JP2008032147A - Rotating shaft supporting structure of wind power generator - Google Patents

Rotating shaft supporting structure of wind power generator Download PDF

Info

Publication number
JP2008032147A
JP2008032147A JP2006207608A JP2006207608A JP2008032147A JP 2008032147 A JP2008032147 A JP 2008032147A JP 2006207608 A JP2006207608 A JP 2006207608A JP 2006207608 A JP2006207608 A JP 2006207608A JP 2008032147 A JP2008032147 A JP 2008032147A
Authority
JP
Japan
Prior art keywords
power generator
wind power
rotating shaft
inner ring
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006207608A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ninoyu
伸幸 二之湯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006207608A priority Critical patent/JP2008032147A/en
Publication of JP2008032147A publication Critical patent/JP2008032147A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/51Cages for rollers or needles formed of unconnected members
    • F16C33/513Cages for rollers or needles formed of unconnected members formed of arcuate segments for carrying one or more rollers
    • F16C33/516Cages for rollers or needles formed of unconnected members formed of arcuate segments for carrying one or more rollers with two segments, e.g. double-split cages with two semicircular parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating shaft supporting structure of a wind power generator simplifying fitting work and replacement work of a bearing supporting a rotating shaft of the wind power generator. <P>SOLUTION: The rotating shaft supporting structure of the wind power generator is provided with a blade 15 rotating while receiving wind, a spindle 16 as the rotating shaft rotating in accompany with rotation of the blade 15, and a rolling bearing 31 rotatably supporting the spindle 16. The rolling bearing 31 is provided with an inner ring, an outer ring, and a plurality of rolling elements arranged between the inner ring and the outer ring. At least one of the inner ring and the outer ring is formed by connecting a plurality of circular arc-shaped members in the circumferential direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、風力発電機に用いられる回転軸、例えば、主軸や増速機の低速軸、中間軸、および高速軸等の回転軸支持構造に関するものである。   The present invention relates to a rotary shaft support structure for a rotary shaft used in a wind power generator, for example, a main shaft, a low-speed shaft, an intermediate shaft, and a high-speed shaft of a speed increaser.

従来の風力発電機が、例えば、特開2005−207517号公報(特許文献1)に記載されている。同公報に記載されている風力発電機は、支持台と、支持台上に旋回座軸受を介して水平旋回自在に配置される主要部品を格納するナセルと、軸受ハウジングに固定された軸受によって回転自在に支持される主軸と、主軸の一方端側にブレードと、主軸の他方端側に増速機および発電機とを備える。   A conventional wind power generator is described in, for example, Japanese Patent Application Laid-Open No. 2005-207517 (Patent Document 1). The wind power generator described in the publication is rotated by a support base, a nacelle for storing main components arranged on the support base in a horizontally swingable manner via a swivel bearing, and a bearing fixed to the bearing housing. A main shaft freely supported, a blade on one end side of the main shaft, and a speed increaser and a generator on the other end side of the main shaft are provided.

上記構成の風力発電機は、風を受けて回転するブレードに伴って主軸が回転し、増速機によって主軸の回転が増速され、発電機で電力に変換される。この風力発電機の主軸は、ブレードが風を受けることによって生じるアキシアル荷重の他に、ブレードの自重によって生じるラジアル荷重やモーメント荷重を受ける。このため、主軸を支持する軸受には、ラジアル荷重、アキシアル荷重、およびモーメント荷重が同時に負荷される環境で使用可能な自動調心ころ軸受や自動調心ころ軸受が使用される。   In the wind power generator configured as described above, the main shaft rotates along with the blades that rotate by receiving wind, the rotation of the main shaft is increased by the speed increaser, and the electric power is converted by the generator. The main shaft of the wind power generator receives a radial load and a moment load caused by the weight of the blade in addition to an axial load caused by the blade receiving wind. For this reason, a self-aligning roller bearing or a self-aligning roller bearing that can be used in an environment in which a radial load, an axial load, and a moment load are simultaneously applied is used as the bearing that supports the main shaft.

