JP2006348985A - 車両用自動変速機の変速制御装置 - Google Patents

車両用自動変速機の変速制御装置 Download PDF

Info

Publication number
JP2006348985A
JP2006348985A JP2005173049A JP2005173049A JP2006348985A JP 2006348985 A JP2006348985 A JP 2006348985A JP 2005173049 A JP2005173049 A JP 2005173049A JP 2005173049 A JP2005173049 A JP 2005173049A JP 2006348985 A JP2006348985 A JP 2006348985A
Authority
JP
Japan
Prior art keywords
clutch
shift
overshoot amount
learning
engagement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005173049A
Other languages
English (en)
Inventor
Takahiro Kondo
貴裕 近藤
Tomohiro Asami
友弘 浅見
Yasutsugu Oshima
康嗣 大島
Takashi Minaki
俊 皆木
Hiromichi Kimura
弘道 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005173049A priority Critical patent/JP2006348985A/ja
Publication of JP2006348985A publication Critical patent/JP2006348985A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 クラッチツウクラッチアップ変速時に、入力軸回転速度のオーバーシュート量に基づいて解放側摩擦係合装置の係合圧を学習制御により補正する場合に、ノイズ等の外乱で誤った学習制御が行われることを防止する。
【解決手段】 パワーオンのクラッチツウクラッチアップ変速時に、タービン回転速度NT(入力軸回転速度)のオーバーシュート量NOSを逐次算出するとともに、係合側摩擦係合装置がトルク伝達状態になってタービン回転速度NTが下降し始めるまでの間のオーバーシュート量NOSの積分値INOSを求め、そのオーバーシュート量積分値INOSに基づいて解放側摩擦係合装置(ブレーキB1)の待機圧PB1W に対応する待機圧信号SPB1Wを学習制御により破線または一点鎖線で示すように補正する。
【選択図】 図14

