JP3642032B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3642032B2
JP3642032B2 JP2001059005A JP2001059005A JP3642032B2 JP 3642032 B2 JP3642032 B2 JP 3642032B2 JP 2001059005 A JP2001059005 A JP 2001059005A JP 2001059005 A JP2001059005 A JP 2001059005A JP 3642032 B2 JP3642032 B2 JP 3642032B2
Authority
JP
Japan
Prior art keywords
catalyst
internal combustion
combustion engine
exhaust
plasma generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001059005A
Other languages
Japanese (ja)
Other versions
JP2002256853A (en
Inventor
伸一 竹島
信也 広田
和浩 伊藤
孝充 浅沼
泰彰 仲野
耕平 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001059005A priority Critical patent/JP3642032B2/en
Publication of JP2002256853A publication Critical patent/JP2002256853A/en
Application granted granted Critical
Publication of JP3642032B2 publication Critical patent/JP3642032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
燃料の経済性の観点から、ガソリン機関において希薄燃焼(リーンバーン)機関が開発されるとともに、ディーゼル機関の適用範囲が拡大されつつある。ディーゼル機関や希薄燃焼ガソリン機関では、大きな空気過剰率の下で燃料が燃焼せしめられるため、不完全燃焼成分であるHC(炭化水素)及びCO(一酸化炭素)の排出量が少ない反面、空気中の窒素と燃え残りの酸素とが反応して生成されるNOX(窒素酸化物)の排出量が多くなる。
【0003】
このように比較的多量に生成される有害なNOXの大気中への放出量を低減するために、機関排気系に吸蔵還元型NOX触媒を配置することが知られている。吸蔵還元型NOX触媒は、排気ガス中の酸素濃度が高いときにNOXを硝酸塩の形態で吸収する一方、排気ガス中の酸素濃度が低くなると吸収したNOXを放出するとともに、放出したNOXを排気ガス中のHCやCO等の還元成分によって還元浄化させるものである。このように、吸蔵還元型NOX触媒を備えた内燃機関では、酸素濃度が高い希薄燃焼の排気ガス中からNOXを良好に吸収し、定期的なリッチ混合気燃焼運転(リッチスパイク運転)によって、排気ガス中の酸素濃度を低下させるとともに排気ガス中にHCやCO等の還元成分を存在させ、吸収したNOXを大気中に放出させることなく良好に還元・浄化することができる。
【0004】
ところで、内燃機関の燃料には硫黄が含まれており、燃焼に際してSOXも生成される。SOXは、吸蔵還元型NOX触媒へNOXと同様に酸化されて硫酸塩の形態で吸収される。硫酸塩は、安定な物質であるために、通常のリッチ混合気燃焼運転を実施しても吸蔵還元型NOX触媒から放出され難く、SOX吸蔵量が徐々に増加してしまう。吸蔵還元型NOX触媒中の硝酸塩又は硫酸塩の吸蔵可能量は有限であるため、吸蔵還元型NOX触媒中の硫酸塩の吸蔵量が増加(以下、SOX被毒と称する)すれば、硝酸塩の吸蔵可能な量がその分だけ減少することとなるので、吸蔵還元型NOX触媒中の硫酸塩の吸蔵量を減少(以下、SOX被毒回復又は硫黄脱離再生と称する)させなければ、遂には、全くNOXを吸収することができなくなってしまう。
【0005】
硫酸塩は、吸蔵還元型NOX触媒が600°C程度の高温となり、かつ、周囲の酸素濃度が低下したときに、例えばSO2に分解して気体として触媒から放出させることができる。それにより、硫黄脱離再生(SOX被毒回復)のためには、例えば、吸蔵還元型NOX触媒上でHCやCOを燃焼させて吸蔵還元型NOX触媒を昇温させることが必要である。これを実施するために、定期的にリッチ空燃比で運転することが行われている。
【0006】
硫黄脱離再生(SOX被毒回復)は、K2SO4をSO2に還元して放出することを目的としている。しかし、強度のリッチ空燃比で運転が行われているため、H2などの還元成分が存在しており、一旦脱離したSO2が更にS又はH2Sへと還元されることがある。そして、このS又はH2Sが触媒に再びK2SO4の形で吸蔵されることとなり、触媒が毒されてしまう。かくして、次の脱離が抑制され、SO2として完全に硫黄分を触媒から放出させるのに長時間を要している。そのため、通常の走行では容易にSOX被毒回復処理を実施することができずにNOX浄化率が低下し、また、たとえSOX被毒回復処理を実施することができたにしても燃費の悪化を招いている。
【0007】
硫黄脱離再生(SOX被毒回復)の処理時間を短縮するために平均空燃比を弱リッチにしてリーン/リッチを繰り返すことにより、S又はH2Sまでの還元を抑制することが提案されている。しかし、やはり微視的にみて被毒と再酸化による被毒回復とが繰り返されることによって再生時間がわずかに短縮されるに過ぎない。また、再被毒を抑制するために、ストイキに近い空燃比の下で硫黄脱離を行おうとした場合には、還元力が弱く、硫黄脱離はほとんど起こらない。
【0008】
一方、吸蔵還元型NOX触媒によるNOX浄化率を向上させるためには、吸蔵されにくいNOを予めNO2に酸化しておくことが有効である。そこで、特開平11−324652号公報は、吸蔵還元型NOX触媒の上流にプラズマ発生装置を配置し、NOをNO2に変換させて吸蔵能力の向上を図った排気浄化装置を開示している。しかし、この排気浄化装置では、常にプラズマ発生装置を作動させてプラズマを生成しておくようにすると、エネルギーロスが大きいという問題が生ずる。
【0009】
【発明が解決しようとする課題】
本発明は、上述した問題点に鑑みてなされたものであり、その目的は、内燃機関の排気通路に吸蔵還元型NOX触媒及びプラズマ発生装置を配置した排気浄化装置において、プラズマ発生装置を効率よく作動させてエネルギー消費を抑制しつつ、触媒に吸蔵されたNOX、SOX等の有害物質の放出・還元を迅速化することにより浄化率の向上を図ることにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明の第一の側面によれば、排気通路に吸蔵還元型NOX触媒が配置されるとともに該吸蔵還元型NOX触媒より上流側の排気通路に又は該吸蔵還元型NOX触媒と一体的にプラズマ発生装置が配置された内燃機関の排気浄化装置において、前記吸蔵還元型NOX触媒に吸蔵された有害物質を放出させる処理が実行されるときに前記プラズマ発生装置を作動させる制御手段が設けられていることを特徴とする、内燃機関の排気浄化装置が提供される。
【0011】
この排気浄化装置においては、吸蔵還元型NOX触媒に吸蔵された有害物質を放出させる処理の実行時、すなわちNOXの還元・浄化のためのリッチスパイク運転時又はSOXの被毒回復のためのリッチ運転時に、プラズマ発生装置が作動してプラズマが発生するため、有害物質の放出、還元反応が速やかに進むとともに、全ての領域でプラズマ発生装置が作動しないため、エネルギー消費が抑制される。
【0012】
また、本発明の第二の側面によれば、好ましくは、前記制御手段は、前記吸蔵還元型NOX触媒の温度が所定の第一の温度以下であるとき又は該第一の温度よりも高い所定の第二の温度以上であるときにも、更に前記プラズマ発生装置を作動させる。触媒温度が高いとき又は低いときにはNOXの吸収率が低くなるが、この排気浄化装置においては、このようなときにもプラズマ発生装置が作動してプラズマが発生するため、NOX浄化率の向上が図られる。
【0013】
また、本発明の第三の側面によれば、好ましくは、前記吸蔵還元型NOX触媒の前段に酸化触媒が配置され、前記プラズマ発生装置が前記酸化触媒と前記吸蔵還元型NOX触媒との間に配置される。この排気浄化装置においては、プラズマ発生装置の前段に酸化触媒が配置されることで余分な還元剤が酸化触媒で消費され、プラズマの作用で生成されたNO2や活性酸素などの活性種が還元剤と反応する量が低減せしめられ、吸蔵還元型NOX触媒へ十分な活性種が送られることとなる。
【0014】
また、本発明の第四の側面によれば、前記吸蔵還元型NOX触媒が微粒子物質を捕集可能なフィルタに担持される。
【0015】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施形態について説明する。
【0016】
図1は、本発明の一実施形態に係る内燃機関の排気浄化装置の全体構成を示す概略図である。符号10は、ディーゼル機関又は希薄燃焼ガソリン機関の本体を示す。機関本体10には、機関本体10によって駆動される発電機12が接続されている。発電機12によって発生せしめられた電気は、バッテリ14に蓄えられる。
【0017】
機関本体10から延在する排気通路20には、二つの触媒が配置されている。下流側の触媒は吸蔵還元型NOX触媒22であり、上流側の触媒は酸化触媒24である。そして、酸化触媒24と吸蔵還元型NOX触媒22との間には、プラズマ発生装置26が配置されている。なお、プラズマ発生装置26は、吸蔵還元型NOX触媒22に一体的に搭載されてもよい。
【0018】
そのプラズマ発生装置26には、電力供給装置28から電力が供給される。電力供給装置28は、バッテリ14から供給される直流電圧を交流電圧へ変換するとともに、その周波数及び交流電圧値を調整してプラズマ発生装置26への投入電力を変化させる。
【0019】
電子制御装置(ECU)30は、機関本体10及び電力供給装置28を制御するものであり、バッテリ14から電力の供給を受けて作動する。電子制御装置30は、機関本体10の運転状態を検出するとともに、酸化触媒24より上流側に設けられた空燃比(A/F)センサ32、プラズマ発生装置26と吸蔵還元型NOX触媒22との間に設けられた排気温センサ34等の各種センサの出力信号を受け取る。また、電子制御装置30は、機関が搭載された車両に設けられた走行距離カウンタ36から走行距離を検出することができる。
【0020】
図2は、ECU30によって実行される排気浄化処理の手順を示すフローチャートである。まず、ステップ102では、A/Fセンサ32、排気温センサ34及び走行距離カウンタ36の各出力からそれぞれ空燃比、排気温度及び走行距離が検出されるとともに、機関運転状態から吸蔵還元型NOX触媒22の触媒温度が推定される。
【0021】
次いで、ステップ104では、前回のSOX被毒回復処理の実行時からの走行距離が所定値以上か否かが判定される。その走行距離が所定値以上のときには、ステップ106に進み、SOX被毒回復処理が実行される一方、走行距離が所定値未満のときには、ステップ108に進む。なお、NOX触媒22のNOX吸蔵量の低下により回復処理の実行時期を判定するようにしてもよい。
【0022】
ステップ106では、排気温度と空燃比とに応じて供給交流電圧の周波数及び電圧値を調整してプラズマ発生装置26を作動させつつ、SOX被毒回復処理が実行される。このSOX被毒回復処理では、空燃比の中心がストイキ又は弱リッチとなるように制御される。そのため、排気ガス中のH2、COなどの還元成分の量は、強度のリッチ空燃比の下で行われていた従来のSOX被毒回復処理と比較して、わずかなものとなる。しかし、プラズマ発生装置26の作動により、還元成分は活性化され、その還元力は強くなっているため、わずかな一定量の還元成分でも短時間に触媒から硫黄を脱離させることができる。
【0023】
そして、H2などの還元成分がわずかしか生成されないため、硫酸塩の分解による主成分はSO2となり、触媒の再被毒が抑制される。すなわち、水素が余剰に存在すると、
SO4 2-+(HC* or H2 or CO)→SO2+CO2,H2
SO2+2H2→S+2H2
SO2+3H2→H2S+2H2
