため、特に、大きなラジアル荷重やスラスト荷重、モーメント荷重を受ける円錐ころ軸受および風力発電機の主軸支持構造に有効に利用できる。   The main shaft support structure of the tapered roller bearing and the wind power generator according to the present invention can increase the contact angle without cracking or chipping the inner ring, so that particularly large radial load, thrust load, moment It can be effectively used for a tapered roller bearing and a main shaft support structure of a wind power generator.

この発明の一実施形態に係る円錐ころ軸受を複列円錐ころ軸受として使用した場合の複列円錐ころ軸受11に含まれる内輪12bを示す断面図である。It is sectional drawing which shows the inner ring | wheel 12b contained in the double row tapered roller bearing 11 at the time of using the tapered roller bearing which concerns on one Embodiment of this invention as a double row tapered roller bearing. 図1に示す内輪12bを含む複列円錐ころ軸受11の断面図である。It is sectional drawing of the double row tapered roller bearing 11 containing the inner ring | wheel 12b shown in FIG. この発明の一実施形態に係る風力発電機の主軸支持構造の一例を示す図である。It is a figure which shows an example of the spindle support structure of the wind power generator concerning one Embodiment of this invention. 図3に示した風力発電機の主軸支持構造の図解的側面図である。FIG. 4 is a schematic side view of the main shaft support structure of the wind power generator shown in FIG. 3. 自動調心ころ軸受101を風力発電機の主軸に使用した場合の概略図である。It is the schematic at the time of using the self-aligning roller bearing 101 for the main axis | shaft of a wind power generator. 従来における複列円錐ころ軸受121の一例を示す断面図である。It is sectional drawing which shows an example of the conventional double row tapered roller bearing 121. 従来における接触角が大きい場合の複列円錐ころ軸受121を示す断面図である。It is sectional drawing which shows the double row tapered roller bearing 121 in the case of the conventional large contact angle.

符号の説明Explanation of symbols

11 複列円錐ころ軸受、12a,12b 内輪、13a,13b 円錐ころ、14 外輪、15a,15b ピン、16a,16b 大径側側板、17a,17b 小径側側板、18 内輪間座、19a,19b 中心軸線、21a,21b 大鍔、22b 小鍔、23b 軌道面、24b ぬすみ溝、25b 内径面、26a,26b 大鍔外径面、27a,27b 大鍔面、28a,28b 斜面部、30 支持台、31 旋回座軸受、32 ナセル、33 ケーシング、34 軸受ハウジング、35 主軸支持軸受、36 主軸、37 ブレード、38 増速機、39 発電機、40 旋回用モータ、41 減速機。   11 Double row tapered roller bearing, 12a, 12b Inner ring, 13a, 13b Tapered roller, 14 Outer ring, 15a, 15b Pin, 16a, 16b Large diameter side plate, 17a, 17b Small diameter side plate, 18 Inner ring spacer, 19a, 19b Center Axis line, 21a, 21b, large surface, 22b, small surface, 23b raceway surface, 24b fillet groove, 25b inner surface, 26a, 26b large surface, 27a, 27b large surface, 28a, 28b slope, 30 support base 31 bearing seat, 32 nacelle, 33 casing, 34 bearing housing, 35 spindle support bearing, 36 spindle, 37 blade, 38 speed increaser, 39 generator, 40 motor for turning, 41 speed reducer.

Claims (6)

