JP5206597B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP5206597B2
JP5206597B2 JP2009143368A JP2009143368A JP5206597B2 JP 5206597 B2 JP5206597 B2 JP 5206597B2 JP 2009143368 A JP2009143368 A JP 2009143368A JP 2009143368 A JP2009143368 A JP 2009143368A JP 5206597 B2 JP5206597 B2 JP 5206597B2
Authority
JP
Japan
Prior art keywords
exhaust gas
reduction catalyst
air
fuel ratio
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009143368A
Other languages
Japanese (ja)
Other versions
JP2011001832A (en
Inventor
健一 辻本
俊博 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009143368A priority Critical patent/JP5206597B2/en
Publication of JP2011001832A publication Critical patent/JP2011001832A/en
Application granted granted Critical
Publication of JP5206597B2 publication Critical patent/JP5206597B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し、流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを還元浄化するNOx吸蔵還元触媒を機関排気通路内に配置した内燃機関が公知である。この内燃機関ではリーン空燃比の下で燃焼が行われているときに発生するNOxがNOx吸蔵還元触媒に吸蔵される。一方、NOx吸蔵還元触媒のNOx吸蔵能力が飽和に近づくと排気ガスの空燃比が一時的にリッチにされ、それによってNOx吸蔵還元触媒からNOxが還元浄化される。   An NOx storage reduction catalyst that stores NOx contained in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean and reduces and purifies the stored NOx when the air-fuel ratio of the inflowing exhaust gas becomes the stoichiometric air-fuel ratio or rich An internal combustion engine arranged in an exhaust passage is known. In this internal combustion engine, NOx generated when combustion is performed under a lean air-fuel ratio is stored in the NOx storage reduction catalyst. On the other hand, when the NOx occlusion capacity of the NOx occlusion reduction catalyst approaches saturation, the air-fuel ratio of the exhaust gas is temporarily made rich, whereby NOx is reduced and purified from the NOx occlusion reduction catalyst.

ところで燃料及び潤滑油内には硫黄が含まれており、従って排気ガス中には硫黄化合物(SOx、例えばSO2)が含まれている。このSOxはNOxと共にNOx吸蔵還元触媒に吸蔵される。ところがこのSOxは、排気ガスの空燃比を単にリッチにしただけではNOx吸蔵還元触媒から放出されず、従ってNOx吸蔵還元触媒に吸蔵されているSOxの量が次第に増大していく(以下、「硫黄被毒」という)。その結果としてNOx吸蔵還元触媒に吸蔵しうるNOx量が次第に減少してしまう。 By the way, sulfur is contained in the fuel and the lubricating oil. Therefore, the exhaust gas contains a sulfur compound (SOx, for example, SO 2 ). This SOx is stored in the NOx storage reduction catalyst together with NOx. However, this SOx is not released from the NOx occlusion reduction catalyst by simply making the air-fuel ratio of the exhaust gas rich, and therefore the amount of SOx occluded in the NOx occlusion reduction catalyst gradually increases (hereinafter referred to as “sulfur”). Called poisoning). As a result, the amount of NOx that can be stored in the NOx storage reduction catalyst gradually decreases.

NOx吸蔵還元触媒からSOxを放出させる(すなわち、硫黄被毒回復を行う)ために、NOx吸蔵還元触媒の触媒温度をSOxが放出される温度、すなわちSOx放出温度(例えば、600℃)にまで昇温させると共に、NOx吸蔵還元触媒に流入する排気ガスの空燃比を理論空燃比又はリッチ空燃比にする硫黄被毒回復処理を行う必要がある。   In order to release SOx from the NOx storage reduction catalyst (that is, to perform sulfur poisoning recovery), the catalyst temperature of the NOx storage reduction catalyst is increased to the temperature at which SOx is released, that is, the SOx release temperature (for example, 600 ° C.). It is necessary to perform a sulfur poisoning recovery process in which the air-fuel ratio of the exhaust gas flowing into the NOx storage-reduction catalyst is made to be the stoichiometric air-fuel ratio or the rich air-fuel ratio while the temperature is increased.

そこで、機関排気通路内にNOx吸蔵還元触媒を配置し、NOx吸蔵還元触媒の上流排気通路内に還元剤を添加する還元剤添加弁を備えた内燃機関の排気浄化装置において、NOx吸蔵還元触媒の硫黄被毒回復処理時に、NOx吸蔵還元触媒を昇温すると共に還元剤を供給するようにした内燃機関の排気浄化装置が公知である(特許文献1)。   Therefore, in an exhaust gas purification apparatus for an internal combustion engine that includes a NOx storage reduction catalyst in the engine exhaust passage and includes a reducing agent addition valve that adds a reducing agent to the upstream exhaust passage of the NOx storage reduction catalyst, the NOx storage reduction catalyst An exhaust purification device for an internal combustion engine that raises the temperature of a NOx storage reduction catalyst and supplies a reducing agent during sulfur poisoning recovery processing is known (Patent Document 1).

ところで、上記構成におけるNOx吸蔵還元触媒に代えて酸素貯蔵機能を有するNOx吸蔵還元触媒とする構成がある。ここで、酸素貯蔵機能とは、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれる酸素を蓄え流入する排気ガスの空燃比がリッチになると蓄えられている酸素を放出する機能をいい、例えば三元触媒がその機能を有する。   Incidentally, there is a configuration in which a NOx storage reduction catalyst having an oxygen storage function is used instead of the NOx storage reduction catalyst in the above configuration. Here, the oxygen storage function is a function of storing oxygen contained in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean and releasing the stored oxygen when the air-fuel ratio of the inflowing exhaust gas becomes rich. For example, a three-way catalyst has its function.

特開2003−176715号公報JP 2003-176715 A

この構成において、硫黄被毒回復処理をすべきときに、還元剤を供給しNOx吸蔵還元触媒に流入する排気ガスの空燃比をリッチにすると、供給された還元剤がNOx吸蔵還元触媒から放出された酸素と反応することによって反応熱が生じる。この反応熱は排気ガスの流れを介してNOx吸蔵還元触媒の下流側部分に伝達され、それによって、NOx吸蔵還元触媒の上流側部分に比べて下流側部分の温度がより上昇する。一方、NOx吸蔵還元触媒の硫黄被毒の度合はその上流側部分が下流側部分よりも大きく、効果的に硫黄被毒回復を行うためには、NOx吸蔵還元触媒の上流側部分をより十分に昇温させることが必要である。   In this configuration, when the sulfur poisoning recovery process is to be performed, if the reducing agent is supplied and the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst is made rich, the supplied reducing agent is released from the NOx storage reduction catalyst. Reaction heat is generated by reacting with oxygen. This reaction heat is transmitted to the downstream portion of the NOx storage reduction catalyst via the flow of the exhaust gas, whereby the temperature of the downstream portion rises more than the upstream portion of the NOx storage reduction catalyst. On the other hand, the degree of sulfur poisoning of the NOx storage reduction catalyst is larger in the upstream part than in the downstream part, and in order to effectively recover the sulfur poisoning, the upstream part of the NOx storage reduction catalyst is more fully used. It is necessary to raise the temperature.

従って、この状態で、NOx吸蔵還元触媒の上流側部分をSOx放出温度まで昇温させようとすると、下流側部分が過度に昇温してしまい、触媒機能が劣化してしまうという問題が生じる。一方、NOx吸蔵還元触媒の下流側部分の触媒の劣化を防止しようとすると上流側部分の昇温が不十分となり、硫黄被毒回復処理の効率が悪化し処理時間が長くなり、燃費も悪化するという問題も生じる。   Therefore, in this state, if it is attempted to raise the temperature of the upstream portion of the NOx storage reduction catalyst to the SOx release temperature, the downstream portion is excessively heated and the catalyst function is deteriorated. On the other hand, if it is attempted to prevent the deterioration of the catalyst in the downstream portion of the NOx storage reduction catalyst, the temperature increase in the upstream portion becomes insufficient, the efficiency of the sulfur poisoning recovery process deteriorates, the processing time becomes longer, and the fuel consumption also deteriorates. The problem also arises.

また、NOx吸蔵還元触媒に流入する排気ガスの空燃比をリッチにする際に、燃焼室内のガスの空燃比、すなわち筒内ガスの空燃比をリッチにすることが、硫黄被毒回復処理における反応性の観点から好ましい。しかし、反応性が良くなる一方で、NOx吸蔵還元触媒から放出された酸素との反応性も良くなり、下流側部分の温度上昇はより大きくなるため上述の問題はより顕著になる。   Further, when the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst is made rich, the air-fuel ratio of the gas in the combustion chamber, that is, the air-fuel ratio of the in-cylinder gas is made rich in the reaction in the sulfur poisoning recovery process. From the viewpoint of sex. However, while the reactivity is improved, the reactivity with oxygen released from the NOx occlusion reduction catalyst is also improved, and the temperature rise in the downstream portion becomes larger, so the above problem becomes more remarkable.

更に、吸気量が少ない場合には、排気ガスを介してNOx吸蔵還元触媒の外へ排出される熱量も少なくなるため、NOx吸蔵還元触媒の上流側部分と下流側部分との間の温度差はより大きくなる。   Further, when the intake air amount is small, the amount of heat exhausted to the outside of the NOx storage reduction catalyst via the exhaust gas also decreases, so the temperature difference between the upstream side portion and the downstream side portion of the NOx storage reduction catalyst is Become bigger.

そこで本発明は、酸素貯蔵機能を有するNOx吸蔵還元触媒の硫黄被毒回復処理を、触媒機能の劣化を生じさせることなく行うことができる内燃機関の排気浄化装置を提供することを目的とする。   Therefore, an object of the present invention is to provide an exhaust purification device for an internal combustion engine that can perform the sulfur poisoning recovery process of the NOx storage reduction catalyst having an oxygen storage function without causing deterioration of the catalyst function.

前記課題を解決するために請求項1に記載の発明によれば、機関排気通路内に、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを還元浄化するNOx吸蔵還元触媒を配置すると共に該NOx吸蔵還元触媒の上流の機関排気通路内に還元剤供給手段を配置し、NOx吸蔵還元触媒が、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれる酸素を蓄え流入する排気ガスの空燃比がリッチになると蓄えられている酸素を放出する酸素貯蔵機能を更に備え、NOx吸蔵還元触媒に吸蔵されたSOxを放出させるべきときに、NOx吸蔵還元触媒の触媒温度をSOx放出温度に昇温させると共に流入する排気ガスの空燃比をリッチにする硫黄被毒回復処理を行う硫黄被毒回復処理手段を具備する内燃機関の排気浄化装置において、前記硫黄被毒回復処理手段が、硫黄被毒回復処理を実行すべきときに、筒内ガスの空燃比をリーンにするリーン燃焼期間中に還元剤供給手段から還元剤を供給し、前記リーン燃焼期間経過後に筒内ガスの空燃比をリッチにする制御を行い、前記リーン燃焼期間は、排気ガス量が小さいほど長く設定されることを特徴とする内燃機関の排気浄化装置が提供される。   In order to solve the above problem, according to the first aspect of the present invention, when the air-fuel ratio of the exhaust gas flowing into the engine exhaust passage is lean, the NOx contained in the exhaust gas is occluded and the exhaust gas flowing in A NOx storage reduction catalyst that reduces and purifies the stored NOx when the air-fuel ratio becomes the stoichiometric air-fuel ratio or rich, and a reducing agent supply means is disposed in the engine exhaust passage upstream of the NOx storage reduction catalyst, and the NOx storage reduction catalyst However, when the air-fuel ratio of the inflowing exhaust gas is lean, it further has an oxygen storage function that stores oxygen contained in the exhaust gas and releases the stored oxygen when the air-fuel ratio of the inflowing exhaust gas becomes rich, and stores NOx When the SOx stored in the reduction catalyst should be released, the catalyst temperature of the NOx storage reduction catalyst is raised to the SOx release temperature and the air-fuel ratio of the exhaust gas flowing in is reduced. In the exhaust gas purification apparatus for an internal combustion engine having a sulfur poisoning recovery processing means for performing a sulfur poisoning recovery process, when the sulfur poisoning recovery processing means is to execute the sulfur poisoning recovery process, a cylinder During the lean combustion period in which the air-fuel ratio of the internal gas is made lean, the reducing agent is supplied from the reducing agent supply means, and after the lean combustion period has passed, control is performed to make the air-fuel ratio of the in-cylinder gas rich. An exhaust gas purification apparatus for an internal combustion engine is provided in which the exhaust gas amount is set longer as the exhaust gas amount is smaller.

請求項1に記載の発明によれば、酸素貯蔵機能を有するNOx吸蔵還元触媒の硫黄被毒回復処理を、触媒機能の劣化を生じさせることなく行うことができるという効果を奏する。   According to the first aspect of the present invention, there is an effect that the sulfur poisoning recovery process of the NOx occlusion reduction catalyst having an oxygen storage function can be performed without causing deterioration of the catalyst function.

圧縮着火式内燃機関の全体図である。1 is an overall view of a compression ignition type internal combustion engine. NOx吸蔵還元触媒の側面断面図である。It is side surface sectional drawing of a NOx storage reduction catalyst. 触媒担体の表面部分の断面図である。It is sectional drawing of the surface part of a catalyst support | carrier. 単位時間当たりに吸蔵されるSOx量SOXAのマップを示す図である。It is a figure which shows the map of SOx amount SOXA occluded per unit time. NOx吸蔵還元触媒の位置と温度との関係を示す図である。It is a figure which shows the relationship between the position of NOx storage reduction catalyst, and temperature. 硫黄被毒回復処理における添加制御と燃焼制御との関係を示すタイムチャートである。It is a time chart which shows the relationship between the addition control in a sulfur poisoning recovery process, and combustion control. 硫黄被毒回復処理における添加制御と燃焼制御との関係を示すタイムチャートである。It is a time chart which shows the relationship between the addition control in a sulfur poisoning recovery process, and combustion control.

図1は本発明を圧縮着火式内燃機関に適用した場合を示している。しかしながら本発明を火花点火式内燃機関に適用することもできる。   FIG. 1 shows a case where the present invention is applied to a compression ignition type internal combustion engine. However, the present invention can also be applied to a spark ignition type internal combustion engine.

図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内にそれぞれ燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドをそれぞれ示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口は吸入空気量を検出するためのエアフローメータ8を介してエアクリーナ9に連結される。なお、エアフローメータ8によって検出される吸入空気量は排気ガス量SVと等しい。吸気ダクト6内にはステップモータにより駆動されるスロットル弁10が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結され、排気タービン7bの出口は排気後処理装置20に連結される。   Referring to FIG. 1, 1 is an engine body, 2 is a combustion chamber of each cylinder, 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber 2, 4 is an intake manifold, and 5 is an exhaust manifold. Respectively. The intake manifold 4 is connected to the outlet of the compressor 7a of the exhaust turbocharger 7 through the intake duct 6, and the inlet of the compressor 7a is connected to the air cleaner 9 through the air flow meter 8 for detecting the intake air amount. The intake air amount detected by the air flow meter 8 is equal to the exhaust gas amount SV. A throttle valve 10 driven by a step motor is disposed in the intake duct 6, and a cooling device 11 for cooling intake air flowing through the intake duct 6 is disposed around the intake duct 6. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 11, and the intake air is cooled by the engine cooling water. On the other hand, the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7, and the outlet of the exhaust turbine 7 b is connected to the exhaust aftertreatment device 20.

排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、「EGR」という)通路12を介して互いに連結され、EGR通路12内には電子制御式EGR制御弁13が配置される。また、EGR通路12周りにはEGR通路12内を流れるEGRガスを冷却するための冷却装置14が配置される。図1に示される実施例では機関冷却水が冷却装置14内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管15を介してコモンレール16に連結される。このコモンレール16内へは電子制御式の吐出量可変な燃料ポンプ17から燃料が供給され、コモンレール16内に供給された燃料は各燃料供給管15を介して燃料噴射弁3に供給される。   The exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as “EGR”) passage 12, and an electronically controlled EGR control valve 13 is disposed in the EGR passage 12. A cooling device 14 for cooling the EGR gas flowing in the EGR passage 12 is disposed around the EGR passage 12. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 14, and the EGR gas is cooled by the engine cooling water. On the other hand, each fuel injection valve 3 is connected to a common rail 16 through a fuel supply pipe 15. Fuel is supplied into the common rail 16 from an electronically controlled fuel pump 17 with variable discharge amount, and the fuel supplied into the common rail 16 is supplied to the fuel injection valve 3 through each fuel supply pipe 15.

排気後処理装置20は、排気タービン7bの出口に連結された排気管21と、排気管21に連結されたNOx吸蔵還元触媒22と、NOx吸蔵還元触媒22に連結された排気管23とを有する。また、排気管21には還元剤添加弁24が取り付けられる。NOx吸蔵還元触媒22に流入する排気ガスの空燃比を検出するための空燃比センサ25が配置され、NOx吸蔵還元触媒22には、その触媒温度Tを検出するための温度センサ26が取り付けられる。   The exhaust aftertreatment device 20 includes an exhaust pipe 21 connected to the outlet of the exhaust turbine 7b, a NOx storage reduction catalyst 22 connected to the exhaust pipe 21, and an exhaust pipe 23 connected to the NOx storage reduction catalyst 22. . A reducing agent addition valve 24 is attached to the exhaust pipe 21. An air-fuel ratio sensor 25 for detecting the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst 22 is arranged, and a temperature sensor 26 for detecting the catalyst temperature T is attached to the NOx storage reduction catalyst 22.

還元剤添加弁24にはコモンレール16から還元剤としての燃料が添加され、還元剤添加弁24から排気管21内に燃料が添加される。本発明による実施形態ではこの燃料は軽油からなる。なお、還元剤添加弁24を排気マニホルド5に取り付けることもできる。また、本発明による実施形態では、還元剤添加弁24から燃料を添加する他に、還元剤としてCO(一酸化炭素)を含む排気ガスを生成し、リッチ空燃比の排気ガスを生成することもできる。COは、燃料よりも還元性が高く、燃焼室の混合気の空燃比をリッチにし高温で燃焼させることによって生成することができる。   Fuel as a reducing agent is added from the common rail 16 to the reducing agent addition valve 24, and fuel is added from the reducing agent addition valve 24 into the exhaust pipe 21. In an embodiment according to the invention, this fuel consists of light oil. The reducing agent addition valve 24 can be attached to the exhaust manifold 5. Further, in the embodiment according to the present invention, in addition to adding fuel from the reducing agent addition valve 24, exhaust gas containing CO (carbon monoxide) as a reducing agent may be generated to generate a rich air-fuel ratio exhaust gas. it can. CO is more reducible than fuel and can be generated by making the air-fuel ratio of the air-fuel mixture in the combustion chamber rich and burning at a high temperature.

なお、還元剤添加弁24から添加された燃料を含まない、例えば、排気マニホルド5内におけるガスの空燃比は、燃焼室5内(筒内)のガスの空燃比を示すため、筒内ガスの空燃比と称する。従って、上述のCOを含む排気ガスを生成することは、筒内ガスの空燃比をリッチにしていることとなる。   Note that, for example, the air-fuel ratio of the gas in the exhaust manifold 5 that does not include the fuel added from the reducing agent addition valve 24 indicates the air-fuel ratio of the gas in the combustion chamber 5 (in-cylinder). It is called an air-fuel ratio. Therefore, generating the exhaust gas containing CO described above makes the air-fuel ratio of the in-cylinder gas rich.

電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。エアフローメータ8、空燃比センサ25、及び温度センサ26の出力信号はそれぞれ対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル39にはアクセルペダル39の踏込み量Lに比例した出力電圧を発生する負荷センサ40が接続され、負荷センサ40の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ41が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁10駆動用ステップモータ、EGR制御弁13、燃料ポンプ17及び還元剤添加弁24に接続される。   The electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31. It comprises. Output signals of the air flow meter 8, the air-fuel ratio sensor 25, and the temperature sensor 26 are input to the input port 35 via corresponding AD converters 37, respectively. A load sensor 40 that generates an output voltage proportional to the depression amount L of the accelerator pedal 39 is connected to the accelerator pedal 39, and the output voltage of the load sensor 40 is input to the input port 35 via the corresponding AD converter 37. Is done. Further, the input port 35 is connected to a crank angle sensor 41 that generates an output pulse every time the crankshaft rotates, for example, 15 °. On the other hand, the output port 36 is connected to the fuel injection valve 3, the throttle valve 10 drive step motor, the EGR control valve 13, the fuel pump 17, and the reducing agent addition valve 24 through corresponding drive circuits 38.

図2はNOx吸蔵還元触媒22の構造を示している。図2に示される実施例ではNOx吸蔵還元触媒22はハニカム構造をなしており、薄肉の隔壁60により互いに分離された複数個の排気ガス流通路61を具備する。各隔壁60の両側表面上には例えばアルミナからなる触媒担体が担持されており、図3(A)及び(B)はこの触媒担体65の表面部分の断面を図解的に示している。図3(A)及び(B)に示されるように触媒担体65の表面上には貴金属触媒66が分散して担持されており、更に触媒担体65の表面上にはNOx吸収剤67の層が形成されている。   FIG. 2 shows the structure of the NOx storage reduction catalyst 22. In the embodiment shown in FIG. 2, the NOx occlusion reduction catalyst 22 has a honeycomb structure and includes a plurality of exhaust gas flow passages 61 separated from each other by thin partition walls 60. A catalyst carrier made of alumina, for example, is supported on both surfaces of each partition wall 60, and FIGS. 3A and 3B schematically show a cross section of the surface portion of the catalyst carrier 65. As shown in FIGS. 3A and 3B, the noble metal catalyst 66 is dispersed and supported on the surface of the catalyst carrier 65, and a layer of NOx absorbent 67 is further provided on the surface of the catalyst carrier 65. Is formed.

本発明による実施例では貴金属触媒66として白金Ptが用いられており、NOx吸収剤67を構成する成分としては例えばカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つが用いられている。   In the embodiment according to the present invention, platinum Pt is used as the noble metal catalyst 66, and the components constituting the NOx absorbent 67 are, for example, alkali metals such as potassium K, sodium Na, cesium Cs, barium Ba, and calcium Ca. At least one selected from rare earths such as alkaline earth, lanthanum La, and yttrium Y is used.

機関吸気通路、燃焼室2及びNOx吸蔵還元触媒22上流の排気通路内に供給された空気及び燃料(炭化水素)の比を排気ガスの空燃比と称すると、NOx吸収剤67は排気ガスの空燃比がリーンのときにはNOxを吸収し、排気ガス中の酸素濃度が低下すると吸収したNOxを放出するNOxの吸放出作用を行う。   When the ratio of air and fuel (hydrocarbon) supplied into the engine intake passage, the combustion chamber 2 and the exhaust passage upstream of the NOx storage reduction catalyst 22 is referred to as the air-fuel ratio of the exhaust gas, the NOx absorbent 67 When the fuel ratio is lean, NOx is absorbed, and when the oxygen concentration in the exhaust gas decreases, the NOx is absorbed and released to release the absorbed NOx.

すなわち、NOx吸収剤67を構成する成分としてバリウムBaを用いた場合を例にとって説明すると、排気ガスの空燃比がリーンのとき、すなわち排気ガス中の酸素濃度が高いときには排気ガス中に含まれるNOは図3(A)に示されるように白金Pt66上において酸化されてNO2となり、次いでNOx吸収剤67内に吸収されて酸化バリウムBaOと結合しながら硝酸イオンNO3 -の形でNOx吸収剤67内に拡散する。このようにしてNOxがNOx吸収剤67内に吸収される。排気ガス中の酸素濃度が高い限り白金Pt66の表面でNO2が生成され、NOx吸収剤67のNOx吸収能力が飽和しない限りNO2がNOx吸収剤67内に吸収されて硝酸イオンNO3 -が生成される。 That is, the case where barium Ba is used as a component constituting the NOx absorbent 67 will be described as an example. When the air-fuel ratio of the exhaust gas is lean, that is, when the oxygen concentration in the exhaust gas is high, the NO contained in the exhaust gas 3A is oxidized on platinum Pt66 to become NO 2 as shown in FIG. 3 (A), and then is absorbed into the NOx absorbent 67 and combined with barium oxide BaO to form a NOx absorbent in the form of nitrate ions NO 3 −. It diffuses in 67. In this way, NOx is absorbed in the NOx absorbent 67. Exhaust oxygen concentration in the gas, NO 2 is produced on a high as long as the surface of the platinum PT66, unless NO 2 to NOx absorbing capability of the NOx absorbent 67 is not saturated is absorbed in the NOx absorbent 67 nitrate ions NO 3 - is Generated.

これに対し、排気ガスの空燃比がリッチ又は理論空燃比にされると排気ガス中の酸化濃度が低下するために反応が逆方向(NO3 -→NO2)に進み、斯くして図3(B)に示されるようにNOx吸収剤67内の硝酸イオンNO3 -がNO2の形でNOx吸収剤67から放出される。次いで放出されたNOxは、還元剤添加弁24から添加された燃料又は燃焼室内の燃焼によって生成されたCO等の、排気ガス中に含まれる未燃HC,COによって還元される。 On the other hand, when the air-fuel ratio of the exhaust gas is made rich or the stoichiometric air-fuel ratio, the oxidation concentration in the exhaust gas decreases, so that the reaction proceeds in the reverse direction (NO 3 → NO 2 ). As shown in (B), nitrate ions NO 3 in the NOx absorbent 67 are released from the NOx absorbent 67 in the form of NO 2 . Next, the released NOx is reduced by unburned HC and CO contained in the exhaust gas, such as fuel added from the reducing agent addition valve 24 or CO generated by combustion in the combustion chamber.

更に、本発明の実施形態によれば、NOx吸蔵還元触媒22は、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれる酸素を蓄え流入する排気ガスの空燃比がリッチになると蓄えられている酸素を放出する酸素貯蔵機能を有する。すなわち、酸素貯蔵機能を実現するため、酸素吸蔵物質をセリウムCeから構成した場合を例にとって説明すると、流入排気ガスの空燃比がリーンのときには排気ガス中に含まれる酸素分子O2がCeO2の形で取り込まれる(Ce23−>2CeO2)。これに対し、流入排気ガスの空燃比がリッチになると反応が逆方向(2CeO2−>Ce23)に進み、酸素分子O2が放出される。 Further, according to the embodiment of the present invention, the NOx occlusion reduction catalyst 22 stores the oxygen contained in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean, and stores it when the air-fuel ratio of the inflowing exhaust gas becomes rich. It has an oxygen storage function to release the oxygen that has been produced. That is, in order to realize the oxygen storage function, an example in which the oxygen storage material is made of cerium Ce will be described as an example. When the air-fuel ratio of the inflowing exhaust gas is lean, oxygen molecules O 2 contained in the exhaust gas is CeO 2 . Incorporated in the form (Ce 2 O 3- > 2CeO 2 ). On the other hand, when the air-fuel ratio of the inflowing exhaust gas becomes rich, the reaction proceeds in the reverse direction (2CeO 2- > Ce 2 O 3 ), and oxygen molecules O 2 are released.

ところで排気ガス中にはSOx(例えばSO2)が含まれており、このSO2がNOx吸蔵還元触媒22に流入するとこのSO2は白金Pt66において酸化されてSO3となる。次いでこのSO3はNOx吸収剤67内に吸収されて炭酸化バリウムBaCO3と結合しながら、硫酸イオンSO4 2-の形でNOx吸収剤67内に拡散し、安定した硫酸塩BaSO4を生成する。しかしながらNOx吸収剤67が強い塩基性を有するためにこの硫酸塩BaSO4は安定していて分解しづらく、排気ガスの空燃比を単にリッチにしただけでは硫酸塩BaSO4は分解されずにそのまま残る。従ってNOx吸収剤67内には時間が経過するにつれて硫酸塩BaSO4が増大(すなわち、硫黄被毒)することになり、時間が経過するにつれてNOx吸収剤67が吸収しうるNOx量が低下することになる。 By the way, the exhaust gas contains SOx (for example, SO 2 ). When this SO 2 flows into the NOx occlusion reduction catalyst 22, this SO 2 is oxidized at platinum Pt 66 to become SO 3 . Next, this SO 3 is absorbed in the NOx absorbent 67 and bonded to the barium carbonate BaCO 3 while diffusing into the NOx absorbent 67 in the form of sulfate ions SO 4 2- to form a stable sulfate BaSO 4 . To do. However, since the NOx absorbent 67 has a strong basicity, this sulfate BaSO 4 is stable and difficult to decompose. If the air-fuel ratio of the exhaust gas is simply made rich, the sulfate BaSO 4 remains as it is without being decomposed. . Accordingly, in the NOx absorbent 67, the sulfate BaSO 4 increases (that is, sulfur poisoning) as time passes, and the amount of NOx that can be absorbed by the NOx absorbent 67 decreases as time passes. become.

そこでこの場合、吸蔵したSOxを放出すべきとき、すなわち、硫黄被毒回復処理をすべきとき、NOx吸蔵還元触媒22の触媒温度Tを600℃以上のSOx放出温度まで上昇させた状態で、NOx吸蔵還元触媒22に流入する排気ガスの空燃比をリッチにする(以下、「リッチ処理」という)ことによって、NOx吸収剤67からSOxが放出され、NOx吸収剤67が吸収しうるNOx量が回復する。   Therefore, in this case, when the stored SOx is to be released, that is, when the sulfur poisoning recovery process is to be performed, the NOx storage reduction catalyst 22 is heated to a SOx release temperature of 600 ° C. or higher in the state where the NOx storage reduction catalyst 22 is raised. By making the air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst 22 rich (hereinafter referred to as “rich processing”), SOx is released from the NOx absorbent 67 and the amount of NOx that can be absorbed by the NOx absorbent 67 is recovered. To do.

ここで、硫黄被毒回復処理をすべきときとは、NOx吸蔵還元触媒22に吸蔵された推定SOx量ΣSが予め定められた値SOX0を超えたときをいう。燃料中には或る割合で硫黄が含まれており、従って排気ガス中に含まれるSOx量、すなわちNOx吸蔵還元触媒22に吸蔵されるSOx量は燃料噴射量に比例する。燃料噴射量は要求トルクTQ及び機関回転数Nの関数であり、従ってNOx吸蔵還元触媒22に吸蔵されるSOx量も要求トルクTQ及び機関回転数Nの関数となる。本発明による実施形態ではNOx吸蔵還元触媒22に単位時間当り吸蔵されるSOx量SOXAが要求トルクTQ及び機関回転数Nの関数として図4に示されるようなマップの形で予めROM32内に記憶されている。単位時間当たりのSOx量SOXAを積算することによってNOx吸蔵還元触媒22に吸蔵された推定SOx量ΣSが算出される。   Here, the time when the sulfur poisoning recovery process should be performed is when the estimated SOx amount ΣS stored in the NOx storage reduction catalyst 22 exceeds a predetermined value SOX0. Sulfur is contained in the fuel at a certain ratio. Therefore, the amount of SOx contained in the exhaust gas, that is, the amount of SOx stored in the NOx storage reduction catalyst 22 is proportional to the fuel injection amount. The fuel injection amount is a function of the required torque TQ and the engine speed N. Therefore, the SOx amount stored in the NOx storage reduction catalyst 22 is also a function of the required torque TQ and the engine speed N. In the embodiment according to the present invention, the SOx amount SOXA stored in the NOx storage reduction catalyst 22 per unit time is stored in advance in the ROM 32 as a function of the required torque TQ and the engine speed N in the form of a map as shown in FIG. ing. By integrating the SOx amount SOXA per unit time, the estimated SOx amount ΣS stored in the NOx storage reduction catalyst 22 is calculated.

さて、硫黄被毒回復処理は上述のように、まずNOx吸蔵還元触媒22をSOx放出温度まで昇温させることから開始される。この昇温処理を筒内ガスの空燃比をリッチにすることによって行うと、NOx吸蔵還元触媒22の酸素貯蔵機能によって貯蔵されていた酸素と良好に反応し大量の反応熱が生じる。この反応熱が、排気ガスを介してNOx吸蔵還元触媒22の下流側部分に伝達されることによって、NOx吸蔵還元触媒22の下流側部分を上流側部分よりも昇温させ、その結果、上流側部分と下流側部分との間に温度差が生じてしまう。   As described above, the sulfur poisoning recovery process is started by first raising the temperature of the NOx storage reduction catalyst 22 to the SOx release temperature. When this temperature raising process is performed by making the air-fuel ratio of the in-cylinder gas rich, it reacts well with the oxygen stored by the oxygen storage function of the NOx storage reduction catalyst 22 to generate a large amount of reaction heat. This reaction heat is transmitted to the downstream portion of the NOx storage reduction catalyst 22 via the exhaust gas, so that the downstream portion of the NOx storage reduction catalyst 22 is heated more than the upstream portion, and as a result, the upstream side A temperature difference is generated between the portion and the downstream portion.

これに関し、NOx吸蔵還元触媒22の排気ガス流れ方向の各部位における温度の関係を図5に示す。図5のAによって示される曲線が、本発明による硫黄被毒回復処理を行わなかった場合に、NOx吸蔵還元触媒22の下流側部分が上流側部分よりも昇温している状態を示している。その結果、触媒の劣化や燃費の悪化といった上述の問題が生じる。   In this regard, FIG. 5 shows the temperature relationship at each site in the exhaust gas flow direction of the NOx storage reduction catalyst 22. The curve shown by A in FIG. 5 shows a state where the downstream portion of the NOx storage reduction catalyst 22 is heated more than the upstream portion when the sulfur poisoning recovery process according to the present invention is not performed. . As a result, the above-described problems such as catalyst deterioration and fuel consumption deterioration occur.

一方、図5のBによって示される曲線は、本発明による硫黄被毒回復処理を行った状態を示している。曲線Bは、曲線Aに較べてNOx吸蔵還元触媒22の上流側部分の温度が上昇し、下流側部分の温度が低下している。その結果、下流側部分の過昇温による触媒の劣化を防止すると共に、硫黄被毒の度合の大きい上流側部分の硫黄被毒回復処理を十分に行うことが可能となる。   On the other hand, the curve shown by B in FIG. 5 shows a state in which the sulfur poisoning recovery process according to the present invention is performed. In the curve B, the temperature of the upstream portion of the NOx storage reduction catalyst 22 is increased and the temperature of the downstream portion is decreased as compared with the curve A. As a result, it is possible to prevent deterioration of the catalyst due to excessive temperature rise in the downstream portion and to sufficiently perform the sulfur poisoning recovery process in the upstream portion having a high degree of sulfur poisoning.

図5の曲線Bのような温度状態を実現するための本発明の実施形態による硫黄被毒回復処理について、図6を参照しながら説明する。図6は、硫黄被毒回復処理における還元剤添加弁24からの還元剤を添加する時期の制御、すなわち添加制御と、筒内ガスの空燃比の制御、すなわち燃焼制御との関係を示すタイムチャートである。   The sulfur poisoning recovery process according to the embodiment of the present invention for realizing the temperature state as shown by the curve B in FIG. 5 will be described with reference to FIG. FIG. 6 is a time chart showing the relationship between the control of the timing for adding the reducing agent from the reducing agent addition valve 24 in the sulfur poisoning recovery process, that is, the addition control, and the control of the air-fuel ratio of the in-cylinder gas, that is, the combustion control. It is.

図6を参照すると、硫黄被毒回復処理をすべきとき、筒内ガスの空燃比がリーンとなるリーン燃焼を行うように燃焼制御を行うと共に、還元剤添加弁24から還元剤の添加を行う。このとき、添加された燃料がNOx吸蔵還元触媒22上で酸化反応をすることによって、NOx吸蔵還元触媒22の温度が全体的に徐々に上昇する。また、NOx吸蔵還元触媒22の温度の上昇と共に、NOx吸蔵還元触媒22に貯蔵された酸素も徐々に放出されることによって、酸素の貯蔵量も徐々に減少する。ここで放出された酸素は還元剤と反応する。   Referring to FIG. 6, when sulfur poisoning recovery processing is to be performed, combustion control is performed so that lean combustion is performed so that the air-fuel ratio of the in-cylinder gas becomes lean, and a reducing agent is added from a reducing agent addition valve 24. . At this time, the added fuel undergoes an oxidation reaction on the NOx storage reduction catalyst 22, whereby the temperature of the NOx storage reduction catalyst 22 gradually increases as a whole. Further, as the temperature of the NOx occlusion reduction catalyst 22 rises, oxygen stored in the NOx occlusion reduction catalyst 22 is gradually released, so that the oxygen storage amount gradually decreases. The oxygen released here reacts with the reducing agent.

リーン燃焼中に還元剤の添加を行うと、排気ガス中には還元性の高いCOはほとんど含まれない状態でNOx吸蔵還元触媒22を昇温させることができ、且つ、NOx吸蔵還元触媒22に貯蔵された酸素とCOとの反応による大量の発熱を抑えることができる。また、添加された還元剤と貯蔵された酸素との反応により発生した反応熱は、後述のリッチ燃焼よりは低温の排気ガスによって、NOx吸蔵還元触媒22の下流側部分へ伝達され、最終的にNOx吸蔵還元触媒22の下流排気通路内へ放出される。従って、NOx吸蔵還元触媒22の下流側部分の過昇温を抑え、上流側部分と下流側部分の温度差を減少させることが可能となる。   If a reducing agent is added during lean combustion, the NOx storage reduction catalyst 22 can be heated while the exhaust gas contains almost no highly reducible CO, and the NOx storage reduction catalyst 22 A large amount of heat generated by the reaction between stored oxygen and CO can be suppressed. In addition, the reaction heat generated by the reaction between the added reducing agent and the stored oxygen is transmitted to the downstream portion of the NOx storage reduction catalyst 22 by exhaust gas having a temperature lower than that of rich combustion described later, and finally. The NOx occlusion reduction catalyst 22 is discharged into the downstream exhaust passage. Therefore, it is possible to suppress an excessive temperature rise in the downstream portion of the NOx storage reduction catalyst 22 and reduce the temperature difference between the upstream portion and the downstream portion.

次に、NOx吸蔵還元触媒22の上流側部分の温度がSOx放出温度に十分達した場合、燃焼制御を、リーン燃焼から筒内ガスの空燃比をリッチにするリッチ燃焼へと切り替える。リッチ燃焼を行うことによって、還元性の高いCOが排気ガス中に多く含まれることとなり、吸蔵したSOxを放出させる硫黄被毒の回復が良好に行われる。また、リッチ燃焼の前のリーン燃焼によって、NOx吸蔵還元触媒22に貯蔵された酸素の大半は放出されているため、排気ガス中のCOと放出された酸素との反応による反応熱もほとんど生じない。   Next, when the temperature of the upstream portion of the NOx storage reduction catalyst 22 has sufficiently reached the SOx release temperature, the combustion control is switched from lean combustion to rich combustion that makes the air-fuel ratio of the in-cylinder gas rich. By performing the rich combustion, a lot of highly reducible CO is contained in the exhaust gas, and the sulfur poisoning that releases the stored SOx is well recovered. Further, since most of the oxygen stored in the NOx storage reduction catalyst 22 is released by the lean combustion before the rich combustion, little reaction heat is generated due to the reaction between the CO in the exhaust gas and the released oxygen. .

ここで、硫黄被毒回復処理において、リッチ燃焼に切り替える前のリーン燃焼を実行する時間をリーン燃焼期間t1と称すると、リーン燃焼期間t1は排気ガス量が小さいほど長く設定する。すなわち、排気ガス量が小さいということは、NOx吸蔵還元触媒22の下流側部分の温度が上流側部分よりも高い場合に、NOx吸蔵還元触媒22の外へ放出される単位時間当たりの熱量が少なくなる。従って、リーン燃焼期間t1をより長く設定することによって、NOx吸蔵還元触媒22の外への熱の放出を促し、NOx吸蔵還元触媒22の上流側部分と下流側部分との温度差をできるだけ減少させるようにしている。   Here, in the sulfur poisoning recovery process, if the time for performing lean combustion before switching to rich combustion is referred to as a lean combustion period t1, the lean combustion period t1 is set longer as the exhaust gas amount is smaller. That is, the small exhaust gas amount means that when the temperature of the downstream portion of the NOx storage reduction catalyst 22 is higher than that of the upstream portion, the amount of heat released per unit time to the outside of the NOx storage reduction catalyst 22 is small. Become. Therefore, by setting the lean combustion period t1 longer, the heat release to the outside of the NOx storage reduction catalyst 22 is promoted, and the temperature difference between the upstream portion and the downstream portion of the NOx storage reduction catalyst 22 is reduced as much as possible. I am doing so.

リーン燃焼中における添加制御による還元剤の添加時期は、例えば触媒温度Tに応じて決定され、排気ガス量に応じたリーン燃焼期間t1と共に予め実験等によって求め、ROM32内に記憶されている。   The addition timing of the reducing agent by addition control during lean combustion is determined according to, for example, the catalyst temperature T, and is obtained in advance through experiments or the like together with the lean combustion period t1 corresponding to the amount of exhaust gas, and stored in the ROM 32.

以上より、本発明によれば、酸素貯蔵機能を有するNOx吸蔵還元触媒22の硫黄被毒回復処理において、NOx吸蔵還元触媒22内の温度をより均一にすることが可能となることから、触媒機能の劣化を生じさせることなく、硫黄被毒回復の処理効率向上と処理時間の短縮を図ることが可能となるという効果を奏する。   As described above, according to the present invention, in the sulfur poisoning recovery process of the NOx storage reduction catalyst 22 having an oxygen storage function, the temperature in the NOx storage reduction catalyst 22 can be made more uniform. Thus, there is an effect that it is possible to improve the processing efficiency of sulfur poisoning recovery and shorten the processing time without causing deterioration.

続いて、本発明の別の実施形態による硫黄被毒回復処理について説明する。図7は、硫黄被毒回復処理における添加制御と、燃焼制御との関係を示す、図6とは異なるタイムチャートである。   Subsequently, a sulfur poisoning recovery process according to another embodiment of the present invention will be described. FIG. 7 is a time chart different from FIG. 6 showing the relationship between the addition control and the combustion control in the sulfur poisoning recovery process.

図7を参照し図6と異なる点について説明すると、本実施形態においては、リーン燃焼期間t1の後半において、添加時間t2をより長く設定する。これによって、より多くの還元剤がNOx吸蔵還元触媒22に添加され、NOx吸蔵還元触媒22に流入する排気ガスの空燃比が一時的にリッチとなり、貯蔵された酸素のほぼ全てが放出される。その結果、次のリッチ燃焼中に、NOx吸蔵還元触媒22に貯蔵された酸素に起因する反応熱を最小限抑えることが可能となり、従って、NOx吸蔵還元触媒22内の温度を均一にすることが可能となる。添加時間t2は、例えば触媒温度Tに応じて予め実験等によって求め、ROM32内に記憶されている。   The difference from FIG. 6 will be described with reference to FIG. 7. In the present embodiment, the addition time t2 is set longer in the latter half of the lean combustion period t1. As a result, more reducing agent is added to the NOx occlusion reduction catalyst 22, the air-fuel ratio of the exhaust gas flowing into the NOx occlusion reduction catalyst 22 becomes temporarily rich, and almost all of the stored oxygen is released. As a result, during the next rich combustion, it becomes possible to minimize the heat of reaction due to oxygen stored in the NOx storage reduction catalyst 22, and therefore, the temperature in the NOx storage reduction catalyst 22 can be made uniform. It becomes possible. The addition time t2 is obtained in advance by experiments or the like according to the catalyst temperature T, for example, and is stored in the ROM 32.

以上より、本実施形態によれば、上述の本発明の効果に加え、NOx吸蔵還元触媒22内の温度の更なる均一化が図れる。更に、リーン燃焼中にNOx吸蔵還元触媒22に流入する排気ガスの空燃比が一時的にリッチとなることから、吸蔵されたSOxの一部が放出され、更なるリッチ燃焼時の硫黄被毒回復の処理効率向上と処理時間の短縮を図ることが可能となるという効果を奏する。   As described above, according to the present embodiment, in addition to the effects of the present invention described above, the temperature in the NOx storage reduction catalyst 22 can be further uniformized. Further, since the air-fuel ratio of the exhaust gas flowing into the NOx occlusion reduction catalyst 22 during the lean combustion temporarily becomes rich, a part of the occluded SOx is released and the sulfur poisoning recovery at the time of further rich combustion is performed. It is possible to improve the processing efficiency and shorten the processing time.

4 吸気マニホルド
5 排気マニホルド
7 排気ターボチャージャ
21 排気管
22 NOx吸蔵還元触媒
24 還元剤供給弁
4 Intake manifold 5 Exhaust manifold 7 Exhaust turbocharger 21 Exhaust pipe 22 NOx storage reduction catalyst 24 Reductant supply valve

Claims (1)

機関排気通路内に、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを還元浄化するNOx吸蔵還元触媒を配置すると共に該NOx吸蔵還元触媒の上流の機関排気通路内に還元剤供給手段を配置し、NOx吸蔵還元触媒が、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれる酸素を蓄え流入する排気ガスの空燃比がリッチになると蓄えられている酸素を放出する酸素貯蔵機能を更に備え、NOx吸蔵還元触媒に吸蔵されたSOxを放出させるべきときに、NOx吸蔵還元触媒の触媒温度をSOx放出温度に昇温させると共に流入する排気ガスの空燃比をリッチにする硫黄被毒回復処理を行う硫黄被毒回復処理手段を具備する内燃機関の排気浄化装置において、前記硫黄被毒回復処理手段が、硫黄被毒回復処理を実行すべきときに、筒内ガスの空燃比をリーンにするリーン燃焼期間中に還元剤供給手段から還元剤を供給し、前記リーン燃焼期間経過後に筒内ガスの空燃比をリッチにする制御を行い、前記リーン燃焼期間は、排気ガス量が小さいほど長く設定されることを特徴とする内燃機関の排気浄化装置。   NOx for storing NOx contained in the exhaust gas when the air-fuel ratio of the exhaust gas flowing into the engine exhaust passage is lean, and reducing and purifying the stored NOx when the air-fuel ratio of the exhaust gas flowing in becomes the stoichiometric air-fuel ratio or rich The NOx storage reduction catalyst is disposed in the engine exhaust passage upstream of the NOx storage reduction catalyst, and the NOx storage reduction catalyst is included in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean. The NOx storage-reduction catalyst is further provided with an oxygen storage function for releasing the stored oxygen when the air-fuel ratio of the exhaust gas that stores and flows in is rich, and the NOx storage-reduction catalyst should release SOx. The sulfur poisoning recovery processing means for performing the sulfur poisoning recovery processing for raising the catalyst temperature to the SOx release temperature and enriching the air-fuel ratio of the inflowing exhaust gas In the exhaust gas purification apparatus for an internal combustion engine, the reducing agent supply means during the lean combustion period in which the sulfur poisoning recovery processing means leans the air-fuel ratio of the in-cylinder gas when the sulfur poisoning recovery processing is to be executed. An internal combustion engine characterized in that a reducing agent is supplied from the exhaust gas and control is performed to enrich the air-fuel ratio of the in-cylinder gas after the lean combustion period, and the lean combustion period is set longer as the exhaust gas amount is smaller. Exhaust purification equipment.
JP2009143368A 2009-06-16 2009-06-16 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5206597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009143368A JP5206597B2 (en) 2009-06-16 2009-06-16 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143368A JP5206597B2 (en) 2009-06-16 2009-06-16 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011001832A JP2011001832A (en) 2011-01-06
JP5206597B2 true JP5206597B2 (en) 2013-06-12

Family

ID=43560001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143368A Expired - Fee Related JP5206597B2 (en) 2009-06-16 2009-06-16 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5206597B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6660334B2 (en) * 2017-03-22 2020-03-11 日立オートモティブシステムズ株式会社 Control device and control method for internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465799B2 (en) * 1999-04-20 2010-05-19 マツダ株式会社 Exhaust gas purification device, exhaust gas purification method, and exhaust gas purification catalyst
JP3642032B2 (en) * 2001-03-02 2005-04-27 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4001019B2 (en) * 2002-01-28 2007-10-31 トヨタ自動車株式会社 Diesel engine exhaust purification device and exhaust purification method
JP3876903B2 (en) * 2004-11-30 2007-02-07 いすゞ自動車株式会社 Desulfurization control method for exhaust gas purification system and exhaust gas purification system
JP4561656B2 (en) * 2006-03-06 2010-10-13 トヨタ自動車株式会社 Catalyst temperature estimation device for internal combustion engine
JP2008223679A (en) * 2007-03-14 2008-09-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
JP2011001832A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP4420048B2 (en) Exhaust gas purification device for internal combustion engine
US20120017587A1 (en) Control system of internal combustion engine
US20090049825A1 (en) Exhaust Gas Purification Device For Internal Combustion Engine
US20060064969A1 (en) Exhaust purification device of compression ignition type internal combustion engine
JP4697305B2 (en) Exhaust gas purification device for internal combustion engine
JP4039349B2 (en) Exhaust gas purification device for internal combustion engine
JP5056725B2 (en) Control device for internal combustion engine
JP5163809B2 (en) Exhaust gas purification device for internal combustion engine
JP2010048134A (en) Exhaust emission control device for internal combustion engine
JP2006336589A (en) Exhaust emission control device of internal combustion engine
JP5206597B2 (en) Exhaust gas purification device for internal combustion engine
JP2016109041A (en) Control device for internal combustion engine
JP2009156165A (en) Exhaust emission control device for internal combustion engine
JP2008208739A (en) Exhaust purification device of internal combustion engine
JP2009293572A (en) Exhaust emission control device for internal combustion engine
JP2008303791A (en) Exhaust emission control device of internal combustion engine
JP4438880B2 (en) Exhaust gas purification device for internal combustion engine
JP2009228525A (en) Exhaust emission control device of internal combustion engine
JP2009024521A (en) Exhaust emission control device of internal combustion engine
JP2008255891A (en) Exhaust emission control device for internal combustion engine
JP2005171805A (en) Exhaust emission control device of internal combustion engine
JPWO2010089901A1 (en) Exhaust gas purification device for internal combustion engine
JP2000073741A (en) Exhaust emission control device for internal combustion engine
JP2009250130A (en) Exhaust emission control device of internal combustion engine
JP2005133609A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5206597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees