JP2008208739A - Exhaust purification device of internal combustion engine - Google Patents

Exhaust purification device of internal combustion engine Download PDF

Info

Publication number
JP2008208739A
JP2008208739A JP2007044194A JP2007044194A JP2008208739A JP 2008208739 A JP2008208739 A JP 2008208739A JP 2007044194 A JP2007044194 A JP 2007044194A JP 2007044194 A JP2007044194 A JP 2007044194A JP 2008208739 A JP2008208739 A JP 2008208739A
Authority
JP
Japan
Prior art keywords
reducing agent
upstream
catalyst
storage catalyst
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007044194A
Other languages
Japanese (ja)
Inventor
Kohei Yoshida
耕平 吉田
Shinya Hirota
信也 広田
Takamitsu Asanuma
孝充 浅沼
Hiromasa Nishioka
寛真 西岡
Hiroshi Otsuki
寛 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007044194A priority Critical patent/JP2008208739A/en
Priority to PCT/JP2008/053349 priority patent/WO2008102915A1/en
Publication of JP2008208739A publication Critical patent/JP2008208739A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To appropriately release NO<SB>x</SB>from each of a plurality of NO<SB>x</SB>storing catalysts. <P>SOLUTION: The plurality of NO<SB>x</SB>storing catalysts 11, 12 are arranged in series in an engine exhaust passage, reducing agent feed valves 14, 15 for supplying a reducing agent to the NO<SB>x</SB>storing catalysts 11, 12 are individually provided for the NO<SB>x</SB>storing catalysts 11, 12. When NO<SB>x</SB>should be released from the NO<SB>x</SB>storing catalysts 11, 12, the upstream-most NO<SB>x</SB>storing catalyst 11 is fed with the reducing agent required for consuming the oxygen contained in the exhaust gas in addition to the reducing agent required for reducing the NO<SB>x</SB>stored in the upstream-most NO<SB>x</SB>storing catalyst 11 from the first reducing agent feed valve 14. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

炭化水素、即ちHCの存在のもとで排気ガス中に含まれるNOXを還元することのできるリーンNOX触媒を機関排気通路内に直列に配置すると共に各リーンNOX触媒に夫々HCを供給するためのHC供給装置を各リーンNOX触媒毎に個別に設け、各リーンNOX触媒においてNOXを還元するのに必要なHCを夫々対応するHC供給装置から供給するようにした内燃機関が公知である(特許文献1を参照)。この内燃機関では各リーンNOX触媒においてNOXが良好に還元される。
特開平10−54223号公報
A lean NO x catalyst capable of reducing NO x contained in the exhaust gas in the presence of hydrocarbons, ie HC, is arranged in series in the engine exhaust passage and HC is supplied to each lean NO x catalyst. internal combustion engine so as HC provided supply device individually for each lean NO X catalyst, supplying HC required to reduce the NO X in the lean NO X catalyst from the HC supply device respectively corresponding to the It is known (see Patent Document 1). In this internal combustion engine, NO x is satisfactorily reduced in each lean NO x catalyst.
JP 10-54223 A

しかしながら流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOXを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOXを放出する一対のNOX吸蔵触媒を機関排気通路内に配置した場合には上述の内燃機関と同じ方法で各NOX吸蔵触媒に対し各NOX吸蔵触媒に吸蔵されているNOXを還元するのに必要な還元剤を供給しても各NOX吸蔵触媒におけるNOXの良好な還元作用を得ることはできない。 A pair of the NO X storage, however the air-fuel ratio of the exhaust gas flowing at the time of lean that releases NO X air-fuel ratio of the exhaust gas which is occluded becomes the stoichiometric air-fuel ratio or rich for occluding NO X contained in the exhaust gas inflow supplying the reducing agent necessary for reducing the NO X that is occluded in the same manner as described above for an internal combustion engine for each the NO X storing catalyst to each the NO X storage catalyst in the case of arranging the catalyst in the engine exhaust passage Even in this case, it is not possible to obtain a good NO x reduction action in each NO x storage catalyst.

即ち、機関排気通路内に一対のNOX吸蔵触媒を配置した場合にはそれに応じた適切な還元剤の供給方法が存在する。
本発明は機関排気通路内に複数のNOX吸蔵触媒を配置した場合に還元剤を最適に供給するようにした内燃機関の排気浄化装置を提供することにある。
That is, when a pair of NO x storage catalysts are arranged in the engine exhaust passage, there is an appropriate reducing agent supply method corresponding to the NO x storage catalyst.
An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that optimally supplies a reducing agent when a plurality of NO x storage catalysts are arranged in an engine exhaust passage.

即ち、本発明によれば、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOXを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOXを放出する複数のNOX吸蔵触媒を機関排気通路内に直列に配置すると共に各NOX吸蔵触媒に夫々還元剤を供給するための還元剤供給装置を各NOX吸蔵触媒毎に個別に設け、NOX吸蔵触媒からNOXを放出すべきときには排気ガス中に含まれる酸素を消費するために、最も上流側に位置する最上流NOX吸蔵触媒に対してこの最上流NOX吸蔵触媒に吸蔵されているNOXを還元するのに必要な還元剤よりも多くの還元剤を対応する還元剤供給装置から供給するようにしている。 That is, according to the present invention, when the air-fuel ratio of the inflowing exhaust gas is lean, NO X contained in the exhaust gas is occluded, and when the air-fuel ratio of the inflowing exhaust gas becomes the stoichiometric air-fuel ratio or rich, the occluded NO x is stored. provided individually reducing agent feeder for feeding the respective reducing agent in each the NO X storage catalyst as well as arranged in series a plurality of the NO X storage catalyst to release the engine exhaust passage for each the NO X storage catalyst, NO When NO X should be released from the X storage catalyst, oxygen contained in the exhaust gas is consumed, so that the most upstream NO X storage catalyst is stored in the most upstream NO X storage catalyst with respect to the most upstream NO X storage catalyst. It has a number of reducing agents than the reducing agent required for reducing the NO X which are to be supplied from the corresponding reducing agent supply device.

NOX吸蔵触媒に吸蔵しているNOXを適切に還元することができる。 The NO X that is occluded in the NO X storage catalyst can be appropriately reduced.

図1に圧縮着火式内燃機関の全体図を示す。
図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内に夫々燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口は吸入空気量検出器8を介してエアクリーナ9に連結される。吸気ダクト6内にはステップモータにより駆動されるスロットル弁10が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。
FIG. 1 shows an overall view of a compression ignition type internal combustion engine.
Referring to FIG. 1, 1 is an engine body, 2 is a combustion chamber of each cylinder, 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber 2, 4 is an intake manifold, and 5 is an exhaust manifold. Respectively. The intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 9 via the intake air amount detector 8. A throttle valve 10 driven by a step motor is disposed in the intake duct 6, and a cooling device 11 for cooling intake air flowing through the intake duct 6 is disposed around the intake duct 6. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 11, and the intake air is cooled by the engine cooling water.

一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結され、排気タービン7bの出口は直列配置された複数のNOX吸蔵触媒11,12に接続される。即ち、排気タービン7bの出口は最も上流側に位置する最上流NOX吸蔵触媒11の入口に連結され、最上流NOX吸蔵触媒11の出口は排気管13を介して最上流NOX吸蔵触媒11の下流に位置する下流側NOX吸蔵触媒12の入口に連結される。図1に示される実施例では1個の下流側NOX吸蔵触媒12のみが配置されているが複数個の下流側NOX触媒12を直列配置することもできる。 On the other hand, the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7, and the outlet of the exhaust turbine 7 b is connected to a plurality of NO X storage catalysts 11, 12 arranged in series. In other words, the exhaust outlet of the turbine 7b is connected to the inlet of the most upstream the NO X storing catalyst 11 positioned on the most upstream side, the most upstream NO X exit adsorption catalyst 11 via the exhaust pipe 13 furthest upstream the NO X storing catalyst 11 Is connected to the inlet of the downstream NO x storage catalyst 12 located downstream of the catalyst. In the embodiment shown in FIG. 1, only one downstream NO x storage catalyst 12 is arranged, but a plurality of downstream NO x catalysts 12 may be arranged in series.

図1に示されるように最上流NOX吸蔵還元触媒11に炭化水素からなる還元剤を供給するための第1の還元剤供給弁14が排気マニホルド5内に配置され、下流側NOX吸蔵還元触媒12に炭化水素からなる還元剤を供給するための第2の還元剤供給弁14が排気管13内に配置される。即ち、各NOX吸蔵触媒11,12に夫々還元剤を供給するための還元剤供給弁14,15を有する還元剤供給装置が各NOX吸蔵触媒11,12毎に個別に設けられている。 As shown in FIG. 1, a first reducing agent supply valve 14 for supplying a reducing agent made of hydrocarbons to the most upstream NO X storage reduction catalyst 11 is disposed in the exhaust manifold 5, and downstream NO X storage reduction. A second reducing agent supply valve 14 for supplying a reducing agent made of hydrocarbons to the catalyst 12 is disposed in the exhaust pipe 13. That is, the reducing agent supply device is provided separately for each the NO X storing catalyst 11, 12 having a reducing agent feed valve 14, 15 for supplying the respective reducing agent in each the NO X storing catalyst 11 and 12.

排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路16を介して互いに連結され、EGR通路16内には電子制御式EGR制御弁17が配置される。また、EGR通路16周りにはEGR通路16内を流れるEGRガスを冷却するための冷却装置18が配置される。図1に示される実施例では機関冷却水が冷却装置18内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管19を介してコモンレール20に連結される。このコモンレール20内へは電子制御式の吐出量可変な燃料ポンプ21から燃料が供給され、コモンレール20内に供給された燃料は各燃料供給管19を介して燃料噴射弁3に供給される。   The exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 16, and an electronically controlled EGR control valve 17 is disposed in the EGR passage 16. A cooling device 18 for cooling the EGR gas flowing in the EGR passage 16 is disposed around the EGR passage 16. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 18, and the EGR gas is cooled by the engine cooling water. On the other hand, each fuel injection valve 3 is connected to a common rail 20 through a fuel supply pipe 19. Fuel is supplied into the common rail 20 from an electronically controlled variable discharge amount fuel pump 21, and the fuel supplied into the common rail 20 is supplied to the fuel injection valve 3 through each fuel supply pipe 19.

電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセルメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。最上流NOX吸蔵触媒11には最上流NOX吸蔵触媒11の温度を検出するための温度センサ22が取付けられ、吸入空気量検出器8の出力信号および温度センサ22の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁10の駆動用ステップモータ、各還元剤供給弁14,15、EGR制御弁17および燃料ポンプ21に接続される。 The electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31. A ROM (read only memory) 32, a RAM (random accelerator memory) 33, a CPU (microprocessor) 34, an input port 35 and an output port 36 It comprises. The most upstream the NO X storing catalyst 11 the temperature sensor 22 for detecting the temperature of the most upstream the NO X storing catalyst 11 is attached, the output signal of the output signal and the temperature sensor 22 in the intake air amount detector 8 are each corresponding The signal is input to the input port 35 via the AD converter 37. A load sensor 41 that generates an output voltage proportional to the depression amount L of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. . Further, the input port 35 is connected to a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 15 °. On the other hand, the output port 36 is connected to the fuel injection valve 3, the step motor for driving the throttle valve 10, the reducing agent supply valves 14 and 15, the EGR control valve 17, and the fuel pump 21 through corresponding drive circuits 38.

まず初めに図1に示されるNOX吸蔵触媒11,12について説明すると、これらNOX吸蔵触媒11,12は三次元網目構造のモノリス担体或いはペレット状担体上に担持されており、図2は例えばアルミナからなる触媒担体45の表面部分の断面を図解的に示している。図2に示されるように触媒担体45の表面上には貴金属触媒46が分散して担持されており、更に触媒担体45の表面上にはNOX吸収剤47の層が形成されている。 First, the NO X storage catalysts 11 and 12 shown in FIG. 1 will be described. These NO X storage catalysts 11 and 12 are supported on a monolith support or pellet support having a three-dimensional network structure. A cross section of a surface portion of a catalyst carrier 45 made of alumina is schematically shown. As shown in FIG. 2, a noble metal catalyst 46 is dispersed and supported on the surface of the catalyst carrier 45, and a layer of NO x absorbent 47 is formed on the surface of the catalyst carrier 45.

本発明による実施例では貴金属触媒46として白金Ptが用いられており、NOX吸収剤47を構成する成分としては例えばカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つが用いられている。 In the embodiment according to the present invention, platinum Pt is used as the noble metal catalyst 46, and the constituents of the NO x absorbent 47 are, for example, alkali metals such as potassium K, sodium Na, cesium Cs, barium Ba, calcium Ca. At least one selected from alkaline earths such as these, lanthanum La, and rare earths such as yttrium Y is used.

機関吸気通路、燃焼室2および各NOX吸蔵触媒11,12上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、NOX吸収剤47は排気ガスの空燃比がリーンのときにはNOXを吸収し、排気ガス中の酸素濃度が低下すると吸収したNOXを放出するNOXの吸放出作用を行う。 When the ratio of air and fuel (hydrocarbon) supplied into the engine intake passage, the combustion chamber 2 and the exhaust passages upstream of the NO x storage catalysts 11 and 12 is referred to as the air-fuel ratio of the exhaust gas, the NO x absorbent 47 is air-fuel ratio of the exhaust gas is absorbed NO X when the lean, the oxygen concentration in the exhaust gas performs the absorbing and releasing action of the NO X that releases NO X absorbed and reduced.

即ち、NOX吸収剤47を構成する成分としてバリウムBaを用いた場合を例にとって説明すると、排気ガスの空燃比がリーンのとき、即ち排気ガス中の酸素濃度が高いときには排気ガス中に含まれるNOは図2に示されるように白金Pt46上において酸化されてNO2となり、次いでNOX吸収剤47内に吸収されて酸化バリウムBaOと結合しながら硝酸イオンNO3 -の形でNOX吸収剤47内に拡散する。このようにしてNOXがNOX吸収剤47内に吸収される。排気ガス中の酸素濃度が高い限り白金Pt46の表面でNO2が生成され、NOX吸収剤47のNOX吸収能力が飽和しない限りNO2がNOX吸収剤47内に吸収されて硝酸イオンNO3 -が生成される。 That is, the case where barium Ba is used as a component constituting the NO x absorbent 47 will be described as an example. When the air-fuel ratio of the exhaust gas is lean, that is, when the oxygen concentration in the exhaust gas is high, it is contained in the exhaust gas. As shown in FIG. 2, NO is oxidized on platinum Pt 46 to become NO 2 , and then absorbed into the NO X absorbent 47 and combined with barium oxide BaO, and in the form of nitrate ions NO 3 , the NO X absorbent. It diffuses into 47. In this way, NO x is absorbed in the NO x absorbent 47. Exhaust oxygen concentration in the gas is NO 2 with high long as the surface of the platinum Pt46 are generated, the NO X absorbent 47 of the NO X absorbing capacity so long as NO 2 not to saturate is absorbed in the NO X absorbent 47 nitrate ions NO 3 - is generated.

これに対し、還元剤供給弁14,15から還元剤を供給することによって排気ガスの空燃比をリッチ或いは理論空燃比にすると排気ガス中の酸素濃度が低下するために反応が逆方向(NO3 -→NO2)に進み、斯くしてNOX吸収剤47内の硝酸イオンNO3 -がNO2の形でNOX吸収剤47から放出される。次いで放出されたNOXは排気ガス中に含まれる未燃HC,COによって還元される。 On the other hand, if the air-fuel ratio of the exhaust gas is made rich or the stoichiometric air-fuel ratio by supplying the reducing agent from the reducing agent supply valves 14 and 15, the oxygen concentration in the exhaust gas decreases, so that the reaction is reversed (NO 3 - → proceeds to NO 2), thus to the NO X absorbent in the 47 nitrate ions NO 3 and - is released from the NO X absorbent 47 in the shape of NO 2. Next, the released NO x is reduced by unburned HC and CO contained in the exhaust gas.

このように排気ガスの空燃比がリーンであるとき、即ちリーン空燃比のもとで燃焼が行われているときには排気ガス中のNOXがNOX吸収剤47内に吸収される。しかしながらリーン空燃比のもとでの燃焼が継続して行われるとその間にNOX吸収剤47のNOX吸収能力が飽和してしまい、斯くしてNOX吸収剤47によりNOXを吸収できなくなってしまう。そこで本発明による実施例ではNOX吸収剤47の吸収能力が飽和する前に還元剤供給弁14,15から還元剤を供給することによって排気ガスの空燃比を一時的にリッチにし、それによってNOX吸収剤47からNOXを放出させるようにしている。 Thus, when the air-fuel ratio of the exhaust gas is lean, that is, when combustion is performed under the lean air-fuel ratio, NO X in the exhaust gas is absorbed into the NO X absorbent 47. However becomes saturated is NO X absorbing capacity of the NO X absorbent 47 during the combustion of the fuel under a lean air-fuel ratio is continued, no longer able to absorb NO X by the NO X absorbent 47 and thus End up. Therefore, in the embodiment according to the present invention, the air-fuel ratio of the exhaust gas is temporarily made rich by supplying the reducing agent from the reducing agent supply valves 14 and 15 before the absorption capacity of the NO x absorbent 47 is saturated, thereby NO. NO X is released from the X absorbent 47.

なお、排気ガス中にはSOX、即ちSO2が含まれており、このSO2がNOX吸蔵触媒11,12に流入するとこのSO2は白金Pt46において酸化されてSO3となる。次いでこのSO3はNOX吸収剤47内に吸収されて酸化バリウムBaOと結合しながら、硫酸イオンSO4 2-の形でNOX吸収剤47内に拡散し、安定した硫酸塩BaSO4を生成する。しかしながらNOX吸収剤47が強い塩基性を有するためにこの硫酸塩BaSO4は安定していて分解しづらく、排気ガスの空燃比を単にリッチにしただけでは硫酸塩BaSO4は分解されずにそのまま残る。従ってNOX吸収剤47内には時間が経過するにつれて硫酸塩BaSO4が増大することになり、斯くして時間が経過するにつれてNOX吸収剤47が吸収しうるNOX量が低下することになる。即ち、NOX吸蔵触媒11,12が劣化することになる。 Incidentally, SO X in the exhaust gas, that is, contains SO 2, this SO 2 flows into the NO X storing catalyst 11 This SO 2 is the is oxidized SO 3 in the platinum Pt 46. Next, this SO 3 is absorbed into the NO x absorbent 47 and bonded to the barium oxide BaO, while diffusing into the NO x absorbent 47 in the form of sulfate ions SO 4 2− to form a stable sulfate BaSO 4 . To do. However, since the NO x absorbent 47 has a strong basicity, this sulfate BaSO 4 is stable and difficult to decompose. If the air-fuel ratio of the exhaust gas is simply made rich, the sulfate BaSO 4 is not decomposed and remains as it is. Remain. Thus will be sulfates BaSO 4 increases as time in the NO X absorbent 47 has elapsed, that the amount of NO X the NO X absorbent 47 can absorb as thus to time has elapsed is reduced Become. That is, the NO x storage catalysts 11 and 12 are deteriorated.

次に図3を参照しつつ各NOX吸蔵触媒11,12へのNOX吸蔵触媒作用と、各NOX吸蔵触媒11,12からのNOX放出および還元作用について説明する。
図3においてΣNOX1は最上流NOX吸蔵触媒11に吸蔵されている吸蔵NOX量を示しており、ΣNOX2は下流側NOX吸蔵触媒12に吸蔵されている吸蔵NOX量を示している。これら吸蔵NOX量ΣNOX1、ΣNOX2は機関から単位時間当り排出されるNOX量から算出される。また、図3においてΣSOX1は最上流NOX吸蔵触媒11に吸蔵されている吸蔵SOX量を示しており、吸蔵SOX量ΣSOX1も機関から単位時間当り排出されるSOX量から算出される。
Then the the NO X storage catalytic action of the respective the NO X storing catalyst 11 and 12 with reference to FIG. 3, the NO X release and reduction action from the the NO X storing catalyst 11 and 12.
In FIG. 3 ShigumaNOX1 shows the occluded amount of NO X occluded in the most upstream the NO X storing catalyst 11, ΣNOX2 shows the occluded amount of NO X occluded in the downstream the NO X storing catalyst 12. These occluded amount of NO X ΣNOX1, ΣNOX2 is calculated from the NO X amount exhausted from the engine per unit time. In FIG. 3, ΣSOX1 indicates the stored SO X amount stored in the most upstream NO X storage catalyst 11, and the stored SO X amount ΣSOX1 is also calculated from the SO X amount discharged per unit time from the engine.

そこでまず初めに図4を参照しつつ吸蔵NOX量等の算出方法について説明する。なお、図4に示される吸蔵NOX量等の算出ルーチンは一定時間毎の割込みによって実行される。
図4を参照するとまず初めにステップ50において機関から単位時間当り排出される排出NOX量NOXAが算出される。この排出NOX量NOXAは要求トルクTQおよび機関回転数Nの関数として図5(A)に示すマップの形で予めROM32内に記憶されている。次いでステップ51では機関から単位時間当り排出される排出SOX量SOXAが算出される。この排出SOX量SOXAも要求トルクTQおよび機関回転数Nの関数として図5(B)に示されるようなマップの形で予めROM32内に記憶されている。
First, a method for calculating the occluded NO x amount will be described with reference to FIG. Note that the routine for calculating the amount of occluded NO x and the like shown in FIG. 4 is executed by interruption every predetermined time.
Discharge amount of NO X NOXA exhausted from the engine per unit time is calculated first, at step 50 and reference to FIG. The discharge amount of NO X NOXA is stored in advance in the ROM32 in the form of a map shown in FIG. 5 (A) as a function of the required torque TQ and engine speed N. Then discharge SO X amount SOXA is calculated to be exhausted from the engine per unit time in step 51. The exhaust SO X amount SOXA is also stored in advance in the ROM 32 as a function of the required torque TQ and the engine speed N in the form of a map as shown in FIG.

機関から排出されたSOXはほとんど最上流NOX吸蔵触媒11に吸蔵される。従ってステップ52では最上流NOX吸蔵触媒11に吸蔵されている吸蔵SOX量ΣSOX1に図5(B)から算出されたSOX量SOXAが加算される。 Most of the SO X discharged from the engine is stored in the most upstream NO X storage catalyst 11. Accordingly SO X amount SOXA calculated from FIG. 5 (B) to the occluded SO X amount ΣSOX1 occluded in the most upstream the NO X storing catalyst 11 at step 52 is added.

次いでステップ53では最上流NOX吸蔵触媒11へのNOX吸蔵速度、即ち単位時間当り最上流NOX吸蔵触媒11に吸蔵可能なNOX量QNOXが算出される。吸蔵NOX量ΣNOX1が多くなるほど、また吸蔵SOX量ΣSOX1が多くなるほどNOXは最上流NOX吸蔵触媒11に吸蔵されにくくなるので吸蔵可能NOX量QNOXは吸蔵NOX量ΣNOX1が増大するほど減少し、吸蔵SOX量ΣSOX1が増大するほど減少する。また、吸蔵可能NOX量QNOXは排気ガスの流速が速くなるほど、即ち吸入空気量が増大するほど減少し、更に最上流NOX吸蔵触媒11の温度に応じて変化する。吸蔵可能NOX量QNOXはこれら吸蔵NOX量ΣNOX1、吸蔵SOX量ΣSOX1、吸入空気量および最上流NOX吸蔵触媒11の温度の関数として予めROM32内に記憶されており、この記憶された関係から吸蔵可能NOX量QNOXが算出される。 Then the NO X storage speed of the most upstream the NO X storing catalyst 11 in step 53, i.e. the most upstream the NO X storing catalyst 11 per unit time absorbing possible amount of NO X QNOX is calculated. The more storage amount of NO X ΣNOX1 increases, and as the storage SO X amount ΣSOX1 since many becomes higher NO X is less likely to be occluded in the most upstream the NO X storing catalyst 11 storable amount of NO X QNOX occluding amount of NO X ΣNOX1 increases It decreases, and decreases as the stored SO X amount ΣSOX1 increases. Further, the storable NO x amount QNOX decreases as the exhaust gas flow rate increases, that is, as the intake air amount increases, and further changes according to the temperature of the most upstream NO x storage catalyst 11. The stored NO X amount QNOX is stored in advance in the ROM 32 as a function of the stored NO X amount ΣNOX1, the stored SO X amount ΣSOX1, the intake air amount, and the temperature of the most upstream NO X storage catalyst 11, and this stored relationship is stored. From this, the storable NO x amount QNOX is calculated.

次いでステップ54では機関からの排出NOX量NOXAが吸蔵可能NOX量QNOXよりも大きいか否かが判別される。NOXA>QNOXであればQNOXしか吸蔵されないのでこのときにはステップ55に進んでQNOXが最上流NOX吸蔵触媒11に単位時間当り吸蔵される吸蔵NOX量NOX1とされる。次いでステップ57に進む。これに対し、ステップ54においてNOXA≦QNOXであると判別されたときには全ての排出NOX量NOXAが最上流NOX吸蔵触媒11に吸蔵されるのでこのときにはステップ56に進んで排出NOX量NOXAが吸蔵NOX量NOX1とされる。次いでステップ57に進む。 Then discharge amount of NO X NOXA from the engine at step 54 whether or not greater than storable amount of NO X QNOX is determined. If NOXA> Qnox Qnox only because it is not occluded at this time are occluded amount of NO X NOX1 to be stored per unit time in the uppermost upstream the NO X storing catalyst 11 is Qnox proceeds to Step 55. Next, the routine proceeds to step 57. In contrast, when it is determined in step 54 that NOXA ≦ QNOX, all the exhausted NO X amount NOXA is stored in the most upstream NO X storage catalyst 11, so at this time the routine proceeds to step 56 where the exhausted NO X amount NOXA is. The stored NO X amount is NOX1. Next, the routine proceeds to step 57.

ステップ57では最上流NOX吸蔵触媒11に吸蔵されている吸蔵NOX量ΣNOX1に吸蔵NOX量NOX1が加算される。次いでステップ58では排出NOX量NOXAから吸蔵NOX量NOX1を減算することによって下流側NOX吸蔵触媒12に単位時間当り吸蔵される吸蔵NOX量NOX2が算出される。次いでステップ59では下流側NOX吸蔵触媒12に吸蔵されている吸蔵NOX量ΣNOX2に吸蔵NOX量NOX2が加算される。このようにして最上流NOX吸蔵触媒11に吸蔵されている吸蔵NOX量ΣNOX1および下流側NOX吸蔵触媒12に吸蔵されている吸蔵NOX量ΣNOX2が算出される。 In step 57 occluded amount of NO X NOX1 the occluded amount of NO X ΣNOX1 occluded in the most upstream the NO X storing catalyst 11 is added. Then occluded amount of NO X NOX2 be stored per unit time downstream the NO X storing catalyst 12 is calculated by subtracting the occluded amount of NO X NOX1 from step 58 discharge amount of NO X NOXA. Then occluded amount of NO X NOX2 is added to the occluded amount of NO X ΣNOX2 occluded in the downstream the NO X storing catalyst 12 in step 59. Such occlusion amount of NO X ΣNOX2 being occluded is calculated and the occluded amount of NO X ΣNOX1 and downstream the NO X storing catalyst 12 is occluded in the most upstream the NO X storing catalyst 11 on.

再び図3に戻ると、本発明による実施例では最上流NOX吸蔵触媒11に吸蔵されている吸蔵NOX量ΣNOX1が許容値NX1に達するか、或いは下流側NOX吸蔵触媒12に吸蔵されている吸蔵NOX量ΣNOX2が許容値NX2に達したときに各NOX吸蔵触媒11,12からのNOX放出作用が行われる。なお、図3に示される例では最上流NOX吸蔵触媒11に吸蔵されている吸蔵NOX量ΣNOX1が許容値NX1に達することによって各NOX吸蔵触媒11,12からのNOX放出作用が行われる場合を示している。 Returning to FIG. 3 again, in the embodiment according to the present invention, the stored NO X amount ΣNOX1 stored in the most upstream NO X storage catalyst 11 reaches the allowable value NX1 or is stored in the downstream NO X storage catalyst 12. NO X releasing action from the the NO X storing catalyst 11 is carried out when the occluded amount of NO X ΣNOX2 there are reaches the allowable value NX2. Incidentally, NO X emission action lines from the the NO X storing catalyst 11 by adsorption amount of NO X ΣNOX1 occluded in the most upstream the NO X storing catalyst 11 reaches the allowable value NX1 In the example shown in FIG. 3 Shows the case.

図3に示されるようにΣNOX1がNX1に達したときには還元剤供給1で示されるように第1の還元剤供給弁14から還元剤が供給され、それによって最上流NOX吸蔵触媒11に流入する排気ガスの空燃比(A/F)1がリーンから一時的にリッチに切換えられる。このとき最上流NOX吸蔵触媒11から吸蔵されているNOXが放出され、還元される。 As shown in FIG. 3, when ΣNOX1 reaches NX1, the reducing agent is supplied from the first reducing agent supply valve 14 as shown by the reducing agent supply 1, and thereby flows into the most upstream NO X storage catalyst 11. The air-fuel ratio (A / F) 1 of the exhaust gas is temporarily switched from lean to rich. In this case NO X that is occluded from the most upstream the NO X storing catalyst 11 is released and reduced.

ところでこのように最上流NOX吸蔵触媒11からNOXを放出すべきときには排気ガス中に含まれる酸素を消費するために、最上流NOX吸蔵触媒11に対して最上流NOX吸蔵触媒11に吸蔵されているNOXを還元するのに必要な還元剤よりも多くの還元剤が第1の還元剤供給弁14から供給される。即ち、最上流NOX吸蔵触媒11からNOXを放出すべく最上流NOX吸蔵触媒11に流入する排気ガスの空燃比をリッチにするときには巨視的に言うと排気ガスの空燃比をリーンから理論空燃比まで低下させるのに必要な、即ち排気ガス中に含まれる酸素を消費するのに必要な量の還元剤と、排気ガスの空燃比を理論空燃比からリッチまで低下させるのに必要な、即ち最上流NOX吸蔵触媒11内に吸蔵されているNOXを放出させ還元するのに必要な量の還元剤とが供給される。 By the way, when NO X should be released from the most upstream NO X storage catalyst 11 in this way, oxygen contained in the exhaust gas is consumed, so that the most upstream NO X storage catalyst 11 is changed to the most upstream NO X storage catalyst 11. many reducing agents than the reducing agent required for reducing the NO X being occluded is supplied from the first reducing agent feed valve 14. That is, the theoretical air-fuel ratio of the exhaust gas to say macroscopically when the air-fuel ratio of the exhaust gas flowing into the most upstream the NO X storing catalyst 11 so as to release the NO X from the most upstream the NO X storing catalyst 11 from lean to rich Necessary to reduce the air-fuel ratio from the stoichiometric air-fuel ratio to rich, and the amount of reducing agent required to reduce the air-fuel ratio, that is, to consume oxygen contained in the exhaust gas. that the amount of reducing agent required to reduce to release NO X occluded in the innermost upstream the NO X storing catalyst 11 is supplied.

即ち、最上流NOX吸蔵触媒11からNOXを放出させるにはまず初めに最上流NOX吸蔵触媒11に流入する排気ガス中に含まれる酸素を消費することが必要である。従って本発明では上述したように最上流NOX吸蔵触媒11からNOXを放出すべきときには最上流NOX吸蔵触媒11に対し最上流NOX吸蔵触媒11に吸蔵されているNOXを還元するのに必要な還元剤に加えて排気ガス中に含まれる酸素を消費するために必要な還元剤が第1の還元剤供給弁14から供給される。 That is, it is necessary to consume the oxygen contained in the exhaust gas flowing into the most upstream the NO X storing catalyst 11 First to emit NO X from the most upstream the NO X storing catalyst 11. Therefore to reduce the NO X occluded in the most upstream the NO X storing catalyst 11 to the most upstream the NO X storing catalyst 11 when, as described above in the present invention from the most upstream the NO X storing catalyst 11 should be released NO X In addition to the necessary reducing agent, the reducing agent necessary for consuming oxygen contained in the exhaust gas is supplied from the first reducing agent supply valve 14.

次いで第1の還元剤供給弁14からの還元剤の供給により空燃比がリッチになった排気ガス流部分が第2の還元剤供給弁15の還元剤噴射領域に達したときに還元剤供給2で示されるように第2の還元剤供給弁15から還元剤が供給され、第2の還元剤供給弁15から供給された還元剤を含んだ排気ガス流部分が下流側NOX吸蔵触媒12内に流入する。 Next, when the exhaust gas flow portion in which the air-fuel ratio has become rich due to the supply of the reducing agent from the first reducing agent supply valve 14 reaches the reducing agent injection region of the second reducing agent supply valve 15, the reducing agent supply 2 As shown, the reducing agent is supplied from the second reducing agent supply valve 15, and the exhaust gas flow portion containing the reducing agent supplied from the second reducing agent supply valve 15 is in the downstream side NO X storage catalyst 12. Flow into.

この排気ガス流部分における排気ガス中の酸素は第1の還元剤供給弁14から供給された還元剤によって既に消費されているので第2の還元剤供給弁15からは下流側NOX吸蔵触媒12に吸蔵されているNOXを放出させ還元させるのに必要な量の還元剤を供給すれば十分である。従って本発明では最上流NOX吸蔵触媒11の下流に複数の下流側NOX吸蔵触媒12が配置されている場合を例にとると、各下流側NOX吸蔵触媒12からNOXを放出すべきときには各下流側NOX吸蔵触媒12に吸蔵されているNOXを還元するのに必要な還元剤が夫々対応する第2の還元剤供給弁15から供給される。 Oxygen in the exhaust gas in this exhaust gas flow portion has already been consumed by the reducing agent supplied from the first reducing agent supply valve 14, so that the downstream side NO X storage catalyst 12 passes from the second reducing agent supply valve 15. It is sufficient to supply an amount of reducing agent necessary for releasing and reducing NO X stored in the catalyst. Accordingly the present invention Taking the case where a plurality of downstream the NO X storing catalyst 12 downstream of the most upstream the NO X storing catalyst 11 is disposed as an example, should be released NO X from the downstream side the NO X storing catalyst 12 sometimes reducing agent required for reducing the NO X occluded in the respective downstream the NO X storing catalyst 12 is supplied from the second reducing agent supply valve 15 to respectively correspond.

さて、本発明による実施例では上述したように第1の還元剤供給弁14からの還元剤の供給により空燃比が低下した排気ガス流部分に第2の還元剤供給弁15から還元剤が供給されるように第2の還元剤供給弁15からの還元剤供給時期は第1の還元剤供給弁14からの還元剤供給時期に対して図3に示されるようにΔt時間だけ遅くらされる。この還元剤供給遅延時間Δtは排気ガスの流速が速くなるほど、即ち吸入空気量が増大するほど短かくなる。この還元剤供給遅延時間Δtは吸入空気量の関数として予めROM32内に記憶されている。   In the embodiment according to the present invention, as described above, the reducing agent is supplied from the second reducing agent supply valve 15 to the exhaust gas flow portion in which the air-fuel ratio has decreased due to the supply of the reducing agent from the first reducing agent supply valve 14. As shown in FIG. 3, the reducing agent supply timing from the second reducing agent supply valve 15 is delayed by Δt time as shown in FIG. 3 with respect to the reducing agent supply timing from the first reducing agent supply valve 14. . The reducing agent supply delay time Δt becomes shorter as the flow rate of the exhaust gas increases, that is, as the intake air amount increases. This reducing agent supply delay time Δt is stored in advance in the ROM 32 as a function of the intake air amount.

図3に示されるように最上流NOX吸蔵触媒11に吸蔵されるSOX量ΣSOX1は時間の経過と共に徐々に増大する。即ち、最上流NOX吸蔵触媒11は時間の経過と共に徐々に劣化する。図6は同一の運転状態において最上流NOX吸蔵触媒11の劣化の度合に応じて変化する還元剤の供給割合の変化を示している。なお、図6においてQ0は最上流NOX吸蔵触媒11に流入する排気ガス中の酸素を消費するために必要な還元剤の量を示しており、Q1は最上流NOX吸蔵触媒11に吸蔵されたNOXを放出させて還元するのに必要な還元剤の量を示しており、Q2は下流側NOX吸蔵触媒12に吸蔵されたNOXを放出させて還元するのに必要な還元剤の量を示している。 As shown in FIG. 3, the SO X amount ΣSOX 1 stored in the most upstream NO X storage catalyst 11 gradually increases with time. That is, the most upstream NO x storage catalyst 11 gradually deteriorates with time. FIG. 6 shows a change in the supply ratio of the reducing agent that changes in accordance with the degree of deterioration of the most upstream NO x storage catalyst 11 in the same operation state. In FIG. 6, Q 0 indicates the amount of reducing agent necessary for consuming oxygen in the exhaust gas flowing into the most upstream NO X storage catalyst 11, and Q 1 is stored in the most upstream NO X storage catalyst 11. and NO X represents the amount of reducing agent required to reduce by releasing, Q2 is of the reducing agent required to reduce by releasing NO X occluded in the downstream the NO X storing catalyst 12 Indicates the amount.

図6における各数値は供給される全還元剤量を100としたときの各還元剤の量Q0、Q1、Q2を表しており、No.1、No.2No.3は最上流NOX吸蔵触媒11の劣化の度合が異なる場合を夫々示している。最上流NOX吸蔵触媒11の劣化の度合が最も低いNo.1に示す場合にはQ0が80で、Q1が15で、Q2が5であり、Q0+Q1が第1の還元剤供給弁14から供給され、Q2が第2の還元剤供給弁15から供給される。 Each numerical value in FIG. 6 represents the amount Q0, Q1, Q2 of each reducing agent when the total amount of reducing agent supplied is 100. 1, no. 2No. 3 shows the cases where the degree of deterioration of the most upstream NO x storage catalyst 11 is different. No. 1 with the lowest degree of deterioration of the most upstream NO x storage catalyst 11. 1, Q0 is 80, Q1 is 15, Q2 is 5, Q0 + Q1 is supplied from the first reducing agent supply valve 14, and Q2 is supplied from the second reducing agent supply valve 15. .

一方、最上流NOX吸蔵触媒11の劣化が進行すると最上流NOX吸蔵触媒11に吸蔵されるNOX量が減少するのでNo.2に示されるようにQ1は5となり、Q2が15となる。即ち、最上流NOX吸蔵触媒11に吸蔵されるNOX量よりも下流側NOX吸蔵触媒12に吸蔵されるNOX量が増大する。なお、このNo.2の場合、Q0はNo.1の場合と同じである。 On the other hand, since the amount of NO X deterioration of most upstream the NO X storing catalyst 11 are inserted in the uppermost stream the NO X storing catalyst 11 when traveling decreases No. As shown in FIG. 2, Q1 is 5 and Q2 is 15. That, the amount of NO X occluded in the downstream the NO X storing catalyst 12 than the amount of NO X occluded in the most upstream the NO X storing catalyst 11 increases. In addition, this No. In the case of 2, Q0 is No. The same as the case of 1.

一方、最上流NOX吸蔵触媒11の劣化が更に進行して最上流NOX吸蔵触媒11に吸蔵されるNOX量が零になるとNo.3に示されるようにQ1は0となり、Q2が15となる。即ち、排気ガス中に含まれる全てのNOXが下流側NOX吸蔵触媒13に吸蔵される。なお、このNo.3の場合もQ0はNo.1、No.2の場合と同じである。 On the other hand, the amount of NO X deterioration of most upstream the NO X storing catalyst 11 are inserted in the most upstream the NO X storing catalyst 11 progresses further becomes zero No. As shown in FIG. 3, Q1 becomes 0 and Q2 becomes 15. That is, all the NO X contained in the exhaust gas is stored in the downstream NO X storage catalyst 13. In addition, this No. In the case of 3, Q0 is No. 1, no. This is the same as the case of 2.

即ち、最上流NOX吸蔵触媒11内が劣化し、吸蔵されたSOXで満たされるとNOX吸収剤47の層の塩基性が弱まり、白金46による酸化性能が高められる。従って高められた酸化性能を利用して供給された還元剤により排気ガス中に含まれる酸素を良好に消費させるためにNo.3の場合でもQ0が第1の還元剤供給弁14から供給される。 That is, when the inside of the most upstream NO x storage catalyst 11 is deteriorated and filled with the stored SO x , the basicity of the layer of the NO x absorbent 47 is weakened and the oxidation performance by the platinum 46 is enhanced. Therefore, in order to consume oxygen contained in the exhaust gas satisfactorily by the reducing agent supplied by utilizing the enhanced oxidation performance, No. Even in the case of 3, Q0 is supplied from the first reducing agent supply valve 14.

このように本発明による実施例では、吸蔵SOX量ΣSOX1から最上流NOX吸蔵触媒11の劣化の度合が推定され、推定された劣化の度合に応じて最上流NOX吸蔵触媒11および下流側NOX吸蔵触媒12に夫々対応する還元剤供給弁14,15から供給される還元剤の量が調整される。この場合最上流NOX吸蔵触媒11の劣化の度合が高くなるほど下流側NOX吸蔵触媒12に対し第2の還元剤供給弁から供給される還元剤の量が増大せしめられる。 As described above, in the embodiment according to the present invention, the degree of deterioration of the most upstream NO X storage catalyst 11 is estimated from the stored SO X amount ΣSOX1, and the most upstream NO X storage catalyst 11 and the downstream side are determined according to the estimated degree of deterioration. the amount of reducing agent reducing agent supplied from the supply valve 14, 15 respectively corresponding to the NO X storing catalyst 12 is adjusted. In this case, the amount of reducing agent supplied from the second reducing agent supply valve to the downstream side NO X storage catalyst 12 increases as the degree of deterioration of the most upstream NO X storage catalyst 11 increases.

次に図7を参照しつつ還元剤の供給制御ルーチンについて説明する。
図7を参照するとまず始めにステップ60において最上流NOX吸蔵触媒11に吸蔵されている吸蔵NOX量ΣNOX1が許容値NX1を越えたか否かが判別される。ΣNOX1>NX1のときにはステップ62にジャンプし、ΣNOX1≦NX1のときにはステップ61に進む。ステップ61では下流側NOX吸蔵触媒12に吸蔵されている吸蔵NOX量ΣNOX2が許容値NX2を越えたか否かが判別される。ΣNOX2>NX2のときにはステップ62に進み、ΣNOX2≦NX2のときには処理サイクルを完了する。即ち、最上流NOX吸蔵触媒11に吸蔵されている吸蔵NOX量ΣNOX1が許容値NX1を越えたとき、又は下流側NOX吸蔵触媒12に吸蔵されている吸蔵NOX量ΣNOX2が許容値NX2を越えたときにステップ62に進む。
Next, the reducing agent supply control routine will be described with reference to FIG.
Referring to FIG. 7, first, at step 60, it is judged if the stored NO X amount ΣNOX1 stored in the most upstream NO X storage catalyst 11 exceeds the allowable value NX1. When ΣNOX1> NX1, the routine jumps to step 62, and when ΣNOX1 ≦ NX1, the routine proceeds to step 61. In step 61, it is determined whether or not the stored NO X amount ΣNOX2 stored in the downstream NO X storage catalyst 12 exceeds the allowable value NX2. When ΣNOX2> NX2, the process proceeds to step 62, and when ΣNOX2 ≦ NX2, the processing cycle is completed. That is, when the stored NO X amount ΣNOX1 stored in the most upstream NO X storage catalyst 11 exceeds the allowable value NX1, or the stored NO X amount ΣNOX2 stored in the downstream NO X storage catalyst 12 is the allowable value NX2. When the value is exceeded, the routine proceeds to step 62.

ステップ62では最上流NOX吸蔵触媒11に吸蔵されている吸蔵NOX量ΣNOX1の算出値に基づいて吸蔵されているNOXを放出させ還元させるのに必要な還元剤量Q1が算出される。次いでステップ63では下流側NOX吸蔵触媒12に吸蔵されている吸蔵NOX量ΣNOX2の算出値に基づいて吸蔵されているNOXを放出させ還元させるのに必要な還元剤量Q2が算出される。次いでステップ64では吸入空気量および燃料噴射量から余剰の酸素、即ち最上流NOX吸蔵触媒11に流入する排気ガス中の酸素を消費するのに必要な還元剤量Q0が算出される。次いでステップ65では還元剤供給遅延時間Δtが算出される。 At step 62 reducing agent amount Q1 required to reduced to release NO X being occluded based on the calculated value of the occluded amount of NO X ΣNOX1 occluded in the most upstream the NO X storing catalyst 11 is calculated. Reducing agent amount Q2 is calculated required to reduced to release NO X that is occluded by then based on the calculated value of the occluded amount of NO X ΣNOX2 occluded in the downstream the NO X storing catalyst 12 in step 63 . Then the excess of oxygen from the intake air amount in step 64 and the fuel injection quantity, i.e. the reducing agent quantity Q0 required to consume the oxygen in the exhaust gas flowing into the most upstream the NO X storing catalyst 11 is calculated. Next, at step 65, the reducing agent supply delay time Δt is calculated.

次いでステップ66ではQ0とQ1との和が第1の還元剤供給弁14から供給される。次いでステップ67では還元剤供給遅延時間Δtが経過するまで待ち、還元剤供給遅延時間Δtを経過するとステップ68に進んでQ2が第2の還元剤供給弁15から供給される。次いでステップ69ではΣNOX1、ΣNOX2がクリアされる。   Next, at step 66, the sum of Q 0 and Q 1 is supplied from the first reducing agent supply valve 14. Next, at step 67, the process waits until the reducing agent supply delay time Δt elapses. When the reducing agent supply delay time Δt elapses, the routine proceeds to step 68 where Q2 is supplied from the second reducing agent supply valve 15. Next, at step 69, ΣNOX1 and ΣNOX2 are cleared.

圧縮着火式内燃機関の全体図である。1 is an overall view of a compression ignition type internal combustion engine. NOX吸蔵触媒の触媒担体の表面部分の断面図である。2 is a cross-sectional view of a surface portion of a catalyst carrier of an NO X storage catalyst. 還元剤の供給制御を示すタイムチャートである。It is a time chart which shows supply control of a reducing agent. 吸蔵NOX量等を算出するためのフローチャートである。It is a flowchart for calculating the amount of occluded NO x and the like. 吸蔵NOX量NOXA等のマップを示す図である。It is a diagram showing a map such as occluded amount of NO X NOXA. 各還元剤量を示す図である。It is a figure which shows the amount of each reducing agent. 還元剤の供給制御を行うためのフローチャートである。It is a flowchart for performing supply control of a reducing agent.

符号の説明Explanation of symbols

4 吸気マニホルド
5 排気マニホルド
7 排気ターボチャージャ
11 最上流NOX吸蔵触媒
12 下流側NOX吸蔵触媒
14 第1の還元剤供給弁
15 第2の還元剤供給弁
4 Intake manifold 5 Exhaust manifold 7 Exhaust turbocharger 11 Uppermost stream NO x storage catalyst 12 Downstream NO x storage catalyst 14 First reducing agent supply valve 15 Second reducing agent supply valve

Claims (5)

流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOXを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOXを放出する複数のNOX吸蔵触媒を機関排気通路内に直列に配置すると共に各NOX吸蔵触媒に夫々還元剤を供給するための還元剤供給装置を各NOX吸蔵触媒毎に個別に設け、NOX吸蔵触媒からNOXを放出すべきときには排気ガス中に含まれる酸素を消費するために、最も上流側に位置する最上流NOX吸蔵触媒に対して該最上流NOX吸蔵触媒に吸蔵されているNOXを還元するのに必要な還元剤よりも多くの還元剤を対応する還元剤供給装置から供給するようにした内燃機関の排気浄化装置。 A plurality of NO X storage catalysts that store NO X contained in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean and release the stored NO X when the air-fuel ratio of the inflowing exhaust gas becomes the stoichiometric air-fuel ratio or rich the provided a reducing agent supply device for supplying the respective reducing agent with each the NO X storage catalyst arranged in series in the engine exhaust passage separately for each the NO X storage catalyst, release the NO X from the NO X storing catalyst for the time to put the to consume oxygen contained in the exhaust gas, for reducing the NO X occluded in the outermost upstream the NO X storage catalyst with respect to the most upstream the NO X storage catalyst located at the most upstream side An exhaust gas purification apparatus for an internal combustion engine that supplies more reducing agent than the necessary reducing agent from a corresponding reducing agent supply device. NOX吸蔵触媒からNOXを放出すべきときには上記最上流NOX吸蔵触媒に対し該最上流NOX吸蔵触媒に吸蔵されているNOXを還元するのに必要な還元剤に加えて排気ガス中に含まれる酸素を消費するために必要な還元剤を対応する還元剤供給装置から供給し、該最上流NOX吸蔵触媒の下流側に位置する各下流側NOX吸蔵触媒については各下流側NOX吸蔵触媒に吸蔵されているNOXを還元するのに必要な還元剤を夫々対応する還元剤供給装置から供給するようにした請求項1に記載の内燃機関の排気浄化装置。 Exhaust gas in addition to the reducing agent required for reducing the NO X occluded in the outermost upstream the NO X storage catalyst with respect to the most upstream the NO X storage catalyst when the the NO X storing catalyst should release the NO X oxygen is supplied from the corresponding reducing agent supply device reducing agent required to consume the, outermost upstream the NO X storage each downstream NO for each downstream the NO X storage catalyst located downstream of the catalyst contained in the an exhaust purification system of an internal combustion engine according to claim 1 which is adapted to supply the reducing agent supply device in which a reducing agent respectively corresponding required for reducing the NO X which is stored in X storage catalyst. 上記最上流NOX吸蔵触媒の劣化の度合が推定され、推定された該劣化の度合に応じて該最上流NOX吸蔵触媒および該最上流NOX吸蔵触媒の下流側に位置する各下流側NOX吸蔵触媒に夫々対応する還元剤供給装置から供給される還元剤の量が調整される請求項1に記載の内燃機関の排気浄化装置。 The degree of deterioration of the most upstream NO x storage catalyst is estimated, and each downstream NOx located downstream of the most upstream NO x storage catalyst and the most upstream NO x storage catalyst according to the estimated degree of deterioration. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the amount of the reducing agent supplied from the reducing agent supply device corresponding to each of the X storage catalysts is adjusted. 上記最上流NOX吸蔵触媒の劣化の度合が高くなるほど上記下流側NOX吸蔵触媒に対し対応する還元剤供給装置から供給される還元剤の量が増大せしめられる請求項3に記載の内燃機関の排気浄化装置。 4. The internal combustion engine according to claim 3, wherein the amount of the reducing agent supplied from the corresponding reducing agent supply device to the downstream NO X storage catalyst increases as the degree of deterioration of the most upstream NO X storage catalyst increases. Exhaust purification device. 最上流NOX吸蔵触媒に供給された還元剤により空燃比が低下した排気ガス流部分に下流側NOX吸蔵触媒に供給すべき還元剤が供給されるように下流側NOX吸蔵触媒への還元剤の供給時期が最上流NOX吸蔵触媒への還元剤の供給時期に対して遅くらされる請求項1に記載の内燃機関の排気浄化装置。 Reduction of downstream the NO X storage catalyst as a reducing agent to be supplied to the downstream side the NO X storage catalyst in the exhaust gas stream portion the air-fuel ratio is decreased by reducing agent supplied to the most upstream the NO X storage catalyst is supplied An exhaust purification system of an internal combustion engine according to claim 1, the supply timing of the agent is slow to live the supply timing of the reducing agent to the most upstream the NO X storage catalyst.
JP2007044194A 2007-02-23 2007-02-23 Exhaust purification device of internal combustion engine Withdrawn JP2008208739A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007044194A JP2008208739A (en) 2007-02-23 2007-02-23 Exhaust purification device of internal combustion engine
PCT/JP2008/053349 WO2008102915A1 (en) 2007-02-23 2008-02-20 Exhaust purification device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007044194A JP2008208739A (en) 2007-02-23 2007-02-23 Exhaust purification device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008208739A true JP2008208739A (en) 2008-09-11

Family

ID=39410349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007044194A Withdrawn JP2008208739A (en) 2007-02-23 2007-02-23 Exhaust purification device of internal combustion engine

Country Status (2)

Country Link
JP (1) JP2008208739A (en)
WO (1) WO2008102915A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124610A (en) * 2011-12-15 2013-06-24 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2015187402A (en) * 2014-03-26 2015-10-29 三菱自動車工業株式会社 Internal combustion engine exhaust emission control device
JP2015187404A (en) * 2014-03-26 2015-10-29 三菱自動車工業株式会社 Internal combustion engine exhaust emission control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015221025B4 (en) 2015-10-28 2022-08-11 Ford Global Technologies, Llc Method for operating an exhaust aftertreatment device of a motor vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054223A (en) * 1996-08-14 1998-02-24 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP4020054B2 (en) * 2003-09-24 2007-12-12 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP4270170B2 (en) * 2004-11-02 2009-05-27 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124610A (en) * 2011-12-15 2013-06-24 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2015187402A (en) * 2014-03-26 2015-10-29 三菱自動車工業株式会社 Internal combustion engine exhaust emission control device
JP2015187404A (en) * 2014-03-26 2015-10-29 三菱自動車工業株式会社 Internal combustion engine exhaust emission control device

Also Published As

Publication number Publication date
WO2008102915A1 (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP4420048B2 (en) Exhaust gas purification device for internal combustion engine
JP4983491B2 (en) Exhaust gas purification device for internal combustion engine
JP4270201B2 (en) Internal combustion engine
US7730719B2 (en) Exhaust purification apparatus of compression ignition type internal combustion engine
JP2009114879A (en) Exhaust emission control device for internal combustion engine
JP2007297918A (en) Exhaust emission control device for internal combustion engine
US8136346B2 (en) Internal combustion engine
JP5163809B2 (en) Exhaust gas purification device for internal combustion engine
US20090031705A1 (en) Exhaust Gas Purification Device of Compression Ignition Type Internal Combustion Engine
JP2008208739A (en) Exhaust purification device of internal combustion engine
US8033100B2 (en) Exhaust purification device of compression ignition type internal combustion engine
WO2014016965A1 (en) Exhaust purification device of internal combustion engine
JP2006336589A (en) Exhaust emission control device of internal combustion engine
JP2005140000A (en) Exhaust emission control device for internal combustion engine
JP2009293572A (en) Exhaust emission control device for internal combustion engine
JP2008303791A (en) Exhaust emission control device of internal combustion engine
EP2133528B1 (en) Exhaust purification device for internal combustion engine
JP2009209766A (en) Exhaust emission control device of internal combustion engine
JP4697073B2 (en) Exhaust gas purification device for internal combustion engine
JP4737144B2 (en) Exhaust gas purification device for internal combustion engine
JP5206597B2 (en) Exhaust gas purification device for internal combustion engine
JP2009024521A (en) Exhaust emission control device of internal combustion engine
US20110088377A1 (en) Exhaust purification device of internal combustion engine
JP2009270438A (en) Sox detecting device of internal combustion engine
JP2006299896A (en) Exhaust emission control device of compression ignition type internal combustion engine

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081121