外輪と、内輪と、外輪と内輪との間に配置された複数の円錐ころと、複数の円錐ころの間隔を保持する保持器とを備える円錐ころ軸受であって、
外輪軌道面と前記円錐ころ軸受の回転軸線とのなす角度である接触角は、40°以上であり、
前記内輪は、前記円錐ころの大端面に接する大鍔面と、大鍔外径面との間に、前記内輪の内径面から前記大鍔面の最大外径位置に至るまでの厚み寸法をAとし、前記内輪の内径面から前記大鍔外径面に至るまでの厚み寸法をBとすると、BがAよりも大きくなるよう荷重作用方向に大鍔の肉厚を増すようにして形成される斜面部を設けた、円錐ころ軸受。
A tapered roller bearing comprising an outer ring, an inner ring, a plurality of tapered rollers disposed between the outer ring and the inner ring, and a retainer that holds a space between the plurality of tapered rollers,
The contact angle, which is the angle formed by the outer ring raceway surface and the rotational axis of the tapered roller bearing, is 40 ° or more,
The inner ring has a thickness dimension from the inner diameter surface of the inner ring to the maximum outer diameter position of the large collar surface between the large collar surface in contact with the large end surface of the tapered roller and the large collar outer diameter surface. When the thickness dimension from the inner diameter surface of the inner ring to the outer diameter surface of the large collar is B, the thickness of the large collar is increased in the load acting direction so that B is larger than A. A tapered roller bearing with a slope.
前記斜面部は、円錐台形状の面を形成し、その母線は前記円錐ころの中心軸線方向に沿って延びている、請求項1に記載の円錐ころ軸受。 The tapered roller bearing according to claim 1, wherein the inclined surface portion forms a truncated cone-shaped surface, and a generatrix thereof extends along a central axis direction of the tapered roller. 前記内輪の内径面から前記大鍔面の最大外径位置に至るまでの厚み寸法をAとし、前記内輪の内径面から前記大鍔外径面に至るまでの厚み寸法をBとしたときに、
B≧1.05Aの関係が成立する、請求項1または2に記載の円錐ころ軸受。
When the thickness dimension from the inner diameter surface of the inner ring to the maximum outer diameter position of the large collar surface is A, and the thickness dimension from the inner diameter surface of the inner ring to the outer diameter surface of the large collar is B,
The tapered roller bearing according to claim 1, wherein a relationship of B ≧ 1.05 A is established.
前記寸法関係において、
B≦1.20Aの関係が成立する、請求項1〜3のいずれかに記載の円錐ころ軸受。
In the dimensional relationship,
The tapered roller bearing according to claim 1, wherein a relationship of B ≦ 1.20 A is established.
前記円錐ころの大端面側のピッチ円の直径と、前記大鍔外径面の直径とが等しい、請求項1〜4のいずれかに記載の円錐ころ軸受。 The tapered roller bearing according to any one of claims 1 to 4, wherein a diameter of a pitch circle on a large end surface side of the tapered roller is equal to a diameter of the outer diameter surface of the large collar. 風力を受けるブレードと、
その一端が前記ブレードに固定され、ブレードとともに回転する主軸と、
固定部材に組み込まれ、前記主軸を回転自在に支持する円錐ころ軸受とを有する風力発電機の主軸支持構造であって、
前記円錐ころ軸受は、外輪と、内輪と、外輪と内輪との間に配置された複数の円錐ころと、複数の円錐ころの間隔を保持する保持器とを備え、
外輪軌道面と前記円錐ころ軸受の回転軸線とのなす角度である接触角は、40°以上であり、
前記内輪は、前記円錐ころの大端面に接する大鍔面と、大鍔外径面との間に、前記内輪の内径面から前記大鍔面の最大外径位置に至るまでの厚み寸法をAとし、前記内輪の内径面から前記大鍔外径面に至るまでの厚み寸法をBとすると、BがAよりも大きくなるよう荷重作用方向に大鍔の肉厚を増すようにして形成される斜面部を設けた、風力発電機の主軸支持構造。
A blade that receives wind,
One end of which is fixed to the blade and rotates with the blade;
A main shaft support structure for a wind power generator, which is incorporated in a fixed member and has a tapered roller bearing that rotatably supports the main shaft,
The tapered roller bearing includes an outer ring, an inner ring, a plurality of tapered rollers disposed between the outer ring and the inner ring, and a cage that holds a space between the plurality of tapered rollers,
The contact angle, which is the angle formed by the outer ring raceway surface and the rotational axis of the tapered roller bearing, is 40 ° or more,
The inner ring has a thickness dimension from the inner diameter surface of the inner ring to the maximum outer diameter position of the large collar surface between the large collar surface in contact with the large end surface of the tapered roller and the large collar outer diameter surface. When the thickness dimension from the inner diameter surface of the inner ring to the outer diameter surface of the large collar is B, the thickness of the large collar is increased in the load acting direction so that B is larger than A. Main shaft support structure for wind power generators with a slope.
JP2005211708A 2005-07-21 2005-07-21 Main shaft support structure for tapered roller bearing and wind power generator Active JP4699827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005211708A JP4699827B2 (en) 2005-07-21 2005-07-21 Main shaft support structure for tapered roller bearing and wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005211708A JP4699827B2 (en) 2005-07-21 2005-07-21 Main shaft support structure for tapered roller bearing and wind power generator

Publications (2)

Publication Number Publication Date
JP2007024294A JP2007024294A (en) 2007-02-01
JP4699827B2 true JP4699827B2 (en) 2011-06-15

Family

ID=37785305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005211708A Active JP4699827B2 (en) 2005-07-21 2005-07-21 Main shaft support structure for tapered roller bearing and wind power generator

Country Status (1)

