JP2006348904A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2006348904A
JP2006348904A JP2005178981A JP2005178981A JP2006348904A JP 2006348904 A JP2006348904 A JP 2006348904A JP 2005178981 A JP2005178981 A JP 2005178981A JP 2005178981 A JP2005178981 A JP 2005178981A JP 2006348904 A JP2006348904 A JP 2006348904A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
exhaust gas
cylinder group
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005178981A
Other languages
Japanese (ja)
Inventor
Yasuyuki Irisawa
泰之 入澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005178981A priority Critical patent/JP2006348904A/en
Publication of JP2006348904A publication Critical patent/JP2006348904A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine, comprising a NOx storage-reduction catalyst device arranged on the downstream side of a combined part between a first exhaust passage for a first cylinder group and a second exhaust passage for a second cylinder group for carrying out lean-burn operation wherein the worsening of exhaust emission at the beginning of temperature rise control is suppressed during the temperature rise control of the NOx storage-reduction catalyst device. <P>SOLUTION: In the exhaust emission control device, the first exhaust passage 2a has a longer passage length than the second exhaust passage 2b. During the temperature rise control of the NOx storage-reduction catalyst device 6, exhaust gas of a set rich air-fuel ratio is exhausted from one of the first cylinder group 1a and the second cylinder group 1b and exhaust gas of a set lean air-fuel ratio is exhausted from the other. The exhaust gas of the set lean air-fuel ratio or the set rich air-fuel ratio is exhausted from the second cylinder group later than the exhaust gas of the set rich air-fuel ratio or the set lean air-fuel ratio is exhausted from the first cylinder group. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、希薄燃焼を実施する内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine that performs lean combustion.

理論空燃比よりリーンな均質混合気を火花着火させて希薄燃焼を実施する内燃機関が公知である。このような希薄燃焼の排気ガス中にはNOXが含まれており、この内燃機関の排気通路には、リーン空燃比の排気ガスからNOXを良好に吸蔵するNOX吸蔵還元触媒装置が配置されている。 An internal combustion engine that performs a lean combustion by spark ignition of a homogeneous air-fuel mixture that is leaner than the stoichiometric air-fuel ratio is known. Such dilute the exhaust gas of combustion includes a NO X, in the exhaust passage of the internal combustion engine, arranged the NO X storage reduction catalyst device to satisfactorily absorb NO X from the exhaust gas of a lean air-fuel ratio Has been.

NOX吸蔵還元触媒装置は、NOXだけでなく、排気ガス中のSOXもNOXと同様なメカニズムによって吸蔵してしまう。SOXの吸蔵量が増加すると、その分、NOXの吸蔵可能量が減少するために、設定量のSOXが吸蔵された時には、NOX吸蔵還元触媒装置からSOXを放出させなければならない。SOXは、安定な物質として吸蔵されており、NOX吸蔵還元触媒装置を高温にしないと、放出させることができない。 The NO X storage reduction catalyst device stores not only NO X but also SO X in the exhaust gas by the same mechanism as NO X. When occlusion amount of SO X increases, correspondingly, to storable amount of the NO X is decreased, when the set amount of SO X is occluded, the must be released SO X from the NO X storage reduction catalyst device . SO x is occluded as a stable substance, and cannot be released unless the NO x occlusion reduction catalyst device is heated to a high temperature.

このようにNOX吸蔵還元触媒装置の昇温が必要とされることがあり、そのための昇温制御は、一般的に、NOX吸蔵還元触媒装置において、リッチ空燃比の排気ガス中に多く含まれるHC及びCOを、リーン空燃比の排気ガス中に多く含まれる酸素によって燃焼させることとなる。 Thus it may increase the temperature of the NO X storage reduction catalyst device is needed, the temperature increase control for generally in the NO X storage reduction catalyst device, abundant in the exhaust gas of the rich air-fuel ratio HC and CO to be burned by oxygen contained in a large amount of lean air-fuel ratio exhaust gas.

このような昇温制御として、NOX吸蔵還元触媒装置の上流側において互いに独立する第一排気経路及び第二排気経路に対応する第一気筒群及び第二気筒群の一方でリーン空燃比の運転を実施すると共に、他方でリッチ空燃比の運転を実施し、第一排気経路及び第二排気経路の合流部おいてリーン空燃比の排気ガスとリッチ空燃比の排気ガスとを混合してNOX吸蔵還元触媒装置へ流入させることが提案されている(例えば、特許文献1参照)。 As such temperature increase control, one of the first cylinder group and the second cylinder group corresponding to the first exhaust path and the second exhaust path that are independent from each other on the upstream side of the NO x storage reduction catalyst device is operated with a lean air-fuel ratio. On the other hand, the rich air-fuel ratio operation is performed, and the lean air-fuel ratio exhaust gas and the rich air-fuel ratio exhaust gas are mixed at the junction of the first exhaust path and the second exhaust path to mix NO X It has been proposed to flow into the storage reduction catalyst device (see, for example, Patent Document 1).

特開2004−68690JP 2004-68690 A 特開2003−201892JP 2003-201892 A

一般的に、第一気筒群から合流部までの第一排気経路の経路長と第二気筒群から合流部までの第二排気経路の経路長とは大きく異なっている。昇温制御において、一方の気筒群のリーン空燃比と、他方の気筒群のリッチ空燃比とは、両方の平均が理論空燃比となるように選択される。こうして選択された昇温制御におけるリーン空燃比が、通常の希薄燃焼におけるリーン空燃比よりリーン側である場合において、昇温制御を実施する際に、経路長の違いによって、一方の気筒群のリーン空燃比運転の排気ガスより他方の気筒群のリッチ空燃比運転の排気ガスが早く合流部に達すると、昇温制御の初期において、NOX吸蔵還元触媒装置へ流入する排気ガスはリッチとなり、NOX吸蔵還元触媒装置において、酸素不足によって燃焼させることができなかったHC及びCOが大気中へ放出されて排気エミッションを悪化させる。 In general, the path length of the first exhaust path from the first cylinder group to the merging portion is greatly different from the path length of the second exhaust path from the second cylinder group to the merging portion. In the temperature increase control, the lean air-fuel ratio of one cylinder group and the rich air-fuel ratio of the other cylinder group are selected so that the average of both becomes the stoichiometric air-fuel ratio. When the lean air-fuel ratio in the temperature raising control thus selected is leaner than the lean air-fuel ratio in normal lean combustion, when the temperature raising control is performed, the lean of one cylinder group is caused by the difference in path length. When the exhaust gas in the rich air-fuel ratio operation of the other cylinder group reaches the merging portion earlier than the exhaust gas in the air-fuel ratio operation, the exhaust gas flowing into the NO x storage reduction catalyst device becomes rich in the initial stage of the temperature rise control, and the NO In the X storage reduction catalyst device, HC and CO that could not be combusted due to lack of oxygen are released into the atmosphere, and exhaust emission is deteriorated.

また、通常の希薄燃焼においては、NOX生成量が比較的少ないリーン空燃比が選択されている。これに対して、昇温制御におけるリーン空燃比が、通常の希薄燃焼とは異なりNOX生成量が比較的多いリーン空燃比とされている場合において、昇温制御を実施する際に、経路長の違いによって、他方の気筒群のリッチ空燃比運転の排気ガスより一方の気筒群のリーン空燃比運転の排気ガスが早く合流部に達すると、昇温制御の初期において、NOX吸蔵還元触媒装置へ流入する排気ガスはリーンとなり、一方の気筒群のリーン空燃比運転において比較的多く生成されたNOXをNOX吸蔵還元触媒装置が十分に吸蔵することができず、NOXの大気放出量が増加して排気エミッションを悪化させる。 Further, in normal lean combustion, a lean air-fuel ratio with a relatively small amount of NO x generation is selected. In contrast, the lean air-fuel ratio in the Atsushi Nobori control, when the NO X generation amount Unlike normal lean combustion is relatively large lean air-fuel ratio, in carrying out temperature increase control, the path length the difference, the exhaust gas of a lean air-fuel ratio operation of the one cylinder group from the exhaust gas of a rich air-fuel ratio operation of the other cylinder group reaches the early merging portion, the initial Atsushi Nobori control, NO X occluding and reducing catalyst device The exhaust gas flowing into the engine becomes lean, and the NO x storage reduction catalyst device cannot sufficiently store the NO x produced in the lean air-fuel ratio operation of one of the cylinder groups, and the amount of NO x released into the atmosphere Increases exhaust emissions.

従って、本発明の目的は、第一気筒群の第一排気経路と第二気筒群の第二排気経路との合流部の下流側にNOX吸蔵還元触媒装置が配置されて希薄燃焼を実施する内燃機関の排気浄化装置において、NOX吸蔵還元触媒装置の昇温制御に際して、昇温制御初期の排気エミッションの悪化を抑制することである。 Therefore, an object of the present invention is to perform lean combustion by disposing the NO x storage reduction catalyst device downstream of the junction of the first exhaust path of the first cylinder group and the second exhaust path of the second cylinder group. In the exhaust gas purification device for an internal combustion engine, when the temperature increase control of the NO x storage reduction catalyst device is performed, deterioration of exhaust emission at the initial stage of the temperature increase control is suppressed.

本発明による請求項1に記載の内燃機関の排気浄化装置は、少なくとも第一気筒群と第二気筒群とを有して希薄燃焼を実施する内燃機関の排気浄化装置であって、前記第一気筒群の第一排気経路と前記第二気筒群の第二排気経路との合流部の下流側にNOX吸蔵還元触媒装置が配置され、前記第一排気経路は前記第二排気経路に比較して長い経路長を有し、前記NOX吸蔵還元触媒装置の昇温制御時には、前記第一気筒群及び前記第二気筒群の一方から設定リッチ空燃比の排気ガスを排出させると共に、前記第一気筒群及び前記第二気筒群の他方から設定リーン空燃比の排気ガスを排出させ、前記設定リーン空燃比又は前記設定リッチ空燃比の排気ガスの前記第二気筒群からの排出が、前記設定リッチ空燃比又は前記設定リーン空燃比の排気ガスの前記第一気筒群からの排出より遅れるようにすることを特徴とする。 An exhaust emission control device for an internal combustion engine according to claim 1 of the present invention is an exhaust emission control device for an internal combustion engine that has at least a first cylinder group and a second cylinder group and performs lean combustion, wherein the NO X storage reduction catalyst device at the downstream side of the merging portion of the second exhaust path between the first exhaust path of the cylinder groups the second cylinder group is arranged, the first exhaust path is compared to the second exhaust path The exhaust gas having a set rich air-fuel ratio is discharged from one of the first cylinder group and the second cylinder group during the temperature increase control of the NO x storage reduction catalyst device. Exhaust gas having a set lean air-fuel ratio is discharged from the other of the cylinder group and the second cylinder group, and exhausting the exhaust gas having the set lean air-fuel ratio or the set rich air-fuel ratio from the second cylinder group is the set rich Exhaust gas with air-fuel ratio or set lean air-fuel ratio This is characterized by delaying the exhaust from the first cylinder group.

本発明による請求項2に記載の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記昇温制御時には、前記第一気筒群で前記設定リッチ空燃比の運転を実施すると共に、前記第二気筒群で前記設定リーン空燃比の運転を実施することを特徴とする。   According to a second aspect of the present invention, there is provided the exhaust gas purification apparatus for an internal combustion engine according to the first aspect, wherein the first cylinder group is operated at the set rich air-fuel ratio during the temperature increase control. And the operation of the set lean air-fuel ratio is performed in the second cylinder group.

本発明による請求項3に記載の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記第一排気経路には酸化機能を有する触媒装置が配置され、前記第一排気経路は前記第二排気経路より車両前側に位置し、設定負荷より高い高負荷時に前記昇温制御を実施する際には、前記第一気筒群で前記設定リーン空燃比の運転を実施すると共に、前記第二気筒群で前記設定リッチ空燃比の運転を実施することを特徴とする。   According to a third aspect of the present invention, there is provided an exhaust gas purification apparatus for an internal combustion engine according to the first aspect, wherein a catalyst device having an oxidation function is disposed in the first exhaust path, One exhaust path is positioned in front of the second exhaust path, and when the temperature increase control is performed at a high load higher than a set load, the first lean group is operated at the set lean air-fuel ratio. In addition, the operation of the set rich air-fuel ratio is performed in the second cylinder group.

本発明による請求項1に記載の内燃機関の排気浄化装置によれば、NOX吸蔵還元触媒装置の昇温制御時において、第一排気経路に比較して短い経路長を有する第二排気経路に対応する第二気筒群からの設定リーン空燃比又は設定リッチ空燃比の排気ガスの排出が、第一排気経路に対応する第一気筒群からの設定リッチ空燃比又は設定リーン空燃比の排気ガスの排出より遅れるようになっているために、第一気筒群から排出される設定リッチ空燃比又は設定リーン空燃比の排気ガスと、第二気筒群から排出される設定リーン空燃比又は設定リッチ空燃比の排気ガスとが、ほぼ同時に合流部に到達して混合され、ほぼ理論空燃比の混合排気ガスとなってNOX吸蔵還元触媒装置へ流入する。それにより、昇温制御初期にリッチ空燃比の混合排気ガス又はリーン空燃比の混合排気ガスがNOX吸蔵還元触媒装置へ流入して排気エミッションを悪化させることは抑制される。 According to the exhaust gas purification apparatus for an internal combustion engine according to claim 1 of the present invention, when the NO x storage reduction catalyst device is in the temperature rise control, the second exhaust path having a shorter path length than the first exhaust path is provided. The discharge of the set lean air-fuel ratio or the set rich air-fuel ratio from the corresponding second cylinder group is the same as the exhaust gas of the set rich air-fuel ratio or the set lean air-fuel ratio from the first cylinder group corresponding to the first exhaust path. The exhaust gas having the set rich air-fuel ratio or the set lean air-fuel ratio discharged from the first cylinder group and the set lean air-fuel ratio or the set rich air-fuel ratio discharged from the second cylinder group because it is delayed from the exhaust. And the exhaust gas of the exhaust gas reach the confluence portion and are mixed almost at the same time, and flow into the NO x storage reduction catalyst device as a mixed exhaust gas having a substantially stoichiometric air-fuel ratio. Accordingly, it is possible to suppress the deterioration of exhaust emission due to the rich air-fuel ratio mixed exhaust gas or the lean air-fuel ratio mixed exhaust gas flowing into the NO x storage reduction catalyst device in the early stage of temperature increase control.

また、本発明による請求項2に記載の内燃機関の排気浄化装置によれば、請求項1に記載の内燃機関の排気浄化装置において、昇温制御時には、第二排気経路に比較して長い経路長を有する第一排気経路に対応する第一気筒群で設定リッチ空燃比の運転を実施すると共に、短い経路長を有する第二排気経路に対応する第二気筒群で設定リーン空燃比の運転を実施するようになっている。排気ガス温度は、設定リッチ空燃比の運転時より設定リーン空燃比の運転時の方が高くなるために、温度の高い方の排気ガスを短い経路長で合流部まで導くことができ、合流部までの排気ガス全体の放熱量が少なくなるために、特に、設定負荷より低く排気ガス温度が低くなる低負荷時においてNOX吸蔵還元触媒装置の昇温に有利となる。 According to the exhaust gas purification apparatus for an internal combustion engine according to claim 2 of the present invention, in the exhaust gas purification apparatus for the internal combustion engine according to claim 1, a path that is longer than the second exhaust path during temperature increase control. The set rich air-fuel ratio is operated in the first cylinder group corresponding to the first exhaust path having a long length, and the set lean air-fuel ratio is operated in the second cylinder group corresponding to the second exhaust path having a short path length. It is supposed to be implemented. Since the exhaust gas temperature is higher during operation at the set lean air-fuel ratio than during operation at the set rich air-fuel ratio, the exhaust gas having a higher temperature can be led to the junction with a short path length. Therefore, the NO x storage reduction catalyst device is advantageous in raising the temperature of the NO x storage reduction catalyst device particularly at low loads when the exhaust gas temperature is lower than the set load and lower.

本発明による請求項3に記載の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、第一排気経路及び第二排気経路にはそれぞれ酸化機能を有する触媒装置が配置され、第一排気経路は第二排気経路より車両前側に位置し、設定負荷より高い高負荷時に昇温制御を実施する際には、第一気筒群で設定リーン空燃比の運転を実施すると共に、第二気筒群で設定リッチ空燃比の運転を実施するようになっている。高温度のリーン空燃比の排気ガスが酸化機能を有する触媒装置を通過すると、触媒装置の劣化を促進することとなるために、昇温制御に際して、車両前側に位置して走行風により冷却され易い第一排気経路には、設定負荷より高く排気ガス温度が高温となる高負荷時のリーン空燃比の排気ガスを通過させるようにし、一方、車両後側に位置して冷却され難い第二排気経路には、リッチ空燃比の排気ガスを通過させるようにし、それにより、高温度のリーン空燃比の排気ガスが酸化機能を有する触媒装置を通過して触媒装置の劣化を促進することは抑制される。   According to a third aspect of the present invention, there is provided an exhaust gas purification apparatus for an internal combustion engine according to the first aspect, wherein the first exhaust path and the second exhaust path each have a catalytic device having an oxidation function. The first exhaust path is located on the vehicle front side of the second exhaust path, and when the temperature rise control is performed at a high load higher than the set load, the first cylinder group is operated at the set lean air-fuel ratio. At the same time, the operation at the set rich air-fuel ratio is performed in the second cylinder group. When the exhaust gas having a high temperature lean air-fuel ratio passes through the catalytic device having an oxidation function, the deterioration of the catalytic device is promoted. In the first exhaust path, exhaust gas having a lean air-fuel ratio at a high load where the exhaust gas temperature is higher than the set load is high, and the second exhaust path is located on the rear side of the vehicle and is difficult to be cooled. In this case, the rich air-fuel ratio exhaust gas is allowed to pass through, and thereby, the high-temperature lean air-fuel ratio exhaust gas is prevented from passing through the catalytic device having an oxidation function and promoting the deterioration of the catalytic device. .

