JP3899775B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3899775B2
JP3899775B2 JP2000106044A JP2000106044A JP3899775B2 JP 3899775 B2 JP3899775 B2 JP 3899775B2 JP 2000106044 A JP2000106044 A JP 2000106044A JP 2000106044 A JP2000106044 A JP 2000106044A JP 3899775 B2 JP3899775 B2 JP 3899775B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
exhaust gas
fuel
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000106044A
Other languages
Japanese (ja)
Other versions
JP2001289094A (en
Inventor
彰 田山
俊一 椎野
要 長沼
博文 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000106044A priority Critical patent/JP3899775B2/en
Publication of JP2001289094A publication Critical patent/JP2001289094A/en
Application granted granted Critical
Publication of JP3899775B2 publication Critical patent/JP3899775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/16Oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等に搭載される内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
エンジン始動直後に排出される排気ガス中の還元剤成分(HC、CO)の浄化と、エンジンをリーン空燃比で運転するときに排出される排気ガス中のNOxの浄化とを両立させるため、エンジン始動後速やかに活性温度に達する始動用触媒を上流側に配設し、空燃比リーンな排気ガス中のNOxを吸収するNOx吸収剤を始動用触媒の下流側に配設する排気浄化装置が公知(例えば特開平11−62563号公報)である。
【0003】
【発明が解決しようとする課題】
このような装置に使用される始動用触媒としては、アルミナをコーティングしたハニカム状の担体に白金系貴金属を担持したものが一般的である。
【0004】
このような触媒は、流入する排気ガスの空燃比かリーン空燃比であるときに排気ガス中の酸素をトラップして保持する機能を備えており、この酸素保持機能は触媒の酸化機能を安定化させるのに非常に有効に働くが、下流側に配設したNOx吸収剤に還元剤成分を供給しようとするときにはこの酸素保持機能が邪魔になる。
【0005】
すなわち、リーン運転の継続によってNOx吸収剤にある程度のNOxが吸収されると、NOx吸収剤に還元剤成分を供給して吸収NOxを還元し、NOx吸収剤を再生するのであるが、このとき始動用触媒には多くの酸素が保持されており、始動用触媒がこの保持酸素を使ってNOx吸収剤に供給されるべき還元剤成分を酸化してしまうので、始動用触媒の保持酸素量が0になるまではNOx吸収剤に還元剤成分が届かない。よって、NOx吸収剤の再生に要する時間が長くなり、リーン空燃比運転を行なえる時間が短くなる分だけ燃費を悪化させるという問題があった。
【0006】
【課題を解決するための手段】
かかる課題を解決するため、本発明では、
機関の排気通路に配設され、流入する排気ガスの空燃比がリーン空燃比であるときに排気ガス中の酸素をトラップして保持する機能を備え、保持可能な酸素量が雰囲気の酸素濃度に応じて変化する上流側触媒と、
この上流側触媒の下流の排気通路に配設され、流入する排気ガスの空燃比がリーン空燃比であるときに排気ガス中のNOxをトラップして保持し、流入する排気ガスの空燃比がリッチ空燃比であるときに保持していたNOxを排気ガス中の還元剤成分で還元する機能を備える下流側触媒と、
この下流側触媒が保持しているNOxを還元すべきときに、前記上流側触媒に流入する排気ガスを、機関の燃焼室内に圧縮行程後半に燃焼室内全体として理論空燃比相当量の燃料を噴射して点火栓の近傍に理論空燃比よりリッチな混合気層を形成し、その周囲に燃料がほとんど存在しないリーン混合気層を形成し、この混合気形態で燃焼を行わせることでリーン混合気層の酸素を未反応のまま残すとともに、膨張行程〜排気行程に燃料を追加噴射することにより、空燃比がリッチ空燃比であって酸素濃度が酸素濃度に対する前記上流側触媒の保持可能酸素量が飽和に達する所定酸素濃度より高い状態に制御する制御手段と、
を備える構成とした。
所定酸素濃度としては、酸素濃度に対する前記上流側触媒の保持可能酸素量が飽和に達する酸素濃度(図1のA点)とすれば良い。
【0007】
【発明の作用および効果】
普通排気ガスの空燃比をリッチ空燃比にしようとすると、排気ガスの酸素濃度は極めて低くなってしまうので、そのような排気ガスが上流側触媒に流入すると、上流側触媒に保持されていた全ての酸素が放出される状態となり、前述のような問題が発生する。
【0008】
一方、排気ガスの空燃比をリッチ空燃比にする際の燃料噴射を工夫すると、空燃比をリッチ空燃比としつつ酸素濃度を比較的高く保つことが可能であり、そのような排気ガスを上流側触媒に流入させれば、上流側触媒からの酸素放出を抑制することができ、結果として下流側触媒の再生に要する時間を短くすることができる。
【0009】
なお、リッチ空燃比かつ高酸素濃度の排気ガスを上流側触媒に流入させても、触媒内で排気ガス中の酸素と還元剤成分とが反応するため、触媒の下流側ほど排気ガスの酸素濃度が低下することになる。よって、触媒の下流側では保持酸素の放出を回避することが出来ない。すなわち、本発明の構成によっても、上流側触媒に保持されている酸素を全く放出させないようにするのは不可能であり、再生制御の開始直後は下流側触媒に還元剤成分が届かない時間帯が発生する。しかしながら、リッチ空燃比かつ酸素濃度0の排気ガスによって下流側触媒の再生を行なうよりはそのような時間を短くすることができる。
【0010】
本明細書で使用する「排気ガスの空燃比」は、吸入空気量と上流側触媒より上流側に供給された燃料の総量との比を意味する。例えば、通常の燃料供給に加えて機関の膨張〜排気行程で燃焼室に追加の燃料供給を行なったり、排気通路へ追加の燃料供給を行なったりした場合、吸入空気量/(通常燃料供給量+追加燃料供給量)によって求められる空燃比である。
【0011】
【発明の実施の形態】
以下に、本発明の実施の形態を図面に基づいて説明する。
(実施の形態)
以下、この発明の実施の形態を図面に基づいて説明する。
図2は、本発明の実施の形態の構成を示すものである。エンジン1の排気管2内には上流側触媒3が設けられており、その下流側には、下流側触媒4が設置されている。吸気管5には燃料噴射弁6が設置されており、吸入空気とともに混合気を形成してエンジン1で燃焼するものである。またこの燃料噴射は、吸気管5の上流部に設置された吸入空気量Qaを検出するエアフローメータ7と、エンジン1の回転数Neを検出するクランク角センサ8の出力に基づき、コントロールユニット(ECU)9において基本燃料噴射パルス幅が演算され、これに目標空燃比等の各種補正を行なった結果により燃料噴射するものである。またECU9にはアクセル開度も入力され、これからエンジン負荷Lを算出し、電制スロットルチャンバー10を駆動する。
【0012】
上流側触媒3としては、例えばアルミナをコーティングしたハニカム担体に、白金Pt、パラジウムPd、ロジウムRb等の貴金属とセリウムCeとを担持したものであり、排気ガスの空燃比がリーン空燃比であるとき、排気ガス中の酸素をトラップして保持し、リッチ空燃比であるとき流入する排気ガス中の還元剤成分を保持していた酸素で酸化する機能(酸素保持機能)を備えている。
【0013】
保持可能な酸素量は雰囲気の酸素濃度に応じて変化し、濃度が高いほど保持可能な量が増加するが、ある程度(A点)以上では飽和に達する。
【0014】
下流側触媒4としては、例えばアルミナをコーティングしたハニカム担体に、白金Pt、パラジウムPd、ロジウムRh等の貴金属を担持した触媒をベースに、バリウムBaで代表されるアルカリ土類、セシウムCsで代表されるアルカリ金属から選ばれた少なくとも1つの成分を担持して構成されるものであり、この下流側触媒4は排気ガスの空燃比がリーン空燃比であるとき排気ガス中のNOxをトラップして保持し、リッチ空燃比であるとき排気ガス中の還元成分(HC、CO、H2)により保持していたNOxを還元浄化する機能を有するものである。
【0015】
この作動を図3と図8のフローチャートで説明する。図3では目標空燃比の設定と下流側触媒4の再生処理の動作を説明する。本ルーチンは例えば10msec毎に実行されるものである。
【0016】
S1でリッチスパイクフラグFRSが1であるか否かを判定する。FRSは下流側触媒4に所定以上のNOxが保持され、リッチ空燃比を与えてNOxの還元浄化が必要と判定された場合にFRS=1にセットされ、FRS=1の期間は目標空燃比をリッチにするものである。従ってFRS≠1(FRS=0)の時はリーン空燃比でエンジンを運転しても良いことを示している。S1でFRS≠1(FRS=0)と判定された場合は、S2に進み、エンジン負荷Lとエンジン回転数Neから目標空燃比TFBYAを求める。(マップは図4参照)
【0017】
S3では、リーン運転かを判定する。すなわちS2で求めたTFBYAが1.0未満かを判定する。
【0018】
リーンでエンジンを運転する場合には、エンジンから排出されたNOxは下流側触媒4にトラップされるため、S4〜S7でNOxの保持量の推定とリッチスパイクによるNOxの還元処理の必要性を判断する。
【0019】
S3でリーン運転である判定した場合、S4に進み、エンジン負荷Lとエンジン回転数NeからNOx排出濃度CNOxをマップから検索する。(マップは図5参照)
【0020】
このマップはあらかじめ実験で求めたものである。S5で下流側触媒4でのNOx保持量TNOxを計算するが、これはこれまでのTNOxに、NOx排出濃度CNOxと吸入空気量Qaを乗じ、さらに定数K1を乗じた値を加算することで求める。
K1は単位換算のための定数である。
【0021】
S6ではNOx保持量TNOxが所定量TNOx0より多くなったか否かを判定する。この所定量TNOx0は、あらかじめ実験的に求めた、下流側触媒4の飽和NOx保持量のある割合(例えば1/2程度)とするものであり、触媒劣化に伴って減少させることも有効である。TNOx>TNOx0となるとS7に進み、リッチスパイクフラグFRSを1にセットし、リッチスパイクによる下流側触媒4の再生処理に移行する。
FRS=1なのでS1の判定によりS8へ進むことになる。
【0022】
S8ではエンジン負荷Lとエンジン回転数Neから下流側触媒4の触媒温度Tcatの推定値をマップから検索する。(マップは図6参照)S9でのNOx放出濃度RNOxを求める。リッチスパイク時のNOx放出濃度RNOxは触媒温度Tcatとその時のNOx保持量TNOxによって変化するため、あらかじめ実験で求めたマップから検索する。(マップは図7参照)
【0023】
S10では、このRNOx還元浄化に必要な分の空燃比TFBYARNOxを次式で計算する。
TFBYARNOx=1+K3・RNOx
ここで、1は理論空燃比の分であり、K3・RNOxが放出NOxの還元浄化に必要な空燃比の分である。K3はNOx濃度を空燃比に換算するための定数である。S11では供給した還元剤のNOx還元浄化に使用される効率を考慮して、過剰の還元成分を供給するために、S10で計算した必要な空燃比にある割合(フローチャートの中では1.2と記述)を乗じた空燃比TFBYAを計算する。次に図S12ではNOxの放出によるNOx保持量TNOxの変化を計算する。TNOxは、これまでのTNOxから、S9で求めた放出されるNOx濃度RNOxに吸入空気量Qaを乗じ、さらに定数K1を乗じた値を減算することで求める。S13でこの計算したTNOxが0より低いか否かを判定し、低い場合はリッチスパイクを終了する。この場合S14でTNOx=0とすることで、TNOxの値が0より低くならないように制限している。S15ではリッチスパイクフラグを0に戻し、リッチスパイクを終了する。
【0024】
以上説明したルーチンで、リッチスパイク中とリーン運転中のTFBYAを求めるのであるが、実際の燃料噴射量Tiと噴射時期IT、吸入空気量Qの制御について図8のフローチャートで説明する。