Country Link
JP (1) JP4699827B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511544B2 (en) 2006-09-08 2021-08-18 NTN Corporation Retainer segment of roller bearing for supporting main shaft of wind-power generator
JP5131466B2 (en) * 2008-03-28 2013-01-30 Ntn株式会社 Roller bearing for main shaft support of wind power generator and main shaft support structure of wind power generator
JP4730475B1 (en) 2010-08-10 2011-07-20 株式会社安川電機 Rotating electric machine, wind power generation system, and method of manufacturing rotating electric machine
CN108350944A (en) 2015-10-29 2018-07-31 Ntn株式会社 Produce method, double-row conical bearing and the method for producing double-row conical bearing of bearer ring
JP2017082945A (en) * 2015-10-29 2017-05-18 Ntn株式会社 Double row tapered roller bearing, race ring and method of manufacturing double row tapered roller bearing
DE102019116999A1 (en) * 2019-06-25 2020-12-31 Schaeffler Technologies AG & Co. KG Roller bearing arrangement for determining loads
CN113958620A (en) * 2021-10-14 2022-01-21 三一重能股份有限公司 Wind turbine generator and transmission system thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150535A (en) * 1978-05-16 1979-11-26 Koyo Seiko Co Ltd Roller bearing
JPH0632747U (en) * 1992-09-30 1994-04-28 三菱自動車工業株式会社 Tapered roller bearing device
JPH11236920A (en) * 1998-02-24 1999-08-31 Nippon Seiko Kk Rolling bearing
JP2000130443A (en) * 1998-10-26 2000-05-12 Ntn Corp Tapered roller bearing and holder for tapered roller bearing
JP2000170775A (en) * 1998-12-03 2000-06-20 Ntn Corp Conical roller bearing and gear shaft support device for vehicle
JP2001317551A (en) * 2000-05-10 2001-11-16 Ntn Corp Tapered roller bearing
JP2005105917A (en) * 2003-09-30 2005-04-21 Mitsubishi Heavy Ind Ltd Wind power generating windmill
JP2005147331A (en) * 2003-11-18 2005-06-09 Ntn Corp Double row rolling bearing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150535A (en) * 1978-05-16 1979-11-26 Koyo Seiko Co Ltd Roller bearing
JPH0632747U (en) * 1992-09-30 1994-04-28 三菱自動車工業株式会社 Tapered roller bearing device
JPH11236920A (en) * 1998-02-24 1999-08-31 Nippon Seiko Kk Rolling bearing
JP2000130443A (en) * 1998-10-26 2000-05-12 Ntn Corp Tapered roller bearing and holder for tapered roller bearing
JP2000170775A (en) * 1998-12-03 2000-06-20 Ntn Corp Conical roller bearing and gear shaft support device for vehicle
JP2001317551A (en) * 2000-05-10 2001-11-16 Ntn Corp Tapered roller bearing
JP2005105917A (en) * 2003-09-30 2005-04-21 Mitsubishi Heavy Ind Ltd Wind power generating windmill
JP2005147331A (en) * 2003-11-18 2005-06-09 Ntn Corp Double row rolling bearing

Also Published As

Publication number Publication date
JP2007024294A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4699827B2 (en) Main shaft support structure for tapered roller bearing and wind power generator
US7922396B2 (en) Double row self-aligning roller bearing and main shaft support structure of wind power generator
JP4101844B2 (en) Bearing built-in jig, tapered roller bearing, method of assembling tapered roller bearing and main shaft support structure of wind power generator
JP4573791B2 (en) Roller bearing and main shaft support structure of wind power generator
JP2008064248A (en) Rolling bearing cage, rolling bearing, and spindle supporting structure for wind power generator
JP2005147331A (en) Double row rolling bearing
JP2007205557A (en) Rolling bearing, cage segment, and spindle supporting structure of wind power generator
JP4248557B2 (en) Roller bearing, cage segment, and main shaft support structure for wind power generator
JP5010353B2 (en) Roller bearings, roller bearing cage segments, and wind turbine main shaft support structure
JP4522266B2 (en) Double row roller bearing
WO2017047506A1 (en) Double-row self-aligning roller bearing
JP2007024110A (en) Tapered roller bearing and retainer for tapered roller bearing
JP2006349032A (en) Double-row tapered roller bearing and spindle supporting structure of aerogenerator
JP5354849B2 (en) Wind generator main shaft support structure
JP2007162750A (en) Rolling bearing and spindle supporting structure of wind power generator
JP4616691B2 (en) Tapered roller bearing, pin type cage for tapered roller bearing and main shaft support structure of wind power generator
JP4063847B2 (en) Roller bearing, cage segment, and main shaft support structure for wind power generator
JP2009063102A (en) Retainer for rolling bearing, tapered roller bearing, main shaft support structure for wind power generator, method for manufacturing retainer for rolling bearing, and method for assembling rolling bearing
JP2007132418A (en) Spindle supporting structure for wind power generator
JP2006177447A (en) Double-row rolling bearing
JP2007024112A (en) Self-aligning roller bearing and planetary gear support structure
JP2007255536A (en) Tapered roller bearing, spacer, and spindle supporting structure of wind power generator
JP4177852B2 (en) Wind generator main shaft support roller bearing, cage segment, and wind power generator main shaft support structure
JP2006090346A (en) Double row automatic aligning roller bearing and main shaft supporting structure of wind power generator
JP4163596B2 (en) Double row spherical roller bearing and wind power generator spindle support device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

R150 Certificate of patent or registration of utility model

Ref document number: 4699827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250