JP2005171805A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2005171805A
JP2005171805A JP2003410374A JP2003410374A JP2005171805A JP 2005171805 A JP2005171805 A JP 2005171805A JP 2003410374 A JP2003410374 A JP 2003410374A JP 2003410374 A JP2003410374 A JP 2003410374A JP 2005171805 A JP2005171805 A JP 2005171805A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
noble metal
region
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003410374A
Other languages
Japanese (ja)
Other versions
JP4269919B2 (en
Inventor
Yasuaki Nakano
泰彰 仲野
Shinya Hirota
信也 広田
Takamitsu Asanuma
孝充 浅沼
Toshisuke Toshioka
俊祐 利岡
Kohei Yoshida
耕平 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003410374A priority Critical patent/JP4269919B2/en
Publication of JP2005171805A publication Critical patent/JP2005171805A/en
Application granted granted Critical
Publication of JP4269919B2 publication Critical patent/JP4269919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device capable of excellently purifying NOx in inflow exhaust gas, even when the temperature of a NOx catalyst is lower than the NO oxidation starting temperature. <P>SOLUTION: This exhaust emission control device is provided with a NOx storage means for carrying a NOx occlusion agent 55 and a noble metal catalyst 54 in an engine exhaust passage. The NOx occlusion agent performs the NOx occlusion-emission action when the temperature of the noble metal catalyst is the NO oxidation starting temperature or more. A NOx occlusion means has a small quantity carrying area 56 and a large quantity carrying area 57. A carrying quantity of the noble metal catalyst per unit volume in the small quantity carrying area, is less than a carrying quantity of the noble metal catalyst per unit volume in the large quantity carrying area. The small quantity carrying area and the large quantity carrying area are arranged so that exhaust gas flowing in the NOx occlusion means, passes through the large quantity carrying area after passing through the small quantity carrying area. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

リーン空燃比のもとで燃焼が行われているときに排気ガス中に含まれる窒素酸化物(NOX)を浄化するためのものとして、アルミナからなる担体の表面上にアルカリ金属或いはアルカリ土類金属等からなるNOX吸蔵剤の層を形成し、さらに白金のような貴金属触媒を担体表面上に担持したNOX触媒が公知である。 As a means for purifying nitrogen oxide (NO x ) contained in exhaust gas when combustion is performed under a lean air-fuel ratio, an alkali metal or alkaline earth is formed on the surface of a support made of alumina. forming a layer of the NO X absorbent comprising a metal or the like, it is known more NO X catalyst a noble metal catalyst supported on a carrier surface, such as platinum.

NOX触媒に担持されている白金がリーン雰囲気の下で一酸化窒素(NO)を二酸化窒素(NO2)に酸化することができる温度(以下、「NO酸化開始温度」と称す)にNOX触媒の温度が達している場合、NOX触媒に流入する排気ガス(以下、「流入排気ガス」と称す)の空燃比がリーンのときに流入排気ガス中に含まれるNOXをNOX吸蔵剤内に吸蔵し、流入排気ガスの空燃比がほぼ理論空燃比またはリッチ(以下、「ストイキ・リッチ」と称す)にされるとNOX吸蔵剤に吸蔵されていたNOXが放出され、流入排気ガス中に存在する還元剤(例えば、未燃の燃料や一酸化炭素(CO))により還元される(以下、このようなNOX吸蔵剤の作用を「吸放出作用」と称す)。 At a temperature at which platinum supported on the NO x catalyst can oxidize nitric oxide (NO) to nitrogen dioxide (NO 2 ) under a lean atmosphere (hereinafter referred to as “NO oxidation start temperature”), NO x When the temperature of the catalyst has reached, when the air-fuel ratio of exhaust gas flowing into the NO x catalyst (hereinafter referred to as “inflow exhaust gas”) is lean, NO x contained in the inflow exhaust gas is stored as the NO x storage agent. occluded within, the air-fuel ratio of the inflowing exhaust gas is substantially stoichiometric or rich (hereinafter referred to as "stoichiometric-rich") When the NO X absorbent NO X that was stored in is released, the inflow exhaust It is reduced by a reducing agent (for example, unburned fuel or carbon monoxide (CO)) present in the gas (hereinafter, the action of the NO x storage agent is referred to as “absorption / release action”).

ここで、NOx吸蔵剤は、リーン雰囲気において排気ガス中の二酸化窒素(NO2)を吸蔵し、リッチ雰囲気において吸蔵しているNO2を放出する。NOX触媒に流入する排気ガス中にはNOXとしてNO2だけでなくNOも含まれるが、NOX触媒の温度が白金のNO酸化開始温度以上の場合には白金の酸化作用によりNOがNO2に酸化されるため、結果としてNOX触媒に流入する排気ガス中に含まれるNOもNOx吸蔵剤に吸蔵される。 Here, the NO x storage agent stores nitrogen dioxide (NO 2 ) in the exhaust gas in a lean atmosphere and releases NO 2 stored in a rich atmosphere. NO Although the exhaust gas flowing into the X catalyst also include NO not only NO 2 as NO X, NO X NO by the oxidation action of platinum in the case the temperature is above NO oxidation start temperature of the platinum catalyst NO since it is oxidized to 2, NO contained in the exhaust gas flowing into the NO X catalyst as a result is also occluded in the NO x storage material.

ところが、NOX触媒の温度が白金のNO酸化開始温度よりも低い場合、白金の酸化作用が低く、NOX触媒に流入する排気ガス中のNOはNO2に酸化されない。そこで、NOX触媒の排気上流にNO酸化触媒を配置し、NOX触媒の温度が白金のNO酸化開始温度よりも低くても、NO酸化触媒によって予め機関本体から排出された排気ガス中のNOをNO2に酸化しておくことで、NOX触媒によるNOXの浄化率を高めようとする排気浄化装置が提案されている(特許文献1)。 However, when the temperature of the NO x catalyst is lower than the NO oxidation start temperature of platinum, the oxidizing action of platinum is low, and NO in the exhaust gas flowing into the NO x catalyst is not oxidized to NO 2 . Therefore, NO X in the exhaust upstream of the catalyst disposed NO oxidation catalyst, NO even if the temperature of the X catalyst is lower than the NO oxidation start temperature of the platinum, NO in the exhaust gas discharged from the pre-engine body by the NO oxidation catalyst There has been proposed an exhaust purification device that increases the NO x purification rate of the NO x catalyst by oxidizing the gas to NO 2 (Patent Document 1).

特開2002−89246号公報JP 2002-89246 A 特開2001−62294号公報JP 2001-62294 A 特開2003−13732号公報JP 2003-13732 A 特許3374999号公報Japanese Patent No. 3374999 特開2001−289035号公報JP 2001-289035 A 特開2000−157867号公報JP 2000-157867 A

ところが、NOX触媒に担持されている白金は、NOX触媒の温度が白金のNO酸化開始温度よりも低い場合には、NOX触媒への流入排気ガス中のNOをNO2に酸化できないばかりか、流入排気ガス中のNO2をNOに還元してしまう。このため、特許文献1に開示されているように、NOX触媒の排気上流にNO酸化触媒を設けて、NOX触媒への流入排気ガス中のNO2の割合を多くしたとしても、NOX触媒においてNO2がNOへ還元されてしまう。その結果、排気ガス中のNOXはNOx吸蔵剤へ吸蔵されにくくなり、NOX触媒の温度が白金のNO酸化開始温度よりも低い場合におけるNOX触媒によるNOX浄化率は低いものとなってしまっていた。 However, platinum supported in the NO X catalyst, when the temperature of the NO X catalyst is lower than the NO oxidation start temperature of the platinum, the NO in the inflow exhaust gas to the NO X catalyst just can not oxidized to NO 2 Or, NO 2 in the inflowing exhaust gas is reduced to NO. Therefore, as disclosed in Patent Document 1, provided with a NO oxidation catalyst in the exhaust upstream of the NO X catalyst, even if the proportion of NO 2 in the inflowing exhaust gas to the NO X catalyst, NO X NO 2 is reduced to NO in the catalyst. As a result, NO X in the exhaust gas is less likely to be occluded into the NO x storage material, is NO X purification rate by the NO X catalyst and low when the temperature of the NO X catalyst is lower than the NO oxidation start temperature of the platinum It was.

そこで、本発明の目的は、NOX触媒の温度が貴金属触媒のNO酸化開始温度よりも低い場合であっても良好に流入排気ガス中のNOXを浄化することができる内燃機関の排気浄化装置を提供することにある。 Accordingly, an object of the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine that can effectively purify NO x in the inflowing exhaust gas even when the temperature of the NO x catalyst is lower than the NO oxidation start temperature of the noble metal catalyst. Is to provide.

上記課題を解決するために、第1の発明では、機関排気通路内にNOX吸蔵剤と貴金属触媒とを担持するNOX吸蔵手段を具備し、上記NOX吸蔵剤は、貴金属触媒の温度がNO酸化開始温度以上である場合にNOX吸蔵手段に流入する排気ガスの空燃比がリーンであるときには排気ガス中のNOXを吸蔵し、NOX吸蔵手段に流入する排気ガスの空燃比がほぼ理論空燃比またはリッチのときにはNOX吸蔵剤に吸蔵されているNOXを放出し、上記NOX吸蔵手段が、少量担持領域と多量担持領域とを有し、上記少量担持領域における単位体積当たりの貴金属触媒の担持量が上記多量担持領域における単位体積当たりの貴金属触媒の担持量よりも少ない内燃機関の排気浄化装置において、上記少量担持領域および多量担持量域領域は上記NOX吸蔵手段に流入する排気ガスが上記少量担持領域上を通過してから上記多量担持領域上を通過するように設けられる。
貴金属触媒の酸化・還元能力が高いと、貴金属触媒の温度がNO酸化開始温度よりも低い場合に、すなわち貴金属触媒を担持しているNOX吸蔵手段の温度がNO酸化開始温度よりも低い場合に、貴金属触媒によりNOX吸蔵手段に流入する排気ガス中のNO2がNOに還元されてしまう。NOX吸蔵剤はNO2のみしか吸蔵することができないため、このように還元されたNOを吸蔵できず、よってNOX吸蔵手段のNOX浄化能力が低下してしまう。第1の発明によれば、単位体積当たりの貴金属触媒の担持量が少ない少量担持領域が設けられる。貴金属触媒の担持量が少ないと、NOX吸蔵剤の塩基性が強いことにより貴金属触媒の活性が弱められ、よって酸化・還元能力が低いものとされる。このため少量担持領域では貴金属触媒の温度がNO酸化開始温度よりも低い場合において貴金属触媒によるNO2からNOへの還元が抑制され、NOX吸蔵剤へNO2を吸蔵させることができるため、NOX吸蔵手段のNOX浄化能力の低下を抑制することができる。また、排気ガスは多量担持領域上を通過する前に少量担持領域上を通過するため、排気ガスが少量担持領域上を通過する前に多量担持領域でNO2がNOに還元されてしまうことが防止される。
また、少量担持領域においては、貴金属触媒の温度、すなわちNOX吸蔵手段の温度がNO酸化開始温度以上であってNOX吸蔵手段に流入する排気ガスの空燃比がほぼ理論空燃比またはリッチのときに、NOX吸蔵剤から放出されるNOXをN2に還元させる還元能力が高くなく、少量担持領域の排気下流にNOXが流れてしまう。しかし、第1の発明によれば、少量担持領域上を通過したNOXを含んだ排気ガスは多量担持領域上を通過するため、この多量担持領域において少量担持領域で還元されなかったNOXをN2に還元することができる。
In order to solve the above problems, the first aspect of the invention, comprising a the NO X storage means for carrying the the NO X storage agent and a noble metal catalyst in the engine exhaust passage, the the NO X storage agent, the temperature of the noble metal catalyst occluding NO X in the exhaust gas when the air-fuel ratio of the exhaust gas flowing into the NO X storage means when it is NO oxidation start temperature or higher is lean, the air-fuel ratio of the exhaust gas flowing into the NO X storage means substantially releasing NO X that is occluded in the NO X absorbent when the stoichiometric air-fuel ratio or rich, the the NO X storage means, and a small amount carrying region and a large amount carrying region, per unit volume in the small amount carrying region in the exhaust purification system of smaller internal combustion engine than the amount of the noble metal catalyst per unit volume amount of the noble metal catalyst in the large amount holding region, a small amount carrying region and multimeric carrying weight region areas above the NO X absorption Exhaust gas flowing into the unit is provided so as to pass through the large amount holding region above the passes over the small amount carrying region.
When the oxidation / reduction ability of the noble metal catalyst is high, when the temperature of the noble metal catalyst is lower than the NO oxidation start temperature, that is, when the temperature of the NO x storage means carrying the noble metal catalyst is lower than the NO oxidation start temperature. The NO 2 in the exhaust gas flowing into the NO x storage means is reduced to NO by the noble metal catalyst. Since the NO X storage agent can not be occluded only a NO 2, can not occlude thus reduced NO, thus is NO X purifying ability of the NO X storage means decreases. According to the first aspect of the present invention, a small amount supporting region with a small amount of noble metal catalyst supported per unit volume is provided. When the amount of the noble metal catalyst supported is small, the activity of the noble metal catalyst is weakened due to the strong basicity of the NO x storage agent, and therefore the oxidation / reduction ability is low. For this reason, when the temperature of the noble metal catalyst is lower than the NO oxidation start temperature in the small amount supported region, the reduction from NO 2 to NO by the noble metal catalyst can be suppressed, and NO 2 can be stored in the NO X storage agent. It is possible to suppress a decrease in the NO X purification ability of the X storage means. Further, since the exhaust gas passes over the small amount supporting region before passing over the large amount supporting region, NO 2 may be reduced to NO in the large amount supporting region before the exhaust gas passes over the small amount supporting region. Is prevented.
Further, in the small amount carrying region, when the temperature of the noble metal catalyst, that is, the temperature of the NO x storage means is equal to or higher than the NO oxidation start temperature and the air-fuel ratio of the exhaust gas flowing into the NO x storage means is almost the stoichiometric air fuel ratio or rich. In addition, the reduction capability of reducing NO X released from the NO X storage agent to N 2 is not high, and NO X flows downstream of the exhaust gas in the small amount carrying region. However, according to the first aspect of the invention, the exhaust gas containing NO x that has passed over the small amount carrying region passes over the large amount carrying region, so that NO x that has not been reduced in the small amount carrying region in this large amount carrying region is removed. Can be reduced to N 2 .

第2の発明では、第1の発明において、上記NOX吸蔵手段はNOX吸蔵剤と貴金属触媒とを担持する一つのNOX触媒を具備し、上記少量担持領域および多量担持領域は上記一つのNOX触媒内に設けられる。 According to a second invention, in the first invention, the NO X storage means comprises one NO X catalyst supporting a NO X storage agent and a noble metal catalyst, and the small amount supporting region and the large amount supporting region are the one of the above one. It is provided in the NO x catalyst.

第3の発明では、第2の発明において、上記少量担持領域が上記NOX触媒の上流側部分に設けられ、上記多量担持領域が上記上流側部分よりも排気下流に位置する上記NOX触媒の下流側部分に設けられる。 According to a third aspect, in the second aspect, the small amount supporting region is provided in an upstream portion of the NO X catalyst, and the large amount supporting region is located downstream of the upstream portion of the NO X catalyst. Provided in the downstream portion.

第4の発明では、第2の発明において、上記NOX触媒は、排気ガスが流入する流入通路と排気ガスが流出する流出通路とを具備し、これら流入通路と流出通路との間には隔壁が設けられると共に上記流入通路に流入した排気ガスは隔壁を通って上記流出通路へ流れるようになっており、上記少量担持領域は上記隔壁の表面上であって流入通路側に設けられ、上記多量担持領域は上記隔壁の表面上であって流出通路側に設けられる。 According to a fourth invention, in the second invention, the NO x catalyst comprises an inflow passage through which exhaust gas flows in and an outflow passage through which exhaust gas flows out, and a partition wall is provided between the inflow passage and the outflow passage. The exhaust gas that has flowed into the inflow passage flows to the outflow passage through the partition wall, and the small amount carrying region is provided on the inflow passage side on the surface of the partition wall, The carrying region is provided on the surface of the partition wall and on the outflow passage side.

第5の発明では、第1の発明において、上記NOX吸蔵手段は機関排気通路内に直列的に配置された二つのNOX触媒を具備し、各NOX触媒はNOX吸蔵剤と貴金属触媒とを担持し、上流側に配置された上記NOX触媒に上記少量担持領域が設けられると共に下流側に配置された上記NOX触媒に上記多量担持領域が設けられる。 According to a fifth invention, in the first invention, the NO x storage means comprises two NO x catalysts arranged in series in the engine exhaust passage, each NO x catalyst comprising a NO x storage agent and a noble metal catalyst. The NO x catalyst arranged upstream is provided with the small amount carrying region, and the NO x catalyst arranged downstream is provided with the large amount carrying region.

第6の発明では、第1〜第5のいずれか一つの発明において、上記少量担持領域における単位体積当たりの貴金属触媒の担持量が、少なくとも貴金属触媒の温度がNO酸化開始温度以上であるときの貴金属触媒の酸化・還元能力を考慮したときに最適になるように設定される量よりも少ない。   In a sixth invention, in any one of the first to fifth inventions, the amount of the noble metal catalyst supported per unit volume in the small amount support region is at least when the temperature of the noble metal catalyst is equal to or higher than the NO oxidation start temperature. Less than the amount set to be optimal when considering the oxidation / reduction ability of the noble metal catalyst.

上記課題を解決するために、第7の発明では、貴金属触媒とNOX吸蔵剤とを具備するNOX吸蔵手段であって、単位体積当たりの貴金属触媒の担持量が少ない少量担持領域と、単位体積当たりの貴金属触媒の担持量が多い多量担持領域とを有するNOX吸蔵手段を用いて、排気ガス中に含まれるNOXを浄化する内燃機関の排気浄化方法において、貴金属触媒の温度がNO酸化開始温度よりも低い場合には、NOX吸蔵手段に流入した排気ガスが上記多量担持領域上を通過する前に上記少量担持領域上を通過するようにし、該少量担持領域のNOX吸蔵剤にNO2を吸蔵させる。
第7の発明によれば、少量担持領域では貴金属触媒の温度がNO酸化開始温度よりも低い場合において貴金属触媒によるNO2からNOへの還元が抑制される。このため、貴金属触媒の温度がNO酸化開始温度よりも低い場合にNO2をNOへ還元してしまう多量担持領域上を排気ガスが通過する前に少量担持領域上を通過することにより、少量担持領域のNOX吸蔵剤にNO2を吸蔵させることができるため、NOX吸蔵手段のNOX浄化能力の低下を抑制することができる。
To solve the above problem, in the seventh aspect of the invention, there is provided a the NO X storage means comprising a noble metal catalyst and the NO X storage agent, and a small amount carrying region is small supported amount of noble metal catalyst per unit volume, unit with the NO X storage means having a large amount carrying region is large amount of the noble metal catalyst per volume, in the exhaust purification method for an internal combustion engine for purifying NO X contained in the exhaust gas, the temperature of the noble metal catalyst is the NO oxidation When the temperature is lower than the starting temperature, the exhaust gas flowing into the NO X storage means passes over the small amount supporting region before passing over the large amount supporting region, and the NO X storage agent in the small amount supporting region is used. Occludes NO 2 .
According to the seventh aspect of the invention, in the small amount support region, when the temperature of the noble metal catalyst is lower than the NO oxidation start temperature, the reduction of NO 2 to NO by the noble metal catalyst is suppressed. For this reason, when the temperature of the noble metal catalyst is lower than the NO oxidation start temperature, the small amount is supported by passing over the small amount supporting region before the exhaust gas passes over the large amount supporting region that reduces NO 2 to NO. Since NO 2 can be stored in the NO X storage agent in the region, it is possible to suppress a decrease in the NO X purification ability of the NO X storage means.

第1〜第6の発明によれば、貴金属触媒の温度、すなわちNOX吸蔵手段の温度がNO酸化開始温度よりも低い場合に少量担持領域で流入排気ガス中のNO2をNOX吸蔵剤に吸蔵させることができ且つ貴金属触媒の温度がNO酸化開始温度以上の場合に多量担持領域においてNOX吸蔵剤から放出されたNOXを還元することができるため、NOX吸蔵手段の温度が貴金属触媒のNO酸化開始温度以上である場合のNOX吸蔵手段のNOX浄化能力を維持しつつ、NOX吸蔵手段の温度が貴金属触媒のNO酸化開始温度よりも低い場合であっても良好に流入排気ガス中のNOXを浄化することができる。
第7の発明によれば、貴金属触媒の温度がNO酸化開始温度よりも低い場合においてもNOX吸蔵手段のNOX浄化能力の低下を抑制することができ、良好に流入排気ガス中のNOXを浄化することができる。
According to the first to sixth inventions, when the temperature of the noble metal catalyst, that is, the temperature of the NO x storage means is lower than the NO oxidation start temperature, NO 2 in the inflowing exhaust gas is converted into the NO x storage agent in the small amount carrying region. it is possible that the temperature of and the noble metal catalyst can be occluded to reduce the released NO X from the NO X storage agent in a large amount carrying region in the case of more NO oxidation start temperature, the temperature of the NO X storage means noble metal catalyst while maintaining the NO X purifying ability of the NO X storage means when it is in the NO oxidation start temperature or higher, the temperature is also good inflow exhaust even if lower than the NO oxidation start temperature of the noble metal catalyst of the NO X occluding means NO x in the gas can be purified.
According to the seventh invention, the temperature of the noble metal catalyst also it is possible to suppress the reduction of the NO X purifying ability of the NO X storage means when lower than the NO oxidation start temperature, NO X in the well inflow exhaust gas Can be purified.

図1は本発明を圧縮自着火式内燃機関に適用した場合を示している。なお、本発明は火花点火式内燃機関にも適用することもできる。   FIG. 1 shows a case where the present invention is applied to a compression self-ignition internal combustion engine. The present invention can also be applied to a spark ignition type internal combustion engine.

図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内にそれぞれ燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドをそれぞれ示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口はエアクリーナ8に連結される。吸気ダクト6内にはステップモータにより駆動されるスロットル弁9が配置され、さらに吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置10が配置される。図1に示した実施例では機関冷却水が冷却装置10内に導かれ、機関冷却水によって吸入空気が冷却される。一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結され、排気タービン7bの出口はNOX触媒11を内蔵したケーシング12に連結される。排気マニホルド5の集合部出口には排気マニホルド5内を流れる排気ガス中に例えば炭化水素からなる還元剤を添加するための還元剤添加弁13が配置される。 Referring to FIG. 1, 1 is an engine body, 2 is a combustion chamber of each cylinder, 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber 2, 4 is an intake manifold, and 5 is an exhaust manifold. Respectively. The intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 through the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 8. A throttle valve 9 driven by a step motor is arranged in the intake duct 6, and a cooling device 10 for cooling intake air flowing in the intake duct 6 is arranged around the intake duct 6. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 10 and the intake air is cooled by the engine cooling water. On the other hand, the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7, and the outlet of the exhaust turbine 7 b is connected to the casing 12 containing the NO x catalyst 11. A reducing agent addition valve 13 for adding a reducing agent made of, for example, hydrocarbons to the exhaust gas flowing in the exhaust manifold 5 is disposed at the outlet of the collecting portion of the exhaust manifold 5.

排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路14を介して互いに連結され、EGR通路14内には電子制御式EGR制御弁15が配置される。また、EGR通路14周りにはEGR通路14内を流れるEGRガスを冷却するためのEGR冷却装置16が配置される。図1に示した実施例では機関冷却水が冷却装置16内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管17を介して燃料リザーバ、いわゆるコモンレール18に連結される。このコモンレール18内へは電子制御式の吐出量可変な燃料ポンプ19から燃料が供給され、コモンレール18内に供給された燃料は各燃料供給管17を介して燃料噴射弁3に供給される。   The exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 14, and an electronically controlled EGR control valve 15 is disposed in the EGR passage 14. An EGR cooling device 16 for cooling the EGR gas flowing in the EGR passage 14 is disposed around the EGR passage 14. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 16, and the EGR gas is cooled by the engine cooling water. On the other hand, each fuel injection valve 3 is connected to a fuel reservoir, so-called common rail 18 via a fuel supply pipe 17. Fuel is supplied into the common rail 18 from an electronically controlled fuel pump 19 with variable discharge amount, and the fuel supplied into the common rail 18 is supplied to the fuel injection valve 3 via each fuel supply pipe 17.

電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。NOX触媒11にはNOX触媒11の温度を検出するための温度センサ20が取付けられ、この温度センサ20の出力信号は対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量に比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。さらに入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁9駆動用ステップモータ、還元剤添加弁13、EGR制御弁15、および燃料ポンプ19に接続される。 The electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31. It comprises. The the NO X catalyst 11 is attached a temperature sensor 20 for detecting the temperature of the NO X catalyst 11, the output signal of the temperature sensor 20 is input to the AD converter 37 the input port 35 via a corresponding. A load sensor 41 that generates an output voltage proportional to the amount of depression of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. The Further, a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 15 ° is connected to the input port 35. On the other hand, the output port 36 is connected to the fuel injection valve 3, the step motor for driving the throttle valve 9, the reducing agent addition valve 13, the EGR control valve 15, and the fuel pump 19 through corresponding drive circuits 38.

図2(A)および(B)に図1に示すNOX触媒11の構造を示す。なお、図2(A)はNOX触媒11の正面図を示しており、図2(B)はNOX触媒11の側面断面図を示している。図2(A)および(B)に示したようにNOX触媒11はハニカム構造をなしており、互いに平行をなして延びる複数個の排気流通路50を具備し、これら排気流通路50は隔壁51により画成されている。 2A and 2B show the structure of the NO x catalyst 11 shown in FIG. Incidentally, FIG. 2 (A) shows a front view of the NO X catalyst 11, FIG. 2 (B) shows a side cross-sectional view of the NO X catalyst 11. As shown in FIGS. 2A and 2B, the NO x catalyst 11 has a honeycomb structure and includes a plurality of exhaust flow passages 50 extending in parallel to each other. The exhaust flow passages 50 are partition walls. 51.

NOX触媒11の隔壁51の基体52は例えばコージェライト等から形成され、この基体52上には例えばアルミナからなる担体53が設けられる。図3(A)、(B)はこの担体53の表面部分の断面を図解的に示している。図3(A)、(B)に示されるように担体53の表面上には貴金属触媒54が分散して担持されており、さらに担体53の表面上にはNOX吸蔵剤55の層が形成されている。 The base 52 of the partition wall 51 of the NO x catalyst 11 is made of, for example, cordierite or the like, and a carrier 53 made of alumina, for example, is provided on the base 52. 3A and 3B schematically show a cross section of the surface portion of the carrier 53. FIG. As shown in FIGS. 3A and 3B, a noble metal catalyst 54 is dispersedly supported on the surface of the carrier 53, and a layer of NO x storage agent 55 is formed on the surface of the carrier 53. Has been.

本実施形態では貴金属触媒54として白金(Pt)が用いられており、NOX吸蔵剤55を構成する成分としては例えばカリウム(K)、ナトリウム(Na)、セシウム(Cs)のようなアルカリ金属、バリウム(Ba)、カルシウム(Ca)のようなアルカリ土類、ランタン(La)、イットリウム(Y)のような希土類から選ばれた少なくとも一つが用いられている。 In the present embodiment, platinum (Pt) is used as the noble metal catalyst 54, and examples of the components constituting the NO x storage agent 55 include alkali metals such as potassium (K), sodium (Na), and cesium (Cs), At least one selected from alkaline earths such as barium (Ba) and calcium (Ca), and rare earths such as lanthanum (La) and yttrium (Y) is used.

機関吸気通路、燃焼室2およびNOX触媒11上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、NOX吸蔵剤55は、貴金属触媒54の温度が後述するNO酸化開始温度以上であれば、すなわちNOX触媒11の温度がNO酸化開始温度以上であればNOX触媒に流入する排気ガス(以下、「流入排気ガス」と称す)の空燃比がリーンのときにはNOXを吸収し、流入排気ガス中の酸素濃度が低下すると吸収したNOXを放出するNOXの吸放出作用を行う。 When the ratio of air and fuel (hydrocarbon) supplied into the engine intake passage, the combustion chamber 2 and the exhaust passage upstream of the NO x catalyst 11 is called the air-fuel ratio of the exhaust gas, the NO x storage agent 55 if NO oxidation initiation temperature or higher temperature of below, i.e. the exhaust gas temperature of the NO X catalyst 11 flows into the NO X catalyst if NO oxidation start temperature or higher (hereinafter referred to as "inflow exhaust gas") of air absorbs NO X when the lean performs absorbing and releasing action of the NO X that releases NO X concentration of oxygen absorbed to decrease in the inflowing exhaust gas.

NOX吸蔵剤55を構成する成分としてバリウム(Ba)を用いた場合を例にとって説明すると、流入排気ガスの空燃比がリーンのとき、すなわち流入排気ガス中の酸素濃度が高いときには白金54の温度がNO酸化開始温度以上であれば流入排気ガス中に含まれるNOは図3(A)に示したように白金54上において酸化されてNO2となり、次いでNOX吸蔵剤55内に吸収されて酸化バリウム(BaO)と結合しながら硝酸イオン(NO3 -)の形でNOX吸蔵剤55内に拡散する。このようにしてNOXがNOX吸蔵剤55内に吸収される。流入排気ガス中の酸素濃度が高い限り白金54の表面でNO2が生成され、NOX吸蔵剤55のNO2吸収能力が飽和しない限りNO2がNOX吸蔵剤55内に吸収されて硝酸イオン(NO3 -)が生成される。 The case where barium (Ba) is used as a component constituting the NO X storage agent 55 will be described as an example. When the air-fuel ratio of the inflowing exhaust gas is lean, that is, when the oxygen concentration in the inflowing exhaust gas is high, the temperature of the platinum 54 If NO is higher than the NO oxidation start temperature, the NO contained in the inflowing exhaust gas is oxidized on the platinum 54 to become NO 2 as shown in FIG. 3A, and then absorbed into the NO x storage agent 55. It diffuses into the NO x storage agent 55 in the form of nitrate ions (NO 3 ) while being combined with barium oxide (BaO). In this way, NO x is absorbed in the NO x storage agent 55. NO 2 is produced on the surface of the oxygen concentration is as high as platinum 54 in the inflowing exhaust gas, NO X unless NO 2 to NO 2 absorption capacity is not saturated the absorbent 55 is absorbed in the NO X absorbent 55 nitrate ions (NO 3 ) is generated.

これに対し、燃焼室2内における空燃比をほぼ理論空燃比またはリッチ(以下、「ストイキ・リッチ」と称す)にすることによって、または還元剤供給弁13から還元剤を供給することによって流入排気ガスの空燃比をストイキ・リッチにすると流入排気ガス中の酸素濃度が低下するため反応が逆方向(NO3 -→NO2)に進み、これによりNOX吸蔵剤55内の硝酸イオン(NO3 -)がNO2の形でNOX吸蔵剤55から放出される。次いで放出されたNOXは流入排気ガス中に含まれる未燃HC、COによって還元される。なお、上記説明では、NOXはNOX吸蔵剤55に吸収される(すなわち、硝酸塩等の形で蓄積する)ものとして説明しているが、実際にはNOXは吸収されているのか吸着(すなわち、NOXをNO2等の形で表面吸着する)しているのかは必ずしも明確ではなく、これら吸収および吸着の両概念を含む吸蔵という用語を用いる。本明細書では、特に、NOX触媒11の温度がNO酸化開始温度以上であるときに行われる吸蔵を「高温吸蔵」と称する。また、NOX吸蔵剤55からの「放出」という用語についても、「吸収」に対応する「放出」の他、「吸着」に対応する「脱離」の意味も含むものとして用いる。 On the other hand, the inflow exhaust gas is obtained by making the air-fuel ratio in the combustion chamber 2 substantially the stoichiometric air-fuel ratio or rich (hereinafter referred to as “stoichiometric rich”) or by supplying the reducing agent from the reducing agent supply valve 13. When the air-fuel ratio of the gas is stoichiometrically rich, the oxygen concentration in the inflowing exhaust gas decreases, so that the reaction proceeds in the reverse direction (NO 3 → NO 2 ), thereby causing nitrate ions (NO 3 in the NO X storage agent 55). - ) Is released from the NO x storage 55 in the form of NO 2 . Next, the released NO x is reduced by unburned HC and CO contained in the inflowing exhaust gas. In the above description, it has been described that NO x is absorbed by the NO x storage agent 55 (that is, accumulated in the form of nitrate or the like). However, whether NO x is actually absorbed or adsorbed ( That is, it is not always clear whether NO x is surface adsorbed in the form of NO 2 or the like, and the term occlusion including both the concepts of absorption and adsorption is used. In this specification, in particular, the occlusion performed when the temperature of the NO x catalyst 11 is equal to or higher than the NO oxidation start temperature is referred to as “high temperature occlusion”. The term “release” from the NO x storage agent 55 is also used to include the meaning of “desorption” corresponding to “adsorption” in addition to “release” corresponding to “absorption”.

ところで白金54によるNOからNO2への酸化能力(以下、「NO酸化能力」と称す)は温度によって変化し、白金54の温度が低いとそのNO酸化能力も低い。このため、図3に示したように、NOX触媒11の温度が低下すると、白金54によるNOからNO2への酸化率(以下、「NO酸化率」と称す)が低下する。本実施形態では、NOX触媒11の温度がほぼ250℃よりも低くなるとNO酸化率は急速に低下し、NOX触媒11の温度がほぼ200℃になるとNO酸化率がほぼ50パーセントとなる。本実施形態ではNO酸化率がほぼ50パーセントになったときのNOX触媒11の温度をNO酸化開始温度(ほぼ200℃(=Ts))とする。 Incidentally, the ability of platinum 54 to oxidize NO to NO 2 (hereinafter referred to as “NO oxidation ability”) varies depending on the temperature, and the lower the temperature of platinum 54, the lower the NO oxidation ability. For this reason, as shown in FIG. 3, when the temperature of the NO x catalyst 11 decreases, the oxidation rate from NO to NO 2 by platinum 54 (hereinafter referred to as “NO oxidation rate”) decreases. In this embodiment, when the temperature of the NO x catalyst 11 becomes lower than about 250 ° C., the NO oxidation rate decreases rapidly, and when the temperature of the NO x catalyst 11 becomes about 200 ° C., the NO oxidation rate becomes about 50 percent. In this embodiment, the temperature of the NO x catalyst 11 when the NO oxidation rate becomes approximately 50 percent is set to the NO oxidation start temperature (approximately 200 ° C. (= Ts)).

さて、流入排気ガス中のNOXは一酸化窒素(NO)の形ではNOX吸蔵剤55に吸蔵されず、二酸化窒素(NO2)の形であればNOX吸蔵剤55に吸蔵される。流入排気ガス中に含まれるNOXには通常NO2だけでなくNOも多く含まれ、このNOはNO2に酸化されないとNOX吸蔵剤55に吸収されない。NOX触媒11でNOをNO2に酸化するには貴金属触媒54の温度がNO酸化開始温度以上となっていることが必要であり、したがってこれまでNOXを浄化するためには貴金属触媒54の温度がNO酸化開始温度以上となっていることが必要であると考えられてきた。 Well, NO X in the inflowing exhaust gas is not stored in the NO X storage agent 55 in the form of nitric oxide (NO), are occluded in the NO X absorbent 55, if the form of nitrogen dioxide (NO 2). The NO x contained in the inflowing exhaust gas usually contains not only NO 2 but also a lot of NO, and this NO is not absorbed by the NO x storage agent 55 unless it is oxidized to NO 2 . NO X catalyst 11 to NO in the oxidation to NO 2 is required that the temperature of the noble metal catalyst 54 is in the NO oxidation start temperature or higher, so this until the noble metal catalyst 54 to purify the NO X It has been considered that the temperature needs to be equal to or higher than the NO oxidation start temperature.

ところが、このNOX触媒11について本発明者が研究を重ねた結果、流入排気ガス中に含まれるNOは白金54の温度がNO酸化開始温度以上とならないと、すなわちNOX触媒11の温度がNO酸化開始温度以上とならないとNOX吸蔵剤55に吸蔵されないが、流入排気ガス中に含まれるNO2はNOX触媒11の温度がNO酸化開始温度以上となっていなくても図3(B)に示したように例えば亜硝酸(NO2 -)の形でNOX吸蔵剤55に吸蔵されることが判明したのである。なお、この場合も、NOX触媒11の温度がNO酸化開始温度以上となっている場合と同様に、二酸化窒素NO2はNOX吸蔵剤55に吸着するのか、あるいはNOX吸蔵剤55内に吸収されるのかは必ずしも明確ではなく、これら吸着と吸収とを合わせた「吸蔵」という用語を用いる。本明細書では、特に、NOX触媒11の温度がNO酸化開始温度よりも低いときに行われる吸蔵を「低温吸蔵」と称する。 However, as a result of the inventor's repeated research on the NO x catalyst 11, NO contained in the inflowing exhaust gas has a temperature of the platinum 54 not higher than the NO oxidation start temperature, that is, the temperature of the NO x catalyst 11 is NO. The NO x storage agent 55 does not store unless the oxidation start temperature is exceeded, but the NO 2 contained in the inflowing exhaust gas is not shown in FIG. 3B even if the temperature of the NO x catalyst 11 does not exceed the NO oxidation start temperature. It has been found that the NO x storage agent 55 stores, for example, in the form of nitrous acid (NO 2 ) as shown in FIG. Also in this case, as in the case where the temperature of the NO X catalyst 11 is in the NO oxidation start temperature or higher, or the nitrogen dioxide NO 2 from being adsorbed in the NO X absorbent 55, or the NO X absorbent 55 Whether it is absorbed or not is not always clear, and the term “occlusion” that combines these adsorption and absorption is used. In this specification, in particular, the occlusion performed when the temperature of the NO x catalyst 11 is lower than the NO oxidation start temperature is referred to as “low temperature occlusion”.

なお、NOX触媒11の温度がNO酸化開始温度よりも低いときにNOX吸蔵剤55に亜硝酸(NO2 -)として吸蔵されたNO2は、NOX触媒11の温度がNO酸化開始温度以上にまで上昇すると、硝酸イオン(NO3 -)に変化せしめられ、斯くして硝酸イオン(NO3 -)の形でNOX吸蔵剤55内に吸蔵されることになる。 The temperature is in the NO X absorbent 55 nitrous acid is lower than the NO oxidation start temperature of the NO X catalyst 11 (NO 2 -) NO 2 occluded as the temperature NO oxidation start temperature of the NO X catalyst 11 If it rises to the above, it will be changed into nitrate ion (NO 3 ), and thus will be stored in the NO X storage agent 55 in the form of nitrate ion (NO 3 ).

ところで、白金54の温度がNO酸化開始温度よりも低い場合、白金の活性が高いと、すなわち白金の酸化・還元能力が高いと、白金54はNOをNO2に酸化することができないだけでなく、NO2をNOに還元してしまう。したがって、このような場合にNOX触媒における白金54の活性が高いと、NOX触媒に流入した排気ガス中のNO2はNOX吸蔵剤55に低温吸蔵される前に白金54によってNOに還元されてしまう。還元されたNOは、NOX吸蔵剤55には吸蔵されず、よってNOを多量に含む排気ガスがNOX触媒から流出してしまうこととなる。 By the way, when the temperature of the platinum 54 is lower than the NO oxidation start temperature, if the activity of the platinum is high, that is, if the oxidation / reduction ability of the platinum is high, the platinum 54 can not only oxidize NO to NO 2. , resulting in a reduction of the NO 2 to NO. Therefore, in such a case, if the activity of the platinum 54 in the NO x catalyst is high, the NO 2 in the exhaust gas flowing into the NO x catalyst is reduced to NO by the platinum 54 before being stored in the NO x storage agent 55 at a low temperature. Will be. The reduced NO is not stored in the NO X storage agent 55, and therefore, exhaust gas containing a large amount of NO flows out from the NO X catalyst.

そこで、白金54の温度がNO酸化開始温度よりも低い場合にNOX吸蔵剤のNO2の低温吸蔵能力を高めるためには、白金の活性を弱くして、このような場合における白金によるNO2からNOへの還元能力を低くすることが必要である。 Therefore, in order to increase the low temperature storage capacity of NO 2 of the NO x storage agent when the temperature of the platinum 54 is lower than the NO oxidation start temperature, the activity of platinum is weakened, and in such a case, the NO 2 by the platinum is reduced. It is necessary to reduce the ability to reduce NO to NO.

一方、従来型のNOX触媒では、NO酸化開始温度以上である場合に流入排気ガスの空燃比がリーンであるときに流入排気ガス中のNOをNO2に最適に酸化してNOX吸蔵剤にNOXが吸蔵され易いようにすると共に流入排気ガスの空燃比がストイキ・リッチであるときにNOX吸蔵剤から放出されたNOXをN2に還元し易いように、白金の活性の強さ、すなわち白金の酸化・還元能力が設定されている。すなわち、従来型NOX触媒では、白金の酸化・還元能力は白金の温度がNO酸化開始温度以上であるときにおいてNOX触媒への流入排気ガス中のNOXを吸蔵・還元するのに最適になるように設定されている。このように白金の酸化・還元能力を設定した場合には、当然、白金54の温度がNO酸化開始温度よりも低い場合においても白金の酸化・還元能力は高く、NOX触媒に流入した排気ガス中のNO2がNOへ還元され、その結果、白金54の温度がNO酸化開始温度よりも低い場合におけるNOXの浄化率は低いものとなってしまっていた。 On the other hand, in the conventional type of the NO X catalyst, and optimally oxidizing NO in the inflowing exhaust gas to NO 2 when the air-fuel ratio of the inflowing exhaust gas when it is NO oxidation start temperature or higher is lean the NO X storage agent the NO X when the air-fuel ratio of the inflowing exhaust gas is released from the NO X storage agent when a stoichiometric-rich with NO X is as likely to be occluded as easily reduced to N 2, the intensity of the activity of platinum That is, the oxidation / reduction ability of platinum is set. That is, in the conventional NO x catalyst, the oxidation / reduction ability of platinum is optimal for storing / reducing NO x in the exhaust gas flowing into the NO x catalyst when the temperature of the platinum is equal to or higher than the NO oxidation start temperature. It is set to be. Thus, when the oxidation / reduction ability of platinum is set, naturally, even when the temperature of platinum 54 is lower than the NO oxidation start temperature, the oxidation / reduction ability of platinum is high, and the exhaust gas flowing into the NO x catalyst NO 2 in is reduced to NO, as a result, the purification rate of the NO X when the temperature is lower than the NO oxidation start temperature of the platinum 54 has been has become low.

そこで、本実施形態では、図4に示したように、NOX吸蔵剤55および貴金属触媒54を担持したNOX触媒11の担体53の下流側部分57を、上述した従来のNOX触媒11と同程度に白金の活性の強い領域、すなわち従来型NOX触媒と同程度に白金の酸化・還元能力の高い領域(以下、「高酸化・還元能領域」と称す)とすると同時に、NOX吸蔵剤55および貴金属触媒54を担持したNOX触媒11の担体53の上流側部分56を、高酸化・還元能領域よりも白金の活性の弱い領域、すなわち高酸化・還元能領域よりも白金の酸化・還元能力の低い領域(以下、「低酸化・還元能領域」と称す)としている。したがって、上記NOX触媒11に流入する排気ガスは、低酸化・還元能領域56上を通過してから高酸化・還元能領域57上を通過することとなる。 Therefore, in the present embodiment, as shown in FIG. 4, the downstream portion 57 of the carrier 53 of the NO X catalyst 11 carrying the NO X storage agent 55 and the noble metal catalyst 54 is replaced with the conventional NO X catalyst 11 described above. strong region active platinum to the same extent, i.e. conventional NO X catalyst high and oxidation-reduction ability comparable to platinum region (hereinafter, referred to as "high redox ability region") and at the same time as, NO X occluding The upstream portion 56 of the carrier 53 of the NO x catalyst 11 carrying the agent 55 and the noble metal catalyst 54 is oxidized in a region where the platinum activity is weaker than that in the high oxidation / reduction ability region, that is, in the platinum oxidation than in the high oxidation / reduction ability region.・ A region with low reducing ability (hereinafter referred to as “low oxidation / reducing ability region”). Accordingly, the exhaust gas flowing into the NO x catalyst 11 passes over the low oxidation / reduction ability region 56 and then passes over the high oxidation / reduction ability region 57.

ここで、NOX吸蔵剤55は塩基性であり、白金54に対してその塩基性が強いほど、白金54の活性が弱められる。逆に言えば、NOX吸蔵剤55の種類および担持量を一定とした場合、単位体積当たりの白金54の担持量が少ないほど白金54の活性が弱められる。そこで、本実施形態のNOX触媒11では、低酸化・還元能領域56における単位体積当たりの白金の担持量を、高酸化・還元能領域57おける単位体積当たりの白金の担持量よりも少ないものとしている。具体的には、高酸化・還元能領域(多量担持領域)57における単位体積当たりの白金54の担持量が従来型NOX触媒と同様に2g/lよりも多いのに対して、低酸化・還元能領域(少量担持領域)56における単位体積当たりの白金54の担持量が2g/l以下とされる。 Here, the NO x storage agent 55 is basic, and the stronger the basicity of the platinum 54 is, the weaker the activity of the platinum 54 is. In other words, when the type and loading amount of the NO x storage agent 55 are constant, the activity of the platinum 54 is weakened as the loading amount of the platinum 54 per unit volume is smaller. Therefore, in the NO x catalyst 11 of the present embodiment, the amount of platinum supported per unit volume in the low oxidation / reduction capacity region 56 is smaller than the amount of platinum supported per unit volume in the high oxidation / reduction capacity region 57. It is said. Specifically, the amount of platinum 54 supported per unit volume in the high oxidation / reduction capacity region (mass loading region) 57 is larger than 2 g / l as in the conventional NO x catalyst, whereas the low oxidation The amount of platinum 54 supported per unit volume in the reducing capacity region (small amount supporting region) 56 is set to 2 g / l or less.

このように形成された低酸化・還元能領域56では、NOX触媒11の温度がNO酸化開始温度よりも低い場合、白金54の活性が弱く、白金によるNO2からNOへの還元が行われにくくなるため、低酸化・還元能領域56を流通する排気ガス中のNO2はNOX吸蔵剤55に確実に吸蔵されるようになる。このため、NOX触媒11の温度がNO酸化開始温度よりも低い場合におけるNOX触媒11によるNOX浄化能力が高められる。 In the low oxidation / reduction capacity region 56 formed in this way, when the temperature of the NO x catalyst 11 is lower than the NO oxidation start temperature, the activity of the platinum 54 is weak and the reduction of NO 2 to NO by platinum is performed. Therefore, NO 2 in the exhaust gas flowing through the low oxidation / reduction capacity region 56 is reliably stored in the NO X storage agent 55. Therefore, NO X purification ability temperature of the NO X catalyst 11 by the NO X catalyst 11 when lower than the NO oxidation initiation temperature is elevated.

この様子を図5に示す。図5は、NOX触媒の温度が150℃である場合において、白金54の担持量が5g/lである従来のNOX触媒(図中の触媒A)のNOX浄化率(流出排気ガス中のNOX量/流入排気ガス中のNOX量)と、本実施形態のNOX触媒11(図中の触媒B)のNOX浄化率とを比較したものである。図5から分かるように、NOX触媒の温度が150℃である場合、すなわちNO酸化開始温度よりも低い場合、本実施形態のNOX触媒11(触媒B)のNOX浄化率は、触媒AのNOX浄化率よりも高い。 This is shown in FIG. FIG. 5 shows the NO x purification rate (in the outflowing exhaust gas) of the conventional NO x catalyst (catalyst A in the figure) in which the supported amount of platinum 54 is 5 g / l when the temperature of the NO x catalyst is 150 ° C. and the amount of NO X / inflow amount of NO X in the exhaust gas), in which NO X catalyst 11 in this embodiment (as compared with the NO X purification rate of the catalyst B) in FIG. As can be seen from FIG. 5, when the temperature of the NO x catalyst is 150 ° C., that is, lower than the NO oxidation start temperature, the NO x purification rate of the NO x catalyst 11 (catalyst B) of the present embodiment is the catalyst A. higher than of the NO X purification rate.

また、NOX触媒11の温度がNO酸化開始温度以上となった場合、流入排気ガスの空燃比がリーンのときには、低酸化・還元能領域56および高酸化・還元能領域57のどちらにおいても流入排気ガス中のNOXをNOX吸蔵剤55に吸蔵することができる。高酸化・還元能領域57においては、白金54の酸化能力が高いため、排気ガス中のNOをNO2に酸化してNOX吸蔵剤55にNO2を吸蔵させることができ、また、低酸化・還元能領域56においても排気ガス中のNOの多くをNO2に酸化するのに十分な白金54の酸化能力が発揮されるため、全ての領域が高酸化・還元能領域57となっている従来型NOX触媒と同様に、流入排気ガス中のNOXをNOX吸蔵剤55に吸蔵することが可能である。 Further, when the temperature of the NO x catalyst 11 becomes equal to or higher than the NO oxidation start temperature, when the air-fuel ratio of the inflowing exhaust gas is lean, it flows in both the low oxidation / reduction capacity region 56 and the high oxidation / reduction capacity region 57. The NO X in the exhaust gas can be stored in the NO X storage agent 55. In the high oxidation / reduction capacity region 57, since the oxidation ability of platinum 54 is high, NO 2 in the exhaust gas can be oxidized to NO 2 and NO 2 can be stored in the NO X storage agent 55. In the reducing capacity region 56, the oxidizing ability of the platinum 54 sufficient to oxidize most of the NO in the exhaust gas to NO 2 is exhibited, so that all the areas are the high oxidizing / reducing ability area 57. similar to the conventional NO X catalyst, the NO X in the inflowing exhaust gas can be occluded in the NO X absorbent 55.

この様子を図6に示す。図6は、NOX触媒の温度が300℃である場合において、図5に示した触媒AのNOX浄化率と、本実施形態のNOX触媒11(図5に示した触媒Bと同じ)のNOX浄化率とを比較したものである。図6から分かるように、NOX触媒の温度が300℃である場合、すなわちNOX触媒の温度がNO酸化開始温度以上である場合においても、本実施形態のNOX触媒11(触媒B)のNOX浄化率は、従来型NOX触媒(触媒A)のNOX浄化率と同程度であることが分かる。 This is shown in FIG. FIG. 6 shows the NO x purification rate of the catalyst A shown in FIG. 5 and the NO x catalyst 11 of the present embodiment (same as the catalyst B shown in FIG. 5) when the temperature of the NO x catalyst is 300 ° C. it is a comparison of the of the NO X purification rate. As can be seen from FIG. 6, even when the temperature of the NO x catalyst is 300 ° C., that is, when the temperature of the NO x catalyst is equal to or higher than the NO oxidation start temperature, the NO x catalyst 11 (catalyst B) of the present embodiment. It can be seen that the NO x purification rate is comparable to the NO x purification rate of the conventional NO x catalyst (catalyst A).

一方、NOX触媒11の温度がNO酸化開始温度以上となった場合、流入排気ガスの空燃比がストイキ・リッチとされると、NOX吸蔵剤55に吸蔵されているNO2がNOX吸蔵剤55から放出される。低酸化・還元能領域56では、上述したように高酸化・還元能領域57よりも白金54の活性が弱く、NOX吸蔵剤55から放出されるNOXをN2に還元する還元能力は高くない。このため、上述したように流入排気ガスの空燃比がストイキ・リッチとされると、多少のNOを含んだ排気ガスがNOX触媒11の低酸化・還元能領域56から排気下流へ流れてしまう。 On the other hand, when the temperature of the NO X catalyst 11 becomes equal to or higher than the NO oxidation start temperature, if the air-fuel ratio of the inflowing exhaust gas is stoichiometric rich, the NO 2 stored in the NO X storage agent 55 is stored in the NO X storage. Released from the agent 55. In the low oxidation / reduction ability region 56, the activity of platinum 54 is weaker than that of the high oxidation / reduction ability region 57 as described above, and the reduction ability to reduce NO x released from the NO x storage agent 55 to N 2 is high. Absent. Therefore, as described above, when the air-fuel ratio of the inflowing exhaust gas is made stoichiometric rich, the exhaust gas containing some NO flows from the low oxidation / reduction capacity region 56 of the NO x catalyst 11 to the exhaust downstream. .

しかしながら、本実施形態のNOX触媒11では、低酸化・還元能領域56の排気下流に高酸化・還元能領域57が設けられている。このため、NOX触媒11の温度がNO酸化開始温度以上となっている場合、流入排気ガスの空燃比がストイキ・リッチとされると、NOX触媒11の低酸化・還元能領域56上を通過したNOを含んだ排気ガスは高酸化・還元能領域57上を通過する。NOX触媒11の温度がNO酸化開始温度以上となっている場合、高酸化・還元能領域57におけるNOXからN2への還元能力は高く、よって低酸化・還元能領域56上から高酸化・還元能領域57上へと流れる排気ガス中に含まれるNOXはN2へ還元される。したがって、本実施形態によれば、NOX触媒11の温度がNO酸化開始温度以上となっている場合、流入排気ガスの空燃比がストイキ・リッチとされると、低酸化・還元能領域56および高酸化・還元能領域57におけるNOX吸蔵剤55からNOXが放出され、放出されたNOXは良好にN2に還元、浄化される。 However, in the NO x catalyst 11 of the present embodiment, the high oxidation / reduction capacity region 57 is provided downstream of the low oxidation / reduction capacity region 56. Therefore, when the temperature of the NO X catalyst 11 is equal to or higher than the NO oxidation start temperature, if the air-fuel ratio of the inflowing exhaust gas is stoichiometric rich, the NO X catalyst 11 over the low oxidation / reduction capacity region 56 The exhaust gas containing NO that has passed passes over the high oxidation / reduction capacity region 57. When the temperature of the NO x catalyst 11 is equal to or higher than the NO oxidation start temperature, the ability to reduce NO x to N 2 in the high oxidation / reduction ability region 57 is high, and thus high oxidation is performed from above the low oxidation / reduction ability region 56. · NO X contained in the exhaust gas flowing into the reducing ability region 57 above is reduced to N 2. Therefore, according to the present embodiment, when the temperature of the NO x catalyst 11 is equal to or higher than the NO oxidation start temperature, if the air-fuel ratio of the inflowing exhaust gas is stoichiometric rich, the low oxidation / reduction capacity region 56 and NO x is released from the NO x storage agent 55 in the high oxidation / reduction capacity region 57, and the released NO x is reduced and purified to N 2 well.

このように、本発明のNOX触媒11によれば、NOX触媒11の温度が貴金属触媒54のNO酸化開始温度以上である場合におけるNOXの浄化能力を維持しつつ、NOX触媒11の温度が貴金属触媒54のNO酸化開始温度よりも低い場合におけるNOXの浄化能力を高めることができる。 Thus, according to the NO X catalyst 11 of the present invention, the temperature of the NO X catalyst 11 while maintaining the purification performance of the NO X in the case where NO oxidation start temperature or higher of a noble metal catalyst 54, of the NO X catalyst 11 The NO x purification ability when the temperature is lower than the NO oxidation start temperature of the noble metal catalyst 54 can be enhanced.

なお、上記実施形態では、低酸化・還元能領域56における単位体積当たりの白金54の担持量を、高酸化・還元能領域57おける単位体積当たりの白金54の担持量よりも少なくすることで、低酸化・還元能領域56における白金54の酸化・還元能力を低くすることとしているが、NOX吸蔵剤55の塩基性を強くすることによって白金54の酸化・還元能力を低くしてもよい。NOX吸蔵剤55の塩基性を強めるには、単位体積当たりの担体53へのNOX吸蔵剤55の担持量を多くすること、およびNOX吸蔵剤55として用いられる物質により塩基性の強い物質、例えばセシウム(Cs)、カリウム(K)やナトリウム(Na)等のアルカリ金属等を用いることが挙げられる。 In the above embodiment, the amount of platinum 54 supported per unit volume in the low oxidation / reduction capacity region 56 is less than the amount of platinum 54 supported per unit volume in the high oxidation / reduction capacity region 57. Although the oxidation / reduction ability of the platinum 54 in the low oxidation / reduction ability region 56 is lowered, the oxidation / reduction ability of the platinum 54 may be lowered by strengthening the basicity of the NO x storage agent 55. To enhance the basicity of the NO X absorbent 55, to increase the loading amount of the NO X absorbent 55 to the carrier 53 per unit volume, and strong basic by substance used as the NO X storage agent 55 substances For example, use of alkali metals such as cesium (Cs), potassium (K), and sodium (Na) can be used.

ところで、NOX触媒11の温度がNO酸化開始温度よりも低い状態、またはNOX触媒11の温度がNO酸化開始温度以上であって流入排気ガスの空燃比がリーンの状態が継続すると、その間にNOX吸蔵剤55のNOX吸蔵容量が飽和してしまい、それ以上NOX吸蔵剤55によってNOXを吸蔵することができなくなってしまう。そこで本実施形態では、NOX吸蔵剤55のNOX吸蔵容量が飽和する前に、還元剤添加弁13から還元剤を添加することによって流入排気ガスの空燃比を一時的にストイキ・リッチにし、それによってNOX吸蔵剤55からNOXを放出させるようにしている(NOX放出処理)。 By the way, when the temperature of the NO x catalyst 11 is lower than the NO oxidation start temperature, or when the temperature of the NO x catalyst 11 is higher than the NO oxidation start temperature and the air-fuel ratio of the inflowing exhaust gas continues to be lean, the NO X storage capacity of the NO X absorbent 55 is saturated, making it impossible to occlude NO X by more the NO X storage agent 55. Therefore, in this embodiment, before the NO X storage capacity of the NO X storage agent 55 is saturated, the air-fuel ratio of the inflowing exhaust gas is temporarily stoichiometric rich by adding the reducing agent from the reducing agent addition valve 13, As a result, NO X is released from the NO X storage agent 55 (NO X release processing).

より詳細には、本実施形態では、NOX触媒11のNOX吸蔵剤55に吸蔵されている吸蔵NOX量ΣNOXが算出され、算出された吸蔵NOX量ΣNOXが予め定められた許容値NXを越えているときであって、NOX触媒11の温度がNO酸化開始温度以上となっているときに流入排気ガスの空燃比がリーンからストイキ・リッチに切換えられ、それによってNOX吸蔵剤55からNOXが放出される。 More specifically, in this embodiment, the stored NO X amount ΣNOX stored in the NO X storage agent 55 of the NO X catalyst 11 is calculated, and the calculated stored NO X amount ΣNOX is a predetermined allowable value NX. When the temperature of the NO x catalyst 11 is equal to or higher than the NO oxidation start temperature, the air-fuel ratio of the inflowing exhaust gas is switched from lean to stoichiometric rich, whereby the NO x storage agent 55 NO x is released from the gas.

単位時間当りに機関本体1から排出されるNOX量は燃料噴射量Qと機関回転数Nの関数であり、従って単位時間当りにNOX触媒への流入排気ガス中の流入NOX量NOXAは燃料噴射量Qと機関回転数Nの関数となる。本実施例では燃料噴射量Qと機関回転数Nに応じた単位時間当りの流入NOX量NOXAが予め実験により求められ、この流入NOX量NOXAが燃料噴射量Qと機関回転数Nの関数としてマップの形で予めROM32内に記憶されている。 NO X amount exhausted from the engine body 1 per unit time is a function of the fuel injection amount Q and the engine speed N, thus the inflow amount of NO X NOXA of the inflowing exhaust gas to the NO X catalyst per unit time This is a function of the fuel injection amount Q and the engine speed N. Inflow amount of NO X NOXA per unit time in accordance with the fuel injection amount Q and engine speed N in the present embodiment is obtained by experiment, the function of the inflow amount of NO X NOXA fuel injection amount Q and the engine speed N As a map in advance in the ROM 32.

一方、NOX吸蔵剤55へのNOX吸蔵率KNはNOX触媒11の温度Tcに応じて変わる。そこで本実施形態では、NOX吸蔵率KNとNOX触媒の温度Tcとの関係が予め実験により求められ、マップとして予めROM32内に記憶されている。NOX吸蔵剤55への単位時間当たりのNOX吸蔵量はNOXAとKNとの積で表わされる。 On the other hand, the NO X storage rate KN to the NO X storage agent 55 changes according to the temperature Tc of the NO X catalyst 11. Therefore, in the present embodiment, the relationship between the NO X storage rate KN and the temperature Tc of the NO X catalyst is obtained in advance by experiments and stored in advance in the ROM 32 as a map. The NO X storage amount per unit time to the NO X storage agent 55 is represented by the product of the NOXA and KN.

一方、NOX触媒11の温度TcがNO酸化開始温度よりも低い場合、上述したように流入排気ガス中のNO2のみがNOX吸蔵剤に吸蔵される。このため、このような場合には、流入排気ガス中のNOXのうちNOの割合を減らすと共に、NO2の割合を増大することが好ましい。そこで、本実施形態ではNOX触媒11の温度TcがNO酸化開始温度よりも低い場合には、リーン空燃比のもとで燃焼を行ったときに発生するNOに対するNO2の割合を、NOX触媒11の温度TcがNO酸化開始温度以上である場合において同一の機関運転状態、即ち同一回転数、同一トルクにあるときのNO2の割合(=NO2の量/NOの量)に比べて増大させるようにしている(NO2割合増大処理)。 On the other hand, when the temperature Tc of the NO x catalyst 11 is lower than the NO oxidation start temperature, only the NO 2 in the inflowing exhaust gas is occluded in the NO x storage agent as described above. For this reason, in such a case, it is preferable to reduce the proportion of NO in NO x in the inflowing exhaust gas and increase the proportion of NO 2 . Therefore, in this embodiment, when the temperature Tc of the NO x catalyst 11 is lower than the NO oxidation start temperature, the ratio of NO 2 to NO generated when combustion is performed under a lean air-fuel ratio is expressed as NO x. When the temperature Tc of the catalyst 11 is equal to or higher than the NO oxidation start temperature, compared with the ratio of NO 2 (= NO 2 amount / NO amount) in the same engine operating state, that is, at the same speed and the same torque. so that increase (NO 2 ratio increasing process).

このNO2の割合は、緩慢な燃焼を行わせると増大することが判明しており、例えば燃料噴射時期を遅角するか、EGRガス量を増大するか、パイロット噴射を行うか、又は予混合気燃焼を行うかの少なくともいずれか一つを行うと燃焼が緩慢となる。そこで本実施形態では、NOX触媒11の温度がNO酸化開始温度よりも低いときにはNO2割合増大処理として同一の機関運転状態における他の温度領域に比べて緩慢な燃焼を行わせるようにしている。 This ratio of NO 2 has been found to increase with slow combustion, for example, retarding the fuel injection timing, increasing the EGR gas amount, performing pilot injection, or premixing Combustion becomes slow when at least one of the air combustion is performed. Therefore, in the present embodiment, when the temperature of the NO x catalyst 11 is lower than the NO oxidation start temperature, as the NO 2 ratio increasing process, the combustion is performed more slowly than in other temperature regions in the same engine operating state. .

また、NOX触媒11の温度TcがNO酸化開始温度よりも低い場合でも、NO2がNOX吸蔵剤55に吸蔵されるため、NOX触媒50のNOX吸蔵量が増大する。この場合、単位時間当たりのNOX吸蔵量は機関本体1から排出される排気ガス中のNO2量に応じて変わる。機関本体1から排出される排気ガス中のNO2量は燃料噴射量Qおよび機関回転数Nに加えてEGR率(吸入ガス中に占めるEGRガスの割合)や噴射時期の遅角量等の関数である。本実施形態では、これらパラメータに応じた単位時間当りのNO2吸蔵量NO2Aが予め実験により求められ、マップの形で予めROM32内に記憶されている。そして、NOX触媒11の温度TcがNO酸化開始温度よりも低いときには、上述した単位時間当たりのNOX吸蔵量NOXA・KNの代わりに単位時間当たりのNO2吸蔵量NO2Aが吸蔵NOX量ΣNOXに加算される。 Even when the temperature Tc of the NO x catalyst 11 is lower than the NO oxidation start temperature, the NO x occlusion amount of the NO x catalyst 50 increases because NO 2 is occluded in the NO x occlusion agent 55. In this case, the NO X storage amount per unit time varies depending on the NO 2 amount in the exhaust gas discharged from the engine body 1. The amount of NO 2 in the exhaust gas discharged from the engine body 1 is a function of the EGR rate (the ratio of EGR gas in the intake gas), the retard amount of the injection timing, etc. in addition to the fuel injection amount Q and the engine speed N It is. In the present embodiment, the NO 2 storage amount NO2A per unit time corresponding to these parameters is obtained in advance by experiments and stored in the ROM 32 in advance in the form of a map. When the temperature Tc of the NO x catalyst 11 is lower than the NO oxidation start temperature, the NO 2 occlusion amount NO2A per unit time is replaced by the occluded NO x amount ΣNOX instead of the NO x occlusion amount NOXA · KN per unit time described above. Is added to

図7は、NOX触媒11のNOX浄化能力を最適に維持するための制御ルーチンを示しており、このルーチンは一定時間毎の割り込みによって実行される。 FIG. 7 shows a control routine for optimally maintaining the NO x purification capacity of the NO x catalyst 11, and this routine is executed by interruption every predetermined time.

図7を参照すると、まずステップ101ではNOX放出フラグXNがセットされているか否かが判定される。このNOX放出フラグXNはNOX放出処理を実行すべきときにセットされ(XN=1)、それ以外はセットされない(XN=0)フラグである。NOX放出フラグXNがセットされていないと判定されたときにはステップ102へと進み、温度センサ20によってNOX触媒11の温度Tcが検出される。次いで、ステップ103において、ステップ102で検出されたNOX触媒11の温度TcがNO酸化開始温度Tsよりも低いか否かが判定される。ステップ103において、NOX触媒11の温度TcがNO酸化開始温度Tsよりも低い(Tc<Ts)と判定された場合には、ステップ104へと進む。 Referring to FIG. 7, first, at step 101, it is judged if the NO x release flag XN is set. The NO X release flag XN is a flag that is set when the NO X release process is to be executed (XN = 1) and is not set otherwise (XN = 0). When it is determined that the NO X release flag XN is not set, the routine proceeds to step 102 where the temperature sensor 20 detects the temperature Tc of the NO X catalyst 11. Next, at step 103, it is determined whether or not the temperature Tc of the NO x catalyst 11 detected at step 102 is lower than the NO oxidation start temperature Ts. If it is determined in step 103 that the temperature Tc of the NO x catalyst 11 is lower than the NO oxidation start temperature Ts (Tc <Ts), the process proceeds to step 104.

ステップ104では、NO2割合増大処理が実行され、例えば燃料噴射時期を遅角するか、EGRガス量を増大するか、パイロット噴射を行うか、又は予混合気燃焼を行うかの少なくともいずれか一つが行われる。次いでステップ105では、上述したマップにより単位時間当たりのNO2吸蔵量NO2Aが算出される。ステップ106では、ステップ105で算出された単位時間当たりのNO2吸蔵量NO2AがΣNOXに加算され、NOX吸蔵量の積算値ΣNOXが算出される。 In step 104, an NO 2 ratio increasing process is executed, and for example, at least one of retarding the fuel injection timing, increasing the EGR gas amount, performing pilot injection, or performing premixed gas combustion. One is done. Next, at step 105, the NO 2 occlusion amount NO2A per unit time is calculated from the map described above. In step 106, the NO 2 storage amount NO2A per unit time calculated in step 105 is added to ΣNOX, and an integrated value ΣNOX of the NO X storage amount is calculated.

一方、ステップ103において、NOX触媒11の温度TcがNO酸化開始温度Ts以上である(Tc≧Ts)と判定された場合には、ステップ107へと進む。ステップ107では、上述したマップからそれぞれ単位時間当たりの流入NOX量NOXAおよびNOX吸蔵率KNが算出される。次いで、ステップ108では、ステップ107で算出された単位時間当たりのNOX吸蔵量NOXA・KNをΣNOXに加算することによってNOX吸蔵量の積算値ΣNOXが算出される。次いでステップ109ではNOX吸収量の積算値ΣNOXが許容値NXを越えたか否かが判定される。ΣNOX≦NXのときには制御ルーチンが終了せしめられる。一方、ΣNOX>NXのときにはステップ110においてNOXフラグXNがセットせしめられる(XN=1)。NOX放出フラグXNがセットされると次回のルーチン実行時においてステップ101からステップ111へと進み、NOX放出処理が実行せしめられる。 On the other hand, if it is determined in step 103 that the temperature Tc of the NO x catalyst 11 is equal to or higher than the NO oxidation start temperature Ts (Tc ≧ Ts), the routine proceeds to step 107. In step 107, the inflow amount of NO X NOXA and the NO X storage rate KN per unit each time from the map described above is calculated. Next, at step 108, the integrated value ΣNOX of the NO X storage amount is calculated by adding the NO X storage amount NOXA · KN per unit time calculated at step 107 to ΣNOX. Next, at step 109, it is determined whether or not the integrated value ΣNOX of the NO X absorption amount exceeds the allowable value NX. When ΣNOX ≦ NX, the control routine is terminated. On the other hand, when ΣNOX> NX, the NO X flag XN is set in step 110 (XN = 1). When the NO X release flag XN is set, the routine proceeds from step 101 to step 111 when the next routine is executed, and the NO X release process is executed.

図8は、図7のステップ111で行われるNOX放出処理の処理ルーチンを示している。 FIG. 8 shows a processing routine of the NO x releasing process performed in step 111 of FIG.

図8を参照すると、まず初めにステップ121において流入排気ガスの空燃比を例えば13程度のリッチ空燃比とするのに必要な還元剤の供給量が算出される。次いでステップ122では還元剤の供給時間が算出される。この還元剤の供給時間は通常10秒以下である。次いでステップ123では還元剤供給弁13からの還元剤の供給が開始される。次いでステップ124ではステップ122において算出された還元剤の供給時間が経過したか否かが判定される。還元剤の供給時間が経過していないときにはステップ124が繰り返される。このとき還元剤の供給が続行され、流入排気ガスの空燃比が13程度のリッチ空燃比に維持される。これに対し、還元剤の供給時間が経過したとき、すなわちNOX吸蔵剤55からのNOX放出作用が完了したときにはステップ125に進んで還元剤の供給が停止され、次いでステップ126に進んでΣNOXがクリアされ、ステップ127でNOX放出フラグXNがリセットされる(XN=0)。 Referring to FIG. 8, first, at step 121, the supply amount of the reducing agent necessary for setting the air-fuel ratio of the inflowing exhaust gas to a rich air-fuel ratio of about 13, for example, is calculated. Next, at step 122, the supply time of the reducing agent is calculated. The supply time of this reducing agent is usually 10 seconds or less. Next, at step 123, supply of the reducing agent from the reducing agent supply valve 13 is started. Next, at step 124, it is determined whether or not the supply time of the reducing agent calculated at step 122 has elapsed. When the supply time of the reducing agent has not elapsed, step 124 is repeated. At this time, the supply of the reducing agent is continued, and the air-fuel ratio of the inflowing exhaust gas is maintained at a rich air-fuel ratio of about 13. On the other hand, when the supply time of the reducing agent has elapsed, that is, when the NO x releasing action from the NO x storage agent 55 is completed, the routine proceeds to step 125 where the supply of the reducing agent is stopped, and then proceeds to step 126 and ΣNOx. Is cleared, and the NO X release flag XN is reset in step 127 (XN = 0).

なお、NOX放出処理においては、還元剤供給弁13から還元剤を供給することによって流入排気ガスの空燃比を一時的にストイキ・リッチにすると説明したが、本実施形態のように圧縮自着火式内燃機関を用いた場合、通常、機関本体1から排出される排気ガスの空燃比のリーン度合は非常に大きく、したがって流入排気ガスの空燃比をストイキ・リッチにするためには多量の還元剤を還元剤供給弁13から供給しなければならない。そこで、本実施形態では、例えば、多量のEGRガスを燃焼室2に導入することや、ポスト噴射を行うことで、機関本体1から排出される排気ガスの空燃比のリーン度合を比較的小さくし、これに還元剤添加弁13から還元剤を添加している。 In the NO x releasing process, it has been described that the air-fuel ratio of the inflowing exhaust gas is temporarily stoichiometrically rich by supplying the reducing agent from the reducing agent supply valve 13, but compression auto-ignition is performed as in the present embodiment. When the internal combustion engine is used, the lean degree of the air-fuel ratio of the exhaust gas discharged from the engine body 1 is usually very large. Therefore, in order to make the air-fuel ratio of the inflowing exhaust gas stoichiometric and rich, a large amount of reducing agent is required. Must be supplied from the reducing agent supply valve 13. Therefore, in the present embodiment, for example, by introducing a large amount of EGR gas into the combustion chamber 2 or performing post injection, the lean degree of the air-fuel ratio of the exhaust gas discharged from the engine body 1 is made relatively small. The reducing agent is added from the reducing agent addition valve 13 to this.

次に図1に示したNOX触媒11がパティキュレートフィルタ(以下、「フィルタ」と称す)からなる第二実施形態について説明する。 Next, a second embodiment in which the NO x catalyst 11 shown in FIG. 1 is formed of a particulate filter (hereinafter referred to as “filter”) will be described.

図9(A)および(B)にこのフィルタ11の構造を示す。なお、図9(A)はフィルタ11の正面図を示しており、図9(B)はフィルタ11の側面断面図を示している。図9(A)および(B)に示されるようにフィルタ11はハニカム構造をなしており、互いに平行をなして延びる複数個の排気流通路60、61を具備する。これら排気流通路は下流端が栓62により閉塞された排気ガス流入通路60と、上流端が栓63により閉塞された排気ガス流出通路61とにより構成される。なお、図9(A)においてハッチングを付した部分は栓63を示している。したがって排気ガス流入通路60および排気ガス流出通路61は薄肉の隔壁64を介して交互に配置される。   FIGS. 9A and 9B show the structure of the filter 11. 9A shows a front view of the filter 11, and FIG. 9B shows a side cross-sectional view of the filter 11. As shown in FIGS. 9A and 9B, the filter 11 has a honeycomb structure and includes a plurality of exhaust flow passages 60 and 61 extending in parallel with each other. These exhaust flow passages include an exhaust gas inflow passage 60 whose downstream end is closed by a plug 62 and an exhaust gas outflow passage 61 whose upstream end is closed by a plug 63. In addition, the hatched part in FIG. Therefore, the exhaust gas inflow passages 60 and the exhaust gas outflow passages 61 are alternately arranged via the thin partition walls 64.

フィルタ11の隔壁64の基体65は例えばコージェライトのような多孔質材料から形成されており、したがって排気ガス流入通路60内に流入した排気ガスは図9(B)において矢印で示したように周囲の隔壁64内を通って隣接する排気ガス流出通路61内に流出する。   The base body 65 of the partition wall 64 of the filter 11 is formed of a porous material such as cordierite, so that the exhaust gas flowing into the exhaust gas inflow passage 60 is surrounded by the surroundings as shown by arrows in FIG. Through the partition wall 64 and into the adjacent exhaust gas outflow passage 61.

このようにNOX触媒11をパティキュレートフィルタから構成した場合には、各排気ガス流入通路60および各排気ガス流出通路61の周壁面、すなわち各隔壁64の基体65の両側表面上にはアルミナからなる担体66、67の層が形成されており、図3(A)、(B)に示したようにこの担体66、67上には貴金属触媒54とNOX吸蔵剤55とが担持されている。なお、この場合も貴金属触媒54として白金が用いられている。 When the NO x catalyst 11 is constituted by a particulate filter in this way, alumina is formed on the peripheral wall surfaces of the exhaust gas inflow passages 60 and the exhaust gas outflow passages 61, that is, on both side surfaces of the base 65 of each partition wall 64. As shown in FIGS. 3 (A) and 3 (B), the noble metal catalyst 54 and the NO x storage agent 55 are supported on the carriers 66 and 67. . In this case, platinum is used as the noble metal catalyst 54.

図10は、図9(B)内の点線Xに囲われた部分を図解的に示す図である。図10から分かるように、排気ガス流入通路60の周壁面上の担体66、すなわち排気ガス流入通路60に面する隔壁64の基体65上の担体66を低酸化・還元能領域とし、排気ガス流出通路61の周壁面の担体67、すなわち排気ガス流出通路に面する隔壁64の基体64上の担体68を高酸化・還元能領域としている。具体的には、本実施形態では、排気ガス流入通路60の周壁面上の担体66に担持される白金54の単位体積当たりの担持量を、排気ガス流出通路61の周壁面上の担体67に担持される白金54の単位体積当たりの担持量よりも少ないものとしているが、担体66に担持されるNOX吸蔵剤55の塩基性を担体67に担持されるNOX吸蔵剤55の塩基性よりも強いもとするようにしてもよい。 FIG. 10 is a diagram schematically showing a portion surrounded by a dotted line X in FIG. 9B. As can be seen from FIG. 10, the carrier 66 on the peripheral wall surface of the exhaust gas inflow passage 60, that is, the carrier 66 on the base 65 of the partition wall 64 facing the exhaust gas inflow passage 60 is used as the low oxidation / reduction capacity region. The carrier 67 on the peripheral wall surface of the passage 61, that is, the carrier 68 on the base 64 of the partition wall 64 facing the exhaust gas outflow passage is used as a high oxidation / reduction ability region. Specifically, in the present embodiment, the carrying amount per unit volume of platinum 54 carried on the carrier 66 on the peripheral wall surface of the exhaust gas inflow passage 60 is transferred to the carrier 67 on the peripheral wall surface of the exhaust gas outflow passage 61. Although the amount of platinum 54 supported is smaller than the amount supported per unit volume, the basicity of the NO x storage agent 55 supported on the carrier 66 is more basic than the basicity of the NO x storage agent 55 supported on the support 67. May be strong.

上述したように、排気ガス流入通路60内に流入した排気ガスは図10において矢印で示したように周囲の隔壁64内を通って隣接する排気ガス流出通路61内に流出するため、フィルタ11に流入した排気ガスは排気ガス流入通路60の周壁面上に設けられた低酸化・還元能領域66上を通過した後に排気ガス流出通路61の周壁面上に設けられた高酸化・還元能領域67上を通過する。したがって、第一実施形態の排気浄化装置と同様に、フィルタ11の温度がNO酸化開始温度以上である場合には、流入排気ガスの空燃比がリーンのときに流入排気ガス中のNOXが低酸化・還元能領域66および高酸化・還元能領域67にあるNOX吸蔵剤に吸蔵されると共に流入排気ガスの空燃比がストイキ・リッチのときに低酸化・還元能領域66および高酸化・還元能領域67にあるNOX吸蔵剤からNOXが放出され、これら両領域、特に高酸化・還元能領域67に存在する白金54により放出されたNOXがN2に還元される。一方、フィルタ11の温度がNO酸化開始温度よりも低い場合には、主に低酸化・還元能領域66において流入排気ガス中のNO2がNOX吸蔵剤55に吸蔵される。なお、この場合にも図7および図8に示すNOX触媒11のNOX浄化能力維持制御と同様のNOX浄化能力維持制御が行われる。 As described above, the exhaust gas flowing into the exhaust gas inflow passage 60 flows into the adjacent exhaust gas outflow passage 61 through the surrounding partition wall 64 as indicated by an arrow in FIG. The inflowing exhaust gas passes over the low oxidation / reduction ability region 66 provided on the peripheral wall surface of the exhaust gas inflow passage 60 and then the high oxidation / reduction ability region 67 provided on the peripheral wall surface of the exhaust gas outflow passage 61. Pass over. Therefore, similarly to the exhaust gas purifying apparatus of the first embodiment, when the temperature of the filter 11 is NO oxidation start temperature or higher, the air-fuel ratio of the inflowing exhaust gas is NO X in the inflowing exhaust gas when the lean low When the air-fuel ratio of the inflowing exhaust gas is stoichiometric rich, the low oxidation / reduction capacity region 66 and the high oxidation / reduction capacity are stored in the NO x storage agent in the oxidation / reduction capacity region 66 and the high oxidation / reduction capacity region 67. is NO X is released from the NO X storage agent in the ability region 67, these two areas, NO X released by the platinum 54 present particularly high redox potential region 67 is reduced to N 2. On the other hand, when the temperature of the filter 11 is lower than the NO oxidation start temperature, NO 2 in the inflowing exhaust gas is occluded in the NO x storage agent 55 mainly in the low oxidation / reduction capacity region 66. In this case as well, the NO X purification capability maintenance control similar to the NO X purification capability maintenance control of the NO X catalyst 11 shown in FIGS. 7 and 8 is performed.

また、NOX触媒11をパティキュレートフィルタから構成した場合には、流入排気ガス中に含まれる粒子状物質がフィルタ11内に捕獲され、捕獲された粒子状物質は排気ガス熱によって順次燃焼せしめられる。多量の粒子状物質がフィルタ11上に推積した場合には、機関本体1から排出される排気ガスの温度を高くしたり、還元剤供給弁13から還元剤を供給してフィルタ11で燃焼させたりして、フィルタ11を昇温することで、推積したパティキュレートが着火燃焼せしめられる。 When the NO x catalyst 11 is composed of a particulate filter, particulate matter contained in the inflowing exhaust gas is captured in the filter 11 and the captured particulate matter is sequentially burned by the exhaust gas heat. . When a large amount of particulate matter accumulates on the filter 11, the temperature of the exhaust gas discharged from the engine body 1 is increased, or the reducing agent is supplied from the reducing agent supply valve 13 and burned by the filter 11. In other words, by raising the temperature of the filter 11, the accumulated particulates are ignited and combusted.

図11は、本発明の第三実施形態の排気浄化装置を示す。図11に示したように、第三実施形態においては、NOX吸蔵手段として機関排気通路上に二つのNOX触媒70、72が設けられている。すなわち、排気タービン7bの出口が上流側NOX触媒70を内蔵したケーシング71に連結され、上流側NOX触媒70の排気下流には下流側NOX触媒72を内蔵したケーシング73が連結される。いずれのNOX触媒70、72も、第一実施形態のNOX触媒11と同様に、基体52上にアルミナ等の担体53が設けられ、担体53の表面上には貴金属触媒54およびNOX吸蔵剤55が担持されている。 FIG. 11 shows an exhaust emission control device according to a third embodiment of the present invention. As shown in FIG. 11, in the third embodiment, two NO X catalysts 70 and 72 are provided on the engine exhaust passage as NO X storage means. That is, the outlet of the exhaust turbine 7b is connected to the casing 71 with a built-in upstream NO X catalyst 70, the exhaust downstream of the upstream-side NO X catalyst 70 casing 73 incorporating a downstream NO X catalyst 72 is connected. Each of the NO X catalysts 70 and 72 is provided with a carrier 53 such as alumina on the base 52 as in the NO X catalyst 11 of the first embodiment, and the noble metal catalyst 54 and the NO X occlusion on the surface of the carrier 53. An agent 55 is carried.

一方、第一実施形態のNOX触媒11と異なり、上流側NOX触媒70の担体は全てが低酸化・還元能領域となっており、下流側NOX触媒72の担体は全てが高酸化・還元能領域となっている。本実施形態では、上流側NOX触媒70の担体に担持される貴金属触媒の単位体積当たりの担持量を、下流側NOX触媒72の担体に担持される貴金属触媒の単位体積当たりの担持量よりも少ないものとしているが、上流側NOX触媒70の担体に担持されるNOX吸蔵剤55の塩基性を下流側NOX触媒72の担体に担持されるNOX吸蔵剤55の塩基性よりも強いもとするようにしてもよい。 On the other hand, unlike the NO x catalyst 11 of the first embodiment, all of the support of the upstream NO x catalyst 70 is in the low oxidation / reduction capacity region, and all of the support of the downstream NO x catalyst 72 is highly oxidized and reduced. It is a reducing capacity area. In the present embodiment, the supported amount per unit volume of the noble metal catalyst supported on the support of the upstream side NO x catalyst 70 is determined from the supported amount per unit volume of the noble metal catalyst supported on the support of the downstream side NO x catalyst 72. Although it is assumed is small, than basic of the NO X absorbent 55 carried the basic of the NO X absorbent 55 is supported on a carrier of the upstream-side NO X catalyst 70 to the carrier of the downstream NO X catalyst 72 You may make it strong.

機関本体1から排出された排気ガスは、上流側NOX触媒70を通過した後に下流側NOX触媒72に流入する。すなわち、本実施形態では、排気ガスは上流側NOX触媒70に設けられた低酸化・還元能領域上を通過してから下流側NOX触媒72に設けられた高酸化・還元能領域に流入する。したがって、第一実施形態の排気浄化装置と同様に、両NOX触媒70、72の温度がNO酸化開始温度以上である場合には、上流側NOX触媒70への流入排気ガスの空燃比がリーンのときに排気ガス中のNOXが上流側NOX触媒70および下流側NOX触媒72に担持されたNOX吸蔵剤55に吸蔵されると共に、上流側NOX触媒70への流入排気ガスの空燃比がストイキ・リッチのときに上流側NOX触媒70および下流側NOX触媒72に設けられたNOX吸蔵剤からNOXが放出され、これら両NOX触媒70、72、特に下流側NOX触媒72に存在する白金54により上記放出されたNOXがN2に還元される。一方、両NOX触媒70、72の温度がNO酸化開始温度よりも低い場合には、主に上流側NOX触媒70において流入排気ガス中のNO2がNOX吸蔵剤55に吸蔵される。なお、この場合にも図7および図8に示すNOX触媒11のNOX浄化能力維持制御と同様のNOX浄化能力維持制御が行われる。 Exhaust gas discharged from the engine body 1 flows into the downstream NO X catalyst 72 after passing through the upstream NO X catalyst 70. That is, in this embodiment, the exhaust gas flowing into the high redox ability region provided after passing the low oxidation-reduction potential region above provided upstream NO X catalyst 70 on the downstream side NO X catalyst 72 To do. Therefore, similarly to the exhaust gas purifying apparatus of the first embodiment, when the temperature of both the NO X catalyst 70, 72 is NO oxidation start temperature or more, the air-fuel ratio of the exhaust gas flowing into the upstream-side NO X catalyst 70 During lean, NO x in the exhaust gas is occluded by the NO x storage agent 55 carried by the upstream NO x catalyst 70 and the downstream NO x catalyst 72 and flows into the upstream NO x catalyst 70. air-fuel ratio is the NO X storage agent from NO X provided upstream NO X catalyst 70 and the downstream NO X catalyst 72 when the stoichiometric-rich is released, these both NO X catalyst 70 and 72, in particular downstream The released NO x is reduced to N 2 by the platinum 54 present in the NO x catalyst 72. On the other hand, when the temperatures of the NO X catalysts 70 and 72 are lower than the NO oxidation start temperature, NO 2 in the inflowing exhaust gas is mainly stored in the NO X storage agent 55 in the upstream NO X catalyst 70. In this case as well, the NO X purification capability maintenance control similar to the NO X purification capability maintenance control of the NO X catalyst 11 shown in FIGS. 7 and 8 is performed.

内燃機関全体を示す図である。It is a figure which shows the whole internal combustion engine. NOX触媒の構成を説明するための図である。It is a diagram for explaining the configuration of the NO X catalyst. NOX触媒によるNOX浄化作用を示す図である。It is a diagram illustrating a NO X purification action by the NO X catalyst. 図2の破線IV内を図解的に示す拡大断面図である。FIG. 4 is an enlarged cross-sectional view schematically showing the inside of a broken line IV in FIG. 2. NOX触媒の昇温が150℃のときにおけるNOX触媒によるNOX浄化率の相違を示す図である。Heating of the NO X catalyst is a diagram showing the difference of the NO X purification rate by the NO X catalyst definitive at 0.99 ° C.. NOX触媒の昇温が300℃のときにおけるNOX触媒によるNOX浄化率の相違を示す図である。Heating of the NO X catalyst is a diagram showing the difference of the NO X purification rate by the NO X catalyst definitive at 300 ° C.. NOX触媒のNOX浄化能力維持制御のフローチャートである。3 is a flowchart of NO X purification capacity maintenance control of the NO X catalyst. NOX放出処理を行うためのフローチャートである。Is a flow chart for performing the NO X release process. パティキュレートフィルタの構成を説明するための図である。It is a figure for demonstrating the structure of a particulate filter. 図9の破線X内を図解的に示す拡大断面図である。FIG. 10 is an enlarged cross-sectional view schematically showing the inside of a broken line X in FIG. 9. 本発明の第三実施形態の排気浄化装置を示す。3 shows an exhaust emission control device according to a third embodiment of the present invention.

符号の説明Explanation of symbols

3…燃料噴射弁
4…吸気マニホルド
5…排気マニホルド
7…排気ターボチャージャ
11…NOX触媒
13…還元剤供給弁
20…温度センサ
3 ... fuel injection valve 4 ... intake manifold 5 ... exhaust manifold 7 ... exhaust turbocharger 11 ... NO X catalyst 13 ... reducing agent feed valve 20 ... Temperature sensor

Claims (7)

機関排気通路内にNOX吸蔵剤と貴金属触媒とを担持するNOX吸蔵手段を具備し、上記NOX吸蔵剤は、貴金属触媒の温度がNO酸化開始温度以上である場合にNOX吸蔵手段に流入する排気ガスの空燃比がリーンであるときには排気ガス中のNOXを吸蔵し、NOX吸蔵手段に流入する排気ガスの空燃比がほぼ理論空燃比またはリッチのときにはNOX吸蔵剤に吸蔵されているNOXを放出し、上記NOX吸蔵手段が、少量担持領域と多量担持領域とを有し、上記少量担持領域における単位体積当たりの貴金属触媒の担持量が上記多量担持領域における単位体積当たりの貴金属触媒の担持量よりも少ない内燃機関の排気浄化装置において、
上記少量担持領域および多量担持量域領域は上記NOX吸蔵手段に流入する排気ガスが上記少量担持領域上を通過してから上記多量担持領域上を通過するように設けられる内燃機関の排気浄化装置。
Comprising a the NO X storage means for carrying the the NO X storage agent and a noble metal catalyst in the engine exhaust passage, the the NO X storage agent to the NO X storage means when the temperature of the noble metal catalyst is the NO oxidation start temperature or higher When the air-fuel ratio of the inflowing exhaust gas is lean, NO x in the exhaust gas is occluded, and when the air-fuel ratio of the exhaust gas flowing into the NO x occlusion means is almost the stoichiometric air-fuel ratio or rich, it is occluded by the NO x storage agent. the NO X by being released, the the NO X storage means, and a small amount carrying region and a large amount carrying region, per unit volume amount of the noble metal catalyst per unit volume in the small amount carrying region is in the large amount of carrying region In the exhaust gas purification device for an internal combustion engine, which is less than the amount of the noble metal catalyst supported,
The exhaust gas purifying apparatus for an internal combustion engine provided so that the exhaust gas flowing into the NO x storage means passes over the small amount support region and then passes over the large amount support region. .
上記NOX吸蔵手段はNOX吸蔵剤と貴金属触媒とを担持する一つのNOX触媒を具備し、上記少量担持領域および多量担持領域は上記一つのNOX触媒内に設けられる請求項1に記載の内燃機関の排気浄化装置。 2. The NO x storage means includes one NO x catalyst that supports a NO x storage agent and a noble metal catalyst, and the small amount supporting region and the large amount supporting region are provided in the one NO x catalyst. Exhaust gas purification device for internal combustion engine. 上記少量担持領域が上記NOX触媒の上流側部分に設けられ、上記多量担持領域が上記上流側部分よりも排気下流に位置する上記NOX触媒の下流側部分に設けられる請求項2に記載の内燃機関の排気浄化装置。 The small amount carrying region is provided on the upstream side portion of the NO X catalyst, the large amount carrying region according to claim 2 which is provided on the downstream side portion of the NO X catalyst located in the exhaust downstream than the upstream side portion An exhaust purification device for an internal combustion engine. 上記NOX触媒は、排気ガスが流入する流入通路と排気ガスが流出する流出通路とを具備し、これら流入通路と流出通路との間には隔壁が設けられると共に上記流入通路に流入した排気ガスは隔壁を通って上記流出通路へ流れるようになっており、上記少量担持領域は上記隔壁の表面上であって流入通路側に設けられ、上記多量担持領域は上記隔壁の表面上であって流出通路側に設けられる請求項2に記載の内燃機関の排気浄化装置。 The NO X catalyst; and a bleed passage inlet passage and an exhaust gas exhaust gas flows to flow out, the exhaust gas flowing into the inflow passage with the partition wall is provided between these inlet passages and outlet passages Flows through the partition to the outflow passage, the small amount carrying region is provided on the inflow passage side on the surface of the partition, and the large amount carrying region is on the surface of the partition and flows out. The exhaust emission control device for an internal combustion engine according to claim 2, provided on the passage side. 上記NOX吸蔵手段は機関排気通路内に直列的に配置された二つのNOX触媒を具備し、各NOX触媒はNOX吸蔵剤と貴金属触媒とを担持し、上流側に配置された上記NOX触媒に上記少量担持領域が設けられると共に下流側に配置された上記NOX触媒に上記多量担持領域が設けられる請求項1に記載の内燃機関の排気浄化装置。 The NO X storage means includes two NO X catalysts arranged in series in the engine exhaust passage, and each NO X catalyst carries a NO X storage agent and a noble metal catalyst, and is arranged upstream. An exhaust purification system of an internal combustion engine according to claim 1 in which the large amount carrying region is provided in the NO X catalyst arranged downstream together with the small amount carrying region is provided in the NO X catalyst. 上記少量担持領域における単位体積当たりの貴金属触媒の担持量が、少なくとも貴金属触媒の温度がNO酸化開始温度以上であるときの貴金属触媒の酸化・還元能力を考慮したときに最適になるように設定される量よりも少ない請求項1〜5のいずれか1項に記載の内燃機関の排気浄化装置。   The amount of noble metal catalyst supported per unit volume in the small amount loading region is set to be optimal when considering the oxidation / reduction ability of the noble metal catalyst at least when the temperature of the noble metal catalyst is equal to or higher than the NO oxidation start temperature. The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 5, wherein the exhaust gas purification device is less than a predetermined amount. 貴金属触媒とNOX吸蔵剤とを具備するNOX吸蔵手段であって、単位体積当たりの貴金属触媒の担持量が少ない少量担持領域と、単位体積当たりの貴金属触媒の担持量が多い多量担持領域とを有するNOX吸蔵手段を用いて、排気ガス中に含まれるNOXを浄化する内燃機関の排気浄化方法において、
貴金属触媒の温度がNO酸化開始温度よりも低い場合には、NOX吸蔵手段に流入した排気ガスが上記多量担持領域上を通過する前に上記少量担持領域上を通過するようにし、該少量担持領域のNOX吸蔵剤にNO2を吸蔵させる内燃機関の排気浄化方法。
A the NO X storage means comprising a noble metal catalyst and the NO X storage agent, a small amount and carrying region is small supported amount of noble metal catalyst per unit volume, and a large amount carrying region is large amount of the noble metal catalyst per unit volume In an exhaust gas purification method for an internal combustion engine that purifies NO x contained in exhaust gas using a NO x storage means having
When the temperature of the noble metal catalyst is lower than the NO oxidation start temperature, the exhaust gas flowing into the NO X storage means passes over the small amount supporting region before passing over the large amount supporting region, and the small amount supporting An exhaust purification method for an internal combustion engine in which NO 2 is stored in the NO X storage agent in the region.
JP2003410374A 2003-12-09 2003-12-09 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4269919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003410374A JP4269919B2 (en) 2003-12-09 2003-12-09 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003410374A JP4269919B2 (en) 2003-12-09 2003-12-09 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005171805A true JP2005171805A (en) 2005-06-30
JP4269919B2 JP4269919B2 (en) 2009-05-27

Family

ID=34731486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003410374A Expired - Fee Related JP4269919B2 (en) 2003-12-09 2003-12-09 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4269919B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026806A1 (en) * 2005-08-31 2007-03-08 Ngk Insulators, Ltd. Honeycomb catalyst body and process for producing the same
JP2007120319A (en) * 2005-10-25 2007-05-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine
US8133841B2 (en) 2005-08-31 2012-03-13 Ngk Insulators, Ltd. Honeycomb catalytic structure, precoated support for producing honeycomb catalytic structure, and process for producing honeycomb catalytic structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026806A1 (en) * 2005-08-31 2007-03-08 Ngk Insulators, Ltd. Honeycomb catalyst body and process for producing the same
US7887761B2 (en) 2005-08-31 2011-02-15 Ngk Insulators, Ltd. Honeycomb catalyst and manufacturing method thereof
JP4814887B2 (en) * 2005-08-31 2011-11-16 日本碍子株式会社 Honeycomb catalyst body and manufacturing method thereof
US8133841B2 (en) 2005-08-31 2012-03-13 Ngk Insulators, Ltd. Honeycomb catalytic structure, precoated support for producing honeycomb catalytic structure, and process for producing honeycomb catalytic structure
JP2007120319A (en) * 2005-10-25 2007-05-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Also Published As

Publication number Publication date
JP4269919B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
KR101339523B1 (en) Exhaust purification system of internal combustion engine
JP4158697B2 (en) Exhaust gas purification device and exhaust gas purification method for internal combustion engine
JP2008232003A (en) Exhaust emission control device of internal combustion engine
JP2009114879A (en) Exhaust emission control device for internal combustion engine
JP4868096B2 (en) Exhaust gas purification device for internal combustion engine
JP5748005B2 (en) Exhaust gas purification device for internal combustion engine
JP3514218B2 (en) Exhaust gas purification device for internal combustion engine
JP5610083B1 (en) Exhaust gas purification device for internal combustion engine
WO2014016965A1 (en) Exhaust purification device of internal combustion engine
JP2006336589A (en) Exhaust emission control device of internal combustion engine
JP2016109041A (en) Control device for internal combustion engine
JP4269919B2 (en) Exhaust gas purification device for internal combustion engine
JP2007231922A (en) Exhaust emission control device for compression ignition type internal combustion engine
JP5880781B2 (en) Exhaust gas purification device for internal combustion engine
JP2010127182A (en) Exhaust emission control device for internal combustion engine
JP4379099B2 (en) Exhaust gas purification device for internal combustion engine
JP4019867B2 (en) Exhaust gas purification device for internal combustion engine
JP4626439B2 (en) Exhaust gas purification device for internal combustion engine
JP4254484B2 (en) Exhaust gas purification device for internal combustion engine
WO2014024311A1 (en) Exhaust purification device of spark ignition internal combustion engine
JP2009293572A (en) Exhaust emission control device for internal combustion engine
JP4019891B2 (en) Exhaust gas purification device for internal combustion engine
JP4254505B2 (en) Exhaust gas purification device for internal combustion engine
JP4327584B2 (en) Exhaust gas purification device for internal combustion engine
JP3558046B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees