JP2006161697A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2006161697A
JP2006161697A JP2004355041A JP2004355041A JP2006161697A JP 2006161697 A JP2006161697 A JP 2006161697A JP 2004355041 A JP2004355041 A JP 2004355041A JP 2004355041 A JP2004355041 A JP 2004355041A JP 2006161697 A JP2006161697 A JP 2006161697A
Authority
JP
Japan
Prior art keywords
fuel
exhaust gas
nox
reduction catalyst
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004355041A
Other languages
Japanese (ja)
Inventor
Yoshihide Takenaka
嘉英 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2004355041A priority Critical patent/JP2006161697A/en
Priority to DE602005015897T priority patent/DE602005015897D1/en
Priority to EP05814697A priority patent/EP1835137B1/en
Priority to PCT/JP2005/022448 priority patent/WO2006062124A1/en
Priority to US11/721,057 priority patent/US7913486B2/en
Publication of JP2006161697A publication Critical patent/JP2006161697A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02T10/47

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device capable of providing high NOx reduction rate from a relatively low temperature zone. <P>SOLUTION: This device is provided with NOx storage reducing catalyst 5 provided in a middle of an exhaust pipe 4 leading exhaust gas from a diesel engine 1, a control device 14 controlling fuel injection to each cylinder of the diesel engine 1 to remain suitable amount of unburnt fuel as reducing agent to the NOx storage reducing catalyst 5, and a plasma generation device 7 performing electric discharge in exhaust gas 3 in an upstream of the NOx storage reducing catalyst and decomposing unburnt fuel into H<SB>2</SB>and CO. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

従来より、排気管の途中に装備した排気浄化用触媒により排気浄化を図ることが行われており、この種の排気浄化用触媒としては、排気空燃比がリーンの時に排気ガス中のNOxを酸化して硝酸塩の状態で一時的に吸蔵し、排気ガス中のO2濃度が低下した時に未燃HCやCO等の介在によりNOxを分解放出して還元浄化する性質を備えたNOx吸蔵還元触媒が知られている。 Conventionally, exhaust purification is carried out with an exhaust purification catalyst installed in the middle of the exhaust pipe. As this type of exhaust purification catalyst, NOx in exhaust gas is oxidized when the exhaust air-fuel ratio is lean. Thus, a NOx occlusion reduction catalyst having the property of temporarily storing in the form of nitrate and decomposing and releasing NOx through the intervention of unburned HC, CO, etc. when the O 2 concentration in the exhaust gas decreases is reduced and purified. Are known.

そして、斯かるNOx吸蔵還元触媒においては、NOxの吸蔵量が増大して飽和量に達してしまうと、それ以上のNOxを吸蔵できなくなるため、定期的にNOx吸蔵還元触媒に流入する排気ガスのO2濃度を低下させてNOxを分解放出させる必要がある。 In such a NOx occlusion reduction catalyst, when the occlusion amount of NOx increases and reaches the saturation amount, no more NOx can be occluded, so that the exhaust gas flowing into the NOx occlusion reduction catalyst periodically It is necessary to decompose and release NOx by reducing the O 2 concentration.

例えば、ガソリン機関に使用した場合であれば、機関の運転空燃比を低下(機関をリッチ空燃比で運転)することにより、排気ガス中のO2濃度を低下し且つ排気ガス中の未燃HCやCO等の還元成分を増加してNOxの分解放出を促すことができるが、NOx吸蔵還元触媒をディーゼル機関の排気浄化装置として使用した場合には機関をリッチ空燃比で運転することが困難である。 For example, when used in a gasoline engine, the operating air-fuel ratio of the engine is reduced (the engine is operated at a rich air-fuel ratio), thereby reducing the O 2 concentration in the exhaust gas and unburned HC in the exhaust gas. It is possible to promote the decomposition and release of NOx by increasing reducing components such as CO and CO. However, when the NOx storage reduction catalyst is used as an exhaust purification device of a diesel engine, it is difficult to operate the engine at a rich air-fuel ratio. is there.