という反応により、S及びH2Sが生成されて、再被毒が起こる。しかし、本実施形態では、ストイキ近傍の空燃比での運転により生じた少量の還元ガスをプラズマで活性化することによりSOX被毒回復処理を行っているため、硫酸塩を分解してSO2として放出するのみで、S又はH2Sへの更なる還元は生ぜず、再被毒は起こらない。ステップ106の実行後、本ルーチンは、終了する。
【0024】
ステップ104でSOX被毒回復処理の実行条件が成立しなかったときに実行されるステップ108では、リッチスパイク運転の実行中であるか否かが判定される。すなわち、本実施形態においては、別途実行されている燃料噴射制御において定期的にNOXの還元・浄化のためのリッチスパイク運転がなされているが、かかるリッチスパイク運転中であるか否かが判定される。
【0025】
リッチスパイク運転中であれば、ステップ110に進み、排気温度と空燃比とに応じて供給交流電圧の周波数及び電圧値を調整しつつプラズマ発生装置26が作動せしめられる。かくして、排気ガス中の還元成分(HC)が活性化され、吸蔵還元型NOX触媒22に吸蔵されたNOXの還元が促進される。ステップ110の実行後、本ルーチンは終了する。
【0026】
ステップ108でリッチスパイク運転中にないと判定されたときには、ステップ112に進み、吸蔵還元型NOX触媒22の触媒温度TCが所定の温度T1未満か否かが判定される。TC<T1が成立する触媒低温領域にあっては、ステップ110に進み、プラズマ発生装置26が作動せしめられる。かくして、
NO+(1/2)O2→NO2
なる酸化反応が促進され、NOは、NOX触媒22に吸蔵されやすいNO2へと変換される。
【0027】
ステップ112で低温領域にないと判定されたときには、ステップ114に進み、吸蔵還元型NOX触媒22の触媒温度TCが所定の温度T2(T1<T2)より大きいか否かが判定される。T2<TCが成立する触媒高温領域にあっては、ステップ110に進み、プラズマ発生装置26が作動せしめられる。触媒高温領域では、NOXの吸蔵がされにくくなるが、プラズマで生成された活性酸素がNOXと反応することにより、NOXのNO2への酸化が促進されて触媒への吸蔵が進み、NOX浄化率が向上する。
【0028】
ステップ104、108、112及び114の全てで条件が成立しなかったときには、ステップ116に進み、プラズマ発生装置26の作動が停止される。かくして、全ての領域でプラズマ発生装置が作動するわけではないため、エネルギー消費が抑制される結果となる。
【0029】
なお、プラズマ発生装置26を作動させるべく、プラズマ発生装置26へ供給する交流電圧の電圧値及び周波数を排気温度と空燃比とに応じて調整するに際し、吸蔵還元型NOX触媒22の暖機前と暖機後とで制御マップを切り換えることが好ましい。図3及び図4は、プラズマ発生装置への供給交流電圧の電圧値及び周波数を排気温度及び空燃比(A/F)に応じて定めたマップを例示する図であって、図3は触媒暖機前、図4は触媒暖機後にそれぞれ適用されるものである。これらのマップによれば、触媒暖機後に比較して触媒暖機前では、周波数が大きくされているが、これは、触媒暖機前には触媒が活性化されていないことに対応させたものである。
【0030】
また、本実施形態においては、吸蔵還元型NOX触媒22の前段に酸化触媒24が配置され、プラズマ発生装置26が酸化触媒24と吸蔵還元型NOX触媒22との間に配置される構成となっている。したがって、余分な還元剤が酸化触媒24で消費され、プラズマの作用で生成されたNO2や活性酸素などの活性種が還元剤と反応する量が低減せしめられ、吸蔵還元型NOX触媒22へ十分な活性種が送られることとなる。
【0031】
なお、吸蔵還元型NOX触媒が微粒子物質を捕集可能なフィルタに担持される構成を採用してもよい。すなわち、ディーゼル機関では、パティキュレート(微粒子)の排出量が多くなるが、燃焼の改善のみでは十分にパティキュレートを低減することができないため、後処理として排気系にパティキュレートをトラップ(捕集)するフィルタが設けられる場合がある。かかる場合には、吸蔵還元型NOX触媒をそのパティキュレートフィルタに担持させることが可能である。
【0032】
【発明の効果】
以上説明したように、本発明によれば、プラズマ発生装置を効率よく作動させてエネルギー消費を抑制しつつ、触媒に吸蔵されたNOX、SOX等の有害物質の放出・還元を迅速化することにより、排気ガスの浄化率の向上が図られる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る内燃機関の排気浄化装置の全体構成を示す概略図である。
【図2】電子制御装置によって実行される排気浄化処理の手順を示すフローチャートである。
【図3】プラズマ発生装置への供給交流電圧の電圧値及び周波数を排気温度及び空燃比に応じて定めたマップであって触媒暖機前に適用されるものを例示する図である。
【図4】プラズマ発生装置への供給交流電圧の電圧値及び周波数を排気温度及び空燃比に応じて定めたマップであって触媒暖機後に適用されるものを例示する図である。
【符号の説明】
10…内燃機関本体
12…発電機
14…バッテリ
20…排気通路
22…吸蔵還元型NOX触媒
24…酸化触媒
26…プラズマ発生装置
28…電力供給装置
30…電子制御装置(ECU)
32…空燃比(A/F)センサ
34…排気温センサ
36…走行距離カウンタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust emission control device for an internal combustion engine.
[0002]
[Prior art]
From the viewpoint of fuel economy, a lean burn engine has been developed in a gasoline engine, and the application range of a diesel engine is being expanded. In diesel engines and lean-burn gasoline engines, fuel is burned under a large excess of air, so emissions of incomplete combustion components HC (hydrocarbon) and CO (carbon monoxide) are low, but in the air nitrogen and burning and the rest of the oxygen becomes large emissions of the NO X generated in response (nitrogen oxides) in the.
[0003]
In order to reduce the emission into the atmosphere of such harmful NO X to be relatively large amounts produced, it is known to arrange the storage reduction NO X catalyst exhaust system. NO storage reduction NO X catalyst, while absorbing NO X in the form of nitrate at high oxygen concentration in the exhaust gas, while releasing NO X which the oxygen concentration in the exhaust gas absorbed to be lower, which released X is reduced and purified by reducing components such as HC and CO in the exhaust gas. Thus, in the internal combustion engine having a storage reduction NO X catalyst, favorably absorb NO X from the exhaust gas of a high oxygen concentration lean combustion, by periodic rich mixture burn operation (rich spike operation) In addition, the oxygen concentration in the exhaust gas can be reduced and reducing components such as HC and CO can be present in the exhaust gas, so that the absorbed NO x can be reduced and purified well without being released into the atmosphere.
[0004]
By the way, the fuel of the internal combustion engine contains sulfur, and SO x is also generated during combustion. SO X can be oxidized similarly to the NO X is absorbed in the form of sulfate to storage reduction NO X catalyst. Sulfates, in order to be stable substance, hardly released from the usual rich mixture be carried out-burn operation storage reduction NO X catalyst, SO X storage amount is increased gradually. For storable amount of nitrate or sulfate in the occlusion reduction type NO X catalyst is finite, storage capacity increase of sulfate in the occlusion reduction type NO X catalyst (hereinafter, referred to as SO X poisoning) them if, since storable amount of nitrates is to be reduced by that amount, reducing the storage amount of sulfate in the occlusion reduction type NO X catalyst (hereinafter, referred to as sO X poisoning restoration or sulfur desorption regeneration) let be Eventually, NO X cannot be absorbed at all.
[0005]
Sulfates, storage reduction NO X catalyst becomes a high temperature of about 600 ° C, and, when the oxygen concentration of the ambient drops, can be released from the catalyst as a gas, for example, decomposed into SO 2. Thereby, the sulfur for removal of the release play (SO X poisoning recovery), for example, must be by burning HC and CO on the storage reduction NO X catalyst raising the temperature of the storage reduction NO X catalyst is there. In order to carry out this, the operation at the rich air-fuel ratio is regularly performed.
[0006]
The sulfur desorption regeneration (SO X poisoning recovery) aims to reduce and release K 2 SO 4 to SO 2 . However, since the operation is performed with a strong rich air-fuel ratio, a reducing component such as H 2 exists, and SO 2 once desorbed may be further reduced to S or H 2 S. This S or H 2 S is occluded again in the form of K 2 SO 4 by the catalyst, and the catalyst is poisoned. Thus, the next desorption is suppressed, and it takes a long time to completely release the sulfur component from the catalyst as SO 2 . For this reason, the SO X poisoning recovery process cannot be easily performed in normal traveling, and the NO X purification rate decreases. Even if the SO X poisoning recovery process can be performed, the fuel consumption is reduced. Has been worsening.
[0007]
In order to shorten the processing time for sulfur desorption regeneration (SO X poisoning recovery), it has been proposed to suppress the reduction to S or H 2 S by repeating lean / rich with the average air-fuel ratio made weakly rich. ing. However, microscopically, the regeneration time is only slightly shortened by repeating the poisoning and the poisoning recovery by reoxidation. In addition, in order to suppress re-poisoning, when attempting to desorb sulfur under an air-fuel ratio close to stoichiometry, the reducing power is weak and sulfur desorption hardly occurs.
[0008]
Meanwhile, in order to improve the NO X purification rate by storage reduction NO X catalyst, it is effective to oxidize advance to NO 2 NOx stored difficult NO. Therefore, JP-A-11-324652 discloses a storage-reduction NO a plasma generator disposed upstream of the X catalyst, exhaust gas purification device having improved storage capability by converting NO to NO 2 . However, in this exhaust purification device, if the plasma generator is always operated to generate plasma, there is a problem that energy loss is large.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the problems described above, efficiency in the purpose, an exhaust purification device arranged storage reduction NO X catalyst and the plasma generating apparatus in an exhaust passage of an internal combustion engine, a plasma generator The aim is to improve the purification rate by expediting the release and reduction of harmful substances such as NO x and SO x stored in the catalyst while operating well to suppress energy consumption.
[0010]
[Means for Solving the Problems]
To achieve the above object, first, according to the aspect, in the exhaust passage upstream of the suction storage reduction NO X catalyst with storage reduction NO X catalyst is disposed in the exhaust passage or intake storehouse of the present invention in the exhaust purification device of reduced NO X catalyst integrally with an internal combustion engine in which the plasma generator is located, the plasma generated when processing for releasing harmful substances occluded in the occlusion reduction type NO X catalyst is performed An exhaust emission control device for an internal combustion engine is provided, characterized in that a control means for operating the device is provided.
[0011]
In this exhaust purification apparatus, when executing the process of releasing harmful substances occluded in the occlusion reduction type NO X catalyst, i.e. for poisoning recovery of the rich spike operation during or SO X for the reduction and purification of the NO X During the rich operation, since the plasma generator is activated to generate plasma, the release of harmful substances and the reduction reaction proceed quickly, and the plasma generator does not operate in all regions, so that energy consumption is suppressed.
[0012]
Further, according to the second aspect of the present invention, preferably, the control means, the temperature of the occlusion reduction type NO X catalyst is higher than the temperature or said first time is less than a predetermined first temperature Even when the temperature is equal to or higher than the predetermined second temperature, the plasma generator is further operated. When the catalyst temperature is high or low, the NO x absorption rate is low. However, in this exhaust purification device, the plasma generation device operates to generate plasma even in such a case, so that the NO x purification rate is improved. Is planned.
[0013]
Further, according to the third aspect of the present invention, preferably, the front oxidation catalyst of storage reduction NO X catalyst is arranged, the plasma generating apparatus of said occlusion reduction type NO X catalyst and the oxidation catalyst Arranged between. In this exhaust purification device, an oxidation catalyst is disposed in front of the plasma generator, so that excess reducing agent is consumed by the oxidation catalyst, and active species such as NO 2 and active oxygen generated by the action of plasma are reduced. the amount is made to reduce that reacts with agents, so that the sufficient active species into storage reduction NO X catalyst is sent.
[0014]
In addition, according to a fourth aspect of the present invention, the occlusion reduction type NO X catalyst is supported particulate material capable collection filter.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0016]
FIG. 1 is a schematic diagram showing the overall configuration of an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention. Reference numeral 10 denotes a main body of a diesel engine or a lean burn gasoline engine. A generator 12 driven by the engine body 10 is connected to the engine body 10. The electricity generated by the generator 12 is stored in the battery 14.
[0017]
Two catalysts are arranged in the exhaust passage 20 extending from the engine body 10. Downstream of the catalyst is storage reduction NO X catalyst 22, the upstream side of the catalyst is an oxidation catalyst 24. Further, between the oxidation catalyst 24 and the storage reduction NO X catalyst 22, the plasma generator 26 is disposed. In the plasma generator 26 may be integrally mounted on the storage reduction NO X catalyst 22.
[0018]
The plasma generator 26 is supplied with power from a power supply device 28. The power supply device 28 converts the DC voltage supplied from the battery 14 into an AC voltage, and adjusts the frequency and the AC voltage value to change the input power to the plasma generator 26.
[0019]
The electronic control unit (ECU) 30 controls the engine body 10 and the power supply device 28 and operates by receiving power supplied from the battery 14. Electronic control unit 30 detects the operating state of the engine body 10, the air-fuel ratio (A / F) sensor 32 provided upstream of the oxidation catalyst 24, the plasma generating apparatus 26 and the storage reduction NO X catalyst 22 The output signals of various sensors such as the exhaust temperature sensor 34 provided between the two are received. Further, the electronic control unit 30 can detect a travel distance from a travel distance counter 36 provided in a vehicle on which the engine is mounted.
[0020]
FIG. 2 is a flowchart showing a procedure of exhaust purification processing executed by the ECU 30. First, in step 102, A / F sensor 32, respectively the air-fuel ratio from the output of the exhaust temperature sensor 34 and the travel distance counter 36, together with the exhaust temperature and the travel distance is detected, storage reduction NO X catalyst from the engine operating condition A catalyst temperature of 22 is estimated.
[0021]
Next, at step 104, it is determined whether or not the travel distance from the previous execution of the SO X poisoning recovery process is greater than or equal to a predetermined value. When the travel distance is equal to or greater than the predetermined value, the process proceeds to step 106, and the SO X poisoning recovery process is executed. When the travel distance is less than the predetermined value, the process proceeds to step 108. Note that the execution timing of the recovery process may be determined based on a decrease in the NO X storage amount of the NO X catalyst 22.
[0022]
In step 106, the SO X poisoning recovery process is executed while operating the plasma generator 26 by adjusting the frequency and voltage value of the supplied AC voltage according to the exhaust gas temperature and the air-fuel ratio. In the SO X poisoning recovery process, control is performed so that the center of the air-fuel ratio becomes stoichiometric or weakly rich. For this reason, the amount of reducing components such as H 2 and CO in the exhaust gas is small compared to the conventional SO X poisoning recovery process performed under a strong rich air-fuel ratio. However, since the reducing component is activated by the operation of the plasma generator 26 and its reducing power is strong, sulfur can be desorbed from the catalyst in a short time even with a small amount of the reducing component.
[0023]
Since only a small amount of reducing component such as H 2 is produced, the main component due to the decomposition of sulfate becomes SO 2 , and re-poisoning of the catalyst is suppressed. That is, if there is an excess of hydrogen,
SO 4 2- + (HC * or H 2 or CO) → SO 2 + CO 2 , H 2 O
SO 2 + 2H 2 → S + 2H 2 O
SO 2 + 3H 2 → H 2 S + 2H 2 O
As a result of this reaction, S and H 2 S are generated and re-poisoning occurs. However, in the present embodiment, because a SO X poisoning restoration process by activating a small amount of reducing gas generated by the operation of the air-fuel ratio of near stoichiometric plasma to decompose the sulfate SO 2 As a result, no further reduction to S or H 2 S occurs and no re-poisoning occurs. After execution of step 106, the routine ends.
[0024]
In step 108 that is executed when the execution condition of the SO X poisoning recovery process is not satisfied in step 104, it is determined whether or not the rich spike operation is being executed. That is, in this embodiment, the rich spike operation for reducing and purifying regularly NO X have been made in the fuel injection control is separately performed, judging whether or not in such rich spike operation Is done.
[0025]
If the rich spike operation is being performed, the process proceeds to step 110, and the plasma generator 26 is operated while adjusting the frequency and voltage value of the supplied AC voltage in accordance with the exhaust temperature and the air-fuel ratio. Thus, reduction components in the exhaust gas (HC) is activated, reducing the occluded NO X is promoted to the storage reduction NO X catalyst 22. After execution of step 110, the routine ends.
[0026]
When it is determined that it is not during the rich spike operation in step 108, the process proceeds to step 112, the catalyst temperature TC of the occlusion reduction type NO X catalyst 22 whether less than a predetermined temperature T 1 is determined. In the catalyst low temperature region where TC <T 1 is established, the routine proceeds to step 110 where the plasma generator 26 is operated. Thus,
NO + (1/2) O 2 → NO 2
Thus, NO is converted into NO 2 that is easily stored in the NO x catalyst 22.
[0027]
When it is determined that there is no low-temperature region in step 112, the process proceeds to step 114, the storage-reduction type NO X temperature T 2 the catalyst temperature TC is given catalyst 22 (T 1 <T 2) is determined is greater than or not is The In the catalyst high temperature region where T 2 <TC is established, the routine proceeds to step 110 where the plasma generator 26 is operated. In the high temperature region of the catalyst, NO x is hardly occluded, but the active oxygen generated in the plasma reacts with NO x , whereby the oxidation of NO x to NO 2 is promoted and the occlusion in the catalyst proceeds. NO X purification rate is improved.
[0028]
When the conditions are not satisfied in all of steps 104, 108, 112, and 114, the process proceeds to step 116, and the operation of the plasma generator 26 is stopped. Thus, since the plasma generator does not operate in all regions, energy consumption is suppressed.