【0025】
S16でアクセルポジションApsから必要トルクTTCをマップから演算し、必要トルクTTCを発生させるための吸入空気量Qを目標空燃比TFBYAと機関効率ITAを考慮して演算する。リッチスパイク時は機関効率ITAと燃料噴射時期の設定が異なるため、S17ではリッチスパイクフラグFRSが1であるか否かを判定する。FRS≠1(FSR=0)と判定された場合は、S18に進み、図3のフローチャートで求められたTFBYAのうち燃焼トルクに変換されるTFBYA1とトルクに変換されないTFBYA2を求めるが、S18では通常運転のため、TFBYA1=TFBYA、TFBYA2=0となる。TFBYA1とエンジン回転数Neに応じて、機関効率ITAをS19で、燃料噴射時期IT1をS20でマップから演算する。
【0026】
S17でFRS=1でリッチスパイクを実行する場合は、S21に進み、図3のフローチャートで求められたTFBYAから、圧縮行程後半に噴射する燃料分のTFBYA1と膨張〜排気行程に噴射する燃料分のTFBYA2とを算出する。
【0027】
ここでは、TFBYA1を理論空燃比相当値である1とし、TFBYA−1をTFBYA2とする。理論空燃比相当の燃料を吸気行程で噴射した場合、燃焼室内には均質な混合気が形成され、この混合気が燃焼した後の排気ガスの酸素濃度は極めて低くなる。一方、理論空燃比相当の燃料を圧縮行程後半で噴射すると、点火栓の近傍に理論空燃比よりリッチな混合気層を形成し、その周囲に燃料がほとんど存在しない層を形成することが可能である。このような混合気形態で燃焼を行なうと、リーン混合気層の酸素を未反応のまま残すことができるので、排気ガスの空燃比を理論空燃比としつつ排気ガスの酸素濃度を比較的高く保つことができる。さらに、このような混合気形態で燃焼を行なった後の膨張〜排気行程に追加燃料を噴射すれば、排気ガスの空燃比を理論空燃比よりリッチな空燃比としつつ排気ガスの酸素濃度を比較的高く保つことができる。
【0028】
S22では、圧縮行程後半に噴射した理論空燃比相当分の燃料の全てが燃焼してエンジンのトルクになるのではないことを考慮して機関効率ITAを算出し、S23では圧縮行程後半の燃料噴射時期IT1と膨張〜排気行程の燃料噴射時期IT2とを算出する。
【0029】
次にS24では必要トルクTTCを発生させるのに必要な吸入空気量Qを(1)式で求め、この吸入空気量Qになるように電制スロットルを駆動する。
Q=TTC/TFBYA1/ITA・・・(1)
【0030】
S25ではトルクに変換される燃料量Ti 1とトルクに変換されないTi 2を吸入空気量Qa/回転数Neに基づいて計算される基本燃料噴射パルス幅TpにTFBYAを乗じた量を演算し、噴射する。すなわち、燃料噴射パルス幅Tiは次式で計算される。
Tin=Tp・TFBYAn+Ts
ここで、Tsは無効噴射パルス幅である。(nは1と2)
【0031】
以上、本発明の実施の形態を図面により詳述してきたが、具体的な構成はこの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲における設計の変更などがあっても本発明に含まれる。
【図面の簡単な説明】
【図1】触媒の酸素貯蔵量を示す図である。
【図2】本発明の実施の形態を示す図である。
【図3】本発明のフローチャートその1を示す図である。
【図4】目標空燃比マップを示す図である。
【図5】NOx排出濃度マップを示す図である。
【図6】触媒温度予測マップを示す図である。
【図7】NOx浄化度マップを示す図である。
【図8】本発明のフローチャートその2を示す図である。
【符号の説明】
1 エンジン
2 排気管
3 上流側触媒
4 下流側触媒
5 吸気管
6 燃料噴射弁
7 エアフローメータ
8 クランク角センサ
10 電制スロットルチャンバー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust emission control device for an internal combustion engine mounted on an automobile or the like.
[0002]
[Prior art]
In order to achieve both purification of reducing agent components (HC, CO) in exhaust gas discharged immediately after engine startup and purification of NOx in exhaust gas discharged when the engine is operated at a lean air-fuel ratio, 2. Description of the Related Art An exhaust emission control device is known in which a startup catalyst that quickly reaches an activation temperature after startup is arranged on the upstream side, and a NOx absorbent that absorbs NOx in the exhaust gas with lean air-fuel ratio is arranged on the downstream side of the startup catalyst. (For example, JP-A-11-62563).
[0003]
[Problems to be solved by the invention]
As a starting catalyst used in such an apparatus, a catalyst in which a platinum-based noble metal is supported on a honeycomb-like support coated with alumina is generally used.
[0004]
Such a catalyst has a function of trapping and holding oxygen in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is the lean air-fuel ratio, and this oxygen holding function stabilizes the oxidation function of the catalyst. However, this oxygen retention function is an obstacle when trying to supply the reducing agent component to the NOx absorbent disposed on the downstream side.
[0005]
That is, when a certain amount of NOx is absorbed by the NOx absorbent by continuing the lean operation, the reducing agent component is supplied to the NOx absorbent to reduce the absorbed NOx and regenerate the NOx absorbent. The starting catalyst holds a large amount of oxygen, and the starting catalyst uses this retained oxygen to oxidize the reducing agent component to be supplied to the NOx absorbent. The reducing agent component does not reach the NOx absorbent until. Therefore, there is a problem that the time required for regeneration of the NOx absorbent becomes longer, and the fuel consumption is deteriorated by the amount of time for which the lean air-fuel ratio operation can be performed.
[0006]
[Means for Solving the Problems]
In order to solve this problem, in the present invention,
It is arranged in the exhaust passage of the engine and has a function of trapping and holding oxygen in the exhaust gas when the air-fuel ratio of the exhaust gas flowing in is a lean air-fuel ratio, and the amount of oxygen that can be held becomes the oxygen concentration of the atmosphere An upstream catalyst that changes accordingly,
This is disposed in the exhaust passage downstream of the upstream catalyst, traps and holds NOx in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is a lean air-fuel ratio, and the air-fuel ratio of the inflowing exhaust gas is rich. A downstream catalyst having a function of reducing NOx retained when the air-fuel ratio is maintained with a reducing agent component in the exhaust gas;
When the NOx held by the downstream catalyst is to be reduced, the exhaust gas flowing into the upstream catalyst is injected into the combustion chamber of the engine with a fuel equivalent to the stoichiometric air-fuel ratio as the entire combustion chamber in the latter half of the compression stroke. Then, an air-fuel mixture layer richer than the stoichiometric air-fuel ratio is formed in the vicinity of the spark plug, a lean air-fuel mixture layer with almost no fuel is formed around it, and combustion is performed in the form of the air-fuel mixture. In addition to leaving the oxygen in the bed unreacted and additionally injecting fuel during the expansion stroke to the exhaust stroke, the amount of oxygen that can be held by the upstream catalyst with respect to the oxygen concentration is that the air-fuel ratio is rich and the oxygen concentration is the oxygen concentration. Control means for controlling to a state higher than a predetermined oxygen concentration reaching saturation;
It was set as the structure provided with.
The predetermined oxygen concentration may be an oxygen concentration (point A in FIG. 1) at which the amount of oxygen that can be held by the upstream catalyst with respect to the oxygen concentration reaches saturation.
[0007]
Operation and effect of the invention
When trying to make the air-fuel ratio of ordinary exhaust gas rich, the oxygen concentration of the exhaust gas becomes extremely low. Therefore, when such exhaust gas flows into the upstream catalyst, all that was held in the upstream catalyst As a result, the above-described problems occur.
[0008]
On the other hand, by devising fuel injection when the air-fuel ratio of the exhaust gas is made rich, it is possible to keep the oxygen concentration relatively high while making the air-fuel ratio rich air-fuel ratio. If it flows into the catalyst, oxygen release from the upstream catalyst can be suppressed, and as a result, the time required for regeneration of the downstream catalyst can be shortened.
[0009]
Even if a rich air-fuel ratio and high oxygen concentration exhaust gas flows into the upstream side catalyst, oxygen in the exhaust gas reacts with the reducing agent component in the catalyst, so the oxygen concentration of the exhaust gas becomes closer to the downstream side of the catalyst. Will drop. Therefore, the release of retained oxygen cannot be avoided on the downstream side of the catalyst. That is, even with the configuration of the present invention, it is impossible not to release oxygen held in the upstream catalyst at all, and immediately after the start of regeneration control, the reducing agent component does not reach the downstream catalyst. Will occur. However, such time can be shortened as compared with the regeneration of the downstream catalyst by the exhaust gas having a rich air-fuel ratio and an oxygen concentration of 0.
[0010]
As used herein, “air-fuel ratio of exhaust gas” means the ratio of the amount of intake air and the total amount of fuel supplied upstream from the upstream catalyst. For example, when additional fuel is supplied to the combustion chamber in the expansion to exhaust stroke of the engine in addition to normal fuel supply, or additional fuel is supplied to the exhaust passage, intake air amount / (normal fuel supply amount + It is the air-fuel ratio determined by the additional fuel supply amount).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
(Embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 2 shows the configuration of the embodiment of the present invention. An upstream catalyst 3 is provided in the exhaust pipe 2 of the engine 1, and a downstream catalyst 4 is installed on the downstream side thereof. A fuel injection valve 6 is installed in the intake pipe 5, and forms an air-fuel mixture with intake air and burns in the engine 1. The fuel injection is performed based on the output of an air flow meter 7 that detects an intake air amount Qa installed upstream of the intake pipe 5 and a crank angle sensor 8 that detects the rotational speed Ne of the engine 1. 9) The basic fuel injection pulse width is calculated at 9, and fuel is injected based on the result of various corrections such as the target air-fuel ratio. The ECU 9 also receives the accelerator opening, calculates the engine load L therefrom, and drives the electric throttle chamber 10.
[0012]
As the upstream catalyst 3, for example, a honeycomb carrier coated with alumina is supported with a noble metal such as platinum Pt, palladium Pd, rhodium Rb and cerium Ce, and when the air-fuel ratio of the exhaust gas is a lean air-fuel ratio. In addition, it has a function of trapping and holding oxygen in the exhaust gas and oxidizing it with oxygen that has held the reducing agent component in the exhaust gas flowing in when the air-fuel ratio is rich (oxygen holding function).
[0013]
The amount of oxygen that can be maintained varies depending on the oxygen concentration of the atmosphere. The higher the concentration, the greater the amount that can be retained, but saturation reaches a certain level (A point) or more.
[0014]
The downstream side catalyst 4 is typically represented by cesium Cs, an alkaline earth represented by barium Ba, based on a catalyst in which a noble metal such as platinum Pt, palladium Pd and rhodium Rh is supported on a honeycomb carrier coated with alumina. that it is intended to be configured by loading at least one component selected from alkali metals, the downstream catalyst 4 is held by traps NOx in the exhaust gas when the air-fuel ratio of the exhaust gas is lean In addition, it has a function of reducing and purifying NOx retained by the reducing components (HC, CO, H2) in the exhaust gas when the air-fuel ratio is rich.
[0015]
This operation will be described with reference to the flowcharts of FIGS. FIG. 3 illustrates the setting of the target air-fuel ratio and the operation of the regeneration process for the downstream catalyst 4. This routine is executed every 10 msec, for example.
[0016]
In S1, it is determined whether or not the rich spike flag FRS is 1. FRS is set to FRS = 1 when it is determined that NOx of a predetermined amount or more is held in the downstream catalyst 4 and a rich air-fuel ratio is required to reduce and purify NOx, and the target air-fuel ratio is set during the period of FRS = 1. It is what makes it rich. Therefore, when FRS ≠ 1 (FRS = 0), this indicates that the engine may be operated at a lean air-fuel ratio. If it is determined in S1 that FRS ≠ 1 (FRS = 0), the process proceeds to S2, and the target air-fuel ratio TFBYA is obtained from the engine load L and the engine speed Ne. (See Figure 4 for the map)
[0017]
In S3, it is determined whether the operation is lean. That is, it is determined whether TFBYA obtained in S2 is less than 1.0.
[0018]
When the engine is operated lean, the NOx discharged from the engine is trapped by the downstream side catalyst 4. Therefore , in S4 to S7 , the NOx retention amount is estimated and the necessity of NOx reduction processing by rich spike is determined. To do.
[0019]
When it is determined in S3 that the engine is in the lean operation, the process proceeds to S4, and the NOx emission concentration CNOx is searched from the map from the engine load L and the engine speed Ne. (See Figure 5 for the map)
[0020]
This map is obtained in advance by experiments. In S5, the NOx retention amount TNOx in the downstream side catalyst 4 is calculated. This is obtained by multiplying the previous TNOx by the NOx exhaust concentration CNOx and the intake air amount Qa, and further adding a value obtained by multiplying by a constant K1. .
K1 is a constant for unit conversion.
[0021]
In S6, it is determined whether or not the NOx holding amount TNOx is larger than the predetermined amount TNOx0. This predetermined amount TNOx0 is a ratio (for example, about 1/2) of the saturated NOx retention amount of the downstream side catalyst 4 obtained experimentally in advance, and it is also effective to reduce it as the catalyst deteriorates. . When TNOx> TNOx0, the routine proceeds to S7, where the rich spike flag FRS is set to 1, and the process proceeds to regeneration processing of the downstream catalyst 4 by rich spike.
Since FRS = 1, the process proceeds to S8 by the determination of S1.
[0022]
In S8, the estimated value of the catalyst temperature Tcat of the downstream side catalyst 4 is searched from the map from the engine load L and the engine speed Ne. (See FIG. 6 for the map) The NOx emission concentration RNOx in S9 is obtained. Since the NOx release concentration RNOx during the rich spike changes depending on the catalyst temperature Tcat and the NOx retention amount TNOx at that time, the NOx release concentration RNOx is searched from a map obtained in advance through experiments. (See Figure 7 for the map)
[0023]
In S10, the air-fuel ratio TFBYARNOx necessary for this RNOx reduction purification is calculated by the following equation.
TFBYARNOx = 1 + K3 · RNOx
Here, 1 is the amount of the stoichiometric air-fuel ratio, and K3 · RNOx is the amount of air-fuel ratio required for reduction purification of released NOx. K3 is a constant for converting the NOx concentration into an air-fuel ratio. In S11, in consideration of the efficiency used for NOx reduction purification of the supplied reducing agent, the ratio of the required air-fuel ratio calculated in S10 to supply an excessive reducing component (1.2 in the flowchart) The air-fuel ratio TFBYA multiplied by the description) is calculated. Next, in FIG. S12, the change in the NOx retention amount TNOx due to the release of NOx is calculated. The TNOx is obtained by subtracting a value obtained by multiplying the released NOx concentration RNOx obtained in S9 by the intake air amount Qa and further multiplying by a constant K1 from the previous TNOx. In S13, it is determined whether or not the calculated TNOx is lower than 0. If it is lower, the rich spike is terminated. In this case, by setting TNOx = 0 in S14, the value of TNOx is limited so as not to be lower than zero. In S15, the rich spike flag is returned to 0 and the rich spike is terminated.
[0024]
In the routine described above, TFBYA during the rich spike and the lean operation is obtained. The control of the actual fuel injection amount Ti, the injection timing IT, and the intake air amount Q will be described with reference to the flowchart of FIG.
[0025]
In S16, the required torque TTC is calculated from the accelerator position Aps from the map, and the intake air amount Q for generating the required torque TTC is calculated in consideration of the target air-fuel ratio TFBYA and the engine efficiency ITA. Since the engine efficiency ITA and the fuel injection timing are different during the rich spike, it is determined whether or not the rich spike flag FRS is 1 in S17. If it is determined that FRS ≠ 1 (FSR = 0), the process proceeds to S18, and TFBYA1 converted to combustion torque and TFBYA2 not converted to torque are obtained from TFBYA obtained in the flowchart of FIG. For operation, TFBYA1 = TFBYA and TFBYA2 = 0. In accordance with TFBYA1 and the engine speed Ne, the engine efficiency ITA is calculated from the map in S19, and the fuel injection timing IT1 is calculated from the map in S20.
[0026]
When the rich spike is executed with FRS = 1 in S17, the process proceeds to S21, and from TFBYA obtained in the flowchart of FIG. 3, TFBYA1 for the fuel injected in the latter half of the compression stroke and the fuel for the injection injected in the expansion to exhaust stroke TFBYA2 is calculated.
[0027]
Here, TFBYA1 is set to 1, which is a theoretical air-fuel ratio equivalent value, and TFBYA-1 is set to TFBYA2. When fuel corresponding to the stoichiometric air-fuel ratio is injected in the intake stroke, a homogeneous air-fuel mixture is formed in the combustion chamber, and the oxygen concentration of the exhaust gas after the air-fuel mixture burns becomes extremely low. On the other hand, when fuel equivalent to the stoichiometric air-fuel ratio is injected in the latter half of the compression stroke, it is possible to form an air-fuel mixture layer that is richer than the stoichiometric air-fuel ratio in the vicinity of the spark plug, and to form a layer with almost no fuel around it. is there. When combustion is performed in such an air-fuel mixture form, oxygen in the lean air-fuel mixture can be left unreacted, so that the oxygen concentration of the exhaust gas is kept relatively high while the air-fuel ratio of the exhaust gas is made the stoichiometric air-fuel ratio. be able to. Furthermore, if additional fuel is injected during the expansion to exhaust stroke after combustion is performed in such a mixture, the oxygen concentration of the exhaust gas is compared while making the air-fuel ratio of the exhaust gas richer than the stoichiometric air-fuel ratio. Can be kept high.
[0028]
In S22, the engine efficiency ITA is calculated in consideration of the fact that not all of the fuel corresponding to the theoretical air-fuel ratio injected in the latter half of the compression stroke is burned and becomes the engine torque. In S23, the fuel injection in the latter half of the compression stroke is calculated. The timing IT1 and the fuel injection timing IT2 of the expansion to exhaust stroke are calculated.
[0029]
Next, in S24, the intake air amount Q required to generate the required torque TTC is obtained by the equation (1), and the electric throttle is driven so that the intake air amount Q is obtained.
Q = TTC / TFBYA1 / ITA (1)
[0030]
In S25, the fuel amount Ti 1 converted into torque and Ti 2 not converted into torque are calculated by multiplying the basic fuel injection pulse width Tp calculated based on the intake air amount Qa / rotational speed Ne by TFBYA, and the injection. To do. That is, the fuel injection pulse width Ti is calculated by the following equation.
Tin = Tp · TFBYAn + Ts
Here, Ts is an invalid injection pulse width. (N is 1 and 2)
[0031]
The embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and even if there is a design change without departing from the gist of the present invention. It is included in the present invention.
[Brief description of the drawings]
FIG. 1 is a graph showing the oxygen storage amount of a catalyst.
FIG. 2 is a diagram showing an embodiment of the present invention.
FIG. 3 is a first flowchart of the present invention.
FIG. 4 is a view showing a target air-fuel ratio map.
FIG. 5 is a diagram showing a NOx emission concentration map.
FIG. 6 is a diagram showing a catalyst temperature prediction map.
FIG. 7 is a diagram showing a NOx purification degree map.
FIG. 8 is a second flowchart of the present invention.
[Explanation of symbols]
1 Engine 2 Exhaust pipe 3 Upstream catalyst 4 Downstream catalyst 5 Intake pipe 6 Fuel injection valve 7 Air flow meter 8 Crank angle sensor 10 Electric throttle chamber

Claims (1)

機関の排気通路に配設され、流入する排気ガスの空燃比がリーン空燃比であるときに排気ガス中の酸素をトラップして保持する機能を備え、保持可能な酸素量が雰囲気の酸素濃度に応じて変化する上流側触媒と、
この上流側触媒の下流の排気通路に配設され、流入する排気ガスの空燃比がリーン空燃比であるときに排気ガス中のNOxをトラップして保持し、流入する排気ガスの空燃比がリッチ空燃比であるときに保持していたNOxを排気ガス中の還元剤成分で還元する機能を備える下流側触媒と、
この下流側触媒が保持しているNOxを還元すべきときに、前記上流側触媒に流入する排気ガスを、機関の燃焼室内に圧縮行程後半に燃焼室内全体として理論空燃比相当量の燃料を噴射して点火栓の近傍に理論空燃比よりリッチな混合気層を形成し、その周囲に燃料がほとんど存在しないリーン混合気層を形成し、この混合気形態で燃焼を行わせることでリーン混合気層の酸素を未反応のまま残すとともに、膨張行程〜排気行程に燃料を追加噴射することにより、空燃比がリッチ空燃比であって酸素濃度が酸素濃度に対する前記上流側触媒の保持可能酸素量が飽和に達する所定酸素濃度より高い状態に制御する制御手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
It is arranged in the exhaust passage of the engine and has a function of trapping and holding oxygen in the exhaust gas when the air-fuel ratio of the exhaust gas flowing in is a lean air-fuel ratio, and the amount of oxygen that can be held becomes the oxygen concentration of the atmosphere An upstream catalyst that changes accordingly,
This is disposed in the exhaust passage downstream of the upstream catalyst, traps and holds NOx in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is a lean air-fuel ratio, and the air-fuel ratio of the inflowing exhaust gas is rich. A downstream catalyst having a function of reducing NOx retained when the air-fuel ratio is maintained with a reducing agent component in the exhaust gas;
When the NOx held by the downstream catalyst is to be reduced, the exhaust gas flowing into the upstream catalyst is injected into the combustion chamber of the engine with a fuel equivalent to the stoichiometric air-fuel ratio as the entire combustion chamber in the latter half of the compression stroke. Then, an air-fuel mixture layer richer than the stoichiometric air-fuel ratio is formed in the vicinity of the spark plug, a lean air-fuel mixture layer with almost no fuel is formed around it, and combustion is performed in the form of the air-fuel mixture. In addition to leaving the oxygen in the bed unreacted and additionally injecting fuel during the expansion stroke to the exhaust stroke, the amount of oxygen that can be held by the upstream catalyst with respect to the oxygen concentration is that the air-fuel ratio is rich and the oxygen concentration is the oxygen concentration. Control means for controlling to a state higher than a predetermined oxygen concentration reaching saturation;
An exhaust emission control device for an internal combustion engine, comprising:
JP2000106044A 2000-04-07 2000-04-07 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3899775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106044A JP3899775B2 (en) 2000-04-07 2000-04-07 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106044A JP3899775B2 (en) 2000-04-07 2000-04-07 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001289094A JP2001289094A (en) 2001-10-19
JP3899775B2 true JP3899775B2 (en) 2007-03-28

Family

ID=18619285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106044A Expired - Lifetime JP3899775B2 (en) 2000-04-07 2000-04-07 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3899775B2 (en)

Also Published As

Publication number Publication date
JP2001289094A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
US11073056B2 (en) Methods and systems for exhaust emission control
US10954835B2 (en) Methods and systems for exhaust emission control
WO1998044245A1 (en) Exhaust gas purifying device of cylinder injection internal combustion engine
JP5748005B2 (en) Exhaust gas purification device for internal combustion engine
JPH1181992A (en) Exhaust gas purifying device in internal combustion engine
JP3740987B2 (en) Exhaust gas purification device for internal combustion engine
WO2014167652A1 (en) Exhaust purification device of internal combustion engine
JP2001159363A (en) Exhaust emission control device for internal combustion engine
JP6988648B2 (en) Exhaust purification device for internal combustion engine
JP3632614B2 (en) Exhaust gas purification device for internal combustion engine
JP4357918B2 (en) Exhaust gas purification device for internal combustion engine
JP4131151B2 (en) Engine exhaust purification system
JP3624747B2 (en) Exhaust gas purification device for internal combustion engine
JP3899775B2 (en) Exhaust gas purification device for internal combustion engine
JP2006348904A (en) Exhaust emission control device for internal combustion engine
JP3487269B2 (en) Exhaust gas purification device for internal combustion engine
WO2014167650A1 (en) Exhaust purification device for internal combustion engines
JP2016084800A (en) Control device of internal combustion engine
JP3622612B2 (en) Exhaust gas purification device for internal combustion engine
JP6183537B2 (en) Exhaust gas purification device for internal combustion engine
JP2003097255A (en) Exhaust gas purifier of engine and method for exhaust gas purification
JP3446646B2 (en) Exhaust gas purification device for internal combustion engine
JP4507456B2 (en) Engine exhaust purification system
JP5741643B2 (en) Exhaust gas purification device for internal combustion engine
JP2005325693A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3899775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

EXPY Cancellation because of completion of term