Description

本発明は、クラッチツウクラッチアップ変速期間中に発生する入力軸回転速度のオーバーシュートを抑制することができる車両用自動変速機の変速制御装置に関するものである。
クラッチツウクラッチアップ変速を実行するに際して、アップ変速判断があった場合にそのアップ変速前のギヤ段を達成するために係合させられていた解放側油圧式摩擦係合装置の係合圧を低下させるとともに、変速後のギヤ段を達成させるための係合側油圧式摩擦係合装置の係合圧を上昇させる変速油圧制御を実行する車両用自動変速機の変速制御装置が知られている。特許文献1に記載されている装置はその一例で、クラッチツウクラッチアップ変速に際して、前記自動変速機の入力軸回転速度のオーバーシュート量の最大値(最大オーバーシュート量)を求め、その最大オーバーシュート量に基づいて前記解放側摩擦係合装置の係合圧を学習制御によって補正し、オーバーシュートによるエンジン吹きやその後の係合側摩擦係合装置の係合に伴う急なエンジン回転速度変化による変速ショックなどを抑制するようになっている。オーバーシュート量は、変速前のギヤ段における入力軸の同期回転速度に対する実際の入力軸回転速度の上昇量で、入力軸の同期回転速度は出力軸回転速度と変速前ギヤ段の変速比などから求められる。
特開2000−205398号公報
ところで、自動変速機の変速時には動力伝達系のバックラッシ等によるがた打ちなどで入力軸回転速度や出力軸回転速度が一時的に急激に変化することがあるとともに、それ等を検出する回転速度センサは一般にノイズ等の外乱に対するロバスト性に欠けるため、従来のように最大オーバーシュート量を用いて学習制御を行う場合、入力軸回転速度や出力軸回転速度の検出値がノイズ等の外乱で一時的に変化すると、その検出値に基づいて最大オーバーシュート量を誤って判定することがあり、その判定結果に基づいて誤った学習制御が行われる可能性があった。
本発明は以上の事情を背景として為されたもので、その目的とするところは、クラッチツウクラッチアップ変速時に、入力軸回転速度のオーバーシュート量に基づいて解放側摩擦係合装置の係合圧を学習制御で補正する場合に、ノイズ等の外乱により誤った学習制御が行われることを防止することにある。
かかる目的を達成するために、第1発明は、解放側摩擦係合装置の解放と係合側摩擦係合装置の係合とが実行されることにより変速が達成されるクラッチツウクラッチアップ変速が行われる車両用自動変速機の変速制御装置であって、(a) 前記クラッチツウクラッチアップ変速中に、その変速に伴う自動変速機の入力軸回転速度のオーバーシュート量を逐次算出するオーバーシュート量算出手段と、(b) 前記クラッチツウクラッチアップ変速で前記係合側摩擦係合装置がトルク伝達状態になるまでの間の前記オーバーシュート量を積分し、オーバーシュート量積分値を求める積分値算出手段と、(c) 前記オーバーシュート量積分値の大きさに基づいて前記解放側摩擦係合装置の係合圧を学習制御により補正する学習制御手段と、を備えることを特徴とする。
第2発明は、第1発明の車両用自動変速機の変速制御装置において、前記積分値算出手段は、前記入力軸回転速度のオーバーシュート量が最大になるまでのオーバーシュート量積分値を算出するものであることを特徴とする。
このような車両用自動変速機の変速制御装置においては、クラッチツウクラッチアップ変速中に、自動変速機の入力軸回転速度のオーバーシュート量を逐次算出するとともに、係合側摩擦係合装置がトルク伝達状態になるまでの間のオーバーシュート量を積分してオーバーシュート量積分値を求め、そのオーバーシュート量積分値に基づいて解放側摩擦係合装置の係合圧を学習制御により補正するため、ノイズ等の外乱で入力軸回転速度や出力軸回転速度の検出値が一時的に変化しても、オーバーシュート量積分値に与える影響は小さく、オーバーシュート量に基づく学習制御が安定して高い精度で行われるようになる。
ここで、クラッチツウクラッチアップ変速中における入力軸回転速度は、係合側摩擦係合装置がトルク伝達状態になると、その伝達トルクに基づいて引き下げられ、入力軸回転速度のオーバーシュート量が小さくなるが、本発明では、係合側摩擦係合装置がトルク伝達状態になるまでの間のオーバーシュート量を積分してオーバーシュート量積分値を求めるため、係合側摩擦係合装置の伝達トルクの影響が排除乃至は低減され、解放側摩擦係合装置の係合圧の学習制御が一層高い精度で行われるようになる。
第2発明では、入力軸回転速度のオーバーシュート量が最大になるまでのオーバーシュート量積分値を求めて学習制御を行うため、係合側摩擦係合装置の伝達トルクの影響を良好に低減しつつ、解放側摩擦係合装置の係合圧の低下に起因するオーバーシュート量を反映しているとともに、ノイズ等の外乱の影響が少ないオーバーシュート量積分値に基づいて、解放側摩擦係合装置の係合圧を高い精度で学習制御できる。すなわち、係合側摩擦係合装置は、入力軸回転速度のオーバーシュート量が最大になる前から係合トルクを持ってトルク伝達を開始するが、オーバーシュート量が最大になった後に比べてその係合トルク(伝達トルク)は小さくて影響が少ない一方、オーバーシュート量に関するデータが少ないと、オーバーシュート量積分値が小さくなってノイズ等の外乱による影響が大きくなることから、オーバーシュート量が最大になるまでのオーバーシュート量積分値を用いることが適当なのである。
自動変速機としては、例えば遊星歯車式や平行軸式等の有段の自動変速機が好適に用いられ、少なくとも一部のアップ変速でクラッチツウクラッチ変速が行われるものであれば良い。本発明は、必ずしも総てのクラッチツウクラッチアップ変速に適用される必要はなく、一部のクラッチツウクラッチアップ変速に適用するだけでも差し支えない。
係合側摩擦係合装置および解放側摩擦係合装置としては油圧式のものが好適に用いられ、例えばソレノイド弁によって油圧すなわち係合圧が所定の変化パターンで変化するように制御されるが、電磁式等の他の摩擦係合装置を用いることもできる。係合側摩擦係合装置および解放側摩擦係合装置は、油圧シリンダ等のアクチュエータによって係合させられる単板式或いは多板式のクラッチやブレーキ、ベルト式のブレーキなどである。
クラッチツウクラッチアップ変速で解放側摩擦係合装置の解放タイミングが早過ぎると、動力源からの入力トルクにより入力軸回転速度が上昇してオーバーシュートを生じる。入力軸回転速度のオーバーシュートは、変速前のギヤ段における入力軸の同期回転速度に対して実際の入力軸回転速度が上昇する現象で、その時の上昇量がオーバーシュート量であり、入力軸の同期回転速度は出力軸回転速度と変速前ギヤ段の変速比などから求められる。
自動変速機の入力軸は、例えばエンジンからトルクコンバータを介して動力が伝達される場合はトルクコンバータのタービン軸で、電動モータから動力が伝達される場合はそのモータ軸などであり、その入力軸回転速度がオーバーシュートすると、それに伴ってエンジン吹きが発生したり、その後のアップ変速の進行すなわち係合側摩擦係合装置が係合させられる際に、エンジン回転速度が急降下してショックが発生したりし易くなる。このため、オーバーシュート量は、係合側および解放側の摩擦係合装置が共に係合するタイアップを生じない範囲でできるだけ小さいことが望ましい。
前記積分値算出手段は、係合側摩擦係合装置がトルク伝達状態になるまでの間のオーバーシュート量を積分してオーバーシュート量積分値を求めるものであるが、トルク伝達状態になるまでとは、係合側摩擦係合装置が係合トルクを持ち始める状態から、係合が進行して入力軸回転速度が下降し始める程度までの状態を意味する。すなわち、係合側摩擦係合装置の係合によってオーバーシュート量は変化するため、その影響を排除乃至は低減することにより、解放側摩擦係合装置の係合圧をより高い精度で学習制御できるようにすることを目的とするもので、オーバーシュート量積分値の積分期間は適宜定められ、例えば第2発明のように入力軸回転速度のオーバーシュート量が最大になるまでのオーバーシュート量を積分するように構成されるが、その最大になる前の所定の期間内のオーバーシュート量を積分するものでも良い。第2発明の実施に際しては、オーバーシュート量そのものが最大になったか否かを判定するようにしても良いが、入力軸回転速度が最大になる時点と略等しいため、その入力軸回転速度が最大になったか否かを判定して、その最大になった時点までのオーバーシュート量積分値を求めるようにしても良い。
上記積分値算出手段は、例えば(a) オーバーシュート量算出手段によって逐次算出されたオーバーシュート量を順次加算する積分手段と、(b) 係合側摩擦係合装置がトルク伝達状態になったか否かを判定する判定手段、例えばオーバーシュート量が最大になったことを判定する極大判定手段などと、(c) その判定が為されるまでに積分手段によって求められた加算値(積分値)をオーバーシュート量積分値とする積分値確定手段と、を有して構成される。判定手段は、ノイズ等の外乱による一時的な回転速度変化で誤判定することを防止するため、所定の時間内のオーバーシュート量や回転速度等の変化傾向から極大等の判定を行うことが望ましい。
本発明の変速制御装置は、例えば前記クラッチツウクラッチアップ変速の変速指令が出されると、前記解放側摩擦係合装置の係合圧をその元圧よりも低く且つその解放側摩擦係合装置の解放開始圧よりも高く設定された所定の待機圧に所定時間保持した後、一定の変化率で連続的に減少させる一方で、前記係合側摩擦係合装置の係合圧を所定の変化率で連続的に上昇させるとともに、イナーシャ相では前記入力軸回転速度が一定の変化率で連続的に降下するようにその係合側摩擦係合装置の係合圧を制御する変速油圧制御手段を有して構成され、その場合には、前記学習制御手段は、例えば前記入力軸回転速度のオーバーシュート量積分値が所定値を超えた時には、前記解放側摩擦係合装置の待機圧を高くするように学習補正することが望ましい。すなわち、待機圧の保持時間を長くすることによりオーバーシュート(エンジン吹きなど)を抑制することも可能であるが、待機圧が低いと幾ら待機圧保持時間を長くしても解放側摩擦係合装置を係合状態とすることができず、オーバーシュートを抑制することができないのに対し、待機圧を高くすれば解放側摩擦係合装置を確実に係合状態に保持してオーバーシュートを抑制することができるのである。
学習制御手段が学習制御で補正する解放側摩擦係合装置の係合圧は、オーバーシュート量に影響を与えるものであれば良く、上記待機圧の大きさを補正する他、待機圧保持時間を学習制御で補正したり、その待機後の係合圧の変化率を学習制御で補正したりしても良いなど、クラッチツウクラッチアップ変速時の解放側摩擦係合装置の係合圧制御の態様に応じて適宜定められる。クラッチツウクラッチアップ変速時における係合側および解放側の摩擦係合装置の基本的な係合圧制御は、従来から行われている制御も含めて種々の態様が可能である。
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図1は、FF(フロントエンジン・フロントドライブ)車両などの横置き型の車両用駆動装置の骨子図であり、ガソリンエンジン等の内燃機関によって構成されているエンジン10の出力は、トルクコンバータ12、自動変速機14、差動歯車装置16等の動力伝達装置を経て図示しない駆動輪(前輪)へ伝達されるようになっている。トルクコンバータ12は、エンジン10のクランク軸18と連結されているポンプ翼車20と、自動変速機14の入力軸22に連結されたタービン翼車24と、一方向クラッチ26を介して非回転部材であるハウジング28に固定されたステータ30と、図示しないダンパを介してクランク軸18を入力軸22に直結するロックアップクラッチ32とを備えている。ポンプ翼車20にはギヤポンプ等の機械式のオイルポンプ21が連結されており、エンジン10によりポンプ翼車20と共に回転駆動されて変速用や潤滑用などの油圧を発生するようになっている。上記エンジン10は車両走行用の駆動力源であり、トルクコンバータ12は流体継手である。
自動変速機14は、入力軸22上に同軸に配設されるとともにキャリアとリングギヤとがそれぞれ相互に連結されることにより所謂CR−CR結合の遊星歯車機構を構成するシングルピニオン型の一対の第1遊星歯車装置40および第2遊星歯車装置42と、前記入力軸22と平行なカウンタ軸44上に同軸に配置された1組の第3遊星歯車装置46と、そのカウンタ軸44の軸端に固定されて差動歯車装置16と噛み合う出力ギヤ48とを備えている。上記遊星歯車装置40,42,46の各構成要素すなわちサンギヤ、リングギヤ、それらに噛み合う遊星ギヤを回転可能に支持するキャリアは、4つのクラッチC0、C1、C2、C3によって互いに選択的に連結され、或いは3つのブレーキB1、B2、B3によって非回転部材であるハウジング28に選択的に連結されるようになっている。また、2つの一方向クラッチF1、F2によってその回転方向により相互に若しくはハウジング28と係合させられるようになっている。なお、差動歯車装置16は軸線(車軸)に対して対称的に構成されているため、下側を省略して示してある。
上記入力軸22と同軸上に配置された一対の第1遊星歯車装置40,第2遊星歯車装置42、クラッチC0、C1、C2、ブレーキB1、B2、および一方向クラッチF1により前進4段、後進1段の主変速部MGが構成され、上記カウンタ軸44上に配置された1組の遊星歯車装置46、クラッチC3、ブレーキB3、一方向クラッチF2によって副変速部すなわちオーバードライブ部U/Dが構成されている。主変速部MGにおいては、入力軸22はクラッチC0、C1、C2を介して第2遊星歯車装置42のキャリアK2、第1遊星歯車装置40のサンギヤS1、第2遊星歯車装置42のサンギヤS2にそれぞれ連結されている。第1遊星歯車装置40のリングギヤR1と第2遊星歯車装置42のキャリアK2との間、第2遊星歯車装置42のリングギヤR2と第1遊星歯車装置40のキャリアK1との間はそれぞれ連結されており、第2遊星歯車装置42のサンギヤS2はブレーキB1を介して非回転部材であるハウジング28に連結され、第1遊星歯車装置40のリングギヤR1はブレーキB2を介して非回転部材であるハウジング28に連結されている。また、第2遊星歯車装置42のキャリアK2と非回転部材であるハウジング28との間には、一方向クラッチF1が設けられている。そして、第1遊星歯車装置40のキャリアK1に固定された第1カウンタギヤG1と第3遊星歯車装置46のリングギヤR3に固定された第2カウンタギヤG2とは相互に噛み合わされている。オーバードライブ部U/Dにおいては、第3遊星歯車装置46のキャリアK3とサンギヤS3とがクラッチC3を介して相互に連結され、そのサンギヤS3と非回転部材であるハウジング28との間には、ブレーキB3と一方向クラッチF2とが並列に設けられている。
上記クラッチC0、C1、C2、C3およびブレーキB1、B2、B3(以下、特に区別しない場合は単にクラッチC、ブレーキBという)は、多板式のクラッチやバンドブレーキなど油圧アクチュエータによって係合制御される油圧式摩擦係合装置であり、油圧制御回路98(図3参照)のソレノイド弁S4、SRやリニアソレノイド弁SL1、SL2、SL3、SLT、SLU等の励磁、非励磁や図示しないマニュアルバルブによって油圧回路が切り換えられることにより、例えば図2に示すように係合、解放状態が切り換えられ、シフトレバー72(図3参照)の操作位置(ポジション)に応じて前進5段、後進1段、ニュートラルギヤ段の各ギヤ段が成立させられる。図2の「1st」〜「5th」は前進の第1速ギヤ段〜第5速ギヤ段を意味しており、「○」は係合、「×」は解放、「△」は駆動時のみ係合を意味している。シフトレバー72は、例えば図4に示すシフトパターンに従って駐車ポジション「P」、後進走行ポジション「R」、ニュートラルポジション「N」、前進走行ポジション「D」、「4」、「3」、「2」、「L」へ操作されるようになっており、「P」および「N」ポジションでは動力伝達を遮断する非駆動ギヤ段としてニュートラルギヤ段が成立させられるが、「P」ポジションでは図示しないメカニカルパーキング機構によって機械的に駆動輪の回転が阻止される。また、「D」等の前進走行ポジションまたは「R」ポジションで成立させられる前進5段、後進1段の各ギヤ段は駆動ギヤ段に相当する。また、図2に示すように、第2速ギヤ段と第3速ギヤ段との間の変速は、クラッチC0の係合または解放とブレーキB1の解放または係合とが略同時に実行されることにより達成されるクラッチツウクラッチ変速である。同様に、第3速ギヤ段と第4速ギヤ段との間の変速は、クラッチC1の係合または解放とブレーキB1の解放または係合とが略同時に実行されることにより達成されるクラッチツウクラッチ変速で、第4速ギヤ段と第5速ギヤ段との間の変速は、クラッチC3の係合または解放とブレーキB3の解放または係合とが略同時に実行されることにより達成されるクラッチツウクラッチ変速である。上記油圧式摩擦係合装置には、タービントルクTT すなわち自動変速機14の入力トルクTIN或いはその代用値であるスロットル弁開度θTHに応じて調圧されるライン圧がその元圧として用いられる。
図3は、図1のエンジン10や自動変速機14などを制御するために車両に設けられた制御系統を説明するブロック線図で、アクセルペダル50の操作量(アクセル開度)Accがアクセル操作量センサ51により検出されるようになっている。アクセルペダル50は、運転者の出力要求量に応じて大きく踏み込み操作されるもので、アクセル操作部材に相当し、アクセルペダル操作量Accは出力要求量に相当する。また、エンジン10の吸気配管には、スロットルアクチュエータ54によって開度θTHが変化させられる電子スロットル弁56が設けられている。この他、エンジン10の回転速度NEを検出するためのエンジン回転速度センサ58、エンジン10の吸入空気量Qを検出するための吸入空気量センサ60、吸入空気の温度TA を検出するための吸入空気温度センサ62、上記電子スロットル弁56の全閉状態(アイドル状態)およびその開度θTHを検出するためのアイドルスイッチ付スロットルセンサ64、車速Vに対応するカウンタ軸44の回転速度(出力軸回転速度に相当)NOUT を検出するための車速センサ66、エンジン10の冷却水温TW を検出するための冷却水温センサ68、フットブレーキ操作の有無を検出するためのブレーキスイッチ70、シフトレバー72のレバーポジション(操作位置)PSHを検出するためのレバーポジションセンサ74、タービン回転速度NT(=入力軸回転速度NIN)を検出するためのタービン回転速度センサ76、油圧制御回路98内の作動油の温度であるAT油温TOIL を検出するためのAT油温センサ78、第1カウンタギヤG1の回転速度NCを検出するためのカウンタ回転速度センサ80、イグニッションスイッチ82などが設けられており、それらのセンサから、エンジン回転速度NE、吸入空気量Q、吸入空気温度TA 、スロットル弁開度θTH、車速V(出力軸回転速度NOUT )、エンジン冷却水温TW 、ブレーキ操作の有無、シフトレバー72のレバーポジションPSH、タービン回転速度NT、AT油温TOIL 、カウンタ回転速度NC、イグニッションスイッチ82の操作位置などを表す信号が電子制御装置90に供給されるようになっている。ブレーキスイッチ70は、常用ブレーキを操作するブレーキペダルの踏込み状態でON、OFFが切り換わるON−OFFスイッチである。
電子制御装置90は、CPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより、エンジン10の出力制御や自動変速機14の変速制御などを実行するようになっており、必要に応じてエンジン制御用と変速制御用とに分けて構成される。エンジン10の出力制御については、スロットルアクチュエータ54により電子スロットル弁56を開閉制御する他、燃料噴射量制御のために燃料噴射弁92を制御し、点火時期制御のためにイグナイタ等の点火装置94を制御する。電子スロットル弁56の制御は、例えば図5に示す関係から実際のアクセルペダル操作量Accに基づいてスロットルアクチュエータ54を駆動し、アクセルペダル操作量Accが増加するほどスロットル弁開度θTHを増加させる。また、エンジン10の始動時には、スタータ(電動モータ)96によってクランク軸18をクランキングする。また、自動変速機14の変速制御については、例えば図6に示す予め記憶された変速線図(変速マップ)から実際のスロットル弁開度θTHおよび車速Vに基づいて自動変速機14の変速すべきギヤ段を決定し、すなわち現在のギヤ段から変速先のギヤ段への変速判断を実行し、その決定されたギヤ段への変速作動を開始させる変速出力を実行するとともに、駆動力変化などの変速ショックが発生したり摩擦材の耐久性が損なわれたりすることがないように、油圧制御回路98のソレノイド弁S4、SRのON(励磁)、OFF(非励磁)を切り換えたり、リニアソレノイド弁SL1、SL2、SL3、SLT、SLUなどの励磁状態を連続的に変化させたりする。図6の実線はアップシフト線で、破線はダウンシフト線であり、車速Vが低くなったりスロットル弁開度θTHが大きくなったりするに従って、変速比(=入力軸回転速度NIN/出力軸回転速度NOUT )が大きい低速側のギヤ段に切り換えられるようになっており、図中の「1」〜「5」は第1速ギヤ段「1st」〜第5速ギヤ段「5th」を意味している。
図7は、油圧制御回路98の要部であって2→3アップ変速に関連する部分を示している。油圧ポンプ21から圧送された作動油は、リリーフ型の第1調圧弁100により調圧されることによって第1ライン圧PL1とされ、その第1調圧弁100から流出させられた作動油はリリーフ型の第2調圧弁102によって調圧されることにより第2ライン圧PL2とされるようになっている。上記第1ライン圧PL1は、シフトレバー72に連動させられるマニュアルバルブ104に供給されている。シフトレバー72がDポジションへ操作されているときには、このマニュアルバルブ104からは第1ライン圧PL1と同じ大きさの前進ポジション圧PD がリニアソレノイド弁SL1、SL2、SL3などの各ソレノイド弁やシフト弁、コントロール弁等へ供給される。図7では、2→3アップ変速を達成する際に解放されるブレーキB1および係合されるクラッチC0と、そのブレーキB1の係合圧PB1を直接制御するためのリニアソレノイド弁SL3と、そのクラッチC0の係合圧PC0を直接制御するためのリニアソレノイド弁SL1と、係合圧PB1を検出するためにブレーキB1に接続された油圧センサ106と、係合圧PC0を検出するためにクラッチC0に接続された油圧センサ108と、リニアソレノイド弁SL3、SL1から供給される信号油圧に応じて係合圧PB1、PC0をそれぞれ調圧するPB1コントロール弁110、PC0コントロール弁112とが示されている。
図8は、前記電子制御装置90の制御機能の要部すなわち自動変速機14の変速制御作動を説明する機能ブロック線図であり、図9は、自動変速機14のクラッチツウクラッチアップ変速の基本制御作動を示すタイムチャートである。図9に示す基本制御作動時の車両状態は、アクセルペダル50が踏込み操作されているパワーオン時の加速走行中において、2→3のクラッチツウクラッチアップ変速制御作動が実行される場合である。図8において、回転速度検出手段120は、例えばタービン回転速度センサ76からの信号によって前記タービン回転速度NT(=入力軸回転速度NIN)を検出したり、エンジン回転速度センサ58からの信号によってエンジン10の回転速度NEを検出したり、車速センサ66からの信号によって出力軸回転速度NOUT を検出したりする。イナーシャ開始判定手段130は、加速走行中のアップ変速制御作動中に高速側ギヤ段(第3速ギヤ段)への変速に伴って上記タービン回転速度NTが下降を開始したか否かを判定する(t1 時点)。
変速状態判定手段122は、後述する変速油圧制御手段124の出力信号に基づいてそれによる前記自動変速機14の変速(油圧制御)が開始されたか否かを判定し(t0 時点)、前記タービン回転速度NTが前記車速センサ66によって検出された出力軸回転速度NOUT と変速後のギヤ段(第3速ギヤ段)の変速比γ3 から算出される回転速度γ3 ×NOUT に略一致したかに基づいて変速終了を判定し(t2 時点)、クラッチC0に接続された油圧センサ108によって検出された係合圧PC0が最大値に到達してクラッチC0が完全に係合されたことに基づいて変速油圧制御手段124による変速油圧制御が終了したかを判定する(t3 時点)。
変速油圧制御手段124は、例えば図6に示す予め記憶された変速線図(変速マップ)から実際のスロットル弁開度θTHおよび車速Vに基づいて自動変速機14の変速すべきギヤ段が決定されると、現在のギヤ段からその変速すべきギヤ段への切換が実行されるように油圧式摩擦係合装置の係合圧を変更するように前記油圧制御回路98に信号(変速指令)を出力する。例えば図9に示す2→3クラッチツウクラッチアップ変速の場合は、係合側油圧式摩擦係合装置であるクラッチC0の係合圧PC0を直接制御するリニアソレノイド弁SL1に対する係合側油圧用駆動信号SPC0 と、解放側油圧式摩擦係合装置であるブレーキB1の係合圧PB1を直接制御するリニアソレノイド弁SL3に対する解放側油圧用駆動信号SPB1 とが出力される。その係合側油圧用駆動信号SPC0 は、変速開始点t0 からtC0W 時間の間において係合圧PC0をクラッチC0の係合開始圧よりも低く設定された所定の係合圧PC0W に定圧待機させるための待機圧信号SPC0Wと、定圧待機後前記イナーシャ開始判定手段130によってイナーシャ開始が判定される時間(t1 時点)までの間において予め設定された一定の変化率となるように係合圧PC0を連続的に上昇させるスウィープ信号と、t1 時点から変速状態判定手段122によって変速終了が判定される時間(t2 時点)までの間においてタービン回転速度NT(入力軸回転速度NIN)が予め設定された一定の変化率で連続的に降下するように係合圧PC0をフィードバック制御するフィードバック制御信号と、t2 時点から係合圧PC0を急速に上昇させてクラッチC0を完全係合(t3 時点)させる終了処理信号とを順次出力する。上記変速開始からtC0W 時間内であって最初のtC0A 時間の間は、速やかに作動油を供給するために上記待機圧信号SPC0Wより大きなファーストフィル信号を出力する。
また、上記解放側油圧用駆動信号SPB1 は、変速開始からtB1W 時間の間において係合圧PB1を変速開始前の元圧すなわち油圧供給元であるライン圧PL1であって最大係合圧となる圧よりも低く且つブレーキB1の解放開始圧よりも僅かに高く設定された所定の係合圧(待機圧)PB1W に定圧待機させるための待機圧信号SPB1Wと、定圧待機後に係合圧PB1を一定の変化率で減少させてブレーキB1を解放するスウィープ信号とを順次出力する。上記変速開始からtB1W 時間内であって最初のtB1A 時間の間は、係合圧PB1を速やかに待機圧PB1W まで低下させるために作動油を急速にドレーンするドレーン信号を出力する。上記tB1W 時間は、所定の係合圧(待機圧)PB1W に定圧待機させる待機圧保持時間であるとともに、変速開始から係合圧PB1が連続的に変化(減少)させられるまでの時間すなわち変速開始から係合圧PB1がスウィープ開始されるまでの時間であるのでスウィープ制御開始時間(減少開始時間)でもある。
このように、パワーオンの加速走行時における2→3クラッチツウクラッチアップ変速において、前記変速油圧制御手段124が、解放側油圧式摩擦係合装置であるブレーキB1の係合圧PB1を低下させると同時に係合側油圧式摩擦係合装置であるクラッチC0の係合圧PC0を上昇させるとき、ブレーキB1の係合とクラッチC0の係合との重なり具合が小さい場合、例えば上記スウィープ制御開始時間tB1W が短いと、図示しない駆動輪と入力軸22が切り離された状態すなわちニュートラル傾向となり、タービン回転速度NTがオーバーシュート(上昇)してエンジン回転速度NEが吹き上がったり、その後のクラッチC0の係合によってエンジン回転速度NEが降下させられる際に変速ショックが発生したり、変速時間が長くなったりする。反対に、ブレーキB1の係合とクラッチC0の係合との重なり具合が大きい場合、例えば上記スウィープ制御開始時間tB1W が長いと、前記自動変速機14が一時的にロックされてしまい、自動変速機14の出力軸トルクが一時的に急低下するタイアップ状態となって変速ショックが発生し、また自動変速機14の油圧式摩擦係合装置の劣化につながる場合がある。
したがって、上記スウィープ制御開始時間tB1W を適当に調整することにより、基本的にはオーバーシュートを抑制したりタイアップを防止したりすることができるが、待機圧PB1W が低くてブレーキB1がスリップする場合には、スウィープ制御開始時間tB1W を長くしてもオーバーシュートを抑制できないことがある。このため、本実施例では、その待機圧PB1W に対応する待機圧信号SPB1Wを学習制御によって逐次補正することにより、オーバーシュートを抑制したりタイアップを防止したりするようにしている。すなわち、図14に破線で示すようにブレーキB1の待機圧PB1W (待機圧信号SPB1W)を高くすれば、スウィープ開始後にブレーキB1が解放し始めるタイミングが遅くなるため、オーバーシュートを抑制できる一方、一点鎖線で示すように待機圧PB1W (待機圧信号SPB1W)を低くすると、スウィープ開始後にブレーキB1が解放し始めるタイミングが早くなるため、タイアップを防止することができるのである。待機圧信号SPB1Wは、予め定められた基準値SPB1WC に逐次更新される学習補正値Lを加算することによって求められる。この基準値SPB1WC および学習補正値Lは、変速の種類やトルクの大小等をパラメータとして記憶されるようになっている。
オーバーシュート量算出手段150は、クラッチツウクラッチアップ変速の制御作動時(図14参照)に、解放側摩擦係合装置であるブレーキB1がスリップしてタービン回転速度NTが上昇した場合の上昇量であるオーバーシュート量NOSを、前記出力軸回転速度NOUT と変速前のギヤ段(第2速ギヤ段)の変速比γ2 から算出される変速前同期回転速度NTP(=γ2 ×NOUT )と実際のタービン回転速度NTとの差(NOS=NT−NTP)として逐次算出する。図14の時間tOSは、ブレーキB1がスリップしてオーバーシュートが始まった時間である。
積分値算出手段152は、係合側摩擦係合装置であるクラッチC0がトルク伝達状態になるまでの間に上記オーバーシュート量算出手段150によって逐次算出されたオーバーシュート量NOSを積分し、オーバーシュート量積分値INOSを求めるもので、オーバーシュート量算出手段150によって逐次算出されたオーバーシュート量NOSを順次加算する積分手段154と、クラッチC0の伝達トルクでタービン回転速度NTが引き下げられるようになり、オーバーシュート量NOSが最大(図14の時間tOSMAX )になったことを判定する極大判定手段156と、その最大判定が為されるまでに積分手段154によって求められた加算値(積分値)をオーバーシュート量積分値INOS(図14の斜線部)とする積分値確定手段158とを有して構成されている。上記オーバーシュート量NOSが最大(極大)になる時間は、タービン回転速度NTが最大(極大)になる時間と略一致するため、極大判定手段156はタービン回転速度NTの極大判定を行うものでも良い。また、極大判定手段156は、ノイズ等の外乱による一時的な回転速度変化で誤判定することを防止するため、所定の時間内の変化傾向から極大の判定を行うようにすることが望ましい。
学習許可判定手段136は、前記待機圧PB1W を制御する待機圧信号SPB1Wの学習補正処理において、学習補正処理の許可条件が成立しているか否かを判定する。この許可条件は、例えばAT油温TOIL やエンジン10の冷却水温TW 等が所定の範囲内か否か、前記AT油温センサ78や前記冷却水温センサ68或いは前記タービン回転速度センサ76等の各種センサが正常に動作しているか否か、2→3アップ変速等の単一変速であるか否か、といった学習前提条件の他に、変速中のアクセル操作量Accの変化量が所定値以下か否か、変速ポイント(車速V等)が所定の許容範囲内か否か、といった学習実行条件を含んでいる。メモリ状態判定手段138は、前記待機圧信号SPB1Wの学習補正値L等の記憶が格納されているEPROM、例えばEEPROMの初期状態或いは、記憶が初期化(クリア)された後に学習補正処理が行われたか否かを判定する。上記EEPROMの初期状態とは、そのEEPROMが車両に搭載され学習補正処理の未実施の状態でありEEPROMの交換時もこの状態に含まれる。
学習回数更新手段140は、例えば前記待機圧信号SPB1Wの学習補正処理が実行されるとEEPROMに記憶されている前回の学習回数nに1を加算することで学習回数nを更新して記憶する。また、上記EEPROMの初期状態或いは、記憶が初期化(クリア)された後の最初の学習補正処理である場合はn=0とするように学習回数nを更新して記憶する。学習回数判定手段142は、通常の学習処理を実行してもよいか否かを例えば待機圧信号SPB1Wの学習補正処理の学習回数nが予め設定された所定回数nC を越えているか否かにより判定する。これは、待機圧信号SPB1Wは繰り返し学習補正処理されることによって最適な値に順次変更されるが、学習回数nが少ない場合には、車両のばらつきによる前記オーバーシュート量積分値INOSのばらつきが不可避であるので学習補正値Lを速やかに次回の変速制御作動に反映させるように学習回数nが多い場合の通常の学習補正処理と違った学習補正処理、例えばオーバーシュート量積分値INOSに乗算する係数を変更する必要があるためであり、上記所定回数nC は例えば2〜5に設定されている。
学習制御手段144は、オーバーシュート判定手段145、学習補正値演算手段146、および待機圧算出手段148を備えており、解放側油圧式摩擦係合装置であるブレーキB1の係合圧PB1を直接制御するリニアソレノイド弁SL3に出力される解放側油圧用駆動信号SPB1 のうち前記待機圧PB1W に対応する待機圧信号SPB1Wを繰り返し学習補正処理することにより、タービン回転速度NTのオーバーシュートやエンジン吹き、或いはタイアップが発生しない最適な値に順次変更する。この学習制御手段144は、係合側油圧式摩擦係合装置である前記クラッチC0の係合圧PC0を直接制御するリニアソレノイド弁SL1に出力される係合側油圧用駆動信号SPC0 が略一定の変化パターンとされ、上記解放側駆動信号SPB1 の待機圧信号SPB1Wのみを学習制御処理することで、エンジン吹きやタイアップの発生を防止する。
上記オーバーシュート判定手段145は、前記積分値確定手段158によって確定されたオーバーシュート量積分値INOSが、エンジン吹きや変速ショック、変速時間等に基づいて予め設定された第1所定値である目標積分値INOSU 以上であるか否か、或いはエンジン吹きや変速ショック、変速時間等に基づいて第1所定値よりも低い値に予め設定された第2所定値である許容積分値INOSD 以下であるか否かを判定する。目標積分値INOSU はいわゆる目標とすべきオーバーシュート量積分値INOSの領域の上限の値であり、この値を越えると前記ニュートラル傾向(吹き上がり傾向)が大きくなる。また、許容積分値INOSD はいわゆる目標とすべきオーバーシュート量積分値INOSの領域の下限の値であり、この値を下回るとタイアップ傾向となる。
学習補正値演算手段146は、上記オーバーシュート判定手段145によってタービン回転速度NTのオーバーシュートが大きいと判定されると、ニュートラルによるエンジン吹きを回避するために、現在の学習補正値LC にオーバーシュート量積分値INOSに係数G(ゲイン)を乗算した値を加えることで、新しい学習補正値LNCUT(=LC +G×INOS)を演算により求める。このゲインGは、オーバーシュート量積分値INOSを新しい学習補正値LNCUTに反映させるために予め決定された値であり、前記学習回数nが予め設定された所定回数nC を越えていれば通常学習用ゲインGF となり、所定回数nC を越えてなければ高速学習用ゲインGK となる。この高速学習用ゲインGK は、速やかに学習補正値Lを次回の変速制御作動に反映させるように通常学習用ゲインGF より大きい値とされる。
学習補正値演算手段146はまた、前記オーバーシュート判定手段145によってタイアップ傾向であると判定され、さらにオーバーシュート量積分値INOSが装置のノイズや精度等が適宜加味された予め設定された零判定値以下、すなわち略零のような小さい値であると判定されると、タイアップ回避のための学習補正値Lを演算する。オーバーシュート量積分値INOSが前記零判定値以下でない場合はタービン回転速度NTのオーバーシュートがある程度生じてはいるがタイアップに近い状態であるので、解放側油圧式摩擦係合装置であるブレーキB1の待機圧PB1W を速やかに低下させるように現在の学習補正値LC から通常学習用学習補正値LTFを差し引くことで新しい学習補正値LTU(=LC −LTF)を演算により求め、オーバーシュート量積分値INOSが前記零判定値以下である場合はタイアップ状態であるので、変速ショックを早急に回避するために1回の学習補正処理で通常学習に比較して前記待機圧PB1W がより低くなるように現在の学習補正値LC から緊急タイアップ回避学習用学習補正値LTEを差し引くことで新しい学習補正値LTT(=LC −LTE)を演算により求める。その通常学習用学習補正値LTF或いは緊急タイアップ回避学習用学習補正値LTEは、予め決定された所定値を用いる。
そして、前記待機圧算出手段148は、予め定められた基準値SPB1WC に上記学習補正値演算手段146によって求められた新しい学習補正値LNEW (LNCUT、LTU或いはLTT)を加えることによって次回のブレーキB1の待機圧信号SPB1W(=SPB1WC +LNEW )を算出する。
図10は上記電子制御装置90の制御作動の要部、すなわちパワーオンの加速走行中のクラッチツウクラッチアップ変速時における自動変速機14の変速制御作動において、解放側油圧式摩擦係合装置であるブレーキB1の係合圧PB1を直接制御するリニアソレノイド弁SL3に出力される解放側油圧用駆動信号SPB1 の待機圧信号SPB1Wの学習補正処理を説明するメインルーチンのフローチャートであり、図11は上記図10の学習補正値演算処理部分のサブルーチンであり、図12は図11の吹き上がり回避学習処理部分のサブルーチンであり、図13は図11のタイアップ回避学習処理部分のサブルーチンである。
図10において、前記メモリ状態判定手段138に対応するステップ(以下、ステップを省略する)S1およびS2では、S1において学習補正値L等の記憶が格納されているEPROM、例えばEEPROMが車両に搭載されて学習補正処理が未実施の状態であるか或いはEEPROMの交換が行われた後に学習補正処理が未実施の状態であるか否かが判定され、S2においてEEPROMの記憶が初期化(クリア)された後に学習補正処理が未実施の状態であるか否かが判定される。このS1およびS2の何れか一方の判断が肯定されると、前記学習回数更新手段140に対応するS3において、学習回数nがn=0とされるように更新されて上記EEPROMに記憶される。上記S1およびS2の判断が何れも否定される場合は、S3が実行されずEEPROMに記憶されている学習回数nの値が保持される。
次いで、前記変速状態判定手段122に対応するS4において、前記自動変速機14のパワーオンアップ変速の油圧制御が開始されたか否かが判定される。このS4の判断が否定される場合は本ルーチンが終了させられるが、肯定される場合は前記オーバーシュート量算出手段150に対応するS5において、タービン回転速度NTのオーバーシュート量NOSが、出力軸回転速度NOUT と変速前のギヤ段(第2速ギヤ段)の変速比γ2 から算出される同期回転速度NTP(=γ2 ×NOUT )と実際のタービン回転速度NTとの差(NT−NTP)として逐次求められる。次のS6は前記積分手段154に対応するもので、S5で逐次求められたオーバーシュート量NOSを順次加算することによりオーバーシュート量積分値INOSを算出し、極大判定手段156に対応するS7では、オーバーシュート量NOSが最大になったか否かを、本実施例ではタービン回転速度NTが下降し始めたか否かによって判断する。そして、タービン回転速度NTが下降し始めるまで、言い換えればオーバーシュート量NOSが略最大になるまで、S5およびS6を繰り返してオーバーシュート量積分値INOSを逐次更新し、タービン回転速度NTが下降し始めたら、積分値確定手段158に対応するS8を実行して、その時のオーバーシュート量積分値INOSを今回のアップ変速時のオーバーシュート量積分値INOSとして確定する。なお、オーバーシュートが発生しないタイアップ状態の場合には、オーバーシュート量積分値INOS=0となる。
その後、S9に対応する図11のSG1〜SG8において、解放側油圧式摩擦係合装置であるブレーキB1の待機圧信号SPB1Wの新しい学習補正値LNEW (LNCUT、LTU或いはLTT)が求められ、この新しい学習補正値LNEW を基準値SPB1WC に加算することによって次回のブレーキB1の待機圧信号SPB1Wが算出される。前記学習許可判定手段136に対応する上記SG1において、学習補正処理の開始条件が成立しているか否かが、例えばAT油温TOIL やエンジン10の冷却水温TW 等が安定している状態か、前記AT油温センサ78や前記冷却水温センサ68或いは前記タービン回転速度センサ76等の各種センサが正常に動作しているか、2→3アップ変速等の単一変速であるか、変速中のアクセル操作量Accの変化量が所定値以下か否か、変速ポイント(車速V等)が所定の許容範囲内か否か、等によって判定される。このSG1が否定されると本ルーチンが終了させられるが、肯定されるとオーバーシュート判定手段145に対応するSG2およびSG3を実行し、SG2において前記S5〜S8で求められたオーバーシュート量積分値INOSが前記目標積分値INOSU 以上であるか否かが判定され、SG3においてオーバーシュート量積分値INOSが前記許容積分値INOSD 以下であるか否かが判定される。このSG2とSG3の判断が何れも否定されると、SG6で現在の学習補正値LC を維持したままSG7以下を実行する。すなわち、オーバーシュート量積分値INOSが上限値である目標積分値INOSU と下限値である許容積分値INOSD の間であれば、学習補正値Lを変更する必要がないので、SG8では、現在の学習補正値LC をそのまま用いて基準値SPB1WC に加算することにより、次回のブレーキB1の待機圧信号SPB1Wを算出すれば良いのである。
上記SG2が肯定されると、SG4に対応する図12のSN1〜SN4において、エンジン10の吹き上がりを回避するために新しい学習補正値LNEW (LNCUT)が求められ、上記SG3が肯定されると、SG5に対応する図13のST1〜ST3において、タイアップ状態を回避するために新しい学習補正値LNEW (LTU或いはLTT)が求められる。
図12の吹き上がり回避学習処理サブルーチンでは、前記学習回数判定手段142に対応するSN1において、前記EEPROMに記憶されている待機圧信号SPB1Wの学習補正処理の学習回数nが予め設定された所定回数nC 、例えば2〜5を越えているか否かが判定される。続く学習補正値演算手段146に対応するSN2、SN3では、エンジン10の吹き上がりを回避するため、上記SN1の結果に応じてブレーキB1の待機圧PB1W が高くなるように学習補正値Lが更新される。つまりSN1が肯定されると、通常の学習処理のためにSN2において通常学習用ゲインGF が与えられ、SN4において現在の学習補正値LC にオーバーシュート量積分値INOSに通常学習用ゲインGF が乗算された値が加えられて新しい学習補正値LNCUT(=LC +GF ×INOS)が算出される。また、SN1が否定されると、学習回数nが少ないことによる車両のばらつきによる前記オーバーシュート量積分値INOSのばらつきが不可避であるので、学習補正値Lが速やかに次回の変速制御作動に反映されるように、SN3において通常学習用ゲインGF より大きい値とされる高速学習用ゲインGK が与えられ、SN4において現在の学習補正値LC にオーバーシュート量積分値INOSに高速学習用ゲインGK が乗算された値が加えられて新しい学習補正値LNCUT(=LC +GK ×INOS)が算出される。
一方、前記図11のSG3が肯定された場合のSG5に対応する図13のタイアップ回避学習処理サブルーチンでは、先ず、前記オーバーシュート判定手段145に対応するST1において、前記オーバーシュート量積分値INOSが前記零判定値以下であるか否かが判定される。このST1が否定されると、オーバーシュートがある程度生じてはいるがタイアップに近い状態であるので、学習補正値演算手段146に対応するST3において、ブレーキB1の待機圧PB1W が低下するように現在の学習補正値LC から通常学習用学習補正値LTFが差し引かれて新しい学習補正値LTU(=LC −LTF)が算出される。上記ST1が肯定されるとタイアップ状態であるので、変速ショックを早急に回避するために1回の学習補正処理で通常学習に比較して待機圧PB1W がより低くなるように、学習補正値演算手段146に対応するST2において、現在の学習補正値LC から緊急タイアップ回避学習用学習補正値LTEが差し引かれて新しい学習補正値LTT(=LC −LTE)が算出される。これ等の新たな学習補正値LTU、LTTは、現在の学習補正値LC よりも小さく、LC >LTU>LTTの関係になる。
前記SG4(SN1〜SN4)またはSG5(ST1〜ST3)において新しい学習補正値LNEW (LNCUT、LTU或いはLTT)が求められ、或いはSG6において現在の学習補正値LC が維持されると、前記学習回数更新手段140に対応するSG7において、EEPROMに記憶されている前回の学習回数nに1が加算されて学習回数nが更新されて記憶される。
続いて、待機圧算出手段148に対応するSG8において、待機圧信号SPB1Wの基準値SPB1WC に前記学習補正値演算手段146によって求められた新たな学習補正値LNEW (LNCUT、LTU或いはLTT)または現在の学習補正値LC が加えられることにより、次回のブレーキB1の係合圧PB1の待機圧PB1W を規定する待機圧信号SPB1Wが算出される。新しい学習補正値LNEW は、吹き上がり傾向の場合はLC <LNCUTで現在の学習補正値LC よりも大きいため、その分だけ待機圧信号SPB1Wが大きくされる。また、タイアップ傾向の場合は、LC >LTU>LTTで現在の学習補正値LC よりも小さいため、その分だけ待機圧信号SPB1Wが小さくされる。
図14は、本実施例の加速走行中のアップ変速時における自動変速機14の変速制御作動において、待機圧信号SPB1Wの学習処理が行われた前後の解放側油圧用駆動信号SPB1 の変化を説明する図で、実線は学習処理を行う前の状態である。そして、吹き上がり傾向(ニュートラル傾向)の場合は、学習補正値Lが大きくなって待機圧信号SPB1Wが大きくされるため、解放側油圧用駆動信号SPB1 は破線で示すように大きくなり、待機圧PB1W が上昇してブレーキB1の解放タイミングが遅くなるため、吹き上がり傾向が抑制される。一方、タイアップ傾向の場合は、学習補正値Lが小さくなって待機圧信号SPB1Wが小さくされるため、解放側油圧用駆動信号SPB1 は一点鎖線で示すように小さくなり、待機圧PB1W が低下してブレーキB1の解放タイミングが早くなるため、タイアップが抑制される。
ここで、本実施例では、加速走行中のクラッチツウクラッチアップ変速中に、オーバーシュート量算出手段150によってタービン回転速度NT(=入力軸回転速度NIN)のオーバーシュート量NOSを逐次算出するとともに、係合側摩擦係合装置(クラッチC0)がトルク伝達状態になってタービン回転速度NTが下降し始めるまでの間、言い換えればオーバーシュート量NOSが略最大になるまでの間に、そのオーバーシュート量算出手段150によって算出されたオーバーシュート量NOSを順次加算してオーバーシュート量積分値INOSを求め、そのオーバーシュート量積分値INOSに基づいて解放側摩擦係合装置(ブレーキB1)の待機圧PB1W に対応する待機圧信号SPB1Wを学習制御により補正するため、ノイズ等の外乱でタービン回転速度NTや出力軸回転速度NOUT の検出値が一時的に変化しても、オーバーシュート量積分値INOSに与える影響は小さく、オーバーシュート量NOSに基づく待機圧信号SPB1Wの学習制御が安定して高い精度で行われるようになる。
特に、加速走行中のクラッチツウクラッチアップ変速中におけるタービン回転速度NTは、係合側摩擦係合装置(クラッチC0)がトルク伝達状態になると、その伝達トルクに基づいて引き下げられ、そのオーバーシュート量NOSが小さくなるが、本実施例では、係合側摩擦係合装置(クラッチC0)がトルク伝達状態になるまでの間、具体的にはクラッチC0のトルク伝達でタービン回転速度NTが下降し始めるまでの間に、オーバーシュート量算出手段150によって逐次算出されたオーバーシュート量NOSを加算してオーバーシュート量積分値INOSを求めるため、係合側摩擦係合装置(クラッチC0)の伝達トルクの影響が排除乃至は低減され、解放側摩擦係合装置(ブレーキB1)の待機圧信号SPB1Wの学習制御が一層高い精度で行われるようになる。
また、タービン回転速度NTのオーバーシュート量NOSが略最大になるまでのオーバーシュート量積分値INOSを求めて学習制御を行うため、係合側摩擦係合装置(クラッチC0)の伝達トルクの影響を良好に低減しつつ、解放側摩擦係合装置(ブレーキB1)の係合圧PB1の低下に起因するオーバーシュート量NOSを反映しているとともに、ノイズ等の外乱の影響が少ないオーバーシュート量積分値INOSに基づいて、解放側摩擦係合装置(ブレーキB1)の待機圧信号SPB1Wを高い精度で学習制御できる。すなわち、係合側摩擦係合装置(クラッチC0)は、タービン回転速度NTのオーバーシュート量NOSが最大になる前から係合トルクを持ってトルク伝達を開始するが、オーバーシュート量NOSが最大になった後に比べてその係合トルク(伝達トルク)は小さくて影響が少ない一方、オーバーシュート量NOSに関するデータが少ないと、オーバーシュート量積分値INOSが小さくなってノイズ等の外乱による影響が大きくなることから、オーバーシュート量NOSが略最大になるまでのオーバーシュート量積分値INOSを用いることが適当なのである。
例えば、図14においてタービン回転速度NTのグラフに示す破線は、係合側摩擦係合装置(クラッチC0)の油圧PC0の増加率が小さい場合で、一点鎖線は係合側摩擦係合装置(クラッチC0)の油圧PC0の増加率が大きい場合であり、オーバーシュート量NOSが略最大になる時間tOSMAX 以後では、この係合側摩擦係合装置(クラッチC0)の油圧PC0すなわち伝達トルクの相違でタービン回転速度NT、更にはオーバーシュート量NOSが大きく変化するが、時間tOSMAX より前では、係合側摩擦係合装置(クラッチC0)の伝達トルクそのものが小さいため、タービン回転速度NTやオーバーシュート量NOSに与える影響が小さく、オーバーシュート量積分値INOSとして略同じ値が得られるのである。
また、タービン回転速度NTのオーバーシュート量積分値INOSが上限値である目標積分値INOSU を超えた場合には、解放側摩擦係合装置(ブレーキB1)の待機圧PB1W を高くするように、その待機圧信号SPB1Wを学習制御で補正するため、解放側摩擦係合装置(ブレーキB1)を確実に係合状態に維持して吹き上がり傾向を抑制することができる。すなわち、待機圧PB1W の保持時間であるスウィープ制御開始時間tB1W を学習制御で調整することにより吹き上がり傾向を抑制したりタイアップを防止したりすることも可能であるが、待機圧PB1W が低くてブレーキB1がスリップする場合には、いくらスウィープ制御開始時間tB1W を長くしてもブレーキB1を係合状態とすることができず、吹き上がり傾向を抑制できないのである。
なお、上記実施例では、自動変速機14の加速走行中のクラッチツウクラッチアップ変速制御作動として、ブレーキB1を解放するとともにクラッチC0を係合させる2→3アップ変速について説明したが、クラッチC1を解放するとともにブレーキB1を係合させる3→4アップ変速など、他のクラッチツウクラッチアップ変速に適用することも可能である。
また、学習回数判定手段142(ステップSN1)で通常の学習処理を実行してもよいか否かを判定する際に用いられた予め設定された所定回数nC は2〜5に設定されていたが、車両のばらつきによって好適に設定すればよい。例えば車両のばらつきが大きければnC は10程度に設定されてもよい。
以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
本発明の一実施例の変速制御装置が適用された車両用駆動装置の骨子図である。 図1の自動変速機の各ギヤ段を成立させるためのクラッチおよびブレーキの係合、解放状態を説明する図である。 図1の実施例の車両に設けられた電子制御装置の入出力信号を説明する図である。 図3のシフトレバーのシフトパターンの一例を示す図である。 図3の電子制御装置によって行われるスロットル制御で用いられるアクセルペダル操作量Accとスロットル弁開度θTHとの関係の一例を示す図である。 図3の電子制御装置によって行われる自動変速機の変速制御で用いられる変速線図(マップ)の一例を示す図である。 図3の油圧制御回路のうち、2→3アップ変速時にそれぞれ解放、係合させられるブレーキB1およびクラッチC0に関連する部分の構成を説明する回路図である。 図3の電子制御装置によって行われる自動変速機の変速制御作動を説明する機能ブロック線図である。 図8の各手段によって2→3アップ変速が行われる際の基本制御作動を説明するタイムチャートである。 アップ変速時の変速制御作動において、解放側油圧式摩擦係合装置の待機圧の学習補正処理を説明するメインルーチンのフローチャートである。 図10のフローチャートの学習補正値演算処理部分のサブルーチンを示すフローチャートである。 図11のフローチャートの吹き上がり回避学習処理部分のサブルーチンを示すフローチャートである。 図11のフローチャートのタイアップ回避学習処理部分のサブルーチンを示すフローチャートである。 アップ変速時の変速制御作動において、オーバーシュート量積分値に基づく解放側油圧式摩擦係合装置の待機圧の学習制御を説明するタイムチャートである。
符号の説明
14:自動変速機 22:入力軸 90:電子制御装置 144:学習制御手段 150:オーバーシュート量算出手段 152:積分値算出手段 B1:ブレーキ(解放側摩擦係合装置) C0:クラッチ(係合側摩擦係合装置) NT:タービン回転速度(入力軸回転速度) NOS:オーバーシュート量 INOS:オーバーシュート量積分値

Claims (2)

  1. 解放側摩擦係合装置の解放と係合側摩擦係合装置の係合とが実行されることにより変速が達成されるクラッチツウクラッチアップ変速が行われる車両用自動変速機の変速制御装置であって、
    前記クラッチツウクラッチアップ変速中に、該変速に伴う自動変速機の入力軸回転速度のオーバーシュート量を逐次算出するオーバーシュート量算出手段と、
    前記クラッチツウクラッチアップ変速で前記係合側摩擦係合装置がトルク伝達状態になるまでの間の前記オーバーシュート量を積分し、オーバーシュート量積分値を求める積分値算出手段と、
    前記オーバーシュート量積分値の大きさに基づいて前記解放側摩擦係合装置の係合圧を学習制御により補正する学習制御手段と、
    を備えることを特徴とする車両用自動変速機の変速制御装置。
  2. 前記積分値算出手段は、前記入力軸回転速度のオーバーシュート量が最大になるまでのオーバーシュート量積分値を算出するものである
    ことを特徴とする請求項1に記載の車両用自動変速機の変速制御装置。
JP2005173049A 2005-06-13 2005-06-13 車両用自動変速機の変速制御装置 Pending JP2006348985A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005173049A JP2006348985A (ja) 2005-06-13 2005-06-13 車両用自動変速機の変速制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005173049A JP2006348985A (ja) 2005-06-13 2005-06-13 車両用自動変速機の変速制御装置

Publications (1)

Publication Number Publication Date
JP2006348985A true JP2006348985A (ja) 2006-12-28

Family

ID=37645064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005173049A Pending JP2006348985A (ja) 2005-06-13 2005-06-13 車両用自動変速機の変速制御装置

Country Status (1)

Country Link
JP (1) JP2006348985A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121729A (ja) * 2008-11-20 2010-06-03 Toyota Motor Corp 自動変速機の学習制御装置
JP2010209948A (ja) * 2009-03-06 2010-09-24 Nissan Motor Co Ltd 自動変速機の制御装置
US8271169B2 (en) 2006-08-28 2012-09-18 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for an automatic transmission, program for directing a computer to execute the control method, and storage medium on which program is recorded
US8280597B2 (en) 2009-03-06 2012-10-02 Nissan Motor Co., Ltd. Control apparatus of automatic transmission
US8406967B2 (en) 2009-03-02 2013-03-26 Nissan Motor Co., Ltd. Control apparatus and method for automatic transmission system
US8428834B2 (en) 2009-03-06 2013-04-23 Nissan Motor Co., Ltd. Control system of automatic transmission
US8465395B2 (en) 2009-03-06 2013-06-18 Nissan Motor Co., Ltd. Control apparatus and method for automatic transmission
JP2014152864A (ja) * 2013-02-08 2014-08-25 Daimler Ag 機械式自動変速機の初期設定方法
DE102019135599A1 (de) 2018-12-26 2020-07-02 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung und steuerverfahren eines fahrzeugs

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245902A (ja) * 1989-03-20 1990-10-01 Hitachi Ltd プロセス制御装置
JPH02264304A (ja) * 1989-04-05 1990-10-29 Hitachi Ltd 波形評価測定装置付調節計
JPH0719328A (ja) * 1993-06-29 1995-01-20 Nissan Motor Co Ltd 自動変速機の変速制御装置
JPH0727219A (ja) * 1993-07-14 1995-01-27 Nissan Motor Co Ltd 自動変速機の変速制御装置
JPH08226535A (ja) * 1995-02-20 1996-09-03 Toyota Motor Corp 車両用自動変速機の変速制御装置
JPH08285065A (ja) * 1995-04-11 1996-11-01 Toyota Motor Corp 車両用自動変速機の変速制御装置
JPH09326690A (ja) * 1996-06-04 1997-12-16 Mitsubishi Electric Corp ディジタルpll回路
JPH10103481A (ja) * 1996-09-30 1998-04-21 Mazda Motor Corp 自動変速機の制御装置
JPH1137267A (ja) * 1997-07-22 1999-02-12 Toyota Motor Corp 車両用自動変速機の油圧制御装置
JP2002168337A (ja) * 2000-11-27 2002-06-14 Unisia Jecs Corp 自動変速機の変速制御装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02245902A (ja) * 1989-03-20 1990-10-01 Hitachi Ltd プロセス制御装置
JPH02264304A (ja) * 1989-04-05 1990-10-29 Hitachi Ltd 波形評価測定装置付調節計
JPH0719328A (ja) * 1993-06-29 1995-01-20 Nissan Motor Co Ltd 自動変速機の変速制御装置
JPH0727219A (ja) * 1993-07-14 1995-01-27 Nissan Motor Co Ltd 自動変速機の変速制御装置
JPH08226535A (ja) * 1995-02-20 1996-09-03 Toyota Motor Corp 車両用自動変速機の変速制御装置
JPH08285065A (ja) * 1995-04-11 1996-11-01 Toyota Motor Corp 車両用自動変速機の変速制御装置
JPH09326690A (ja) * 1996-06-04 1997-12-16 Mitsubishi Electric Corp ディジタルpll回路
JPH10103481A (ja) * 1996-09-30 1998-04-21 Mazda Motor Corp 自動変速機の制御装置
JPH1137267A (ja) * 1997-07-22 1999-02-12 Toyota Motor Corp 車両用自動変速機の油圧制御装置
JP2002168337A (ja) * 2000-11-27 2002-06-14 Unisia Jecs Corp 自動変速機の変速制御装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8271169B2 (en) 2006-08-28 2012-09-18 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for an automatic transmission, program for directing a computer to execute the control method, and storage medium on which program is recorded
JP2010121729A (ja) * 2008-11-20 2010-06-03 Toyota Motor Corp 自動変速機の学習制御装置
US8406967B2 (en) 2009-03-02 2013-03-26 Nissan Motor Co., Ltd. Control apparatus and method for automatic transmission system
JP2010209948A (ja) * 2009-03-06 2010-09-24 Nissan Motor Co Ltd 自動変速機の制御装置
US8280597B2 (en) 2009-03-06 2012-10-02 Nissan Motor Co., Ltd. Control apparatus of automatic transmission
US8364359B2 (en) 2009-03-06 2013-01-29 Nissan Motor Co., Ltd. Control apparatus and method for automatic transmission
US8428834B2 (en) 2009-03-06 2013-04-23 Nissan Motor Co., Ltd. Control system of automatic transmission
US8465395B2 (en) 2009-03-06 2013-06-18 Nissan Motor Co., Ltd. Control apparatus and method for automatic transmission
JP2014152864A (ja) * 2013-02-08 2014-08-25 Daimler Ag 機械式自動変速機の初期設定方法
DE102019135599A1 (de) 2018-12-26 2020-07-02 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung und steuerverfahren eines fahrzeugs
US10851889B2 (en) 2018-12-26 2020-12-01 Toyota Jidosha Kabushiki Kaisha Control device and control method of vehicle

Similar Documents

Publication Publication Date Title
JP4155287B2 (ja) 車両用自動変速機の変速制御装置
JP4200992B2 (ja) 車両用自動変速機の変速制御装置
JP4285529B2 (ja) 自動変速機の変速制御装置
JP2006348985A (ja) 車両用自動変速機の変速制御装置
JP4639760B2 (ja) 自動変速機の変速制御装置
JP6225985B2 (ja) 自動変速機の制御装置
JP4923772B2 (ja) エンジンの過回転防止装置
JP4710566B2 (ja) 自動変速機の油圧制御装置
JP2004183759A (ja) 車両用自動変速機の変速制御装置
US6761664B2 (en) Shift control device and shift control method for vehicular automatic transmission
JP2005098353A (ja) 自動変速機の制御装置
JP2007146902A (ja) 自動変速機の変速制御装置
JP3876838B2 (ja) 車両用高加速時変速制御装置
JP3692058B2 (ja) 車両の変速制御装置
JP4013131B2 (ja) 車両用自動変速機の変速時遅角制御装置
JP3399303B2 (ja) 車両用自動変速機の油圧制御装置
JP2003042285A (ja) 車両の変速制御装置
JP4848769B2 (ja) 車両用自動変速機の油圧制御装置
JP4701844B2 (ja) 車両用自動変速機の変速制御装置
JP2009243492A (ja) 自動変速機の制御装置
JP3873875B2 (ja) 車両用自動変速機の変速制御装置
JP2008133868A (ja) 車両用自動変速機の変速制御装置
JP2007064464A (ja) 車両用自動変速機の変速制御装置
JP4899457B2 (ja) 車両用動力伝達装置の制御装置
JP2004183757A (ja) 車両用自動変速機の変速制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601