また、一般的に風力発電機の主軸を支持する軸受は、内輪と主軸、および外輪とハウジングとがそれぞれ嵌め合いによって固定される。特に、内輪の内径寸法は主軸の外径寸法より僅かに小さく設定されており、内輪の内径寸法が主軸の外径寸法より大きくなるまで熱膨張させてから主軸に組み込む(以下、この組込み方法を「焼き嵌め」という)。
特開2005−207517号公報
In general, a bearing that supports a main shaft of a wind power generator is fixed by fitting an inner ring and a main shaft, and an outer ring and a housing, respectively. In particular, the inner ring dimension of the inner ring is set slightly smaller than the outer diameter dimension of the main shaft. Called “shrink fit”).
JP 2005-207517 A

内輪を焼き嵌めによって主軸に組み込む場合、内輪を加熱する工程と、内輪を主軸の所定位置に嵌め込む工程と、内輪および主軸を冷却する工程とが必要となる。また、冷却工程で生じる結露によって軸受が錆びるのを防止するために、防錆処理が必要となる。したがって、焼き嵌めには、加熱・冷却装置が必要になると共に、多くの作業工数と長い作業時間とが必要となる。   When the inner ring is incorporated into the main shaft by shrink fitting, a step of heating the inner ring, a step of fitting the inner ring into a predetermined position of the main shaft, and a step of cooling the inner ring and the main shaft are required. Moreover, in order to prevent a bearing from rusting by the dew condensation which arises in a cooling process, a rust prevention process is needed. Therefore, the shrink fitting requires a heating / cooling device and requires a large number of work steps and a long working time.

特に、風力発電機の主軸のように大径で高所に設置されている回転軸の軸受を交換する場合、主軸をナセルから地上に降ろして作業しなければならず、多くの作業工数と高額な作業費用が必要となる。   In particular, when replacing a bearing with a large diameter rotating shaft such as the main shaft of a wind power generator, the main shaft must be lowered from the nacelle to the ground, which requires many man-hours and high costs. Work cost is required.

そこで、この発明の目的は、風力発電機の回転軸を支持する軸受の組込み作業および交換作業を簡略化した風力発電機の回転軸支持構造を提供することである。   Therefore, an object of the present invention is to provide a rotating shaft support structure for a wind power generator that simplifies the work of assembling and replacing the bearings that support the rotating shaft of the wind power generator.

この発明に係る風力発電機の回転軸支持構造は、風を受けて回転するブレードと、ブレードの回転に伴って回転する回転軸と、回転軸を回転自在に支持する転がり軸受とを備える。転がり軸受に注目すると、内輪と、外輪と、内輪および外輪の間に配置される複数の転動体とを備える。そして、内輪および外輪のうちの少なくとも一方は、円弧形状の部材を円周方向に複数連ねて形成されている。   A rotating shaft support structure for a wind power generator according to the present invention includes a blade that rotates by receiving wind, a rotating shaft that rotates as the blade rotates, and a rolling bearing that rotatably supports the rotating shaft. When attention is paid to the rolling bearing, it includes an inner ring, an outer ring, and a plurality of rolling elements arranged between the inner ring and the outer ring. At least one of the inner ring and the outer ring is formed by connecting a plurality of arc-shaped members in the circumferential direction.

好ましくは、転がり軸受は隣接する転動体の間隔を保持する保持器をさらに有する。そして、保持器は円弧形状の保持器セグメントを円周方向に複数連ねて形成されている。   Preferably, the rolling bearing further includes a cage that holds an interval between adjacent rolling elements. The cage is formed by connecting a plurality of arc-shaped cage segments in the circumferential direction.

一実施形態として、回転軸は、その一端がブレードに固定されてブレードとともに回転する主軸である。   In one embodiment, the rotating shaft is a main shaft whose one end is fixed to the blade and rotates together with the blade.

上記構成の転がり軸受を構成する内輪、外輪、および保持器は、それぞれ円弧形状の部材を円周方向に複数連ねて形成されている。そのため、これらの構成部品を回転軸の径方向から組み込むことができる。その結果、回転軸への軸受組込み作業において、焼き嵌め等の嵌め合い工程を省略することができるので、作業工数および作業時間を削減することができる。また、組込み作業から冷却工程を省略することができるので、軸受の発錆を防止することもできる。   Each of the inner ring, the outer ring, and the cage constituting the rolling bearing having the above-described configuration is formed by connecting a plurality of arc-shaped members in the circumferential direction. Therefore, these components can be incorporated from the radial direction of the rotating shaft. As a result, the fitting process such as shrink fitting can be omitted in the work for assembling the bearing to the rotating shaft, so that the number of work steps and the work time can be reduced. Further, since the cooling step can be omitted from the assembling work, rusting of the bearing can be prevented.