このため、NOx吸蔵還元触媒の上流側で排気ガス中に燃料(HC)を添加する手段を新たに設け、これにより添加された燃料を還元剤としてNOx吸蔵還元触媒上でO2と反応させ、排気ガス中のO2濃度を積極的に低下させてNOx吸蔵還元触媒の再生を図る必要がある(例えば、特許文献1参照)。
特開2000−356127号公報
For this reason, a means for adding fuel (HC) to the exhaust gas upstream of the NOx storage reduction catalyst is newly provided, and the added fuel reacts with O 2 on the NOx storage reduction catalyst as a reducing agent, It is necessary to actively reduce the O 2 concentration in the exhaust gas to regenerate the NOx storage reduction catalyst (see, for example, Patent Document 1).
JP 2000-356127 A

しかしながら、このようにNOx吸蔵還元触媒の上流側で燃料添加を行うだけでは、その添加燃料が蒸発して生じたHCの一部がNOx吸蔵還元触媒の表面上で排気ガス中のO2と反応(燃焼)し、NOx吸蔵還元触媒の周囲の雰囲気中におけるO2濃度がほぼ零となってからNOxの分解放出が開始されることになるため、NOx吸蔵還元触媒の表面上でHCがO2と反応(燃焼)するのに必要な燃焼温度(約220〜250℃)が得られない運転条件下(例えば渋滞の多い都市内での徐行運転等)では、NOx吸蔵還元触媒からNOxを効率良く分解放出させることができず、NOx吸蔵還元触媒の再生が効率良く進まないことで触媒の容積中に占めるNOx吸蔵サイトの回復割合が小さくなって吸蔵能力が落ちるという問題があった。 However, only by adding fuel upstream of the NOx storage reduction catalyst in this way, a part of the HC generated by evaporation of the added fuel reacts with O 2 in the exhaust gas on the surface of the NOx storage reduction catalyst. (Combustion), and NOx decomposition and release is started after the O 2 concentration in the atmosphere around the NOx storage reduction catalyst becomes almost zero, so that HC is O 2 on the surface of the NOx storage reduction catalyst. NOx is efficiently removed from the NOx occlusion reduction catalyst under operating conditions where the combustion temperature (about 220-250 ° C) required for reaction (combustion) with NOx cannot be obtained (for example, slow driving in cities with heavy traffic). There was a problem that the NOx occlusion reduction catalyst could not be decomposed and released, and the regeneration of the NOx occlusion reduction catalyst did not proceed efficiently, so that the recovery rate of the NOx occlusion site in the catalyst volume was reduced and the occlusion capacity was lowered.

本発明は上述の実情に鑑みてなしたもので、比較的低い温度領域から高いNOx低減率を得られるようにした排気浄化装置を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an exhaust emission control device capable of obtaining a high NOx reduction rate from a relatively low temperature range.

本発明は、エンジンから排気ガスを導く排気管に装備されたNOx吸蔵還元触媒と、該NOx吸蔵還元触媒の再生時に還元剤として未燃燃料を排気ガス中に多く残し得るよう前記エンジンの燃料噴射を制御する燃料噴射制御装置と、前記NOx吸蔵還元触媒より上流側で排気ガス中に放電してプラズマを発生させ且つそのプラズマにより未燃燃料をH2とCOに分解するプラズマ発生装置とを備えたことを特徴とする排気浄化装置、に係るものである。 The present invention relates to a NOx occlusion reduction catalyst provided in an exhaust pipe for leading exhaust gas from an engine, and fuel injection of the engine so that a large amount of unburned fuel can be left in the exhaust gas as a reducing agent when the NOx occlusion reduction catalyst is regenerated. And a plasma generator for generating plasma by discharging into the exhaust gas upstream of the NOx storage reduction catalyst and decomposing unburned fuel into H 2 and CO by the plasma. The present invention relates to an exhaust emission control device.

而して、燃料噴射制御装置によりエンジンの各気筒内への燃料噴射を制御して排気ガス中に未燃燃料を多く残すと、該未燃燃料がNOx吸蔵還元触媒への還元剤として排気ガスと共に導かれることになる。   Thus, when the fuel injection control device controls the fuel injection into each cylinder of the engine to leave a large amount of unburned fuel in the exhaust gas, the unburned fuel becomes an exhaust gas as a reducing agent for the NOx storage reduction catalyst. Will be led with.

この未燃燃料を多く含む排気ガスに対し前段のプラズマ発生装置により放電を行うと、排気ガス中の未燃燃料(HC)がプラズマによる部分酸化反応でH2とCOに分解されるので、後段のNOx吸蔵還元触媒の表面上で反応性の高いH2及びCOが従来のHCの燃焼温度より低い燃焼温度から排気ガス中のO2と反応(燃焼)する。 When the exhaust gas containing a large amount of unburned fuel is discharged by the former plasma generator, the unburned fuel (HC) in the exhaust gas is decomposed into H 2 and CO by the partial oxidation reaction by the plasma. On the surface of the NOx storage reduction catalyst, H 2 and CO having high reactivity react (combust) with O 2 in the exhaust gas from a combustion temperature lower than the combustion temperature of conventional HC.