[0029]
Incidentally, in order to operate the plasma generator 26, when the voltage value and frequency of the AC voltage supplied to the plasma generator 26 is adjusted in accordance with the exhaust temperature and the air-fuel ratio, the pre-warm-up of the occlusion reduction type NO X catalyst 22 It is preferable to switch the control map between after and warm-up. FIGS. 3 and 4 are diagrams illustrating a map in which the voltage value and frequency of the AC voltage supplied to the plasma generator are determined according to the exhaust gas temperature and the air-fuel ratio (A / F). FIG. FIG. 4 is applied before the machine and after the catalyst is warmed up. According to these maps, the frequency is increased before catalyst warm-up compared to after catalyst warm-up, which corresponds to the fact that the catalyst is not activated before catalyst warm-up. It is.
[0030]
In the present embodiment, front to the oxidation catalyst 24 of the occlusion reduction type NO X catalyst 22 is arranged, configured and the plasma generator 26 is disposed between the oxidation catalyst 24 and the storage reduction NO X catalyst 22 It has become. Thus, excess reducing agent is consumed by the oxidation catalyst 24, active species such as NO 2 and active oxygen produced by the action of the plasma is made to reduce the amount that reacts with the reducing agent, the storage reduction NO X catalyst 22 Sufficient active species will be sent.
[0031]
It is also possible to adopt a configuration in which occlusion reduction type NO X catalyst is supported particulate material capable collection filter. In other words, in diesel engines, the amount of particulates (particulates) emitted increases, but particulates cannot be reduced sufficiently by improving combustion alone. Therefore, particulates are trapped in the exhaust system as post-processing. In some cases, a filter is provided. In such a case, it is possible to carry the storage reduction NO X catalyst to the particulate filter.
[0032]
【The invention's effect】
As described above, according to the present invention, the plasma generator is efficiently operated to suppress energy consumption, and the release and reduction of harmful substances such as NO x and SO x occluded in the catalyst are accelerated. As a result, the exhaust gas purification rate can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the overall configuration of an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention.
FIG. 2 is a flowchart showing a procedure of exhaust purification processing executed by an electronic control unit.
FIG. 3 is a diagram illustrating a map in which a voltage value and a frequency of an AC voltage supplied to a plasma generator are determined according to an exhaust gas temperature and an air-fuel ratio, and applied before catalyst warm-up.
FIG. 4 is a diagram illustrating a map in which a voltage value and a frequency of an alternating voltage supplied to a plasma generator are determined according to an exhaust gas temperature and an air-fuel ratio, and applied after catalyst warm-up.
[Explanation of symbols]
10 ... engine body 12 ... generator 14 ... battery 20 ... exhaust passage 22 ... storage reduction NO X catalyst 24 ... oxidizing catalyst 26 ... plasma generator 28 ... power supply apparatus 30 ... electronic control unit (ECU)
32 ... Air-fuel ratio (A / F) sensor 34 ... Exhaust temperature sensor 36 ... Travel distance counter

Claims (5)

排気通路に吸蔵還元型NOX触媒が配置されるとともに該吸蔵還元型NOX触媒より上流側の排気通路に又は該吸蔵還元型NOX触媒と一体的にプラズマ発生装置が配置された内燃機関の排気浄化装置において、
前記プラズマ発生装置より上流側の排気通路に酸化触媒が配置され、
前記吸蔵還元型NOX触媒に吸蔵された有害物質を放出させる処理が実行されるときに前記プラズマ発生装置を作動させる制御手段が設けられ
前記制御手段は、前記プラズマ発生装置を作動させるとともに、空燃比の中心がストイキ又は弱リッチとなるように制御する、
ことを特徴とする、内燃機関の排気浄化装置。
With storage reduction NO X catalyst is disposed in an exhaust passage of absorbent storage reduction NO or the exhaust passage upstream of the X catalyst absorbent storage reduction NO X catalyst integrally with an internal combustion engine in which the plasma generator is located In the exhaust purification device,
An oxidation catalyst is disposed in the exhaust passage upstream of the plasma generator,
It said control means for actuating is provided the plasma generator when the storage reduction NO X catalyst treatment to release the occluded hazardous substances is performed,
The control means operates the plasma generator and controls the center of the air-fuel ratio to be stoichiometric or weakly rich.
