JP2001289094A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JP2001289094A
JP2001289094A JP2000106044A JP2000106044A JP2001289094A JP 2001289094 A JP2001289094 A JP 2001289094A JP 2000106044 A JP2000106044 A JP 2000106044A JP 2000106044 A JP2000106044 A JP 2000106044A JP 2001289094 A JP2001289094 A JP 2001289094A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
exhaust gas
nox
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000106044A
Other languages
Japanese (ja)
Other versions
JP3899775B2 (en
Inventor
Akira Tayama
彰 田山
Shunichi Shiino
俊一 椎野
Kaname Naganuma
要 長沼
Hirobumi Tsuchida
博文 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000106044A priority Critical patent/JP3899775B2/en
Publication of JP2001289094A publication Critical patent/JP2001289094A/en
Application granted granted Critical
Publication of JP3899775B2 publication Critical patent/JP3899775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/16Oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten time required for the regeneration of an NOx absorbent and to improve fuel consumption by keeping oxygen concentration relatively high while maintaining an air-fuel ratio to a rich air-fuel ratio. SOLUTION: This exhaust emission control device for an internal combustion engine is provided with an upstream catalyst 3 provided with a function of trapping and holding oxygen in exhaust gas when the air-fuel ratio of inflow exhaust gas is a lean air-fuel ratio, and changed in the holdable quantity of oxygen according to oxygen concentration in the atmosphere; a downstream catalyst 4 provided with a function of trapping and holding NOx in the exhaust gas when the air-fuel ratio of the inflow exhaust gas is a lean air-fuel ratio, and reducing the held NOx by reducing agent components in the exhaust gas when the air-fuel ratio of the inflow exhaust gas is a rich air-fuel ratio; and a control means for controlling the exhaust gas flowing into the upstream catalyst 3, into the state of the air-fuel ratio being the rich air-fuel ratio and the oxygen concentration being higher than specified oxygen concentration when the downstream catalyst 4 is to reduce the held NOx.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車等に搭載さ
れる内燃機関の排気浄化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine mounted on an automobile or the like.

【0002】[0002]

【従来の技術】エンジン始動直後に排出される排気ガス
中の還元剤成分(HC、CO)の浄化と、エンジンをリ
ーン空燃比で運転するときに排出される排気ガス中のN
Oxの浄化とを両立させるため、エンジン始動後速やか
に活性温度に達する始動用触媒を上流側に配設し、空燃
比リーンな排気ガス中のNOxを吸収するNOx吸収剤
を始動用触媒の下流側に配設する排気浄化装置が公知
(例えば特開平11−62563号公報)である。
2. Description of the Related Art Purification of reducing agent components (HC, CO) in exhaust gas discharged immediately after the start of an engine and N in exhaust gas discharged when the engine is operated at a lean air-fuel ratio.
In order to achieve both purification of Ox and exhaust gas, a starting catalyst that reaches an activation temperature immediately after the engine is started is disposed upstream, and a NOx absorbent that absorbs NOx in exhaust gas having a lean air-fuel ratio is provided downstream of the starting catalyst. An exhaust purification device provided on the side is known (for example, JP-A-11-62563).

【0003】[0003]

【発明が解決しようとする課題】このような装置に使用
される始動用触媒としては、アルミナをコーティングし
たハニカム状の担体に白金系貴金属を担持したものが一
般的である。
As a starting catalyst used in such an apparatus, a catalyst in which a platinum-based noble metal is supported on a honeycomb-shaped carrier coated with alumina is generally used.

【0004】このような触媒は、流入する排気ガスの空
燃比かリーン空燃比であるときに排気ガス中の酸素をト
ラップして保持する機能を備えており、この酸素保持機
能は触媒の酸化機能を安定化させるのに非常に有効に働
くが、下流側に配設したNOx吸収剤に還元剤成分を供
給しようとするときにはこの酸素保持機能が邪魔にな
る。
Such a catalyst has a function of trapping and holding oxygen in the exhaust gas when the inflowing exhaust gas has an air-fuel ratio or a lean air-fuel ratio. Works very effectively to stabilize the oxygen, but this oxygen-retaining function hinders the supply of the reducing agent component to the NOx absorbent disposed downstream.

【0005】すなわち、リーン運転の継続によってNO
x吸収剤にある程度のNOxが吸収されると、NOx吸
収剤に還元剤成分を供給して吸収NOxを還元し、NO
x吸収剤を再生するのであるが、このとき始動用触媒に
は多くの酸素が保持されており、始動用触媒がこの保持
酸素を使ってNOx吸収剤に供給されるべき還元剤成分
を酸化してしまうので、始動用触媒の保持酸素量が0に
なるまではNOx吸収剤に還元剤成分が届かない。よっ
て、NOx吸収剤の再生に要する時間が長くなり、リー
ン空燃比運転を行なえる時間が短くなる分だけ燃費を悪
化させるという問題があった。
[0005] That is, NO is determined by the continuation of the lean operation.
When a certain amount of NOx is absorbed by the x absorbent, a reducing agent component is supplied to the NOx absorbent to reduce the absorbed NOx, and
At this time, a large amount of oxygen is retained in the starting catalyst, and the starting catalyst oxidizes the reducing agent component to be supplied to the NOx absorbent using the retained oxygen. Therefore, the reducing agent component does not reach the NOx absorbent until the amount of oxygen retained in the starting catalyst becomes zero. Therefore, there is a problem that the time required for the regeneration of the NOx absorbent becomes longer, and the fuel efficiency is deteriorated by the amount of time during which the lean air-fuel ratio operation can be performed.

【0006】[0006]

【課題を解決するための手段】かかる課題を解決するた
め、本発明では、機関の排気通路に、流入する排気ガス
の空燃比がリーン空燃比であるときに排気ガス中の酸素
をトラップして保持する機能を備え、保持可能な酸素量
が雰囲気の酸素濃度に応じて変化する上流側触媒と、こ
の上流側触媒の下流の排気通路に、流入する排気ガスの
空燃比がリーン空燃比であるときに排気ガス中のNOx
をトラップして保持し、流入する排気ガスの空燃比がリ
ッチ空燃比であるときに保持していたNOxを排気ガス
中の還元剤成分で還元する機能を備える下流側触媒と、
この下流側触媒が保持しているNOxを還元すべきとき
に、前記上流側触媒に流入する排気ガスを、空燃比がリ
ッチ空燃比であって酸素濃度が所定酸素濃度より高い状
態に制御する制御手段とを備える構成とした。所定酸素
濃度としては、酸素濃度に対する前記上流側触媒の保持
可能酸素量が飽和に達する酸素濃度(図1のA点)とす
れば良い。
In order to solve the above-mentioned problems, according to the present invention, oxygen in an exhaust gas is trapped in an exhaust passage of an engine when the air-fuel ratio of the exhaust gas flowing into the engine is a lean air-fuel ratio. An upstream catalyst, which has a function of holding, and the amount of oxygen that can be held changes according to the oxygen concentration of the atmosphere, and the air-fuel ratio of exhaust gas flowing into an exhaust passage downstream of the upstream catalyst is a lean air-fuel ratio. Sometimes NOx in exhaust gas
A downstream catalyst having a function of reducing the NOx retained by the reducing agent component in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is a rich air-fuel ratio.
When NOx held by the downstream catalyst is to be reduced, control is performed to control the exhaust gas flowing into the upstream catalyst to a state where the air-fuel ratio is a rich air-fuel ratio and the oxygen concentration is higher than a predetermined oxygen concentration. Means. The predetermined oxygen concentration may be an oxygen concentration (point A in FIG. 1) at which the amount of oxygen that can be held by the upstream catalyst with respect to the oxygen concentration reaches saturation.

【0007】[0007]

【発明の作用および効果】普通排気ガスの空燃比をリッ
チ空燃比にしようとすると、排気ガスの酸素濃度は極め
て低くなってしまうので、そのような排気ガスが上流側
触媒に流入すると、上流側触媒に保持されていた全ての
酸素が放出される状態となり、前述のような問題が発生
する。
When the air-fuel ratio of the normal exhaust gas is set to the rich air-fuel ratio, the oxygen concentration of the exhaust gas becomes extremely low. All the oxygen held in the catalyst is released, and the above-described problem occurs.

【0008】一方、排気ガスの空燃比をリッチ空燃比に
する際の燃料噴射を工夫すると、空燃比をリッチ空燃比
としつつ酸素濃度を比較的高く保つことが可能であり、
そのような排気ガスを上流側触媒に流入させれば、上流
側触媒からの酸素放出を抑制することができ、結果とし
て下流側触媒の再生に要する時間を短くすることができ
る。
On the other hand, if the fuel injection when the air-fuel ratio of the exhaust gas is set to the rich air-fuel ratio is devised, the oxygen concentration can be kept relatively high while the air-fuel ratio is set to the rich air-fuel ratio.
If such exhaust gas flows into the upstream catalyst, oxygen release from the upstream catalyst can be suppressed, and as a result, the time required for regeneration of the downstream catalyst can be shortened.

【0009】なお、リッチ空燃比かつ高酸素濃度の排気
ガスを上流側触媒に流入させても、触媒内で排気ガス中
の酸素と還元剤成分とが反応するため、触媒の下流側ほ
ど排気ガスの酸素濃度が低下することになる。よって、
触媒の下流側では保持酸素の放出を回避することが出来
ない。すなわち、本発明の構成によっても、上流側触媒
に保持されている酸素を全く放出させないようにするの
は不可能であり、再生制御の開始直後は下流側触媒に還
元剤成分が届かない時間帯が発生する。しかしながら、
リッチ空燃比かつ酸素濃度0の排気ガスによって下流側
触媒の再生を行なうよりはそのような時間を短くするこ
とができる。
Even if exhaust gas having a rich air-fuel ratio and a high oxygen concentration flows into the upstream catalyst, oxygen in the exhaust gas reacts with the reducing agent component in the catalyst. Will decrease the oxygen concentration. Therefore,
On the downstream side of the catalyst, release of retained oxygen cannot be avoided. That is, even with the configuration of the present invention, it is impossible to prevent the oxygen retained in the upstream catalyst from being released at all, and a time period during which the reducing agent component does not reach the downstream catalyst immediately after the start of the regeneration control. Occurs. However,
Such time can be shortened compared to the case where the downstream side catalyst is regenerated with the exhaust gas having the rich air-fuel ratio and the oxygen concentration of 0.

【0010】本明細書で使用する「排気ガスの空燃比」
は、吸入空気量と上流側触媒より上流側に供給された燃
料の総量との比を意味する。例えば、通常の燃料供給に
加えて機関の膨張〜排気行程で燃焼室に追加の燃料供給
を行なったり、排気通路へ追加の燃料供給を行なったり
した場合、吸入空気量/(通常燃料供給量+追加燃料供
給量)によって求められる空燃比である。
"Air-fuel ratio of exhaust gas" used in this specification
Means the ratio of the amount of intake air to the total amount of fuel supplied upstream from the upstream catalyst. For example, when additional fuel is supplied to the combustion chamber in the expansion to exhaust strokes of the engine or additional fuel is supplied to the exhaust passage in addition to the normal fuel supply, the amount of intake air / (normal fuel supply amount + (Fuel supply amount).

【0011】[0011]

【発明の実施の形態】以下に、本発明の実施の形態を図
面に基づいて説明する。 (実施の形態)以下、この発明の実施の形態を図面に基
づいて説明する。図2は、本発明の実施の形態の構成を
示すものである。エンジン1の排気管2内には上流側触
媒3が設けられており、その下流側には、下流側触媒4
が設置されている。吸気管5には燃料噴射弁6が設置さ
れており、吸入空気とともに混合気を形成してエンジン
1で燃焼するものである。またこの燃料噴射は、吸気管
5の上流部に設置された吸入空気量Qaを検出するエア
フローメータ7と、エンジン1の回転数Neを検出する
クランク角センサ8の出力に基づき、コントロールユニ
ット(ECU)9において基本燃料噴射パルス幅が演算
され、これに目標空燃比等の各種補正を行なった結果に
より燃料噴射するものである。またECU9にはアクセ
ル開度も入力され、これからエンジン負荷Lを算出し、
電制スロットルチャンバー10を駆動する。
Embodiments of the present invention will be described below with reference to the drawings. Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows the configuration of the embodiment of the present invention. An upstream catalyst 3 is provided in an exhaust pipe 2 of the engine 1, and a downstream catalyst 4 is provided downstream thereof.
Is installed. A fuel injection valve 6 is provided in the intake pipe 5 and forms a mixture with the intake air and burns in the engine 1. This fuel injection is performed based on the output of an air flow meter 7 that detects an intake air amount Qa installed upstream of the intake pipe 5 and a crank angle sensor 8 that detects the rotational speed Ne of the engine 1. In 9), the basic fuel injection pulse width is calculated, and the fuel is injected based on the result of various corrections such as the target air-fuel ratio. The accelerator opening is also input to the ECU 9, and the engine load L is calculated from the accelerator opening.
The electronically controlled throttle chamber 10 is driven.

【0012】上流側触媒3としては、例えばアルミナを
コーティングしたハニカム担体に、白金Pt、パラジウ
ムPd、ロジウムRb等の貴金属とセリウムCeとを担
持したものであり、排気ガスの空燃費がリーン空燃費で
あるとき、排気ガス中の酸素をトラップして保持し、リ
ッチ空燃費であるとき流入する排気ガス中の還元剤成分
を保持していた酸素で参加する機能(酸素保持機能)を
備えている。
The upstream-side catalyst 3 is a catalyst in which a noble metal such as platinum Pt, palladium Pd, and rhodium Rb and cerium Ce are supported on an alumina-coated honeycomb carrier, for example. In the case of, a function (oxygen holding function) of trapping and holding oxygen in the exhaust gas and joining with the oxygen holding the reducing agent component in the inflowing exhaust gas when the air-fuel ratio is rich is provided. .

【0013】保持可能な酸素量は雰囲気の酸素濃度に応
じて変化し、濃度が高いほど保持可能な量が増加する
が、ある程度(A点)以上では飽和に達する。
The amount of oxygen that can be held varies according to the oxygen concentration in the atmosphere. The higher the concentration, the more the amount of oxygen that can be held increases, but reaches saturation to some extent (point A) or more.

【0014】下流側触媒4としては、例えばアルミナを
コーティングしたハニカム担体に、白金Pt、パラジウ
ムPd、ロジウムRh等の貴金属を担持した触媒をベー
スに、バリウムBaで代表されるアルカリ土類、セシウ
ムCsで代表されるアルカリ金属から選ばれた少なくと
も1つの成分を担持して構成されるものであり、この下
流側触媒4は排気ガスの空燃費がリーン空燃費であると
き排気ガス中のNOxをトラップして保持し、リッチ空
燃費であるとき排気ガス中の還元成分(HC、CO、H
2)により保持していたNOxを還元浄化する機能を有
するものである。
The downstream catalyst 4 is, for example, a catalyst in which a noble metal such as platinum Pt, palladium Pd, rhodium Rh or the like is supported on a honeycomb carrier coated with alumina, and an alkaline earth represented by barium Ba, cesium Cs The downstream catalyst 4 traps NOx in the exhaust gas when the air-fuel efficiency of the exhaust gas is lean air-fuel efficiency. And when the air-fuel ratio is rich, reducing components (HC, CO, H
It has a function of reducing and purifying NOx retained in 2).

【0015】この作動を図3と図8のフローチャートで
説明する。図3では目標空燃費の設定と下流側触媒4の
再生処理の動作を説明する。本ルーチンは例えば10m
sec毎に実行されるものである。
This operation will be described with reference to the flowcharts of FIGS. FIG. 3 illustrates the operation of setting the target air-fuel efficiency and the process of regenerating the downstream catalyst 4. This routine is for example 10 m
This is executed every second.

【0016】S1でリッチスパイクフラグFRSが1で
あるか否かを判定する。FRSは下流側触媒4に所定以
上のNOxが保持され、リッチ空燃費を与えてNOxの
還元浄化が必要と判定された場合にFRS=1にセット
され、FRS=1の期間は目標空燃比をリッチにするも
のである。従ってFRS≠1(FRS=0)の時はリー
ン空燃比でエンジンを運転しても良いことを示してい
る。S1でFRS≠1(FRS=0)と判定された場合
は、S2に進み、エンジン負荷Lとエンジン回転数Ne
から目標空燃比TFBYAを求める。(マップは図4参
照)
At S1, it is determined whether or not the rich spike flag FRS is "1". The FRS is set to FRS = 1 when NOx of a predetermined value or more is held in the downstream side catalyst 4 and it is determined that the reduction and purification of NOx is required by providing rich air-fuel efficiency, and the target air-fuel ratio is set during the period of FRS = 1. To make it rich. Therefore, when FRS ≠ 1 (FRS = 0), it indicates that the engine may be operated at a lean air-fuel ratio. If it is determined in S1 that FRS ≠ 1 (FRS = 0), the process proceeds to S2, where the engine load L and the engine speed Ne are determined.
From the target air-fuel ratio TFBYA. (See Figure 4 for map)

【0017】S3では、リーン運転かを判定する。すな
わちS2で求めたTFBYAが1.0未満かを判定す
る。
In S3, it is determined whether the operation is a lean operation. That is, it is determined whether TFBYA obtained in S2 is less than 1.0.

【0018】リーンでエンジンを運転する場合には、エ
ンジンから排出されたNOxは下流側触媒4にトラップ
されるため、S4?7でNOxの保持量の推定とリッチ
スパイクによるNOxの還元処理の必要性を判断する。
When the engine is operated lean, NOx exhausted from the engine is trapped in the downstream side catalyst 4. Therefore, it is necessary to estimate the NOx holding amount and reduce NOx by rich spike in S4-7. Judge the gender.

【0019】S3でリーン運転である判定した場合、S
4に進み、エンジン負荷Lとエンジン回転数NeからN
Ox排出濃度CNOxをマップから検索する。(マップ
は図5参照)
If it is determined in S3 that the operation is lean,
4 to the engine load L and the engine speed Ne to N
The Ox emission concentration CNOx is retrieved from the map. (See Figure 5 for map)

【0020】このマップはあらかじめ実験で求めたもの
である。S5で下流側触媒4でのNOx保持量TNOx
を計算するが、これはこれまでのTNOxに、NOx排
出濃度CNOxと吸入空気量Qaを乗じ、さらに定数K
1を乗じた値を加算することで求める。K1は単位換算
のための定数である。
This map is obtained in advance by experiments. In S5, the NOx holding amount TNOx in the downstream catalyst 4
Is calculated by multiplying the conventional TNOx by the NOx emission concentration CNOx and the intake air amount Qa, and furthermore, a constant K
It is obtained by adding values multiplied by 1. K1 is a constant for unit conversion.

【0021】S6ではNOx保持量TNOxが所定量T
NOx0より多くなったか否かを判定する。この所定量
TNOx0は、あらかじめ実験的に求めた、下流側触媒
4の飽和NOx保持量のある割合(例えば1/2程度)
とするものであり、触媒劣化に伴って減少させることも
有効である。TNOx>TNOx0となるとS7に進
み、リッチスパイクフラグFRSを1にセットし、リッ
チスパイクによる下流側触媒4の再生処理に移行する。
FRS=1なのでS1の判定によりS8へ進むことにな
る。
In S6, the NOx holding amount TNOx is reduced to a predetermined amount T.
It is determined whether or not NOx0 has been exceeded. The predetermined amount TNOx0 is a certain ratio (for example, about 2) of the saturated NOx holding amount of the downstream side catalyst 4, which is experimentally obtained in advance.
It is also effective to decrease the value with deterioration of the catalyst. When TNOx> TNOx0, the process proceeds to S7, where the rich spike flag FRS is set to 1, and the process proceeds to the rich spike regeneration process of the downstream catalyst 4.
Since FRS = 1, the process proceeds to S8 according to the determination of S1.

【0022】S8ではエンジン負荷Lとエンジン回転数
Neから下流側触媒4の触媒温度Tcatの推定値をマ
ップから検索する。(マップは図6参照)S9でのNO
x放出濃度RNOxを求める。リッチスパイク時のNO
x放出濃度RNOxは触媒温度Tcatとその時のNO
x保持量TNOxによって変化するため、あらかじめ実
験で求めたマップから検索する。(マップは図7参照)
In S8, an estimated value of the catalyst temperature Tcat of the downstream side catalyst 4 is retrieved from the map from the engine load L and the engine speed Ne. (See FIG. 6 for map) NO in S9
The x release concentration RNOx is determined. NO during rich spike
The x release concentration RNOx is determined by the catalyst temperature Tcat and the NO at that time.
Since it changes depending on the x holding amount TNOx, a search is made from a map obtained in advance through experiments. (See Figure 7 for map)

【0023】S10では、このRNOx還元浄化に必要
な分の空燃比TFBYARNOxを次式で計算する。 TFBYARNOx=1+K3・RNOx ここで、1は理論空燃比の分であり、K3・RNOxが
放出NOxの還元浄化に必要な空燃比の分である。K3
はNOx濃度を空燃比に換算するための定数である。S
11では供給した還元剤のNOx還元浄化に使用される
効率を考慮して、過剰の還元成分を供給するために、S
10で計算した必要な空燃比にある割合(フローチャー
トの中では1.2と記述)を乗じた空燃比TFBYAを
計算する。次に図S12ではNOxの放出によるNOx
保持量TNOxの変化を計算する。TNOxは、これま
でのTNOxから、S9で求めた放出されるNOx濃度
RNOxに吸入空気量Qaを乗じ、さらに定数K1を乗
じた値を減算することで求める。S13でこの計算した
TNOxが0より低いか否かを判定し、低い場合はリッ
チスパイクを終了する。この場合S14でTNOx=0
とすることで、TNOxの値が0より低くならないよう
に制限している。S15ではリッチスパイクフラグを0
に戻し、リッチスパイクを終了する。
In S10, the air-fuel ratio TFBYARNOx required for the RNOx reduction purification is calculated by the following equation. TFBYARNOx = 1 + K3.RNOx Here, 1 is the amount of the stoichiometric air-fuel ratio, and K3.RNOx is the amount of the air-fuel ratio required for the reduction and purification of the released NOx. K3
Is a constant for converting the NOx concentration into an air-fuel ratio. S
In step 11, in consideration of the efficiency of the supplied reducing agent used for NOx reduction and purification, S
The air-fuel ratio TFBYA is calculated by multiplying the required air-fuel ratio calculated in 10 by a certain ratio (described as 1.2 in the flowchart). Next, in FIG. S12, NOx due to release of NOx
The change in the holding amount TNOx is calculated. TNOx is determined by subtracting the value obtained by multiplying the NOx concentration RNOx released in S9 by the intake air amount Qa and further multiplying by a constant K1 from TNOx up to now. In S13, it is determined whether or not the calculated TNOx is lower than 0, and if it is lower, the rich spike is terminated. In this case, TNOx = 0 in S14.
Thus, the value of TNOx is limited so as not to be lower than 0. At S15, the rich spike flag is set to 0.
To end the rich spike.

【0024】以上説明したルーチンで、リッチスパイク
中とリーン運転中のTFBYAを求めるのであるが、実
際の燃料噴射量Tiと噴射時期IT、吸入空気量Qの制
御について図8のフローチャートで説明する。
The TFBYA during the rich spike and during the lean operation is determined by the above-described routine. The control of the actual fuel injection amount Ti, the injection timing IT, and the intake air amount Q will be described with reference to the flowchart of FIG.

【0025】S16でアクセルポジションApsから必
要トルクTTCをマップから演算し、必要トルクTTC
を発生させるための吸入空気量Qを目標空燃比TFBY
Aと機関効率ITAを考慮して演算する。リッチスパイ
ク時は機関効率ITAと燃料噴射時期の設定が異なるた
め、S17ではリッチスパイクフラグFRSが1である
か否かを判定する。FRS≠1(FSR=0)と判定さ
れた場合は、S18に進み、図3のフローチャートで求
められたTFBYAのうち燃焼トルクに変換されるTF
BYA1とトルクに変換されないTFBYA2を求める
が、S18では通常運転のため、TFBYA1=TFB
YA、TFBYA2=0となる。TFBYA1とエンジ
ン回転数Neに応じて、機関効率ITAをS19で、燃
料噴射時期IT1をS20でマップから演算する。
In S16, the required torque TTC is calculated from the accelerator position Aps from the map, and the required torque TTC is calculated.
Intake air amount Q for generating the target air-fuel ratio TFBY
The calculation is performed in consideration of A and the engine efficiency ITA. At the time of the rich spike, the setting of the engine efficiency ITA and the fuel injection timing are different, so it is determined at S17 whether or not the rich spike flag FRS is 1. When it is determined that FRS ≠ 1 (FSR = 0), the process proceeds to S18, in which the TF converted to the combustion torque is selected from the TFBYA obtained in the flowchart of FIG.
BBY1 and TFBYA2 which is not converted to torque are obtained. In S18, however, TFBYA1 = TFB for normal operation.
YA, TFBYA2 = 0. The engine efficiency ITA is calculated from the map in S19 and the fuel injection timing IT1 is calculated in S20 according to TFBYA1 and the engine speed Ne.

【0026】S17でFRS=1でリッチスパイクを実
行する場合は、S21に進み、図3のフローチャートで
求められたTFBYAから、圧縮行程後半に噴射する燃
料分のTFBYA1と膨張〜排気行程に噴射する燃料分
のTFBYA2とを算出する。
When the rich spike is executed with FRS = 1 in S17, the process proceeds to S21, where TFBYA1 for the fuel injected in the latter half of the compression stroke and TFBYA1 for the fuel injected in the latter half of the compression stroke are injected from the TFBYA obtained in the flowchart of FIG. Calculate TFBYA2 for the fuel.

【0027】ここでは、TFBYA1を理論空燃比相当
値である1とし、TFBYA−1をTFBYA2とす
る。理論空燃比相当の燃料を吸気行程で噴射した場合、
燃焼室内には均質な混合気が形成され、この混合気が燃
焼した後の排気ガスの酸素濃度は極めて低くなる。一
方、理論空燃比相当の燃料を圧縮行程後半で噴射する
と、点火栓の近傍に理論空燃比よりリッチな混合気層を
形成し、その周囲に燃料がほとんど存在しない層を形成
することが可能である。このような混合気形態で燃焼を
行なうと、リーン混合気層の酸素を未反応のまま残すこ
とができるので、排気ガスの空燃比を理論空燃比としつ
つ排気ガスの酸素濃度を比較的高く保つことができる。
さらに、このような混合気形態で燃焼を行なった後の膨
張〜排気行程に追加燃料を噴射すれば、排気ガスの空燃
比を理論空燃比よりリッチな空燃比としつつ排気ガスの
酸素濃度を比較的高く保つことができる。
Here, it is assumed that TFBYA1 is 1, which is a value corresponding to the stoichiometric air-fuel ratio, and TFBYA-1 is TFBYA2. When fuel equivalent to the stoichiometric air-fuel ratio is injected in the intake stroke,
A homogeneous mixture is formed in the combustion chamber, and the oxygen concentration of the exhaust gas after the mixture has burned becomes extremely low. On the other hand, when fuel equivalent to the stoichiometric air-fuel ratio is injected in the latter half of the compression stroke, a mixture layer richer than the stoichiometric air-fuel ratio is formed near the ignition plug, and a layer containing almost no fuel can be formed around it. is there. When combustion is performed in such an air-fuel mixture form, oxygen in the lean air-fuel mixture layer can be left unreacted, so that the oxygen concentration of the exhaust gas is kept relatively high while keeping the air-fuel ratio of the exhaust gas at the stoichiometric air-fuel ratio. be able to.
Furthermore, if additional fuel is injected during the expansion-exhaust stroke after combustion in such a mixture mode, the oxygen concentration of the exhaust gas is compared while the air-fuel ratio of the exhaust gas is made richer than the stoichiometric air-fuel ratio. Can be kept high.

【0028】S22では、圧縮行程後半に噴射した理論
空燃比相当分の燃料の全てが燃焼してエンジンのトルク
になるのではないことを考慮して機関効率ITAを算出
し、S23では圧縮行程後半の燃料噴射時期IT1と膨
張〜排気行程の燃料噴射時期IT2とを算出する。
In step S22, the engine efficiency ITA is calculated in consideration of the fact that not all the fuel corresponding to the stoichiometric air-fuel ratio injected in the latter half of the compression stroke burns to generate engine torque. Of the fuel injection timing IT1 and the fuel injection timing IT2 of the expansion-exhaust stroke are calculated.

【0029】次にS24では必要トルクTTCを発生さ
せるのに必要な吸入空気量Qを(1)式で求め、この吸
入空気量Qになるように電制スロットルを駆動する。 Q=TTC/TFBYA1/ITA・・・(1)
Next, at S24, the intake air amount Q required to generate the necessary torque TTC is obtained by the equation (1), and the electronically controlled throttle is driven so as to reach the intake air amount Q. Q = TTC / TFBYA1 / ITA (1)

【0030】S25ではトルクに変換される燃料量Ti
1とトルクに変換されないTi2を吸入空気量Qa/
回転数Neに基づいて計算される基本燃料噴射パルス幅
TpにTFBYAを乗じた量を演算し、噴射する。すな
わち、燃料噴射パルス幅Tiは次式で計算される。 Tin=Tp・TFBYAn+Ts ここで、Tsは無効噴射パルス幅である。(nは1と
2)
In S25, the fuel amount Ti converted into torque is
1 and Ti2 that is not converted to torque is determined by the intake air amount Qa /
An injection amount is calculated by multiplying the basic fuel injection pulse width Tp calculated based on the rotation speed Ne by TFBYA. That is, the fuel injection pulse width Ti is calculated by the following equation. Tin = Tp · TFBYAn + Ts where Ts is an invalid injection pulse width. (N is 1 and 2)

【0031】以上、本発明の実施の形態を図面により詳
述してきたが、具体的な構成はこの実施の形態に限られ
るものではなく、本発明の要旨を逸脱しない範囲におけ
る設計の変更などがあっても本発明に含まれる。
Although the preferred embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this preferred embodiment, and a design change or the like may be made without departing from the gist of the present invention. Even if present, it is included in the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】触媒の酸素貯蔵量を示す図である。FIG. 1 is a diagram showing an oxygen storage amount of a catalyst.

【図2】本発明の実施の形態を示す図である。FIG. 2 is a diagram showing an embodiment of the present invention.

【図3】本発明のフローチャートその1を示す図であ
る。
FIG. 3 is a diagram showing a first flowchart of the present invention.

【図4】目標空燃比マップを示す図である。FIG. 4 is a diagram showing a target air-fuel ratio map.

【図5】NOx排出濃度マップを示す図である。FIG. 5 is a diagram showing a NOx emission concentration map.

【図6】触媒温度予測マップを示す図である。FIG. 6 is a diagram showing a catalyst temperature prediction map.

【図7】NOx浄化度マップを示す図である。FIG. 7 is a view showing a NOx purification degree map.

【図8】本発明のフローチャートその2を示す図であ
る。
FIG. 8 is a diagram showing a second flowchart of the present invention.

【符号の説明】[Explanation of symbols]

1 エンジン 2 排気管 3 上流側触媒 4 下流側触媒 5 吸気管 6 燃料噴射弁 7 エアフローメータ 8 クランク角センサ 10 電制スロットルチャンバー DESCRIPTION OF SYMBOLS 1 Engine 2 Exhaust pipe 3 Upstream catalyst 4 Downstream catalyst 5 Intake pipe 6 Fuel injection valve 7 Air flow meter 8 Crank angle sensor 10 Electric throttle chamber

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/24 F01N 3/24 R 3/28 301 3/28 301C F02D 43/00 301 F02D 43/00 301E 301T (72)発明者 土田 博文 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会 社内 Fターム(参考) 3G084 BA09 BA13 BA15 BA24 DA10 FA07 FA10 FA33 FA38 3G091 AA02 AA13 AA17 AA24 AA28 AB01 AB06 AB08 AB09 BA14 CA18 CA26 CB02 CB03 CB07 DA01 DA02 DA10 DB06 DB08 DB09 DB10 EA01 EA03 EA05 EA07 EA34 FB10 FB11 FB12 GA06 GB01X GB03W GB04W GB05W GB06W GB07W GB10X GB16X HA18 HA20 3G301 JA25 LA03 MA01 MA12 MA18 MA26 NE13 PA01Z PD08Z PE01Z PE03Z PF03Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/24 F01N 3/24 R 3/28 301 3/28 301C F02D 43/00 301 F02D 43/00 301E 301T (72) Inventor Hirofumi Tsuchida 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd. In-house F-term (reference) CB02 CB03 CB07 DA01 DA02 DA10 DB06 DB08 DB09 DB10 EA01 EA03 EA05 EA07 EA34 FB10 FB11 FB12 GA06 GB01X GB03W GB04W GB05W GB06W GB07W GB10X GB16X HA18 HA20 3G301 JA25 LA03 MA01 MA12 MA18 MA08 NE13 PE01 PDZ

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 機関の排気通路に配設され、流入する排
気ガスの空燃比がリーン空燃比であるときに排気ガス中
の酸素をトラップして保持する機能を備え、保持可能な
酸素量が雰囲気の酸素濃度に応じて変化する上流側触媒
と、 この上流側触媒の下流の排気通路に配設され、流入する
排気ガスの空燃比がリーン空燃比であるときに排気ガス
中のNOxをトラップして保持し、流入する排気ガスの
空燃比がリッチ空燃比であるときに保持していたNOx
を排気ガス中の還元剤成分で還元する機能を備える下流
側触媒と、 この下流側触媒が保持しているNOxを還元すべきとき
に、前記上流側触媒に流入する排気ガスを、空燃比がリ
ッチ空燃比であって酸素濃度が所定酸素濃度より高い状
態に制御する制御手段と、を備えることを特徴とする内
燃機関の排気浄化装置。
An exhaust gas passage provided in an exhaust passage of an engine has a function of trapping and retaining oxygen in exhaust gas when the air-fuel ratio of the inflowing exhaust gas is a lean air-fuel ratio. An upstream catalyst that changes in accordance with the oxygen concentration in the atmosphere; and an NOx in the exhaust gas that is provided in an exhaust passage downstream of the upstream catalyst and that has a lean air-fuel ratio when the inflowing exhaust gas is lean. NOx that was held when the air-fuel ratio of the inflowing exhaust gas was a rich air-fuel ratio
And a downstream catalyst having a function of reducing the exhaust gas with a reducing agent component in the exhaust gas. When the NOx held by the downstream catalyst is to be reduced, the exhaust gas flowing into the upstream catalyst has an air-fuel ratio of Control means for controlling the air-fuel ratio to be rich and the oxygen concentration to be higher than a predetermined oxygen concentration.
【請求項2】 前記所定酸素濃度は、酸素濃度に対する
前記上流側触媒の保持可能酸素量が飽和に達する酸素濃
度であることを特徴とする請求項1に記載の内燃機関の
排気浄化装置。
2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the predetermined oxygen concentration is an oxygen concentration at which the amount of oxygen that can be held by the upstream catalyst with respect to the oxygen concentration reaches saturation.
JP2000106044A 2000-04-07 2000-04-07 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3899775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106044A JP3899775B2 (en) 2000-04-07 2000-04-07 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106044A JP3899775B2 (en) 2000-04-07 2000-04-07 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001289094A true JP2001289094A (en) 2001-10-19
JP3899775B2 JP3899775B2 (en) 2007-03-28

Family

ID=18619285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106044A Expired - Lifetime JP3899775B2 (en) 2000-04-07 2000-04-07 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3899775B2 (en)

Also Published As

Publication number Publication date
JP3899775B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP3684934B2 (en) Exhaust gas purification device for internal combustion engine
WO1998044245A1 (en) Exhaust gas purifying device of cylinder injection internal combustion engine
JP2002349247A (en) Exhaust emission control device of internal combustion engine
JP2000027677A (en) Exhaust emission control device for lean burn internal combustion engine
JP6988648B2 (en) Exhaust purification device for internal combustion engine
JP2001159363A (en) Exhaust emission control device for internal combustion engine
JP3632614B2 (en) Exhaust gas purification device for internal combustion engine
JP2001003782A (en) Exhaust emission control device for internal combustion engine
JP5392021B2 (en) Fuel injection control device for internal combustion engine
JP3899775B2 (en) Exhaust gas purification device for internal combustion engine
JP2002155784A (en) Exhaust emission control device of internal combustion engine
JP3772554B2 (en) Engine exhaust purification system
JP3937487B2 (en) Exhaust gas purification device for internal combustion engine
JP3487269B2 (en) Exhaust gas purification device for internal combustion engine
JP2000337130A (en) Exhaust emission control system for internal combustion engine
JP2004285841A (en) Exhaust emission control device of internal combustion engine
JP2002013414A (en) Exhaust emission control device for internal combustion engine
JP2000054824A (en) Exhaust emission control device for internal combustion engine
JP2000161105A (en) Exhaust emission control device for internal combustion engine
JP3446646B2 (en) Exhaust gas purification device for internal combustion engine
JP2000038942A (en) Exhaust emission control device of internal combustion engine
JP2005325693A (en) Exhaust emission control device for internal combustion engine
JP4158627B2 (en) Exhaust gas purification device for internal combustion engine
JP2001032707A (en) Exhaust emission control device, exhaust emission purifying method and exhaust emission purifying catalyst
JP2000297631A (en) Exhaust emission purification device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3899775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

EXPY Cancellation because of completion of term