これによりNOx吸蔵還元触媒の周囲の雰囲気中におけるO2濃度がほぼ零となってNOxの分解放出が開始され、そのままNOx吸蔵還元触媒の表面上で反応性の高いH2及びCOによりNOxが効率良くN2に還元処理される結果、未燃燃料から生成されたHCをそのままNOx吸蔵還元触媒上で反応させる場合よりも比較的低い温度領域から高いNOx低減率が得られることになる。 As a result, the O 2 concentration in the atmosphere around the NOx storage reduction catalyst becomes almost zero, and the decomposition and release of NOx is started, and the NOx efficiency is improved by the highly reactive H 2 and CO on the surface of the NOx storage reduction catalyst. As a result of the reduction treatment to N 2 well, a higher NOx reduction rate can be obtained from a relatively low temperature range than when HC produced from unburned fuel is reacted as it is on the NOx storage reduction catalyst.

更に、本発明においては、プラズマ発生装置より上流側の排気管に燃料を直接添加し得るよう燃料添加装置を追加装備しても良く、このようにすれば、必要に応じて燃料添加装置により燃料を排気管内に直接添加し、より確実にNOx吸蔵還元触媒の再生に必要な還元性雰囲気を実現することが可能となる。   Further, in the present invention, a fuel addition device may be additionally provided so that the fuel can be directly added to the exhaust pipe upstream from the plasma generation device. Can be added directly into the exhaust pipe, and a reducing atmosphere necessary for regeneration of the NOx storage reduction catalyst can be realized more reliably.

上記した本発明の排気浄化装置によれば、エンジン側で各気筒内への燃料噴射を制御して排気ガス中に未燃燃料を多く残すことにより燃料添加を行い、その排気ガス中の未燃燃料(HC)を前段のプラズマ発生装置の放電で生じたプラズマによりH2とCOとに分解し、これらの反応性の高いH2及びCOにより比較的低い温度領域から高いNOx低減率を得ることができるので、例えば渋滞の多い都市内での徐行運転等のように低負荷で排気温度が低い運転状態が継続され易い運転条件下であっても、車外に排出される排気ガス中に含まれるNOxを従来より効果的に低減することができ、NOx吸蔵還元触媒を用いた排気浄化装置の実用性を大幅に向上することができるという優れた効果を奏し得る。 According to the above-described exhaust purification device of the present invention, the fuel is added by controlling the fuel injection into each cylinder on the engine side to leave a lot of unburned fuel in the exhaust gas, and the unburned fuel in the exhaust gas is added. Fuel (HC) is decomposed into H 2 and CO by the plasma generated by the discharge of the previous plasma generator, and a high NOx reduction rate is obtained from a relatively low temperature region by these highly reactive H 2 and CO. Therefore, it is included in the exhaust gas that is discharged outside the vehicle even under operating conditions where low-exhaust and low-exhaust temperature driving conditions are likely to continue, such as slow driving in cities with heavy traffic. It is possible to effectively reduce NOx as compared with the prior art, and to achieve an excellent effect that the practicality of the exhaust purification device using the NOx storage reduction catalyst can be greatly improved.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図3は本発明を実施する形態の一例を示すもので、図1に示す如く、本形態例の排気浄化装置においては、ディーゼルエンジン1から排気マニホールド2を介して排出される排気ガス3が流通する排気管4の途中に、フロースルー方式のハニカム構造を有するNOx吸蔵還元触媒5がケーシング6に抱持されて装備されており、このケーシング6の前段には、排気ガス3中に放電してプラズマを発生させるプラズマ発生装置7が装備されている。   1 to 3 show an example of an embodiment of the present invention. As shown in FIG. 1, in the exhaust purification apparatus of this embodiment, exhaust gas discharged from a diesel engine 1 via an exhaust manifold 2 is shown. A NOx occlusion reduction catalyst 5 having a flow-through type honeycomb structure is provided in the middle of the exhaust pipe 4 through which the gas flow 3 circulates. A plasma generator 7 for generating plasma by discharging is provided.

このプラズマ発生装置7は、電極8,9を対向配置して相互間に放電を行い得るようにしてあるが、この電極8,9の相互間距離がほぼ一様に設定できるものであれば、板型、ロッド型、円筒型等の様々な形状を適宜に採用することが可能である。   The plasma generator 7 is configured so that the electrodes 8 and 9 are arranged to face each other and discharge can be performed between them. If the distance between the electrodes 8 and 9 can be set substantially uniformly, Various shapes such as a plate shape, a rod shape, and a cylindrical shape can be appropriately employed.

また、各電極8,9に対しては、インバータ10を介し電源11を接続した構造となっており、特に本形態例では、電源11として車両搭載のバッテリを想定しているので、インバータ10により放電可能な適切な電圧と周波数の交流高電圧を各電極8,9へ印加し得るようにしてある。   Each electrode 8 and 9 has a structure in which a power source 11 is connected via an inverter 10. In particular, in this embodiment, a vehicle-mounted battery is assumed as the power source 11. An AC high voltage having an appropriate voltage and frequency that can be discharged can be applied to the electrodes 8 and 9.

また、図示しない運転席のアクセルには、アクセル開度をディーゼルエンジン1の負荷として検出するアクセルセンサ12(負荷センサ)が備えられていると共に、ディーゼルエンジン1の適宜位置には、その回転数を検出する回転センサ13が装備されており、これらアクセルセンサ12及び回転センサ13からのアクセル開度信号12a及び回転数信号13aがエンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置14(燃料噴射制御装置)に対し入力されるようになっている。   In addition, an accelerator in a driver's seat (not shown) is provided with an accelerator sensor 12 (load sensor) that detects the accelerator opening as a load of the diesel engine 1, and the rotational speed is set at an appropriate position of the diesel engine 1. A rotation sensor 13 for detection is provided, and an accelerator opening signal 12a and a rotation speed signal 13a from the accelerator sensor 12 and the rotation sensor 13 constitute an engine control computer (ECU: Electronic Control Unit) 14 (fuel injection). Is input to the control device).

一方、前記制御装置14においては、アクセル開度信号12a及び回転数信号13aから判断される現在の運転状態に応じ、各気筒内に燃料を噴射する燃料噴射装置15に向け燃料の噴射タイミング及び噴射量を指令する燃料噴射信号15aが出力されるようになっている。   On the other hand, in the control device 14, the fuel injection timing and injection toward the fuel injection device 15 that injects the fuel into each cylinder according to the current operation state determined from the accelerator opening signal 12a and the rotation speed signal 13a. A fuel injection signal 15a for commanding the amount is output.

ここで、前記燃料噴射装置15は、各気筒毎に装備される図示しない複数のインジェクタにより構成されており、これら各インジェクタの電磁弁が前記制御装置14からの燃料噴射信号15aにより適宜に開弁制御されて燃料の噴射タイミング及び噴射量(開弁時間)が適切に制御されるようになっている。   Here, the fuel injection device 15 is constituted by a plurality of injectors (not shown) provided for each cylinder, and the electromagnetic valves of these injectors are appropriately opened by a fuel injection signal 15a from the control device 14. Thus, the fuel injection timing and the injection amount (valve opening time) are appropriately controlled.

ただし、本形態例においては、制御装置14でアクセル開度信号12a及び回転数信号13aに基づき通常モードの燃料噴射信号15aが決定されるようになっている一方、定期的に通常モードから再生モードに切り替わり、この再生モードに切り替わった際には、圧縮上死点(クランク角0゜)付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミング(開始時期がクランク角90゜〜120゜の範囲)で適宜な回数のポスト噴射(1回若しくは複数回に分けて噴射)が実行されるようになっている。   However, in this embodiment, the control device 14 determines the fuel injection signal 15a in the normal mode based on the accelerator opening signal 12a and the rotation speed signal 13a, while periodically regenerating from the normal mode to the regeneration mode. When the mode is switched to the regeneration mode, the non-ignition timing (starting time is determined to be the crank angle) after the main injection of the fuel performed near the compression top dead center (crank angle 0 °). An appropriate number of post injections (injection in one or more times) is performed in the range of 90 ° to 120 °.

つまり、このようにメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射が行われると、このポスト噴射により排気ガス3中に未燃の燃料(主としてHC:炭化水素)が添加されることになり、この未燃の燃料により生じたHCがNOx吸蔵還元触媒5への還元剤として導かれることになる。   That is, when post-injection is performed at the non-ignition timing later than the compression top dead center following main injection, unburned fuel (mainly HC: hydrocarbon) is added to the exhaust gas 3 by this post-injection. As a result, the HC generated by the unburned fuel is guided to the NOx storage reduction catalyst 5 as a reducing agent.

しかも、前記制御装置14からは、アクセル開度信号12a及び回転数信号13aに基づき排気温度が低い運転状態であると判断された際に、前記プラズマ発生装置7のインバータ10に向け放電指令信号10aが出力され、この放電指令信号10aを受けたインバータ10によりプラズマ発生装置7が作動されて排気ガス3中に放電が行われるようになっている。   In addition, when it is determined from the control device 14 that the exhaust gas temperature is low based on the accelerator opening signal 12a and the rotation speed signal 13a, the discharge command signal 10a to the inverter 10 of the plasma generator 7 is determined. Is output, and the plasma generator 7 is operated by the inverter 10 that has received the discharge command signal 10a, so that discharge is performed in the exhaust gas 3.

更に、前記プラズマ発生装置7より上流側の排気管4には、噴射ノズル16が貫通設置されており、該噴射ノズル16と所要場所に設けた軽油タンク17との間が軽油供給管18により接続され、該軽油供給管18の途中に装備した供給ポンプ19の駆動と軽油噴射弁20の開作動とにより軽油タンク17内の軽油(還元剤としての燃料)を噴射ノズル16を介し排気管4内に直接添加し得るようにしてあり、これら噴射ノズル16、軽油タンク17、軽油供給管18、供給ポンプ19、軽油噴射弁20により燃料添加装置21が構成されている。   Further, an injection nozzle 16 is provided through the exhaust pipe 4 upstream of the plasma generator 7, and a connection between the injection nozzle 16 and a light oil tank 17 provided at a required place is connected by a light oil supply pipe 18. The light oil (fuel as the reducing agent) in the light oil tank 17 is discharged into the exhaust pipe 4 through the injection nozzle 16 by driving the supply pump 19 provided in the middle of the light oil supply pipe 18 and opening the light oil injection valve 20. The fuel injection device 21 is constituted by the injection nozzle 16, the light oil tank 17, the light oil supply pipe 18, the supply pump 19, and the light oil injection valve 20.

そして、前記制御装置14から必要に応じて出力される供給ポンプ19への駆動指令信号19aと軽油噴射弁20への開弁指令信号20aとにより、前記燃料添加装置21の補助的な燃料添加が適宜に実行されるようになっている。   Then, auxiliary fuel addition of the fuel addition device 21 is performed by a drive command signal 19 a to the supply pump 19 and a valve opening command signal 20 a to the light oil injection valve 20 that are output from the control device 14 as necessary. It is to be executed appropriately.

而して、制御装置14における燃料噴射制御が定期的に通常モードから再生モードに切り替わり、圧縮上死点付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射が実行されると、このポスト噴射により排気ガス3中に未燃燃料(主としてHC:炭化水素)が多く残り、該未燃燃料がNOx吸蔵還元触媒5への還元剤として排気ガス3と共に導かれることになる。   Thus, the fuel injection control in the control device 14 is periodically switched from the normal mode to the regeneration mode, and after the main injection of the fuel performed near the compression top dead center, the post-ignition timing is delayed after the compression top dead center. When the injection is performed, a large amount of unburned fuel (mainly HC: hydrocarbon) remains in the exhaust gas 3 by this post injection, and the unburned fuel is introduced together with the exhaust gas 3 as a reducing agent to the NOx storage reduction catalyst 5. Will be.

この未燃燃料を多く含む排気ガス3に対し前段のプラズマ発生装置7により放電を行うと、排気ガス3中の未燃燃料(HC)がプラズマによる部分酸化反応でH2とCOに分解されるので、後段のNOx吸蔵還元触媒5の表面上で反応性の高いH2及びCOが従来のHCの燃焼温度より低い燃焼温度から排気ガス3中のO2と反応(燃焼)する。 When the exhaust gas 3 containing a large amount of unburned fuel is discharged by the former plasma generator 7, the unburned fuel (HC) in the exhaust gas 3 is decomposed into H 2 and CO by a partial oxidation reaction by plasma. Therefore, highly reactive H 2 and CO react with O 2 in the exhaust gas 3 from the combustion temperature lower than the combustion temperature of the conventional HC on the surface of the NOx occlusion reduction catalyst 5 in the subsequent stage.

これによりNOx吸蔵還元触媒5の周囲の雰囲気中におけるO2濃度がほぼ零となってNOxの分解放出が開始され、そのままNOx吸蔵還元触媒5の表面上で反応性の高いH2及びCOによりNOxが効率良くN2に還元処理される結果、未燃燃料から生成されたHCをそのままNOx吸蔵還元触媒5上で反応させる場合よりも比較的低い温度領域から高いNOx低減率が得られることになる。 As a result, the O 2 concentration in the atmosphere around the NO x storage reduction catalyst 5 becomes almost zero and the decomposition and release of NO x is started, and the NO x storage reduction catalyst 5 directly reacts with the highly reactive H 2 and CO on the surface of the NO x storage reduction catalyst 5. As a result of efficient reduction treatment to N 2 , a higher NOx reduction rate can be obtained from a relatively low temperature range than when HC generated from unburned fuel is reacted as it is on the NOx storage reduction catalyst 5. .

また、特に本形態例においては、プラズマ発生装置7より上流側の排気管4に軽油を直接添加し得るよう燃料添加装置21を追加装備してあるので、該燃料添加装置21により必要に応じて燃料を排気管4内に直接添加しても良く、このようにすれば、NOx吸蔵還元触媒5の再生に必要な還元性雰囲気がより確実に実現されることになる。   Further, particularly in the present embodiment, the fuel addition device 21 is additionally provided so that the light oil can be directly added to the exhaust pipe 4 upstream of the plasma generation device 7. The fuel may be added directly into the exhaust pipe 4, and in this way, the reducing atmosphere necessary for the regeneration of the NOx storage reduction catalyst 5 is more reliably realized.

従って、以上に述べた如き形態例によれば、ディーゼルエンジン1側で各気筒内への燃料噴射を制御してメイン噴射に続くポスト噴射を実行し、このポスト噴射で排気ガス3中に未燃燃料を多く残すことにより燃料添加を行い、その排気ガス3中の未燃燃料(HC)を前段のプラズマ発生装置7にてH2とCOに分解させ、これらの反応性の高いH2及びCOにより比較的低い温度領域から高いNOx低減率を得ることができるので、例えば渋滞の多い都市内での徐行運転等のように低負荷で排気温度が低い運転状態が継続され易い運転条件下であっても、車外に排出される排気ガス3中に含まれるNOxを従来より効果的に低減することができ、NOx吸蔵還元触媒5を用いた排気浄化装置の実用性を大幅に向上することができる。 Therefore, according to the embodiment as described above, the fuel injection into each cylinder is controlled on the diesel engine 1 side and the post injection following the main injection is executed, and unburned in the exhaust gas 3 by this post injection. Fuel is added by leaving a large amount of fuel, and unburned fuel (HC) in the exhaust gas 3 is decomposed into H 2 and CO by the plasma generator 7 in the previous stage, and these highly reactive H 2 and CO Thus, a high NOx reduction rate can be obtained from a relatively low temperature range, so that, for example, a slow driving operation in a city with a lot of traffic, etc. However, NOx contained in the exhaust gas 3 discharged outside the vehicle can be reduced more effectively than before, and the practicality of the exhaust gas purification apparatus using the NOx storage reduction catalyst 5 can be greatly improved. .

事実、本発明者が行った実験結果によれば、図2のグラフに示す如く、添加燃料から生成されたHCをそのままNOx吸蔵還元触媒5上で反応させたケースAと、H2をNOx吸蔵還元触媒5上で反応させたケースBと、COをNOx吸蔵還元触媒5上で反応させたケースCとを比較したところ、ケースAよりもケースCの方が低い温度領域から高いNOx低減率を得られることが確認され、更には、このケースCよりもケースBの方が低い温度領域から高いNOx低減率を得られることが確認されている。尚、図2のグラフにおける縦軸はNOx低減率を、横軸は触媒温度を夫々示している。 In fact, according to the results of experiments conducted by the present inventor, as shown in the graph of FIG. 2, the case A in which HC produced from the added fuel is reacted as it is on the NOx occlusion reduction catalyst 5, and H 2 is occluded by NOx. When the case B reacted on the reduction catalyst 5 and the case C reacted with CO on the NOx storage reduction catalyst 5 were compared, the case C had a higher NOx reduction rate from the lower temperature range than the case A. Further, it has been confirmed that the case B can obtain a higher NOx reduction rate from the lower temperature region than the case C. The vertical axis in the graph of FIG. 2 indicates the NOx reduction rate, and the horizontal axis indicates the catalyst temperature.

また、図3に示す如く、先に説明した本形態例の装置構成で未燃燃料を添加したケースXと、プラズマ発生装置7を装備せずにNOx吸蔵還元触媒5だけを装備して未燃燃料を添加したケースYとを比較したところ、ケースYよりもケースXの方が低負荷領域(排気温度の低い運転領域)から高いNOx低減率を得られることが確認されている。尚、図3のグラフにおける縦軸はNOx低減率を、横軸はディーゼルエンジン1の負荷を夫々示している。   Further, as shown in FIG. 3, the case X in which the unburned fuel is added in the apparatus configuration of the present embodiment described above, and the NOx occlusion reduction catalyst 5 without the plasma generator 7 are provided and the unburned fuel is provided. Comparison with case Y with fuel added confirms that case X can obtain a higher NOx reduction rate than case Y from the low load region (operation region where the exhaust temperature is low). The vertical axis in the graph of FIG. 3 indicates the NOx reduction rate, and the horizontal axis indicates the load of the diesel engine 1.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、メイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を実行することで未燃燃料を多く残すほか、メイン噴射自体の噴射時期を通常より遅らせたり、早めたりすることで未燃燃料(HC)を多く残すようにしても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the exhaust emission control device of the present invention is not limited to the above-described embodiment, and performs post-injection at a non-ignition timing that is later than the compression top dead center following main injection, thereby removing unburned fuel. In addition to leaving a large amount, it may be possible to leave a large amount of unburned fuel (HC) by delaying or accelerating the injection timing of the main injection itself. Of course, changes can be made.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. NOx低減率と触媒温度との関係を比較例と共に示すグラフである。It is a graph which shows the relationship between NOx reduction rate and catalyst temperature with a comparative example. NOx低減率と負荷との関係を比較例と共に示すグラフである。It is a graph which shows the relationship between a NOx reduction rate and load with a comparative example.

符号の説明Explanation of symbols

1 ディーゼルエンジン(エンジン)
3 排気ガス
4 排気管
5 NOx吸蔵還元触媒
7 プラズマ発生装置
14 制御装置(燃料噴射制御装置)
15 燃料噴射装置
15a 燃料噴射信号
21 燃料添加装置
1 Diesel engine (engine)
3 Exhaust gas 4 Exhaust pipe 5 NOx storage reduction catalyst 7 Plasma generator 14 Control device (fuel injection control device)
DESCRIPTION OF SYMBOLS 15 Fuel injection apparatus 15a Fuel injection signal 21 Fuel addition apparatus

Claims (2)

エンジンから排気ガスを導く排気管に装備されたNOx吸蔵還元触媒と、該NOx吸蔵還元触媒の再生時に還元剤として未燃燃料を排気ガス中に多く残し得るよう前記エンジンの燃料噴射を制御する燃料噴射制御装置と、前記NOx吸蔵還元触媒より上流側で排気ガス中に放電してプラズマを発生させ且つそのプラズマにより未燃燃料をH2とCOに分解するプラズマ発生装置とを備えたことを特徴とする排気浄化装置。 NOx occlusion reduction catalyst installed in an exhaust pipe for leading exhaust gas from the engine, and fuel for controlling fuel injection of the engine so that a large amount of unburned fuel can be left in the exhaust gas as a reducing agent during regeneration of the NOx occlusion reduction catalyst An injection control device and a plasma generator for generating plasma by discharging into the exhaust gas upstream of the NOx storage reduction catalyst and decomposing unburned fuel into H 2 and CO by the plasma are provided. Exhaust gas purification device. プラズマ発生装置より上流側の排気管に燃料を直接添加し得るよう燃料添加装置を追加装備したことを特徴とする請求項1に記載の排気浄化装置。   The exhaust emission control device according to claim 1, further comprising a fuel addition device so that fuel can be directly added to an exhaust pipe upstream of the plasma generation device.
JP2004355041A 2004-12-08 2004-12-08 Exhaust emission control device Pending JP2006161697A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004355041A JP2006161697A (en) 2004-12-08 2004-12-08 Exhaust emission control device
DE602005015897T DE602005015897D1 (en) 2004-12-08 2005-12-07 EXHAUST EMISSION DEVICE
EP05814697A EP1835137B1 (en) 2004-12-08 2005-12-07 Exhaust emission device
PCT/JP2005/022448 WO2006062124A1 (en) 2004-12-08 2005-12-07 Exhaust gas purification device
US11/721,057 US7913486B2 (en) 2004-12-08 2005-12-07 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004355041A JP2006161697A (en) 2004-12-08 2004-12-08 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2006161697A true JP2006161697A (en) 2006-06-22

Family

ID=36663986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004355041A Pending JP2006161697A (en) 2004-12-08 2004-12-08 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2006161697A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036199A (en) * 2007-07-12 2009-02-19 Imagineering Kk Exhaust gas substance removal device
CN101988413A (en) * 2009-07-30 2011-03-23 现代自动车株式会社 Exhaust system
CN102003253A (en) * 2009-08-28 2011-04-06 现代自动车株式会社 Exhaust system
KR101826561B1 (en) * 2016-09-06 2018-02-07 현대자동차 주식회사 Afterteatment system for exhaust gas and catalyst regeneration method using plasma
JP2018184924A (en) * 2017-04-27 2018-11-22 日産自動車株式会社 Exhaust emission control system, and control method for exhaust emission control system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19510804A1 (en) * 1995-03-24 1996-09-26 Dornier Gmbh Reduction of nitrogen oxide(s) in vehicle exhaust gas
JP2001525902A (en) * 1997-05-16 2001-12-11 シーメンス アクチエンゲゼルシヤフト Method and apparatus for removing oxidized harmful substances in exhaust gas containing oxygen and engine driven thereby
JP2002235594A (en) * 2001-02-08 2002-08-23 Nissan Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2002256853A (en) * 2001-03-02 2002-09-11 Toyota Motor Corp Exhaust gas purifying device of internal combustion engine
JP2004068623A (en) * 2002-08-01 2004-03-04 Toyota Motor Corp Exhaust emission control device and exhaust gas purification method of internal combustion engine
JP2004084638A (en) * 2002-08-29 2004-03-18 Mitsubishi Heavy Ind Ltd Treatment method and apparatus for engine exhaust gas
JP2004270587A (en) * 2003-03-10 2004-09-30 Mitsubishi Electric Corp Exhaust emission control device for internal combustion engine
JP2004290965A (en) * 2003-03-07 2004-10-21 Honda Motor Co Ltd Exhaust gas purifying system
JP2004344719A (en) * 2003-05-20 2004-12-09 Toyota Motor Corp Exhaust emission control device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19510804A1 (en) * 1995-03-24 1996-09-26 Dornier Gmbh Reduction of nitrogen oxide(s) in vehicle exhaust gas
JP2001525902A (en) * 1997-05-16 2001-12-11 シーメンス アクチエンゲゼルシヤフト Method and apparatus for removing oxidized harmful substances in exhaust gas containing oxygen and engine driven thereby
JP2002235594A (en) * 2001-02-08 2002-08-23 Nissan Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2002256853A (en) * 2001-03-02 2002-09-11 Toyota Motor Corp Exhaust gas purifying device of internal combustion engine
JP2004068623A (en) * 2002-08-01 2004-03-04 Toyota Motor Corp Exhaust emission control device and exhaust gas purification method of internal combustion engine
JP2004084638A (en) * 2002-08-29 2004-03-18 Mitsubishi Heavy Ind Ltd Treatment method and apparatus for engine exhaust gas
JP2004290965A (en) * 2003-03-07 2004-10-21 Honda Motor Co Ltd Exhaust gas purifying system
JP2004270587A (en) * 2003-03-10 2004-09-30 Mitsubishi Electric Corp Exhaust emission control device for internal combustion engine
JP2004344719A (en) * 2003-05-20 2004-12-09 Toyota Motor Corp Exhaust emission control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036199A (en) * 2007-07-12 2009-02-19 Imagineering Kk Exhaust gas substance removal device
CN101988413A (en) * 2009-07-30 2011-03-23 现代自动车株式会社 Exhaust system
CN102003253A (en) * 2009-08-28 2011-04-06 现代自动车株式会社 Exhaust system
KR101826561B1 (en) * 2016-09-06 2018-02-07 현대자동차 주식회사 Afterteatment system for exhaust gas and catalyst regeneration method using plasma
JP2018184924A (en) * 2017-04-27 2018-11-22 日産自動車株式会社 Exhaust emission control system, and control method for exhaust emission control system

Similar Documents

Publication Publication Date Title
US20100251698A1 (en) Exhaust purification system for hybrid electric vehicle
JP2006242020A (en) Exhaust emission control device
JP4941284B2 (en) Exhaust gas treatment system for internal combustion engine
CN105804842A (en) System for improving exhaust gas purifying performance of diesel hybrid electric vehicle
JP3912294B2 (en) Exhaust gas purification method and exhaust gas purification apparatus for internal combustion engine
JP2004204699A (en) Exhaust gas purifying device
US20040188238A1 (en) System and method for concurrent particulate and NOx control
JP3642032B2 (en) Exhaust gas purification device for internal combustion engine
JP2005133563A (en) Exhaust emission control device for internal combustion engine
JP2009264282A (en) Exhaust emission control device for internal combustion engine
EP1835137B1 (en) Exhaust emission device
JP2006161697A (en) Exhaust emission control device
JP4631767B2 (en) Exhaust gas purification device for hybrid system
JP2006161768A (en) Exhaust emission control device
JP4934082B2 (en) Exhaust purification device
JP2004285908A (en) Bed temperature control method for particulate filter in hybrid system
JP2003222018A (en) Exhaust emissions purification apparatus for internal combustion engine
JP4380465B2 (en) Control device for hydrogen fuel engine
JP2005002925A (en) Exhaust emission control device
KR102518595B1 (en) Lnt rich control method of mild hybrid electric vehicle and mild hybrid electric vehicle
JP2001200715A (en) Exhaust emission control device for internal combustion engine
JP5713612B2 (en) Exhaust purification device control method
JP2005233065A (en) Exhaust emission control device
JP4329378B2 (en) Exhaust gas purification device for internal combustion engine
JP2015151935A (en) NOx REDUCING METHOD FOR INTERNAL COMBUSTION ENGINE, AND THE INTERNAL COMBUSTION ENGINE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220