図1は、本発明による内燃機関の排気浄化装置を示す概略図である。同図において、1は、例えば、V型6気筒の機関本体であり、第一気筒群としての第一バンク1a及び第二気筒群としての第二バンク1bにはそれぞれ三気筒が配置されている。本実施形態において、第一バンク1aは車両前側に位置し、第二バンク1bは車両後側(車室側)に位置している。2aは第一バンク1aの第一排気経路であり、2bは第二バンク1bの第二排気経路である。第一排気経路2a及び第二排気経路2bは合流部4において合流して、単一の排気通路5に通じている。   FIG. 1 is a schematic view showing an exhaust gas purification apparatus for an internal combustion engine according to the present invention. In the figure, reference numeral 1 denotes, for example, a V-type 6-cylinder engine body, and three cylinders are arranged in a first bank 1a as a first cylinder group and a second bank 1b as a second cylinder group, respectively. . In the present embodiment, the first bank 1a is located on the vehicle front side, and the second bank 1b is located on the vehicle rear side (vehicle compartment side). 2a is a first exhaust path of the first bank 1a, and 2b is a second exhaust path of the second bank 1b. The first exhaust path 2 a and the second exhaust path 2 b merge at the junction 4 and communicate with a single exhaust passage 5.

機関本体1は、例えば空燃比20のような理論空燃比よりリーンな均質混合気を火花着火させる希薄燃焼を実施可能な内燃機関である。希薄燃焼の空燃比を適当に選択することにより、NOX生成量を抑制することができる。しかしながら、それでもNOXは生成されるために、排気通路5には、NOX吸蔵還元触媒装置6が配置されている。 The engine body 1 is an internal combustion engine capable of performing lean combustion in which a homogeneous air-fuel mixture leaner than a stoichiometric air-fuel ratio such as an air-fuel ratio 20 is ignited. By appropriately selecting the air-fuel ratio for lean combustion, the amount of NO x produced can be suppressed. However, since NO x is still produced, the NO x storage reduction catalyst device 6 is disposed in the exhaust passage 5.

また、機関始動時には、均質混合気の着火性を向上させて良好な始動性を確保するために、理論空燃比(又はリッチ空燃比)の均質燃焼が実施される。この理論空燃比運転時の排気ガス中に含まれるHC、CO、及び、NOXを浄化するための三元触媒装置3a及び3bが第一排気経路2a及び第二排気経路2bのそれぞれの排気マニホルドの下流側に配置されている。これらの三元触媒装置3a及び3bは、容量が比較的小さくされると共に、機関本体1近傍に位置するために、機関始動直後に暖機されて排気ガスの浄化を開始する。 In addition, when the engine is started, the stoichiometric air-fuel ratio (or rich air-fuel ratio) is homogeneously burned in order to improve the ignitability of the homogeneous mixture and ensure good startability. HC contained in the exhaust gas during the stoichiometric air-fuel ratio operation, CO, and three-way catalytic converter 3a and 3b for purifying NO X each exhaust manifold of the first exhaust path 2a and the second exhaust path 2b It is arranged on the downstream side. Since these three-way catalyst devices 3a and 3b have relatively small capacities and are located in the vicinity of the engine body 1, they are warmed up immediately after the engine is started and start purification of exhaust gas.

機関本体1にターボチャージャのような過給機を設けることにより、多量の吸気を気筒内へ供給することが可能となり、それにより、前述の希薄燃焼は高負荷側まで実施可能となる。さらに高い極高負荷での運転が必要な場合には、理論空燃比運転を実施するようにしても良い。第一排気経路2aの三元触媒装置3aの直上流側及び第二排気経路2bの三元触媒装置3bの直上流側には、それぞれ、リニア出力型の空燃比センサ7a及び7bが配置されており、第一バンク1a及び第二バンク1bから排出される排気ガスの空燃比をそれぞれ検出可能となっている。   By providing a supercharger such as a turbocharger in the engine main body 1, it becomes possible to supply a large amount of intake air into the cylinder, whereby the aforementioned lean combustion can be performed up to the high load side. When operation at a very high load is required, the stoichiometric air-fuel ratio operation may be performed. Linear output type air-fuel ratio sensors 7a and 7b are respectively arranged immediately upstream of the three-way catalyst device 3a in the first exhaust path 2a and immediately upstream of the three-way catalyst device 3b in the second exhaust path 2b. The air-fuel ratio of the exhaust gas discharged from the first bank 1a and the second bank 1b can be detected.

NOX吸蔵還元触媒装置6は、雰囲気中の空燃比がリーンのときにはNOXを吸蔵し、空燃比が理論空燃比又はリッチになると吸蔵したNOXを放出するNOX吸蔵剤を担持し、希薄燃焼時のリーン空燃比の排気ガスからNOXを良好に吸収する。 The NO X storage reduction catalyst device 6, occludes NO X when the air-fuel ratio of the atmosphere is lean, carrying the NO X storage agent air-fuel ratio to release the NO X occluding becomes the stoichiometric air-fuel ratio or rich, lean It absorbs NO x well from the lean air-fuel ratio exhaust gas during combustion.

NOX吸蔵還元触媒装置6のNOX吸蔵能力には限度があり、NOX吸蔵量がNOX吸蔵可能量に達する以前にNOXを放出させる再生処理が必要である。この再生処理は、NO吸蔵還元触媒装置6へ流入する排気ガスの空燃比をリッチ空燃比(又は理論空燃比)とすれば良い。再生処理において、放出されたNOXは、リッチ空燃比の排気ガス中の還元物質CO及びHCによって還元浄化される。排気通路5のNOX吸蔵還元触媒装置6の直上流側にはリニア出力型の空燃比センサ8が配置されており、再生処理の排気ガスの空燃比を監視することができる。また、排気通路6のNOX吸蔵還元触媒装置6の直下流側にはステップ出力型の酸素センサ9が配置されている。再生処理において、NOX吸蔵還元触媒装置6へ流入させる排気ガスの空燃比はリッチとされるが、放出されたNOXの還元浄化によってNOX吸蔵還元触媒装置6から排出される排気ガスの空燃比はほぼ理論空燃比となる。それにより、酸素センサ9の出力がリッチとなれば、再生処理が完了したと判断することができる。 NO X in the NO X storage capability of the storage reduction catalyst device 6 is limited, it is necessary regeneration process to release the NO X before the NO X storage amount reaches the NO X storable amount. In this regeneration process, the air-fuel ratio of the exhaust gas flowing into the NO storage reduction catalyst device 6 may be set to a rich air-fuel ratio (or theoretical air-fuel ratio). In the regeneration process, the released NO x is reduced and purified by the reducing substances CO and HC in the rich air-fuel ratio exhaust gas. A linear output type air-fuel ratio sensor 8 is disposed immediately upstream of the NO x storage reduction catalyst device 6 in the exhaust passage 5, and the air-fuel ratio of the exhaust gas in the regeneration process can be monitored. Further, a step output type oxygen sensor 9 is disposed in the exhaust passage 6 directly downstream of the NO x storage reduction catalyst device 6. In the regeneration process, the air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst device 6 is made rich, but the exhaust gas exhausted from the NO X storage reduction catalyst device 6 by the reduction purification of the released NO X is exhausted. The fuel ratio is almost the stoichiometric air-fuel ratio. Thereby, if the output of the oxygen sensor 9 becomes rich, it can be determined that the regeneration process is completed.

ところで、燃料中にはイオウSが含まれており、このイオウSは気筒内で酸素と反応してSOXとなる。従って排気ガス中にはNOXだけでなくSOXも含まれており、このSOXもNOXと同様なメカニズムによってNOX吸蔵還元触媒装置6に吸蔵される。NOXは硝酸塩として吸蔵されるのに対して、SOXは硝酸塩より安定な硫酸塩として吸蔵されるために、再生処理によって排気ガスの空燃比を単にリッチ空燃比としても放出させることはできずに徐々に吸蔵量が増加し、NOX吸蔵還元触媒装置6のNOX吸蔵可能量を減少させる。 By the way, sulfur S is contained in the fuel, and this sulfur S reacts with oxygen in the cylinder and becomes SO x . Therefore, the exhaust gas also contains SO X not only NO X, this SO X is also occluded in the NO X occluding and reducing catalyst device 6 by NO X similar mechanisms. NO X is stored as nitrate, whereas SO X is stored as sulfate that is more stable than nitrate. Therefore, it is not possible to release the air-fuel ratio of the exhaust gas by a regeneration process even if it is simply a rich air-fuel ratio. gradually occlusion amount increases, reducing the NO X storage amount capable of the NO X occluding and reducing catalyst device 6.

それにより、例えば、積算された燃料噴射量に基づきNOX吸蔵還元触媒装置6のSOX吸蔵量を推定し、この推定量が設定量に達した時には、NOX吸蔵還元触媒装置6を所定温度へ昇温させ、その後に排気ガスの空燃比をリッチ空燃比(又は理論空燃比)としてSOXを放出させるS被毒回復処理が実施される。S被毒回復処理においても再生処理と同様に、空燃比センサ8によってNOX吸蔵還元触媒装置6へ流入する排気ガスの空燃比を、酸素センサ9によってNOX吸蔵還元触媒装置6から流出する排気ガスの空燃比を検出することができる。このS被毒回復処理において、前述したように、NOX吸蔵還元触媒装置6を所定温度に昇温するための昇温制御が必要となる。また、NOX吸蔵還元触媒装置6は、良好にNOXを吸蔵可能な温度範囲を有しており、NOX吸蔵還元触媒装置6の温度がこの温度範囲を下回る場合にも昇温制御が必要である。 Accordingly, for example, the SO X storage amount of the NO X storage reduction catalyst device 6 is estimated based on the accumulated fuel injection amount, and when the estimated amount reaches the set amount, the NO X storage reduction catalyst device 6 is kept at a predetermined temperature. Then, the S poisoning recovery process is performed in which the air-fuel ratio of the exhaust gas is set to the rich air-fuel ratio (or the stoichiometric air-fuel ratio) and SO X is released. In the S poison recovery process, as in the regeneration process, the air-fuel ratio of the exhaust gas flowing into the NO x storage reduction catalyst device 6 by the air fuel ratio sensor 8 and the exhaust gas flowing out from the NO x storage reduction catalyst device 6 by the oxygen sensor 9 are used. The air / fuel ratio of the gas can be detected. In the S poisoning recovery process, as described above, the temperature increase control for increasing the temperature of the NO x storage reduction catalyst device 6 to a predetermined temperature is required. Further, the NO X storage reduction catalyst device 6 has a temperature range in which NO X can be stored well, and temperature increase control is required even when the temperature of the NO X storage reduction catalyst device 6 falls below this temperature range. It is.

NOX吸蔵還元触媒装置6は、白金Ptのような貴金属触媒も担持しており、昇温制御は、比較的多量の未燃燃料と比較的多量の酸素をNOX吸蔵還元触媒装置6へ流入させ、貴金属触媒によって未燃燃料を燃焼させれば良い。そのためには、第一バンク1a及び第二バンク1bのいずれか一方で燃焼空燃比をリッチにして、排気ガス中の比較的多量のHC及びCOをNOX吸蔵還元触媒装置6へ流入させると共に、第一バンク1a及び第二バンク1bの他方で燃焼空燃比をリーンにして、排気ガス中の比較的多量のO2及びNOXをNOX吸蔵還元触媒装置6へ流入させる。一つのバンクの気筒毎で燃焼空燃比をリッチ及びリーンとすると、リッチ燃焼空燃比の気筒から排出されるHC及びCOは、リーン燃焼空燃比の気筒から排出されるO2及びNOXを使用して、三元触媒装置3a又は3bにおいて燃焼してしまうために、NOX吸蔵還元触媒装置6を昇温させることはできない。それにより、昇温制御には、前述したように、バンク毎で燃焼空燃比をリッチ及びリーンとする必要がある。 The NO x storage reduction catalyst device 6 also carries a noble metal catalyst such as platinum Pt, and the temperature rise control flows a relatively large amount of unburned fuel and a relatively large amount of oxygen into the NO x storage reduction catalyst device 6. The unburned fuel may be burned with a noble metal catalyst. For this purpose, either the first bank 1a or the second bank 1b is made rich in the combustion air-fuel ratio, and a relatively large amount of HC and CO in the exhaust gas is caused to flow into the NO x storage reduction catalyst device 6, The other of the first bank 1a and the second bank 1b makes the combustion air-fuel ratio lean, and a relatively large amount of O 2 and NO x in the exhaust gas is caused to flow into the NO x storage reduction catalyst device 6. Assuming that the combustion air-fuel ratio is rich and lean for each cylinder in one bank, HC and CO discharged from the rich combustion air-fuel ratio cylinder use O 2 and NO X discharged from the lean combustion air-fuel ratio cylinder. Te, to become burned in the three-way catalytic converter 3a or 3b, it is impossible to raise the temperature of the the nO X storage reduction catalyst device 6. Thus, as described above, the temperature increase control needs to make the combustion air-fuel ratio rich and lean for each bank.

一般的に、第一バンク1aから合流部4までの第一排気経路2aの経路長と、第二バンク1bから合流部4までの第二排気経路2bの経路長とは大きく異なり、本実施形態においては、第一バンク1aが車両前側に位置するために、第一排気経路2aの方が第二排気経路2bに比較して長くなる。それにより、昇温制御が必要である時に、第一バンク1a及び第二バンク1bの一方で燃焼空燃比をリッチにすると同時に、第一バンク1a及び第二バンク1bの他方で燃焼空燃比をリーンにすると、リッチ空燃比の排気ガスとリーン空燃比の排気ガスとは同時に合流部に到達せず、昇温制御の初期において、NOX吸蔵還元触媒装置6へ流入する混合排気ガスの空燃比がリッチ又はリーンとなる。 Generally, the path length of the first exhaust path 2a from the first bank 1a to the merging portion 4 and the path length of the second exhaust path 2b from the second bank 1b to the merging section 4 are greatly different from each other. Since the first bank 1a is located on the front side of the vehicle, the first exhaust path 2a is longer than the second exhaust path 2b. Thereby, when the temperature increase control is necessary, the combustion air-fuel ratio is made rich in one of the first bank 1a and the second bank 1b, and at the same time, the combustion air-fuel ratio is made lean in the other of the first bank 1a and the second bank 1b. Then, the rich air-fuel ratio exhaust gas and the lean air-fuel ratio exhaust gas do not reach the joining portion at the same time, and the air-fuel ratio of the mixed exhaust gas flowing into the NO x storage reduction catalyst device 6 at the initial stage of the temperature rise control is Rich or lean.

本実施形態において、昇温制御直前は、通常、例えば空燃比20の希薄燃焼が実施されている。この希薄燃焼が低負荷側である場合には、排気ガス温度が低く、NOX吸蔵還元触媒装置6の温度も低くなっている。それにより、所望温度までの昇温に際しては、かなりの量のHC及びCOを燃焼させなければならず、一方のバンクでは、燃焼空燃比を例えば9以下のリッチ空燃比とする必要がある。この場合において、各バンクの気筒数は同じであるために、他方のバンクでは、一方のバンクのリッチ空燃比との平均空燃比が理論空燃比(14.7)となるようなリーン空燃比(20.4以上)での燃焼が開始されることとなる。 In this embodiment, immediately before the temperature increase control, for example, lean combustion with an air-fuel ratio of 20, for example, is performed. When this lean combustion is on the low load side, the exhaust gas temperature is low, and the temperature of the NO x storage reduction catalyst device 6 is also low. Accordingly, when raising the temperature to the desired temperature, a considerable amount of HC and CO must be burned, and in one bank, the combustion air-fuel ratio needs to be a rich air-fuel ratio of 9 or less, for example. In this case, since the number of cylinders in each bank is the same, in the other bank, the lean air-fuel ratio (14.7) is set so that the average air-fuel ratio with the rich air-fuel ratio in one bank becomes the stoichiometric air-fuel ratio (14.7). Combustion at 20.4 or more is started.

このような昇温制御において、第一排気経路2aと第二排気経路2bとの経路長の違いによって、リッチ空燃比の排気ガスが先に合流部4へ到達すると、通常の希薄燃焼のリーン空燃比の排気ガスと混合した結果として、合流部4での排気ガスの空燃比はリッチとなり、昇温制御当初は、リッチ空燃比の排気ガスがNOX吸蔵還元触媒装置6へ流入することとなる。この時には、NOX吸蔵還元触媒装置6において、酸素不足によって酸化させることができないHC及びCOが存在し、これらが大気中へ放出され、排気エミッションを悪化させる。 In such temperature rise control, when the rich air-fuel ratio exhaust gas first reaches the merging portion 4 due to the difference in the path length between the first exhaust path 2a and the second exhaust path 2b, the lean air of normal lean combustion As a result of mixing with the exhaust gas of the fuel ratio, the air-fuel ratio of the exhaust gas at the junction 4 becomes rich, and the exhaust gas of the rich air-fuel ratio flows into the NO x storage reduction catalyst device 6 at the beginning of the temperature raising control. . At this time, there are HC and CO that cannot be oxidized due to lack of oxygen in the NO x storage reduction catalyst device 6, and these are released into the atmosphere, which deteriorates exhaust emission.

また、一方のバンクの燃焼空燃比を、通常の希薄燃焼の空燃比20に対して、平均値が理論空燃比となるリッチ空燃比(9.4)とする場合には、他方のバンクの燃焼空燃比は通常の希薄燃焼のままであり、特に、問題はない。しかしながら、一方のバンクの燃焼空燃比を、それ以外のリッチ空燃比とする場合には、他方のバンクの燃焼空燃比は、通常の希薄燃焼のリーン空燃比とは異なる空燃比とされ、この空燃比の燃焼では比較的多量のNOXが生成されるために、第一排気経路2aと第二排気経路2bとの経路長の違いによって、このリーン空燃比の排気ガスが先に合流部4へ到達すると、昇温制御当初は、多量のNOXがNOX吸蔵還元触媒装置6へ流入し、NOXを還元するリッチ空燃比の排気ガスも存在せず、NOX吸蔵還元触媒装置6によって吸蔵しきれないNOXが大気中へ放出され、やはり、排気エミッションを悪化させる。 When the air-fuel ratio of one bank is set to a rich air-fuel ratio (9.4) whose average value is the stoichiometric air-fuel ratio with respect to the air-fuel ratio 20 of normal lean combustion, the combustion air-fuel ratio of the other bank The air-fuel ratio remains normal lean combustion, and there is no particular problem. However, when the combustion air-fuel ratio of one bank is set to the other rich air-fuel ratio, the combustion air-fuel ratio of the other bank is set to an air-fuel ratio different from the lean air-fuel ratio of normal lean combustion. Since a relatively large amount of NO x is generated in the combustion at the fuel ratio, the lean air-fuel ratio exhaust gas is first supplied to the junction 4 due to the difference in the path length between the first exhaust path 2a and the second exhaust path 2b. occlusion is reached, the initial Atsushi Nobori control, a large amount of the NO X flows into the NO X storage reduction catalyst device 6, the exhaust gas of a rich air-fuel ratio for reducing the NO X even absent, by the NO X storage reduction catalyst device 6 not be nO X is released into the atmosphere, again, worsening the exhaust emissions.

このように、昇温制御において、リッチ空燃比の排気ガスが先に合流部へ到達しても、リーン空燃比の排気ガスは先に合流部に到達しても、排気エミッションを悪化させる要因となる。この問題を解決するために、本実施形態では、図3に示すフローチャートに従って、昇温制御を実施するようになっている。   As described above, in the temperature rise control, even if the rich air-fuel ratio exhaust gas reaches the joining portion first or the lean air-fuel ratio exhaust gas reaches the joining portion first, it is a factor that deteriorates the exhaust emission. Become. In order to solve this problem, in the present embodiment, the temperature increase control is performed according to the flowchart shown in FIG.

先ず、ステップ101において、昇温制御の要求があるか否かが判断される。この判断が否定される時にはそのまま終了する。一方、昇温制御の要求がある時には、ステップ102において、アクセルペダルの踏み込み量及び機関回転数等により現在の運転領域が検出される。前述したように、現在の運転領域が設定負荷より小さな低負荷側である時には排気ガス温度が低く、NOX吸蔵還元触媒装置6を所望温度に昇温させるのに、かなりの量のHC及びCOを燃焼させることが必要であり、一方のバンクでは、比較的小さなリッチ空燃比での燃焼が必要となる。一方、現在の運転領域が設定負荷以上の高負荷側である時には排気ガス温度が高く、NOX吸蔵還元触媒装置6を所望温度に昇温させるのに、それほど多量のHC及びCOを燃焼させる必要はなく、一方のバンクでは、比較的大きなリッチ空燃比で燃焼させれば良い。リッチ空燃比の決定に際して、機関回転数が高いほど、同じリッチ空燃比でも単位時間当たりのHC及びCOの排出量が増加するために、機関回転数もリッチ空燃比の決定に考慮される。 First, in step 101, it is determined whether there is a request for temperature increase control. When this judgment is denied, the process is terminated as it is. On the other hand, when there is a request for temperature increase control, in step 102, the current operating region is detected based on the amount of depression of the accelerator pedal, the engine speed, and the like. As described above, when the current operation region is on the low load side smaller than the set load, the exhaust gas temperature is low, and a considerable amount of HC and CO is required to raise the NO x storage reduction catalyst device 6 to the desired temperature. In one bank, combustion with a relatively small rich air-fuel ratio is required. On the other hand, when the current operation region is on the high load side that is equal to or higher than the set load, the exhaust gas temperature is high, and it is necessary to burn so much HC and CO in order to raise the NO x storage reduction catalyst device 6 to the desired temperature. However, in one bank, combustion may be performed with a relatively large rich air-fuel ratio. When determining the rich air-fuel ratio, the higher the engine speed, the higher the HC and CO emissions per unit time at the same rich air-fuel ratio. Therefore, the engine speed is also considered in determining the rich air-fuel ratio.

こうして、リッチ空燃比とされる一方のバンクでの燃焼リッチ空燃比が決定されると共に、各バンクの気筒数が同じであるために、決定されたリッチ空燃比に対して平均値が理論空燃比となるリーン空燃比が他方のバンクの燃焼リーン空燃比として決定される。   Thus, the combustion rich air-fuel ratio in one bank that is set to the rich air-fuel ratio is determined, and the number of cylinders in each bank is the same, so the average value is the stoichiometric air-fuel ratio with respect to the determined rich air-fuel ratio. Is determined as the combustion lean air-fuel ratio of the other bank.

ところで、図2は燃焼空燃比と排気ガス温度との関係を示している。図2において、実線は低負荷時であり、点線は高負荷時である。同図に示すように、燃焼空燃比の全体に渡り、低負荷時の排気ガス温度は高負荷時の排気ガス温度より低く、また、いずれの負荷においても、リッチ空燃比の排気ガス温度はリーン空燃比の排気ガス温度より低くなっている。図2において、R1は低負荷時において決定された燃焼リッチ空燃比A/Fであり、L1は低負荷時において決定された燃焼リーン空燃比A/Fであり、R2は高負荷時において決定された燃焼リッチ空燃比A/Fであり、L2は高負荷時において決定された燃焼リーン空燃比A/Fである。   Incidentally, FIG. 2 shows the relationship between the combustion air-fuel ratio and the exhaust gas temperature. In FIG. 2, the solid line is when the load is low, and the dotted line is when the load is high. As shown in the figure, over the entire combustion air-fuel ratio, the exhaust gas temperature at low load is lower than the exhaust gas temperature at high load, and at any load, the exhaust gas temperature at rich air-fuel ratio is lean. It is lower than the air-fuel ratio exhaust gas temperature. In FIG. 2, R1 is the combustion rich air / fuel ratio A / F determined at low load, L1 is the combustion lean air / fuel ratio A / F determined at low load, and R2 is determined at high load. The combustion rich air-fuel ratio A / F, and L2 is the combustion lean air-fuel ratio A / F determined at the time of high load.

このように、リッチ空燃比に比較してリーン空燃比の排気ガス温度が高くなるために、リーン空燃比の排気ガスが短い経路長を通過し、リッチ空燃比の排気ガスが長い経路長を通過するようにして、排気ガスをNOX吸蔵還元触媒装置6へ流入させた場合の方が、逆の場合に比較して、排気ガスがNOX吸蔵還元触媒装置6へ流入するまでの排気ガス全体の放熱量を小さくすることができ、これは、NOX吸蔵還元触媒装置6の昇温に有利である。それにより、特に、排気ガス温度が低い低負荷時においては、経路長の短い第二排気経路2bに対応する第二バンク1bにおいてリーン空燃比の燃焼を実施し、経路長の長い第一排気経路2aに対応する第一バンク1aにおいてリッチ空燃比の燃焼を実施するようにする。 Thus, the lean air-fuel ratio exhaust gas temperature is higher than the rich air-fuel ratio, so the lean air-fuel ratio exhaust gas passes through a short path length, and the rich air-fuel ratio exhaust gas passes through a long path length. so as to, who when the exhaust gas was allowed to flow into the NO X storage reduction catalyst device 6, as compared to the opposite case, the entire exhaust gas to the exhaust gas flows into the NO X storage reduction catalyst device 6 This is advantageous for increasing the temperature of the NO x storage reduction catalyst device 6. Thereby, particularly when the exhaust gas temperature is low and the load is low, lean air-fuel ratio combustion is performed in the second bank 1b corresponding to the second exhaust path 2b having a short path length, and the first exhaust path having a long path length is achieved. Rich air-fuel ratio combustion is performed in the first bank 1a corresponding to 2a.

ところで、三元触媒装置3a及び3bに高温度のリーン空燃比の排気ガスを通過させると、三元触媒装置に担持された貴金属触媒の劣化を促進させることが分かっており、それにより、排気ガス温度が高くなる高負荷時には、車両前側に位置して走行風によって冷却され易い第一排気経路2aにリーン空燃比の排気ガスを通過させ、車両後側に位置して冷却され難い第二排気経路2bにリッチ空燃比の排気ガスを通過させるようにする。すなわち、高負荷時においては、第一バンク1aにおいてリーン空燃比の燃焼を実施し、第二バンク1bにおいてリッチ空燃比の燃焼を実施するようにする。   By the way, it has been found that passing a high-temperature lean air-fuel ratio exhaust gas through the three-way catalyst devices 3a and 3b promotes the deterioration of the noble metal catalyst supported on the three-way catalyst device, thereby providing the exhaust gas. During a high load when the temperature becomes high, a second exhaust path that is located on the front side of the vehicle and allows the exhaust gas having a lean air-fuel ratio to pass through the first exhaust path 2a that is easy to be cooled by the traveling wind and is not easily cooled on the rear side of the vehicle. A rich air-fuel ratio exhaust gas is passed through 2b. That is, at the time of high load, lean air-fuel ratio combustion is performed in the first bank 1a, and rich air-fuel ratio combustion is performed in the second bank 1b.

このようにして、ステップ103では、現在の運転領域に応じて、昇温制御における第一バンク1a及び第二バンク1bのそれぞれの燃焼空燃比A/Fが決定される。次いで、ステップ104において、遅れ時間T1及び昇温時間T2が決定される。遅れ時間T1は、第一バンク1aから排出されて経路長の長い第一排気経路2aを通過する排気ガスと経第二バンク1bから排出されて経路長の短い第二排気経路2bを通過する排気ガスとが合流部4へ到達する時間差であり、第一排気経路2aと第二排気経路2bとの間の経路長差と、現在(昇温制御の開始時点)の運転状態における排気ガス量等に基づき決定される。一方、昇温時間T2は、第一バンク1aの燃焼空燃比を昇温制御の燃焼空燃比A/Fに変更してからNOX吸蔵還元触媒装置6が所望温度に昇温されるまでの時間であり、現在の排気ガス量、現在の運転状態に基づき推定されるNOX吸蔵還元触媒の温度、及び、昇温制御における燃焼リッチ空燃比等に基づき決定される。 In this manner, in step 103, the combustion air-fuel ratios A / F of the first bank 1a and the second bank 1b in the temperature increase control are determined according to the current operation region. Next, in step 104, the delay time T1 and the temperature rise time T2 are determined. The delay time T1 is exhausted from the first bank 1a and passes through the first exhaust path 2a having a long path length, and exhausted from the second bank 1b and passing through the second exhaust path 2b having a short path length. The time difference between the gas and the first exhaust path 2a and the second exhaust path 2b, the amount of exhaust gas in the current operating state (at the start of temperature rise control), etc. To be determined. On the other hand, heating time T2 is the time from the change of the combustion air-fuel ratio of the first bank 1a to the combustion air-fuel ratio A / F of the Atsushi Nobori control until the NO X storage reduction catalyst device 6 is heated to the desired temperature It is determined based on the current exhaust gas amount, the temperature of the NO x storage reduction catalyst estimated based on the current operating state, the combustion rich air-fuel ratio in the temperature rise control, and the like.

次いで、ステップ105において、第一バンク1aの燃焼空燃比がステップ103において決定された昇温制御の燃焼空燃比A/Fに変更される。ステップ106では、第一バンク1aの燃焼空燃比が変更されてからの経過時間tが算出される。次いで、ステップ107において、経過時間tが遅れ時間T1に達したか否かが判断され、この判断が否定される時には、第二バンク1bの燃焼空燃比は昇温制御の燃焼空燃比に変更されない。   Next, at step 105, the combustion air-fuel ratio of the first bank 1a is changed to the combustion air-fuel ratio A / F of the temperature increase control determined at step 103. In step 106, an elapsed time t after the combustion air-fuel ratio of the first bank 1a is changed is calculated. Next, at step 107, it is determined whether or not the elapsed time t has reached the delay time T1, and when this determination is negative, the combustion air-fuel ratio of the second bank 1b is not changed to the combustion air-fuel ratio of the temperature increase control. .

第一バンク1aの燃焼空燃比が変更されてからの経過時間tが遅れ時間T1に達すれば、ステップ107の判断が肯定され、ステップ108において、第二バンク1bの燃焼空燃比がステップ103において決定された昇温制御の燃焼空燃比A/Fに変更される。それにより、いずれも昇温制御の燃焼空燃比に変更された第一バンク1a及び第二バンク1bからの排気ガスは同時に合流部4へ到達し、混合されて理論空燃比の排気ガスとなり、NOX吸蔵還元触媒装置6へ流入する。こうして、リッチ空燃比の排気ガス中のHC及びCOがリーン空燃比の排気ガス中のO2及びNOXを使用して過不足なく酸化され、排気エミッションを悪化させることなくNOX吸蔵還元触媒装置6の昇温が開始される。 If the elapsed time t after the change of the combustion air-fuel ratio in the first bank 1a reaches the delay time T1, the determination in step 107 is affirmed. In step 108, the combustion air-fuel ratio in the second bank 1b is determined in step 103. It is changed to the combustion air-fuel ratio A / F of the raised temperature control. As a result, the exhaust gas from the first bank 1a and the second bank 1b, both of which have been changed to the combustion air-fuel ratio for temperature increase control, simultaneously reaches the merging section 4 and is mixed to become the exhaust gas of the stoichiometric air-fuel ratio. It flows into the X storage reduction catalyst device 6. Thus, HC and CO in the rich air-fuel ratio exhaust gas are oxidized without excess and deficiency using O 2 and NO x in the lean air-fuel ratio exhaust gas, and the NO x storage reduction catalyst device without deteriorating exhaust emissions. 6 is started.

次いで、ステップ109において、第一バンク1aの燃焼空燃比が変更されてからの経過時間tが昇温時間T2に達したか否かが判断され、この判断が否定される時には、第一バンク1a及び第二バンク1bの燃焼空燃比は昇温制御の燃焼空燃比に維持される。一方、経過時間tが昇温時間T2に達すれば、ステップ109の判断が肯定され、ステップ110において第一バンク1aの燃焼空燃比が理論空燃比(ストイキ)とされ、ステップ111において昇温時間T2に達した経過時間tのさらなる時間経過が算出される。   Next, at step 109, it is determined whether or not the elapsed time t after the change of the combustion air-fuel ratio of the first bank 1a has reached the temperature raising time T2, and when this determination is negative, the first bank 1a And the combustion air fuel ratio of the 2nd bank 1b is maintained at the combustion air fuel ratio of temperature rising control. On the other hand, if the elapsed time t reaches the temperature rise time T2, the determination in step 109 is affirmed, the combustion air-fuel ratio in the first bank 1a is made the stoichiometric air fuel ratio (stoichiometric) in step 110, and the temperature rise time T2 in step 111. A further time lapse of the elapsed time t reached is calculated.

次いで、ステップ112において、経過時間tが遅れ時間T1と昇温時間T2との和に達したか否かが判断される。この判断が否定される時には、第一バンク1aの燃焼空燃比は理論空燃比に維持されると共に、第二バンク1bは昇温制御の燃焼空燃比に維持される。一方、経過時間tが前述の和(T1+T2)に達すれば、ステップ112の判断が肯定され、ステップ113において第二バンク1bの燃焼空燃比が理論空燃比(ストイキ)とされる。   Next, at step 112, it is determined whether or not the elapsed time t has reached the sum of the delay time T1 and the temperature rise time T2. When this determination is negative, the combustion air-fuel ratio of the first bank 1a is maintained at the stoichiometric air-fuel ratio, and the second bank 1b is maintained at the combustion air-fuel ratio of temperature increase control. On the other hand, if the elapsed time t reaches the above-mentioned sum (T1 + T2), the determination in step 112 is affirmed, and in step 113, the combustion air-fuel ratio in the second bank 1b is made the stoichiometric air-fuel ratio (stoichiometric).

高温度のリーン空燃比の排気ガスが貴金属触媒の劣化を促進させることは、三元触媒装置3a及び3bに関して説明したが、もちろん、貴金属触媒が高温度であれば、それほど高温度でないリーン空燃比の排気ガスが貴金属触媒に接触しても同様に劣化を促進させる。それにより、昇温制御直後に両バンク1a,1bの燃焼空燃比を通常のリーン空燃比とすると、NOX吸蔵還元触媒装置6に担持された貴金属触媒を劣化させてしまう。 Although it has been described with respect to the three-way catalyst devices 3a and 3b that the exhaust gas having a high temperature lean air-fuel ratio promotes the deterioration of the noble metal catalyst, of course, if the noble metal catalyst is at a high temperature, the lean air-fuel ratio is not so high. Even if the exhaust gas comes into contact with the noble metal catalyst, the deterioration is similarly promoted. As a result, if the combustion air-fuel ratio of both banks 1a and 1b is set to a normal lean air-fuel ratio immediately after the temperature raising control, the noble metal catalyst supported on the NO x storage reduction catalyst device 6 is deteriorated.

これを防止するために、昇温制御直後には、両バンク1a,1bの燃焼空燃比を理論空燃比とし、NOX吸蔵還元触媒装置6の温度を低下させることが好ましい。この場合において、両バンク1a,1bの燃焼空燃比を同時に理論空燃比とすると、経路長の違いによって、第二バンク1bから排出される理論空燃比の排気ガスが先に合流部4へ到達し、やはり、NOX吸蔵還元触媒装置6へ流入する混合排気ガスの空燃比がリッチ又はリーンとなって、昇温制御初期と同様な問題が発生するために、本フローチャートでは、第一バンク1aの燃焼空燃比を先に昇温制御の燃焼空燃比から理論空燃比とし、この時から遅れ時間T1が経過した時に、第二バンク1bの燃焼空燃比を昇温制御の燃焼空燃比から理論空燃比とするようになっている。それにより、第一及び第二バンク1a,1bから排出される理論空燃比の排気ガスは同時に合流部4へ到達し、リッチ又はリーンの混合排気ガスがNOX吸蔵還元触媒装置6へ流入することは抑制される。 In order to prevent this, it is preferable that the combustion air-fuel ratio of both banks 1a and 1b is the stoichiometric air-fuel ratio immediately after the temperature raising control, and the temperature of the NO x storage reduction catalyst device 6 is lowered. In this case, if the combustion air-fuel ratios of both banks 1a and 1b are simultaneously set to the stoichiometric air-fuel ratio, the stoichiometric air-fuel ratio exhaust gas discharged from the second bank 1b first reaches the junction 4 due to the difference in path length. After all, since the air-fuel ratio of the mixed exhaust gas flowing into the NO x storage reduction catalyst device 6 becomes rich or lean and the same problem as in the initial stage of temperature rise control occurs, in this flowchart, the first bank 1a The combustion air-fuel ratio is changed from the combustion air-fuel ratio of the temperature raising control to the stoichiometric air-fuel ratio first, and when the delay time T1 has elapsed from this time, the combustion air-fuel ratio of the second bank 1b is changed from the combustion air-fuel ratio of the temperature raising control to the stoichiometric air-fuel ratio. It is supposed to be. Thereby, the exhaust gas of the stoichiometric air-fuel ratio which is discharged from the first and second bank 1a, 1b reaches the merging portion 4 simultaneously, the mixed exhaust gas rich or lean flows into the NO X storage reduction catalyst device 6 Is suppressed.

NOX吸蔵還元触媒装置6の温度が低下すれば、第一バンク1a及び第二バンク1bの燃焼空燃比は通常のリーン空燃比へ変更される。この時には、第二バンク1bから排出されるリーン空燃比(例えば20)の排気ガスが先に合流部4へ到達しても、NOXの生成量は抑制されており、特に問題はない。 If the temperature of the NO x storage reduction catalyst device 6 decreases, the combustion air-fuel ratios of the first bank 1a and the second bank 1b are changed to normal lean air-fuel ratios. At this time, even if the exhaust gas of a lean air-fuel ratio which is discharged from the second bank 1b (e.g. 20) reaches the merging portion 4 above, the amount of the NO X is suppressed, there is no particular problem.

昇温制御がS被毒回復処理のために実施される場合には、昇温制御の完了直後に、第一バンク1a及び第二バンク1bの燃焼空燃比はリッチとされる。酸素センサ9の出力がリッチとなってS被毒回復処理が完了した時に、NOX吸蔵還元触媒装置6の温度が良好にNOXを吸蔵する温度範囲を超えて高ければ、前述したように遅れ時間を設けて第一バンク1a及び第二バンク1bの燃焼空燃比を理論空燃比とすることが好ましい。また、NOX吸蔵還元触媒装置6の温度が良好にNOXを吸蔵する温度範囲を下回った際の昇温制御が、この温度範囲を超えてNOX吸蔵触媒装置の温度を昇温させた場合にも、前述したように、遅れ時間を設けて第一バンク1a及び第二バンク1bの燃焼空燃比を理論空燃比とすることが好ましい。 When the temperature increase control is performed for the S poison recovery process, the combustion air-fuel ratios of the first bank 1a and the second bank 1b are made rich immediately after the temperature increase control is completed. When the output of the oxygen sensor 9 becomes rich and the S poisoning recovery process is completed, if the temperature of the NO x storage reduction catalyst device 6 is higher than the temperature range in which the NO x is stored well, the delay will occur as described above. It is preferable to set the combustion air-fuel ratio of the first bank 1a and the second bank 1b to the stoichiometric air-fuel ratio by providing time. Further, when the temperature increase control when the temperature of the NO X storage reduction catalyst device 6 falls below the temperature range where NO X is stored well exceeds the temperature range, the temperature of the NO X storage catalyst device is increased. In addition, as described above, it is preferable to provide a delay time so that the combustion air-fuel ratio of the first bank 1a and the second bank 1b is the stoichiometric air-fuel ratio.

本実施形態の昇温制御は、一方の気筒群の燃焼空燃比を設定リッチ空燃比とすると共に、他方の気筒群の燃焼空燃比を設定リッチ空燃比としたが、気筒内へ直接的に燃料を噴射する燃料噴射弁が設けられている場合には、両方の気筒群の燃焼空燃比を昇温制御の設定リーン空燃比として(一方の気筒群の燃焼空燃比は通常のリーン空燃比としても良い)、一方の気筒群の各気筒においては、膨張行程又は排気行程において気筒内へ追加燃料を噴射して気筒内を昇温制御の設定リッチ空燃比とするようにしても良い。この場合においても、一方の気筒群から排出されるリーン空燃比の排気ガスと他方の気筒群から排出されるリッチ空燃比の排気ガスとを各排気経路の合流部に同時に到達させることが好ましい。   In the temperature increase control of the present embodiment, the combustion air-fuel ratio of one cylinder group is set to the set rich air-fuel ratio, and the combustion air-fuel ratio of the other cylinder group is set to the set rich air-fuel ratio. When the fuel injection valve for injecting fuel is provided, the combustion air-fuel ratio of both cylinder groups is set as the set lean air-fuel ratio for temperature rise control (the combustion air-fuel ratio of one cylinder group is also set as the normal lean air-fuel ratio). However, in each cylinder of one cylinder group, additional fuel may be injected into the cylinder during the expansion stroke or the exhaust stroke so that the inside of the cylinder has a set rich air-fuel ratio for temperature rise control. Even in this case, it is preferable that the lean air-fuel ratio exhaust gas exhausted from one cylinder group and the rich air-fuel ratio exhaust gas exhausted from the other cylinder group simultaneously reach the junction of each exhaust path.

本実施形態において、内燃機関は第一気筒群と第二気筒群とだけを有するものとしたが、これは本発明を限定するものではい。例えば、それぞれ別の排気経路を有する三つ以上の気筒群が設けられる場合において、昇温制御時に、これら気筒群から排出されるリッチ空燃比又はリーン空燃比の排気ガスを、各排気経路の合流部へ同時に到達させるためには、合流部までの排気経路長さが長い気筒群ほど先にリッチ空燃比又はリーン空燃比の排気ガスが排出されるようにすれば良い。また、昇温制御時に、リッチ空燃比又はリーン空燃比ではなく理論空燃比の排気ガスを排出する気筒群があれば、この気筒群からの理論空燃比の排気ガスの排出は、他の気筒群から排出されるリッチ空燃比及びリーン空燃比の排気ガスの排出に関して自由に設定可能である。   In the present embodiment, the internal combustion engine has only the first cylinder group and the second cylinder group, but this does not limit the present invention. For example, when three or more cylinder groups having different exhaust paths are provided, the rich air-fuel ratio or the lean air-fuel ratio exhaust gas discharged from these cylinder groups is merged in each exhaust path at the time of temperature increase control. In order to reach the engine at the same time, the exhaust gas having a rich air-fuel ratio or a lean air-fuel ratio may be discharged earlier in the cylinder group having a longer exhaust path length to the merging section. Further, if there is a cylinder group that exhausts the exhaust gas having the stoichiometric air-fuel ratio instead of the rich air-fuel ratio or the lean air-fuel ratio during the temperature rise control, the exhaust of the stoichiometric air-fuel ratio from this cylinder group is discharged to other cylinder groups. The exhaust gas of the rich air-fuel ratio and the lean air-fuel ratio exhausted from the exhaust gas can be freely set.

本発明による内燃機関の排気浄化装置の構成を示す概略図である。It is the schematic which shows the structure of the exhaust gas purification apparatus of the internal combustion engine by this invention. 燃焼空燃比と排気ガス温度との関係を示すグラフである。It is a graph which shows the relationship between a combustion air fuel ratio and exhaust gas temperature. 昇温制御を実施するためのフローチャートである。It is a flowchart for implementing temperature rising control.

符号の説明Explanation of symbols

1 機関本体
1a 第一バンク
1b 第二バンク
2a 第一排気経路
2b 第二排気経路
3a,3b 三元触媒装置
4 合流部
6 NOX吸蔵還元触媒装置
1 engine body 1a first bank 1b second bank 2a first exhaust path 2b second exhaust path 3a, 3b three-way catalytic converter 4 merging portion 6 NO X occluding and reducing catalyst device

Claims (3)

少なくとも第一気筒群と第二気筒群とを有して希薄燃焼を実施する内燃機関の排気浄化装置であって、前記第一気筒群の第一排気経路と前記第二気筒群の第二排気経路との合流部の下流側にNOX吸蔵還元触媒装置が配置され、前記第一排気経路は前記第二排気経路に比較して長い経路長を有し、前記NOX吸蔵還元触媒装置の昇温制御時には、前記第一気筒群及び前記第二気筒群の一方から設定リッチ空燃比の排気ガスを排出させると共に、前記第一気筒群及び前記第二気筒群の他方から設定リーン空燃比の排気ガスを排出させ、前記設定リーン空燃比又は前記設定リッチ空燃比の排気ガスの前記第二気筒群からの排出が、前記設定リッチ空燃比又は前記設定リーン空燃比の排気ガスの前記第一気筒群からの排出より遅れるようにすることを特徴とする内燃機関の排気浄化装置。 An exhaust emission control device for an internal combustion engine having at least a first cylinder group and a second cylinder group and performing lean combustion, wherein the first exhaust path of the first cylinder group and the second exhaust of the second cylinder group A NO x storage reduction catalyst device is disposed downstream of the junction with the passage, the first exhaust path has a longer path length than the second exhaust path, and the NO x storage reduction catalyst device is During temperature control, exhaust gas having a set rich air-fuel ratio is discharged from one of the first cylinder group and the second cylinder group, and exhaust gas having a set lean air-fuel ratio is discharged from the other of the first cylinder group and the second cylinder group. Exhausting the exhaust gas of the set lean air-fuel ratio or the set rich air-fuel ratio from the second cylinder group, the first cylinder group of the exhaust gas having the set rich air-fuel ratio or the set lean air-fuel ratio To be later than the discharge from An exhaust gas purification apparatus for an internal combustion engine characterized by the above. 前記昇温制御時には、前記第一気筒群で前記設定リッチ空燃比の運転を実施すると共に、前記第二気筒群で前記設定リーン空燃比の運転を実施することを特徴とする請求項1に記載の内燃機関の排気浄化装置。   2. The operation of the set rich air-fuel ratio is performed in the first cylinder group and the operation of the set lean air-fuel ratio is performed in the second cylinder group during the temperature increase control. Exhaust gas purification device for internal combustion engine. 前記第一排気経路には酸化機能を有する触媒装置が配置され、前記第一排気経路は前記第二排気経路より車両前側に位置し、設定負荷より高い高負荷時に前記昇温制御を実施する際には、前記第一気筒群で前記設定リーン空燃比の運転を実施すると共に、前記第二気筒群で前記設定リッチ空燃比の運転を実施することを特徴とする請求項1に記載の内燃機関の排気浄化装置。   When the catalyst device having an oxidation function is disposed in the first exhaust path, the first exhaust path is located on the vehicle front side with respect to the second exhaust path, and the temperature increase control is performed at a high load higher than a set load. 2. The internal combustion engine according to claim 1, wherein the operation of the set lean air-fuel ratio is performed in the first cylinder group and the operation of the set rich air-fuel ratio is performed in the second cylinder group. Exhaust purification equipment.
JP2005178981A 2005-06-20 2005-06-20 Exhaust emission control device for internal combustion engine Pending JP2006348904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005178981A JP2006348904A (en) 2005-06-20 2005-06-20 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005178981A JP2006348904A (en) 2005-06-20 2005-06-20 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006348904A true JP2006348904A (en) 2006-12-28

Family

ID=37645002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005178981A Pending JP2006348904A (en) 2005-06-20 2005-06-20 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006348904A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196388A (en) * 2007-02-13 2008-08-28 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2009097346A (en) * 2007-10-12 2009-05-07 Fuji Heavy Ind Ltd Control device for diesel engine
KR101335308B1 (en) 2012-11-27 2013-12-02 주식회사 파나시아 A common scr system for multi engine
JP2015214966A (en) * 2014-04-25 2015-12-03 トヨタ自動車株式会社 Internal combustion engine control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196388A (en) * 2007-02-13 2008-08-28 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
US8256206B2 (en) 2007-02-13 2012-09-04 Honda Motor Co., Ltd. Exhaust emission control device and method for internal combustion engine, and engine control unit
JP2009097346A (en) * 2007-10-12 2009-05-07 Fuji Heavy Ind Ltd Control device for diesel engine
KR101335308B1 (en) 2012-11-27 2013-12-02 주식회사 파나시아 A common scr system for multi engine
JP2015214966A (en) * 2014-04-25 2015-12-03 トヨタ自動車株式会社 Internal combustion engine control device

Similar Documents

Publication Publication Date Title
US7963103B2 (en) Exhaust gas purification method and system
JP4158697B2 (en) Exhaust gas purification device and exhaust gas purification method for internal combustion engine
US20120017587A1 (en) Control system of internal combustion engine
JP2004068700A (en) Exhaust gas purification method
JP4208012B2 (en) Exhaust gas purification device for internal combustion engine
JP3826642B2 (en) Exhaust temperature raising device for internal combustion engine
JP5163809B2 (en) Exhaust gas purification device for internal combustion engine
JP2006348904A (en) Exhaust emission control device for internal combustion engine
JP2009257243A (en) Exhaust emission control device for internal combustion engine
JP3552603B2 (en) Exhaust gas purification device for internal combustion engine
JP2016109041A (en) Control device for internal combustion engine
JP3509482B2 (en) Exhaust gas purification device for internal combustion engine
JP4566178B2 (en) Exhaust gas purification device for internal combustion engine
JP3680237B2 (en) Exhaust gas purification device for internal combustion engine
JP3613660B2 (en) Exhaust gas purification device for internal combustion engine
JP2004346844A (en) Exhaust emission control system
JP5206597B2 (en) Exhaust gas purification device for internal combustion engine
JP4525487B2 (en) Exhaust gas purification device for internal combustion engine
JP2005325693A (en) Exhaust emission control device for internal combustion engine
JP2010019171A (en) Exhaust emission control device for internal combustion engine
JP3512062B2 (en) Exhaust gas purification device for internal combustion engine
JP4506348B2 (en) Exhaust gas purification device for internal combustion engine
JP2000161045A (en) Exhaust emission control device for internal combustion engine
JP2000087732A (en) Exhaust emission control device of internal combustion engine
JP3899775B2 (en) Exhaust gas purification device for internal combustion engine