この発明によれば、内輪、外輪、および保持器を回転軸の径方向から組み込むことができるので、軸受の風力発電機の回転軸への組込み作業を簡素化した風力発電機の回転軸支持構造を得ることができる。   According to the present invention, since the inner ring, the outer ring, and the cage can be incorporated from the radial direction of the rotating shaft, the structure for supporting the rotating shaft of the wind power generator that simplifies the work of assembling the bearing into the rotating shaft of the wind power generator. Can be obtained.

図1〜図5を参照して、この発明の一実施形態に係る回転軸支持構造を採用した風力発電機11および自動調心ころ軸受31を説明する。なお、図1および図2は風力発電機11の内部構造を示す図、図3は風力発電機11の主軸16を支持する自動調心ころ軸受31を示す図、図4は自動調心ころ軸受31を主軸16に組み込む前の状態を示す図、図5は自動調心ころ軸受31の内輪部材32a,32bの突合部分の拡大図である。   With reference to FIGS. 1-5, the wind power generator 11 and the self-aligning roller bearing 31 which employ | adopted the rotating shaft support structure which concerns on one Embodiment of this invention are demonstrated. 1 and 2 are diagrams showing the internal structure of the wind power generator 11, FIG. 3 is a diagram showing a self-aligning roller bearing 31 that supports the main shaft 16 of the wind power generator 11, and FIG. 4 is a self-aligning roller bearing. FIG. 5 is an enlarged view of the abutting portion of the inner ring members 32a and 32b of the self-aligning roller bearing 31. FIG.

まず、図1および図2を参照して、風力発電機11は、支持台12と、旋回座軸受13と、ナセル14と、ブレード15と、回転軸としての主軸16と、増速機17と、発電機18と、軸受ハウジング19と、主軸支持用軸受としての自動調心ころ軸受31と、旋回用モータ20と、減速機21とを備える。   First, referring to FIG. 1 and FIG. 2, the wind power generator 11 includes a support base 12, a swivel bearing 13, a nacelle 14, a blade 15, a main shaft 16 as a rotating shaft, and a speed increaser 17. The generator 18, the bearing housing 19, a self-aligning roller bearing 31 as a main shaft support bearing, a turning motor 20, and a speed reducer 21 are provided.

ナセル14は、支持台12の上に旋回座軸受13を介して設置されており、旋回用モータ20および減速機21によって水平旋回自在となっている。また、風力発電機11の主要部品である主軸16、増速機17、発電機18、自動調心ころ軸受31、旋回用モータ20、および減速機21等を収容するハウジングとして機能する。   The nacelle 14 is installed on the support 12 via a swivel bearing 13 and can be swiveled horizontally by a turning motor 20 and a speed reducer 21. Moreover, it functions as a housing that accommodates the main shaft 16, the speed increaser 17, the power generator 18, the self-aligning roller bearing 31, the turning motor 20, the speed reducer 21, and the like, which are main components of the wind power generator 11.

ブレード15は、主軸16の一端に固定されて風を受けて回転する。主軸16は、一端がブレード15に他端が増速機17それぞれに接続されて、ブレード15の回転を増速機17を介して発電機18に伝達する。また、軸受ハウジング19に組み込まれた自動調心ころ軸受31によって、回転自在に支持されている。   The blade 15 is fixed to one end of the main shaft 16 and receives wind to rotate. One end of the main shaft 16 is connected to the blade 15 and the other end is connected to the speed increaser 17, and the rotation of the blade 15 is transmitted to the generator 18 via the speed increaser 17. Further, it is rotatably supported by a self-aligning roller bearing 31 incorporated in the bearing housing 19.

自動調心ころ軸受31には、ブレード15が受ける風力等によって大きなアキシアル荷重が負荷されると共に、ブレード15の自重等によって大きなラジアル荷重および大きなモーメント荷重が負荷される。そこで、このような環境で使用される主軸支持用軸受として、図3および図4に示すような、内輪32と、外輪33と、複数の球面ころ34と、保持器35とを備える自動調心ころ軸受31を採用する。   A large axial load is applied to the self-aligning roller bearing 31 by wind force received by the blade 15, and a large radial load and a large moment load are applied by the weight of the blade 15 and the like. Therefore, as a spindle support bearing used in such an environment, as shown in FIGS. 3 and 4, self-aligning provided with an inner ring 32, an outer ring 33, a plurality of spherical rollers 34, and a cage 35. A roller bearing 31 is employed.

内輪32の外径面には、2列の軌道面32c,32dと、2列の軌道面32c,32dの間に中鍔32eと、軸方向両端部に外鍔32fとを有する。また、内輪32は、円弧形状の内輪部材32a,32bを円周方向に連ねて構成されている。   On the outer diameter surface of the inner ring 32, there are two rows of raceway surfaces 32c, 32d, a center rod 32e between the two rows of raceway surfaces 32c, 32d, and outer rods 32f at both axial ends. The inner ring 32 is formed by connecting arc-shaped inner ring members 32a and 32b in the circumferential direction.

外輪33は、内径面が全体として凹状の球面となっており、転動面33cとして機能する。この外輪33は、円弧形状の外輪部材33a,33bを円周方向に連ねて構成されている。   The outer ring 33 has a concave spherical surface as a whole and functions as a rolling surface 33c. The outer ring 33 is constituted by connecting arc-shaped outer ring members 33a and 33b in the circumferential direction.

球面ころ34は内輪32および外輪33の軌道面32c,32d,33cと接する転動面34aを有する。この転動面34aは、軌道面32c,32d,33cに沿う球面形状である。保持器35は、リング形状の部材であって、球面ころ34を収容する複数のポケットを有しており、隣接する球面ころ34の間隔を保持する。この保持器35は、円弧形状の保持器セグメント35a,35bを円周方向に連ねて構成されており、左右の軌道面32c,32dそれぞれに別個に設けられている。   The spherical roller 34 has a rolling surface 34a that contacts the raceway surfaces 32c, 32d, and 33c of the inner ring 32 and the outer ring 33. The rolling surface 34a has a spherical shape along the raceway surfaces 32c, 32d, and 33c. The cage 35 is a ring-shaped member, and has a plurality of pockets for accommodating the spherical rollers 34, and holds the interval between the adjacent spherical rollers 34. The cage 35 is formed by connecting arc-shaped cage segments 35a and 35b in the circumferential direction, and is provided separately on the left and right track surfaces 32c and 32d.

次に、図4を参照して、自動調心ころ軸受31を風力発電機11の主軸に組み込む手順を説明する。まず、予め保持器35の各ポケットに球面ころ34を収容しておく。次に、軸受ハウジング19aに一方側の外輪部材33a、保持器セグメント35a、および内輪部材32aの順に載置して、その上に主軸16を組み込む。さらに、他方側の内輪部材32b、保持器セグメント35b、および外輪部材33bを載置して、軸受ハウジング19a,19bを固定する。   Next, a procedure for incorporating the self-aligning roller bearing 31 into the main shaft of the wind power generator 11 will be described with reference to FIG. First, the spherical roller 34 is accommodated in each pocket of the cage 35 in advance. Next, the outer ring member 33a on one side, the cage segment 35a, and the inner ring member 32a are placed in this order on the bearing housing 19a, and the main shaft 16 is assembled thereon. Further, the inner ring member 32b, the cage segment 35b, and the outer ring member 33b on the other side are placed, and the bearing housings 19a and 19b are fixed.

なお、内輪部材32は、突合部分に隙間が形成されるのを防止する観点から、隣接する内輪部材32a,32bを任意の固定手段によって固定連結しておくのが望ましい。例えば、外鍔32fの外径面にリングを嵌め込んで固定してもよいし、内輪部材32a,32bそれぞれにボルト穴を設けてボルト等によって両者を固定してもよい。一方、外輪部材32a,32bは軸受ハウジング19に固定されているので固定しなくてもよい。また、保持器セグメント35a,35bも相互に連結する必要はなく、熱膨張等を考慮して隣接する保持器セグメント間に隙間を設けておくのが望ましい。   Note that the inner ring member 32 is desirably fixedly connected to the adjacent inner ring members 32a and 32b by an arbitrary fixing means from the viewpoint of preventing a gap from being formed at the abutting portion. For example, a ring may be fitted into the outer diameter surface of the outer flange 32f and fixed, or a bolt hole may be provided in each of the inner ring members 32a and 32b and both may be fixed by a bolt or the like. On the other hand, since the outer ring members 32a and 32b are fixed to the bearing housing 19, they need not be fixed. The cage segments 35a and 35b do not need to be connected to each other, and it is desirable to provide a gap between adjacent cage segments in consideration of thermal expansion and the like.

上記構成のように、主軸16の径方向から自動調心ころ軸受31を組み込むことで、軸受の組み込み工程から焼き嵌め等の嵌め合い工程を省略することができる。これにより、軸受の組込み作業が大幅に簡素化される。特に、嵌め合い工程を省略できることで、主軸16の自動調心ころ軸受31を交換する場合でも、主軸16を地上に降ろすことなくナセル14内で作業することが可能となる。さらには、軸受の組み込み作業から冷却工程を省略できることで、自動調心ころ軸受31の発錆を防止することもできる。   By incorporating the self-aligning roller bearing 31 from the radial direction of the main shaft 16 as in the above configuration, the fitting process such as shrink fitting can be omitted from the bearing assembling process. This greatly simplifies the work of assembling the bearing. In particular, since the fitting process can be omitted, even when the self-aligning roller bearing 31 of the main shaft 16 is replaced, it is possible to work in the nacelle 14 without lowering the main shaft 16 to the ground. Furthermore, the rusting of the self-aligning roller bearing 31 can be prevented by omitting the cooling process from the work of assembling the bearing.

また、上記構成の回転軸支持構造において、軸受ハウジング19についても径方向に分割することによって、さらに自動調心ころ軸受31の組込み性が向上する。   In the rotary shaft support structure having the above-described configuration, the bearing housing 19 is also divided in the radial direction, so that the assembling property of the self-aligning roller bearing 31 is further improved.

次に、図5を参照して、図4に示す内輪部材32a,32bの突合部分の形状を説明する。なお、これは外輪部材33a,33bの突合部分にも同様に適用することが可能であるので、詳しい説明は省略する。   Next, the shape of the abutting portion of the inner ring members 32a and 32b shown in FIG. 4 will be described with reference to FIG. In addition, since this can be similarly applied to the abutting portions of the outer ring members 33a and 33b, detailed description will be omitted.

内輪部材32a,32bは、円環状の内輪32を軸線方向に延びる分割線によって分割することによって得られる。したがって、内輪部材32a,32bの生産性の観点、および分割線上を通過する球面ころ34のスムーズな回転を維持する観点から、突合部分に形成される分割線には様々な形状が考えられる。   The inner ring members 32a and 32b are obtained by dividing the annular inner ring 32 with a dividing line extending in the axial direction. Therefore, from the viewpoint of productivity of the inner ring members 32a and 32b and the viewpoint of maintaining smooth rotation of the spherical roller 34 passing on the dividing line, various shapes can be considered for the dividing line formed at the abutting portion.

まず、内輪部材32a,32bの生産性の観点からは、軸線方向と平行に直線的に延びる分割線40とするのが望ましい。しかし、左右の軌道面32c,32dで円周方向の同じ位置に分割線40が形成されるので、この位置が主軸16の負荷領域(「主軸16の円周方向において、相対的に大きな荷重が負荷される領域」を指す)に配置されると、球面ころ34のスムーズな回転が阻害される恐れがある。   First, from the viewpoint of productivity of the inner ring members 32a and 32b, it is desirable that the dividing line 40 linearly extend in parallel to the axial direction. However, since the dividing line 40 is formed at the same position in the circumferential direction on the left and right raceway surfaces 32c and 32d, this position is the load region of the spindle 16 (“a relatively large load is applied in the circumferential direction of the spindle 16”). If it is disposed in the “loaded region”, smooth rotation of the spherical roller 34 may be hindered.

そこで、他の実施形態としての分割線41は、左右の軌道面32c,32d上の円周方向の異なる位置で軸線方向に延びる軸方向分割線41a,41bと、中鍔32eを円周方向に延びて左右の軸方向分割線41a,41bに接続する円周方向分割線41cとで構成される。   Accordingly, the dividing line 41 as another embodiment includes axial dividing lines 41a and 41b extending in the axial direction at different positions in the circumferential direction on the left and right raceway surfaces 32c and 32d, and a center rod 32e in the circumferential direction. It is comprised by the circumferential direction dividing line 41c extended and connected to the left and right axial direction dividing lines 41a and 41b.

このように、左右の軌道面32c,32dで軸方向分割線41a,41bの位置を互いに異ならせることにより、円周上の全ての位置において左右の軌道面32c,32dのうちの少なくとも一方は平滑な状態となるので、自動調心ころ軸受31の回転がスムーズとなる。   Thus, by making the positions of the axial dividing lines 41a and 41b different from each other on the left and right track surfaces 32c and 32d, at least one of the left and right track surfaces 32c and 32d is smooth at all positions on the circumference. Therefore, the rotation of the self-aligning roller bearing 31 becomes smooth.

なお、軸方向分割線41a,41bは、軸線方向と平行であってもよいが、球面ころ34のスムーズな回転を維持する観点からは、軸線方向に対して所定角度傾斜しているのが望ましい。   The axial dividing lines 41a and 41b may be parallel to the axial direction. However, from the viewpoint of maintaining smooth rotation of the spherical roller 34, it is desirable that the axial dividing lines 41a and 41b be inclined at a predetermined angle with respect to the axial direction. .

なお、内輪部材32a,32bの分割線の形状は、図5に示した分割線40,41に限られず、任意の形状を採用することが可能である。   In addition, the shape of the dividing line of the inner ring members 32a and 32b is not limited to the dividing lines 40 and 41 shown in FIG. 5, and any shape can be adopted.

また、上記の実施形態において、内輪32、外輪33、および保持器35をそれぞれ2つの部材で構成した例を示したが、これらのうちの少なくとも1つを分割すればこの発明の効果を得ることができる。また、この発明の効果を得るためには、各構成部品を2つ以上の任意の個数に分割することができる。さらにこの発明は、保持器35を省略して総ころ形式とした自動調心ころ軸受にも適用することが可能である。   In the above embodiment, the inner ring 32, the outer ring 33, and the retainer 35 are each composed of two members. However, if at least one of them is divided, the effect of the present invention can be obtained. Can do. In addition, in order to obtain the effect of the present invention, each component can be divided into two or more arbitrary numbers. Furthermore, the present invention can also be applied to a self-aligning roller bearing in which the retainer 35 is omitted and a full roller type is adopted.

また、上記の各実施形態における自動調心ころ軸受31は、複列の例を示したが、これに限ることなく、単列であってもよいし、軌道面が3列以上ある多列の軸受であってもよい。   Moreover, although the self-aligning roller bearing 31 in each said embodiment showed the example of double row | line | column, it is not restricted to this, A single row | line | column may be sufficient and a multi-row with three or more raceway surfaces is sufficient. It may be a bearing.

また、上記の各実施形態においては、風力発電機11の主軸16を支持する転がり軸受として自動調心ころ軸受31の例を示したが、これに限ることなく、円錐ころ軸受、円筒ころ軸受、針状ころ軸受、深溝玉軸受、アンギュラ玉軸受、および4点接触玉軸受等、転動体がころであるか玉であるかを問わず、軌道輪を有するあらゆる転がり軸受を採用することができる。   In each of the above embodiments, an example of the self-aligning roller bearing 31 is shown as a rolling bearing that supports the main shaft 16 of the wind power generator 11. However, the present invention is not limited to this, and a tapered roller bearing, a cylindrical roller bearing, Regardless of whether the rolling element is a roller or a ball, such as a needle roller bearing, a deep groove ball bearing, an angular ball bearing, and a four-point contact ball bearing, any rolling bearing having a bearing ring can be employed.

さらに、上記の実施形態においては、風力発電機の主軸支持構造にこの発明を適用した例を示したが、これに限ることなく、この発明は、風力発電機の他の回転軸支持構造にも適用することが可能である。例えば、増速機17の低速軸(入力軸)、中間軸、および高速軸(出力軸)等に適用してもこの発明の効果を得ることができる。   Furthermore, in the above embodiment, an example in which the present invention is applied to the main shaft support structure of a wind power generator has been shown. However, the present invention is not limited to this, and the present invention can be applied to other rotating shaft support structures of a wind power generator. It is possible to apply. For example, the effect of the present invention can be obtained even when applied to the low speed shaft (input shaft), the intermediate shaft, the high speed shaft (output shaft), and the like of the speed increaser 17.

以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

この発明は、風力発電機の回転軸支持構造に有利に利用される。   The present invention is advantageously used for a rotating shaft support structure of a wind power generator.

この発明の一実施形態に係る主軸支持構造を採用した風力発電機を示す図である。It is a figure which shows the wind generator which employ | adopted the spindle support structure which concerns on one Embodiment of this invention. 図1に示す風力発電機の図解的側面図である。It is an illustration side view of the wind power generator shown in FIG. 図1に示す風力発電機の回転軸を支持する自動調心ころ軸受を示す図である。It is a figure which shows the self-aligning roller bearing which supports the rotating shaft of the wind power generator shown in FIG. 図3に示す自動調心ころ軸受を風力発電機の主軸に組み込む手順を示す図である。It is a figure which shows the procedure which incorporates the self-aligning roller bearing shown in FIG. 3 in the main axis | shaft of a wind power generator. 図3に示す自動調心ころ軸受用内輪の分割部分の拡大図である。It is an enlarged view of the division | segmentation part of the inner ring | wheel for a self-aligning roller bearing shown in FIG.

符号の説明Explanation of symbols

11 風力発電機、12 支持台、13 旋回座軸、14 ナセル、15 ブレード、16 主軸、17 増速機、18 発電機、19 軸受ハウジング、20 旋回モータ、21 減速機、31 自動調心ころ軸受、32 内輪、32a,32b 内輪部材、32c,32d,33c 軌道面、32e,32f 鍔、33 外輪、33a,33b 外輪部材、34 球面ころ、34a 転動面、35 保持器、40,41 分割線、41a,41b 軸方向分割線、41c 円周方向分割線。   DESCRIPTION OF SYMBOLS 11 Wind generator, 12 Support stand, 13 Rotating seat shaft, 14 Nacelle, 15 Blade, 16 Main shaft, 17 Speed up gear, 18 Generator, 19 Bearing housing, 20 Rotating motor, 21 Reducer, 31 Spherical roller bearing , 32 Inner ring, 32a, 32b Inner ring member, 32c, 32d, 33c Raceway surface, 32e, 32f 鍔, 33 Outer ring, 33a, 33b Outer ring member, 34 Spherical roller, 34a Rolling surface, 35 Cage, 40, 41 Dividing line 41a, 41b Axis dividing line, 41c Circumferential dividing line.

Claims (3)

風を受けて回転するブレードと、
前記ブレードの回転に伴って回転する回転軸と、
前記回転軸を回転自在に支持する転がり軸受とを備える風力発電機の回転軸支持構造であって、
前記転がり軸受は、内輪と、外輪と、前記内輪および前記外輪の間に配置される複数の転動体とを備え、
前記内輪および前記外輪のうちの少なくとも一方は、円弧形状の部材を円周方向に複数連ねて形成されている、風力発電機の回転軸支持構造。
A blade that rotates in response to the wind;
A rotating shaft that rotates as the blade rotates;
A rotary shaft support structure of a wind power generator comprising a rolling bearing that rotatably supports the rotary shaft,
The rolling bearing includes an inner ring, an outer ring, and a plurality of rolling elements disposed between the inner ring and the outer ring,
A rotating shaft support structure for a wind power generator, wherein at least one of the inner ring and the outer ring is formed by connecting a plurality of arc-shaped members in the circumferential direction.
前記転がり軸受は、隣接する前記転動体の間隔を保持する保持器をさらに有し、
前記保持器は、円弧形状の保持器セグメントを円周方向に複数連ねて形成されている、請求項1に記載の風力発電機の回転軸支持構造。
The rolling bearing further includes a cage that holds an interval between the adjacent rolling elements,
The rotating shaft support structure for a wind power generator according to claim 1, wherein the retainer is formed by connecting a plurality of arc-shaped retainer segments in a circumferential direction.
前記回転軸は、その一端が前記ブレードに固定されてブレードとともに回転する主軸である、請求項1または2に記載の風力発電機の回転軸支持構造。
The rotating shaft support structure of a wind power generator according to claim 1 or 2, wherein the rotating shaft is a main shaft whose one end is fixed to the blade and rotates together with the blade.
JP2006207608A 2006-07-31 2006-07-31 Rotating shaft supporting structure of wind power generator Withdrawn JP2008032147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006207608A JP2008032147A (en) 2006-07-31 2006-07-31 Rotating shaft supporting structure of wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006207608A JP2008032147A (en) 2006-07-31 2006-07-31 Rotating shaft supporting structure of wind power generator

Publications (1)

Publication Number Publication Date
JP2008032147A true JP2008032147A (en) 2008-02-14

Family

ID=39121795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006207608A Withdrawn JP2008032147A (en) 2006-07-31 2006-07-31 Rotating shaft supporting structure of wind power generator

Country Status (1)

Country Link
JP (1) JP2008032147A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101388A (en) * 2008-10-22 2010-05-06 Ntn Corp Bearing housing and spindle supporting structure of wind-driven generator
CN102089515A (en) * 2008-07-07 2011-06-08 西门子公司 Wind turbine comprising a main bearing and method for replacement of the main bearing
WO2015051374A1 (en) 2013-10-04 2015-04-09 Inventus Holdings, Llc Uptower wind turbine component replacement
CN109899251A (en) * 2019-04-11 2019-06-18 尉立 Wind-powered electricity generation rotary connecting device
CN110486231A (en) * 2019-08-02 2019-11-22 广州市中潭空气净化科技有限公司 A kind of wind-driven generator convenient for safeguarding for electric system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102089515A (en) * 2008-07-07 2011-06-08 西门子公司 Wind turbine comprising a main bearing and method for replacement of the main bearing
JP2011526985A (en) * 2008-07-07 2011-10-20 シーメンス アクチエンゲゼルシヤフト Wind turbine with main bearing and replacement method of main bearing
US8696302B2 (en) 2008-07-07 2014-04-15 Siemens Aktiengesellschaft Wind turbine comprising a main bearing and method for replacement of the main bearing
JP2010101388A (en) * 2008-10-22 2010-05-06 Ntn Corp Bearing housing and spindle supporting structure of wind-driven generator
WO2015051374A1 (en) 2013-10-04 2015-04-09 Inventus Holdings, Llc Uptower wind turbine component replacement
EP3052802A4 (en) * 2013-10-04 2017-06-28 Inventus Holdings, LLC Uptower wind turbine component replacement
US9909559B2 (en) 2013-10-04 2018-03-06 Inventus Holdings, Llc Uptower wind turbine component replacement
US10851764B2 (en) 2013-10-04 2020-12-01 Inventus Holdings, Llc Uptower wind turbine component replacement
US11603824B2 (en) 2013-10-04 2023-03-14 Inventus Holdings, Llc Uptower crane and rotor lock for wind turbine component replacement
CN109899251A (en) * 2019-04-11 2019-06-18 尉立 Wind-powered electricity generation rotary connecting device
CN109899251B (en) * 2019-04-11 2024-04-19 湖南玉成昌能源科技有限公司 Wind power rotation connecting device
CN110486231A (en) * 2019-08-02 2019-11-22 广州市中潭空气净化科技有限公司 A kind of wind-driven generator convenient for safeguarding for electric system

Similar Documents

Publication Publication Date Title
JP4101844B2 (en) Bearing built-in jig, tapered roller bearing, method of assembling tapered roller bearing and main shaft support structure of wind power generator
JP2008064248A (en) Rolling bearing cage, rolling bearing, and spindle supporting structure for wind power generator
JP2008031941A (en) Rotary shaft support structure for wind turbine generator
JP2005147331A (en) Double row rolling bearing
JP2007211833A (en) Rolling bearing, retainer segment, and structure for supporting main shaft of wind power generator
JP2008032147A (en) Rotating shaft supporting structure of wind power generator
US20180202489A1 (en) Double-row self-aligning roller bearing
JP4522266B2 (en) Double row roller bearing
JP2007205557A (en) Rolling bearing, cage segment, and spindle supporting structure of wind power generator
JP5010353B2 (en) Roller bearings, roller bearing cage segments, and wind turbine main shaft support structure
WO2015057137A1 (en) Bearing for combined loads
JP2009052681A (en) Bearing structure
JP5354849B2 (en) Wind generator main shaft support structure
JP2008032148A (en) Rolling bearing, sealing member for rolling bearing, and rotating shaft supporting structure of wind power generator
JP2009092189A (en) Raceway ring for rolling bearing
JP2009063102A (en) Retainer for rolling bearing, tapered roller bearing, main shaft support structure for wind power generator, method for manufacturing retainer for rolling bearing, and method for assembling rolling bearing
JP2006349032A (en) Double-row tapered roller bearing and spindle supporting structure of aerogenerator
JP2007024112A (en) Self-aligning roller bearing and planetary gear support structure
JP2007132418A (en) Spindle supporting structure for wind power generator
JP2006177447A (en) Double-row rolling bearing
JP2017057951A (en) Double row self-aligning roller bearing
JP2008261357A (en) Rotating shaft supporting structure of wind generator
JP2006177445A (en) Double-row automatic aligned roller bearing
JP4308234B2 (en) Conical roller bearing for main shaft support of wind power generator and main shaft support structure of wind power generator
JP4163596B2 (en) Double row spherical roller bearing and wind power generator spindle support device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006