An exhaust emission control device for an internal combustion engine, characterized in that:
前記制御手段は、前記吸蔵還元型NOX触媒の温度が所定の第一の温度以下であるとき又は該第一の温度よりも高い所定の第二の温度以上であるときにも、更に前記プラズマ発生装置を作動させる、請求項1に記載の内燃機関の排気浄化装置。Wherein, said when the temperature of the storage reduction NO X catalyst is a second temperature above a higher predetermined than the temperature or said first time is less than a predetermined first temperature, further the plasma The exhaust emission control device for an internal combustion engine according to claim 1, wherein the generator is operated. 前記制御手段は、前記プラズマ発生装置への供給交流電圧の周波数を、触媒暖機後に比較して触媒暖機前において大きくする制御を行う、請求項1又は請求項2に記載の内燃機関の排気浄化装置。3. The exhaust gas of an internal combustion engine according to claim 1 , wherein the control means performs control to increase the frequency of the AC voltage supplied to the plasma generator before the catalyst warms up as compared to after the catalyst warms up. Purification equipment. 前記吸蔵還元型NOX触媒が微粒子物質を捕集可能なフィルタに担持されている、請求項1から請求項3までのいずれか一項に記載の内燃機関の排気浄化装置。The storage-reduction type NO X catalyst is supported particulate material capable collection filter, the exhaust purification system of an internal combustion engine according to any one of claims 1 to 3. 前記有害物質を放出させる処理は硫黄分を対象とするものである、請求項1から請求項4までのいずれか一項に記載の内燃機関の排気浄化装置。The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 4, wherein the treatment for releasing the harmful substance is for sulfur content.
JP2001059005A 2001-03-02 2001-03-02 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3642032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001059005A JP3642032B2 (en) 2001-03-02 2001-03-02 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001059005A JP3642032B2 (en) 2001-03-02 2001-03-02 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002256853A JP2002256853A (en) 2002-09-11
JP3642032B2 true JP3642032B2 (en) 2005-04-27

Family

ID=18918634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001059005A Expired - Fee Related JP3642032B2 (en) 2001-03-02 2001-03-02 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3642032B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7331170B2 (en) 2003-05-22 2008-02-19 Hino Motors, Ltd. Exhaust emission control device
JP2004346828A (en) * 2003-05-22 2004-12-09 Hino Motors Ltd Exhaust emission control device
EP1640574A1 (en) * 2003-06-03 2006-03-29 Hino Motors, Ltd. Exhaust gas cleaner
WO2005005798A1 (en) * 2003-07-10 2005-01-20 Ngk Insulators, Ltd. Plasma generating electrode and plasma reactor
JP2006125269A (en) * 2004-10-28 2006-05-18 Hino Motors Ltd Exhaust emission control device
FR2877693B1 (en) * 2004-11-08 2007-04-13 Peugeot Citroen Automobiles Sa EXHAUST GAS NOx TREATMENT SYSTEM OF A MOTOR VEHICLE THERMAL MOTOR
JP2006161697A (en) * 2004-12-08 2006-06-22 Hino Motors Ltd Exhaust emission control device
JP4635693B2 (en) * 2005-04-14 2011-02-23 トヨタ自動車株式会社 Exhaust gas purification method and exhaust gas purification device
JP5045629B2 (en) 2008-04-08 2012-10-10 三菱電機株式会社 Exhaust gas purification device
JP4539758B2 (en) * 2008-04-25 2010-09-08 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4952645B2 (en) * 2008-04-25 2012-06-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP5206597B2 (en) * 2009-06-16 2013-06-12 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN102166474B (en) * 2011-03-10 2013-09-25 江苏大学 Low-temperature plasma cooperating two-phase catalyzing device and harmful exhaust gas processing method

Also Published As

Publication number Publication date
JP2002256853A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
US7472545B2 (en) Engine exhaust emission control system providing on-board ammonia generation
JP3702924B2 (en) Exhaust purification device
US20080295498A1 (en) Exhaust gas purifying apparatus for international combustion
JP3642032B2 (en) Exhaust gas purification device for internal combustion engine
JP2004197695A (en) Exhaust emission control device for internal combustion engine
US20160040569A1 (en) Exhaust gas purifying filter, system and regenerating gasoline particulate filter, and method thereof
WO2013175604A1 (en) Exhaust emission purification device for internal combustion engine
WO2005103461A1 (en) Exhaust purifying device for internal combustion engine
JP2006242020A (en) Exhaust emission control device
JP2007100578A (en) Exhaust emission control device of internal combustion engine
JP3912294B2 (en) Exhaust gas purification method and exhaust gas purification apparatus for internal combustion engine
JP2009264282A (en) Exhaust emission control device for internal combustion engine
JP3972864B2 (en) Exhaust gas purification system for internal combustion engine
JP2009174445A (en) Exhaust emission control device for internal combustion engine
JP4631767B2 (en) Exhaust gas purification device for hybrid system
JPH11173181A (en) Exhaust gas purifying method and purifying device of internal combustion engine
WO2006062124A1 (en) Exhaust gas purification device
JP4357918B2 (en) Exhaust gas purification device for internal combustion engine
JP3624747B2 (en) Exhaust gas purification device for internal combustion engine
JP4556364B2 (en) Exhaust gas purification device for internal combustion engine
JP5321255B2 (en) Exhaust gas purification device for internal combustion engine
JPH1113456A (en) Catalyst poisoning regenerator for internal combustion engine
JP2010031737A (en) Air-fuel ratio control device and hybrid vehicle
JP2003222018A (en) Exhaust emissions purification apparatus for internal combustion engine
JP3622612B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050117

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees