JP2006348088A - Fluorescent material composition and use thereof - Google Patents
Fluorescent material composition and use thereof Download PDFInfo
- Publication number
- JP2006348088A JP2006348088A JP2005173186A JP2005173186A JP2006348088A JP 2006348088 A JP2006348088 A JP 2006348088A JP 2005173186 A JP2005173186 A JP 2005173186A JP 2005173186 A JP2005173186 A JP 2005173186A JP 2006348088 A JP2006348088 A JP 2006348088A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- light
- resin
- light emitting
- blue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 38
- 239000000463 material Substances 0.000 title abstract description 12
- 239000011347 resin Substances 0.000 claims abstract description 63
- 229920005989 resin Polymers 0.000 claims abstract description 63
- 150000004767 nitrides Chemical class 0.000 claims abstract description 24
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 20
- 239000011737 fluorine Substances 0.000 claims abstract description 20
- 239000002033 PVDF binder Substances 0.000 claims abstract description 9
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims abstract description 9
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 claims abstract description 7
- 229920009441 perflouroethylene propylene Polymers 0.000 claims abstract description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 7
- 239000000956 alloy Substances 0.000 claims abstract description 6
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 6
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 claims abstract description 6
- 239000004812 Fluorinated ethylene propylene Substances 0.000 claims abstract description 5
- 239000004813 Perfluoroalkoxy alkane Substances 0.000 claims abstract description 5
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 claims abstract description 5
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 claims abstract description 5
- 229920002620 polyvinyl fluoride Polymers 0.000 claims abstract description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 104
- 239000002131 composite material Substances 0.000 claims description 7
- 239000003566 sealing material Substances 0.000 claims description 6
- 239000000470 constituent Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 abstract description 7
- 239000000843 powder Substances 0.000 description 30
- 238000002834 transmittance Methods 0.000 description 14
- 238000012360 testing method Methods 0.000 description 13
- 230000005284 excitation Effects 0.000 description 11
- 239000002904 solvent Substances 0.000 description 9
- 229920000647 polyepoxide Polymers 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- 239000006087 Silane Coupling Agent Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000011575 calcium Substances 0.000 description 7
- 239000011812 mixed powder Substances 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 238000000295 emission spectrum Methods 0.000 description 6
- 239000003822 epoxy resin Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- -1 magnesium magnesium nitride Chemical class 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- JWKJOADJHWZCLL-UHFFFAOYSA-N 1,2,3,4,5,5,6,6,6-nonafluoro-1-(1,2,3,4,5,5,6,6,6-nonafluorohexa-1,3-dienoxy)hexa-1,3-diene Chemical compound FC(OC(F)=C(F)C(F)=C(F)C(F)(F)C(F)(F)F)=C(F)C(F)=C(F)C(F)(F)C(F)(F)F JWKJOADJHWZCLL-UHFFFAOYSA-N 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 229910001940 europium oxide Inorganic materials 0.000 description 3
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 3
- 238000000695 excitation spectrum Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 229910052693 Europium Inorganic materials 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- HFNSTEOEZJBXIF-UHFFFAOYSA-N 2,2,4,5-tetrafluoro-1,3-dioxole Chemical compound FC1=C(F)OC(F)(F)O1 HFNSTEOEZJBXIF-UHFFFAOYSA-N 0.000 description 1
- RVDLHGSZWAELAU-UHFFFAOYSA-N 5-tert-butylthiophene-2-carbonyl chloride Chemical compound CC(C)(C)C1=CC=C(C(Cl)=O)S1 RVDLHGSZWAELAU-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910002795 Si–Al–O–N Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- OOJQNBIDYDPHHE-UHFFFAOYSA-N barium silicon Chemical compound [Si].[Ba] OOJQNBIDYDPHHE-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229940043430 calcium compound Drugs 0.000 description 1
- 150000001674 calcium compounds Chemical class 0.000 description 1
- JGIATAMCQXIDNZ-UHFFFAOYSA-N calcium sulfide Chemical compound [Ca]=S JGIATAMCQXIDNZ-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- LGERWORIZMAZTA-UHFFFAOYSA-N silicon zinc Chemical compound [Si].[Zn] LGERWORIZMAZTA-UHFFFAOYSA-N 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Led Device Packages (AREA)
- Luminescent Compositions (AREA)
- Sealing Material Composition (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、青色発光ダイオード(青色LED)、紫外発光ダイオード(紫外LED)、青色光や紫外光を出すレーザーダイオード(LD)等の、短波長発光素子を含む光源に利用可能な蛍光体組成物、それを用いたシート、並びに発光素子に関する。 The present invention relates to a phosphor composition that can be used for a light source including a short wavelength light emitting element such as a blue light emitting diode (blue LED), an ultraviolet light emitting diode (ultraviolet LED), or a laser diode (LD) that emits blue light or ultraviolet light. , A sheet using the same, and a light-emitting element.
近年、白色LEDが広く使われるようになり、中でも青色LEDと黄色蛍光体を組み合わせた白色LEDが携帯電話液晶表示の光源やカメラ用補助ライト等に使われている。代表的な白色LEDは、青色LEDを蛍光体粉体と樹脂の混合物で封止する構造を有している(特許文献1参照)。
前記白色LEDは、青色LEDが発する青色光の一部が蛍光体に当たって吸収され、黄色の蛍光を発し、補色関係にある青色と黄色の混色によって、白色光を発する。しかし、この白色光には赤色成分があまり含まれておらず、また緑色も不足しているので、色再現性に乏しく、赤い色の物体に照明光として当てても、きれいな赤い色に見えないという欠点を有している。そのため、この白色光を疑似白色と呼ぶことがある。 In the white LED, a part of the blue light emitted from the blue LED hits the phosphor and is absorbed, emits yellow fluorescence, and emits white light by a mixed color of blue and yellow having a complementary color relationship. However, this white light does not contain much red component and also lacks green color, so it has poor color reproducibility and does not look like a beautiful red color even if it is illuminated as an illumination light on a red object. Has the disadvantages. Therefore, this white light is sometimes called pseudo white.
一方、青色LEDと緑色蛍光体、赤色蛍光体を組み合わせたり、紫外LEDと青、緑、赤の光の3原色蛍光体を組み合わせたり、更にそれに黄色蛍光体を混合するなどして、3色や4色を混合して色再現性を高めた白色LEDの試作も行われている。しかし、各種の問題があり、工業的に生産されているのは青色LEDと黄色蛍光体の組み合わせによる疑似白色LEDが大部分である。 On the other hand, a combination of a blue LED and a green phosphor, a red phosphor, a combination of an ultraviolet LED and three primary color phosphors of blue, green and red light, and further mixing a yellow phosphor with three colors, Trial manufacture of white LED which mixed four colors and improved color reproducibility is also performed. However, there are various problems and industrially produced products are mostly pseudo white LEDs that are a combination of blue LEDs and yellow phosphors.
色再現性を高めた白色LEDを照明用に用いることができれば、蛍光ランプでは不可避的に使用している水銀を使わずに済み、長寿命で省エネルギーになるので環境に優しい、と言われているが、現段階では、発光効率が蛍光ランプに及ばないために、省エネルギーに寄与するとは言えないし、現状の出力のLEDを配列すると、多数のLEDを使うことになるので、コスト面でも蛍光ランプに太刀打ちできないという問題がある。これらの問題を解決することが産業上の重要な課題となっている。 If white LEDs with improved color reproducibility can be used for lighting, it is said that fluorescent lamps inevitably use mercury that is unavoidably used, and it is long-life and energy-saving, so it is said to be environmentally friendly. However, at this stage, it cannot be said that it contributes to energy saving because the luminous efficiency does not reach that of fluorescent lamps. If LEDs with the current output are arranged, a large number of LEDs are used. There is a problem that it cannot be beaten. Solving these problems is an important industrial issue.
発光効率の向上のためには、青色や紫外発光LEDの発光効率を高めることが最も重要であるが、この他に、この用途に適した十分に効率の高い蛍光体が得られていないこと、封止樹脂が紫外線により劣化し光源の寿命が短くなること、LEDチップ一個当たりの光量が小さいこと、等も重要な課題である。 In order to improve the luminous efficiency, it is most important to increase the luminous efficiency of blue and ultraviolet LEDs, but besides this, a sufficiently efficient phosphor suitable for this application has not been obtained, It is also an important issue that the sealing resin is deteriorated by ultraviolet rays and the life of the light source is shortened, that the amount of light per LED chip is small.
蛍光体については、最近発見された窒化物蛍光体や酸窒化物蛍光体が青色光や紫外光で良く励起され、青色〜紫外光の発光素子と蛍光体とを組み合わせた光源用に適しているということが開示されている(特許文献2〜6、非特許文献1)。
また、希土類元素を付活したCaSiAlN3やCa2(Si、Al)5N8も同様の蛍光特性を有することが見いだされている(特許文献7、非特許文献2〜3参照)。
他にも、窒化アルミニウム、窒化珪素マグネシウム、窒化珪素カルシウム、窒化珪素バリウム、窒化ガリウム、窒化珪素亜鉛、等の窒化物や酸窒化物の蛍光体(以下、順に窒化物蛍光体、酸窒化物蛍光体ともいう)が検討されている。 In addition, nitride and oxynitride phosphors such as aluminum nitride, magnesium magnesium nitride, calcium calcium nitride, barium silicon nitride, gallium nitride, and silicon zinc nitride (hereinafter referred to as nitride phosphor and oxynitride fluorescence in order) (Also called the body) is being studied.
また、封止樹脂には、従来からエポキシ樹脂が多用されている(特許文献1参照)。しかし、エポキシ樹脂は長時間紫外線を浴びると樹脂が着色し、光透過率が下がって光源の寿命を低下させる欠点があるので、この欠点を解決するため、最近、封止樹脂としてシリコン樹脂が使われるようになった(特許文献8)。
しかし、シリコン樹脂も紫外線を多量に浴びると劣化が進むことが分かっており、特に最近は、高出力LEDの開発が進められていて、一つのチップ当たりの消費電力量や光のエネルギー密度が上昇傾向にあるため、熱や紫外線による樹脂の劣化が顕著となる傾向にある。 However, it has been found that silicon resin also deteriorates when exposed to a large amount of ultraviolet rays. Recently, development of high-power LEDs has been promoted, and the power consumption and light energy density per chip have increased. Because of this tendency, resin degradation due to heat and ultraviolet rays tends to be significant.
現在までに得られている白色LEDは、発光効率が蛍光ランプに及ばないので、蛍光ランプよりも発光効率に優れる白色LEDが強く要望されている。サイアロン蛍光体等の酸窒化物蛍光体や窒化物蛍光体を用いた白色LEDは、白熱電灯よりは高効率であるが、一般照明用まで含めた用途拡大のためには、発光素子を大型化して高出力化し、高い発光効率と照明としての特性向上を図らなければならない。 Since white LEDs obtained up to now have a luminous efficiency that does not reach that of fluorescent lamps, there is a strong demand for white LEDs that have higher luminous efficiency than fluorescent lamps. White LEDs using oxynitride phosphors and nitride phosphors such as sialon phosphors are more efficient than incandescent lamps. Therefore, high output, high luminous efficiency and improvement of lighting characteristics must be achieved.
一方、蛍光体の励起スペクトルは、酸窒化物蛍光体や窒化物蛍光体の場合、最も短波長側で250nm付近まで裾が広がっており、励起光を最大限吸収するためには、250nm付近まで透光性の高い樹脂を用いることが望ましいが、多くの樹脂は、短波長側での光の透過率は低い。 On the other hand, in the case of an oxynitride phosphor or a nitride phosphor, the excitation spectrum of the phosphor has a skirt extending to about 250 nm on the shortest wavelength side, and in order to absorb the excitation light to the maximum, to about 250 nm. Although it is desirable to use a highly light-transmitting resin, many resins have low light transmittance on the short wavelength side.
本発明者は、前記従来技術の状況に鑑みて、発光効率に優れる長寿命の光源、特に白色光源を提供することを目的に検討した結果、酸窒化物蛍光体や窒化物蛍光体とフッ素含有樹脂とを組み合わせて用いることにより、前記目的が達成できるという知見を得て、本発明に至ったものである。 In view of the state of the prior art, the present inventors have studied for the purpose of providing a long-life light source excellent in luminous efficiency, in particular, a white light source. As a result, the oxynitride phosphor and nitride phosphor and fluorine-containing The knowledge that the object can be achieved by using a resin in combination is obtained, and the present invention has been achieved.
上記した通りに、青色や紫色発光素子、紫外発光素子を使った白色光源においては、使用されている樹脂は発光素子が発する青色〜紫外光に晒されるので、樹脂が劣化し十分な耐久性を持った光源が得られないという問題があった。特に、最近は一個当たりの電流注入量を増してより多くの光を取りだす大電力発光素子の検討が進められており、単位面積当たり、より強い光に晒されることになる。また、素子1個当たりの発熱量が増すので、素子温度が上がり、熱と光の両方による劣化が進むことになる。 As described above, in a white light source using a blue, purple light emitting element, or ultraviolet light emitting element, the resin used is exposed to the blue to ultraviolet light emitted by the light emitting element, so that the resin deteriorates and has sufficient durability. There was a problem that the light source had not been obtained. In particular, studies on high-power light-emitting elements that take out more light by increasing the amount of current injected per piece have been underway recently, and the unit area is exposed to stronger light. Further, since the amount of heat generated per element increases, the element temperature rises, and deterioration due to both heat and light progresses.
また、大出力化に伴う電力消費量の増大によって、一層の発光効率の向上が求められており、発光素子の構造や構成材料にも対策が求められている。例えば、光が2つの媒体の界面を透過する時、その媒体の屈折率差が大きい程反射率が大きくなるので、光透過率が小さくなる。そこで、発光素子の光の経路を構成する材料の屈折率の設計は、発光素子からの光の取り出し効率に影響を与え、従って発光効率に影響を与える。 Further, due to the increase in power consumption accompanying the increase in output, further improvement in light emission efficiency is required, and countermeasures are also required for the structure and constituent materials of the light emitting element. For example, when light passes through the interface between two media, the greater the difference in refractive index between the media, the greater the reflectivity, and thus the lower the light transmittance. Therefore, the design of the refractive index of the material constituting the light path of the light emitting element affects the light extraction efficiency from the light emitting element, and thus the light emission efficiency.
更に、発光素子によっては、青色や紫外光で励起されて可視光を発光する蛍光体を含んでおり、そのため、使用する樹脂が透過すべき光は、可視光のみならず、より短波長の光を透過しなければならない。短波長側の光透過率は、可視光の透過率が高い樹脂であっても、必ずしも高いとは限らず、その検討も必要である。 Furthermore, some light-emitting elements include phosphors that emit visible light when excited by blue or ultraviolet light. Therefore, the light that should be transmitted by the resin used is not only visible light but also light with a shorter wavelength. Must be transparent. Even if the light transmittance on the short wavelength side is a resin having a high visible light transmittance, it is not always high, and it is necessary to study the light transmittance.
加えて、樹脂は一般に蛍光体と混合して封止樹脂として使う場合が多いが、封止樹脂は光が透過しなければならず、光を散乱する気泡等の不純物を極力排除しなければならない。特に気泡の混入は最小限にする必要がある。これには、蛍光体と樹脂界面のなじみの改善が必要であり、蛍光体の樹脂中の分散状態が適当な状態に保たれている必要もある。 In addition, the resin is often mixed with a phosphor and used as a sealing resin, but the sealing resin must transmit light, and impurities such as bubbles that scatter light must be eliminated as much as possible. . In particular, air bubbles must be minimized. For this purpose, it is necessary to improve the familiarity between the phosphor and the resin interface, and it is also necessary that the dispersion state of the phosphor in the resin is maintained in an appropriate state.
本発明の目的は、上記従来技術の有する問題を解決し、発光効率に優れる発光素子、例えば、白色LED、特に青色LEDまたは紫外LEDを光源とする白色LEDを提供するとともに、それに用いて好適な樹脂組成物、更に具体的実施態様である封止樹脂やシートを産業規模で安定して提供することである。 The object of the present invention is to solve the above-mentioned problems of the prior art and to provide a light emitting device excellent in luminous efficiency, for example, a white LED, particularly a white LED using a blue LED or an ultraviolet LED as a light source, and is suitable for use therein. It is to provide a resin composition and, more specifically, a sealing resin or sheet as a specific embodiment stably on an industrial scale.
本発明者は、窒化物蛍光体や酸窒化物蛍光体を用いた樹脂封止白色光源について各種の実験的検討を行い、蛍光体の発光特性、樹脂の組成、光透過性、耐紫外線劣化性、蛍光体と樹脂の分散状態等の各種の要因を適切に組み合わせることによって白色光源の発光効率や寿命等の特性が大きく左右されるとの知見を得て、本発明に至ったものである。 The present inventor has conducted various experimental studies on resin-encapsulated white light sources using nitride phosphors and oxynitride phosphors. The phosphor emission characteristics, resin composition, light transmittance, and UV resistance The inventors have obtained the knowledge that characteristics such as the luminous efficiency and lifetime of a white light source are greatly influenced by appropriately combining various factors such as the dispersion state of the phosphor and the resin.
即ち、本発明は、窒化物蛍光体及び酸窒化物蛍光体とからなる群から選ばれる1種以上と、フッ素を含む樹脂とを含有することを特徴とする組成物である。好ましくは、フッ素を含む樹脂がETFE、PTFE、FEP、PFA、PVDF、PVF、及びPCTFEからなる群から選ばれる1種以上の樹脂を含むアロイであることが選択される。 That is, the present invention is a composition comprising at least one selected from the group consisting of a nitride phosphor and an oxynitride phosphor and a resin containing fluorine. Preferably, it is selected that the resin containing fluorine is an alloy containing at least one resin selected from the group consisting of ETFE, PTFE, FEP, PFA, PVDF, PVF, and PCTFE.
また、本発明は、上記組成物からなることを特徴とする封止材であり、蛍光体シートである。また、その蛍光体シートが構成部分の一部に用いられていることを特徴とする蛍光体複合シートである。 Moreover, this invention is a sealing material characterized by consisting of the said composition, and is a fluorescent substance sheet. In addition, the phosphor composite sheet is characterized in that the phosphor sheet is used as a part of the constituent parts.
更に、本発明は、上記組成物、封止剤、蛍光体シート、または蛍光体複合シートと、青色〜紫外光の発光素子とを含有することを特徴とする発光素子である。 Furthermore, the present invention is a light emitting device comprising the above composition, a sealant, a phosphor sheet, or a phosphor composite sheet, and a blue to ultraviolet light emitting device.
本発明の組成物は、酸窒化物蛍光体や窒化物蛍光体が有している発光強度の温度変化が小さく、寿命が長いという特徴と共に、当該蛍光体の励起光の透過率の高いフッ素含有樹脂とを含んでいるので、発光効率に優れ、例えば白色LED、特に青色LEDや紫外LEDを光源とする白色LEDを提供するに好適である。 The composition of the present invention has a feature that the oxynitride phosphor and the nitride phosphor have a small temperature change in emission intensity and a long life, and a fluorine-containing high transmittance of excitation light of the phosphor. Since it contains a resin, it is excellent in luminous efficiency, and is suitable for providing, for example, a white LED, particularly a white LED using a blue LED or an ultraviolet LED as a light source.
本発明の封止材、蛍光体シート、蛍光体複合シート、並びにこれらと青色発光素子又は紫外発光素子とを含有する発光素子は、前記組成物の特徴を反映して、発光特性に優れ、長寿命である。 Reflecting the characteristics of the composition, the sealing material, the phosphor sheet, the phosphor composite sheet of the present invention, and the light emitting element containing these and the blue light emitting element or the ultraviolet light emitting element are excellent in emission characteristics and long. It is a lifetime.
本発明に用いる蛍光体は、窒化物蛍光体または酸窒化物蛍光体が選択される。 As the phosphor used in the present invention, a nitride phosphor or an oxynitride phosphor is selected.
青色、紫色、紫外光で励起されて、可視光を発光する蛍光体の中でも、窒化物や酸窒化物蛍光体は、他の蛍光体に比べて、発光効率、寿命や温度特性において、優れた特性を持っている。例えば、αサイアロンやβサイアロンを母結晶として希土類元素であるEuやYbをドープしたもの、CaSiAlN3、Ca2(Si、Al)5N8、等、ここ数年で数多くの蛍光体が提案されている。これらの窒化物、酸窒化物蛍光体の特長は、酸化物蛍光体や硫化物蛍光体に比べて、発光強度の温度変化が小さく、結晶の安定性が高く寿命が長い点にある。 Among phosphors that emit visible light when excited by blue, purple, or ultraviolet light, nitride and oxynitride phosphors are superior in luminous efficiency, lifetime, and temperature characteristics compared to other phosphors. Has characteristics. For example, many phosphors have been proposed in recent years, such as α sialon and β sialon as mother crystals, doped with rare earth elements Eu and Yb, CaSiAlN 3 , Ca 2 (Si, Al) 5 N 8 . ing. The characteristics of these nitride and oxynitride phosphors are that the temperature change of the emission intensity is small, the stability of the crystal is long, and the life is long compared to oxide phosphors and sulfide phosphors.
窒化物蛍光体、酸窒化物蛍光体の内、αサイアロン蛍光体について詳述すると、一般式:(M1)X(M2)Y (Si)12−(m+n)(Al)m+n(O)n(N)16−n(但し、M1はLi、Mg、Ca、Y及びランタニド金属(LaとCeを除く)からなる群から選ばれる1種以上の元素であり、M2はCe、Pr、Eu、Tb、Yb、Erから選ばれる1種以上の元素で、0.3≦X+Y≦1.5、0<Y≦0.7、0.6≦m≦3.0、0≦n≦1.5、X+Y=m/2)で示されるαサイアロン型化合物(以下、単にα型サイアロンという)からなる蛍光体である。好ましくは、当該α型サイアロン粉末に含まれる酸素量が、前記一般式に基づいて計算される値より0.4質量%以下多いことが好ましく、M1がCaであり、かつ、M2がEuである蛍光体が好ましい。 Of the nitride phosphor and oxynitride phosphor, the α sialon phosphor will be described in detail. General formula: (M1) X (M2) Y (Si) 12− (m + n) (Al) m + n (O) n ( N) 16-n (where M1 is one or more elements selected from the group consisting of Li, Mg, Ca, Y and lanthanide metals (excluding La and Ce), and M2 is Ce, Pr, Eu, Tb. One or more elements selected from Yb, Er, 0.3 ≦ X + Y ≦ 1.5, 0 <Y ≦ 0.7, 0.6 ≦ m ≦ 3.0, 0 ≦ n ≦ 1.5, X + Y = m / 2), which is a phosphor composed of an α sialon type compound (hereinafter simply referred to as α type sialon). Preferably, the amount of oxygen contained in the α-sialon powder is preferably 0.4 mass% or less than the value calculated based on the general formula, M1 is Ca, and M2 is Eu. A phosphor is preferred.
αサイアロン蛍光体は、原料として、カルシウム原料の内、少なくとも一部に酸素を含まないカルシウム化合物を用いるとよい。また、蛍光体を製造した後、更に、前記蛍光体を酸処理すると発光強度が上がることがあり好ましい。 The α sialon phosphor may be a calcium compound that does not contain oxygen in at least a portion of the calcium material. In addition, after the phosphor is manufactured, it is preferable that the phosphor is further acid-treated, since the emission intensity may increase.
前記のαサイアロン蛍光体は、その蛍光特性について本発明者らが日立製作所製蛍光分光光度計を用いて測定したところ、励起スペクトルは300nmと400nm付近にピークを持ち、波長400nmで測定した発光スペクトルのピーク波長は580nmである。 When the present inventors measured the fluorescence characteristics of the α-sialon phosphor using a fluorescence spectrophotometer manufactured by Hitachi, the excitation spectrum had peaks at 300 nm and 400 nm, and an emission spectrum measured at a wavelength of 400 nm. The peak wavelength of 580 nm is 580 nm.
また、窒化物蛍光体、酸窒化物蛍光体について、その表面に、屈折率が蛍光体と樹脂の間である材料のコーティング膜をつけると、窒化物蛍光体、酸窒化物蛍光体のいずれもの発光効率が増し、好適である。この場合、蛍光体粒子の少なくとも一部表面に、厚さ(10〜180)/n(単位:ナノメートル)(ここで、nは透明膜の屈折率で1.2〜2.5)、好ましくは、透明膜の屈折率が1.5以上2.0以下である表面コート付き蛍光体を用いると良い。 For nitride phosphors and oxynitride phosphors, if a coating film of a material having a refractive index between the phosphor and the resin is attached to the surface, both the nitride phosphor and the oxynitride phosphor The luminous efficiency is increased, which is preferable. In this case, the thickness (10 to 180) / n (unit: nanometer) (where n is the refractive index of the transparent film, 1.2 to 2.5), preferably at least partially on the surface of the phosphor particles. Is preferably a phosphor with a surface coat whose transparent film has a refractive index of 1.5 to 2.0.
これらの窒化物蛍光体、酸窒化物蛍光体は、耐紫外線に強く寿命の長い樹脂と共に使用することによって、初めてその特性が十分発揮できる。 These nitride phosphors and oxynitride phosphors can fully exhibit their characteristics only when used together with a resin that is resistant to ultraviolet rays and has a long lifetime.
そこで、本発明に於いて、用いる樹脂はフッ素を含む樹脂であり、ETFE、PTFE、FEP、PFA、PVDF、PVF、及びPCTFE、等が例示される。 Therefore, in the present invention, the resin used is a resin containing fluorine, and examples thereof include ETFE, PTFE, FEP, PFA, PVDF, PVF, and PCTFE.
前記した通りに、窒化物蛍光体や酸窒化物蛍光体の発光効率を高くするためには、本発明に用いる樹脂の可視光透過率が高く、かつ用いる蛍光体の励起光の透過率も高いことが好ましい。このような特性を有する樹脂として唯一フッ素を含む樹脂が選択される。しかし、フッ素樹脂で代表されるフッ素を含む樹脂は、表面エネルギーが小さいので、一般的には他材料と混合しにくいが、本発明者の検討に拠れば、窒化物蛍光体や酸窒化物蛍光体とは、加熱溶融した樹脂や溶剤に溶解した樹脂と、撹拌翼付き撹拌槽や3本ロール等の混練機によって容易に混合することが出来ることが判った。更に、蛍光体粉体のシランカップリング剤処理やシリカやアルミナによる表面コーティングにより、混合時間や真空脱泡時間を短くできるなどの効果が得られる。 As described above, in order to increase the luminous efficiency of the nitride phosphor or the oxynitride phosphor, the visible light transmittance of the resin used in the present invention is high, and the transmittance of the excitation light of the phosphor used is also high. It is preferable. A resin containing fluorine is selected as the resin having such characteristics. However, a fluorine-containing resin typified by a fluororesin has a small surface energy and is generally difficult to mix with other materials. However, according to the study of the present inventor, a nitride phosphor or an oxynitride fluorescence It was found that the body can be easily mixed with a resin melted in a heat-melted resin or a solvent by a kneader such as a stirring tank with a stirring blade or a three-roller. Furthermore, effects such as shortening of the mixing time and vacuum defoaming time can be obtained by treating the phosphor powder with a silane coupling agent and surface coating with silica or alumina.
本発明の組成物は、一般的に他材料と混合しにくいと考えられたフッ素含有樹脂を、窒化物蛍光体、酸窒化物蛍光体という特定組成の蛍光体と混合することが達成できたことから、青色、紫色、紫外光の発光素子と組み合わせた光源において、その長寿命、高効率という特性を発揮することが出来る特徴を有している。特に、紫色、紫外光の発光素子と組み合わせた光源に於いては、従来のエポキシ樹脂やシリコン樹脂を用いた場合とその差は顕著である。 The composition of the present invention was able to achieve mixing of a fluorine-containing resin, which is generally considered difficult to mix with other materials, with a phosphor having a specific composition such as a nitride phosphor or an oxynitride phosphor. Therefore, the light source combined with blue, violet and ultraviolet light emitting elements has a characteristic that it can exhibit the characteristics of long life and high efficiency. In particular, in a light source combined with a light emitting element of purple or ultraviolet light, the difference is significant from the case where a conventional epoxy resin or silicon resin is used.
窒化物蛍光体、酸窒化物蛍光体の励起スペクトルは、例えば、αサイアロン蛍光体の場合、400nm付近と300nm付近の2つの山を持ち、短波長側は約250nmで吸収が小さくなり、他の蛍光体も同様に250nm付近で吸収が小さくなるので、前記フッ素含有樹脂について、樹脂の厚さ50μmとした時、250nmの光の透過率が60%以上であることが好ましい。 For example, in the case of an α sialon phosphor, the excitation spectrum of a nitride phosphor or an oxynitride phosphor has two peaks near 400 nm and near 300 nm, and the short wavelength side has a small absorption at about 250 nm. Similarly, the phosphor also has a small absorption near 250 nm. Therefore, when the thickness of the fluorine-containing resin is 50 μm, the light transmittance at 250 nm is preferably 60% or more.
樹脂の光透過率は、結晶性、結晶性に影響を与えるポリマー構造の対称性や立体構造の規則性、核剤の使用、相溶化剤の添加、密度分布、屈折率、屈折率分布、等に依存する。フッ素含有樹脂のうちフッ素樹脂、特にPTFEは結晶性ポリマーであり、透明性が低いが、モノマーの形態、共重合、加工方法等を工夫することにより、透明性を高めることが出来る。例えば、FEP、ETFEやPFAは、共重合することによって代表的フッ素樹脂ホモポリマーであるPTFEの加工性を改善し、同時に透光性も向上している。更に、パーフルオロジオキソールポリマー(デュポン社製、商品名:テフロンRF)やパーフルオロブテニルビニルエーテルポリマー(旭硝子社製、商品名:サイトップ)は、主鎖に環状構造を持つため非晶質になりやすく、透明性が高い。 The light transmittance of the resin is the crystallinity, symmetry of the polymer structure that affects the crystallinity, regularity of the three-dimensional structure, use of a nucleating agent, addition of a compatibilizing agent, density distribution, refractive index, refractive index distribution, etc. Depends on. Of the fluorine-containing resins, fluororesin, especially PTFE, is a crystalline polymer and has low transparency. However, the transparency can be improved by devising the form of the monomer, copolymerization, processing method, and the like. For example, FEP, ETFE, and PFA improve the processability of PTFE, which is a typical fluororesin homopolymer, by copolymerization, and at the same time, improve the translucency. In addition, perfluorodioxole polymer (DuPont, trade name: Teflon RF) and perfluorobutenyl vinyl ether polymer (Asahi Glass Co., trade name: Cytop) have an amorphous structure because they have a cyclic structure in the main chain. And is highly transparent.
FEP、ETFE、PFA、テフロンFR(登録商標)、およびサイトップ(登録商標)を、各々厚さ50μmのフィルムに加工し、紫外可視光分光光度計で光の透過スペクトルを測定したところ、250nmで60〜90%程度の透過率を示した。フィルムの透明性は、フィルム作成時に、冷却速度を大きくし、ロール面の表面粗さを小さくすることにより、向上することが出来る。 FEP, ETFE, PFA, Teflon FR (registered trademark), and Cytop (registered trademark) were each processed into a film with a thickness of 50 μm, and the light transmission spectrum was measured with an ultraviolet-visible light spectrophotometer. A transmittance of about 60 to 90% was exhibited. The transparency of the film can be improved by increasing the cooling rate and reducing the surface roughness of the roll surface during film production.
また、好ましくは、フッ素を含む樹脂がETFE、PTFE、FEP、PFA、PVDF、PVF、及びPCTFEからなる群から選ばれる1種以上の樹脂を含むアロイであることが選択される。アロイ化することにより、非晶質になりやすくなりなり透明性を向上することが出来る。特に、PVDFとPMMAのアロイは、比較的安価な材料から構成され、透明性、加工性に優れるので、本発明の目的には好適である。PVDF80質量部とPMMA20質量部のアロイは、特に透明性に優れ、そのフィルム(電気化学工業社製、商品名:DXフィルム)の、前記と同様にして測定した波長250nmでの光透過率は80〜90%以上を示すので、本発明の目的には特に好適である。 Preferably, the fluorine-containing resin is an alloy containing at least one resin selected from the group consisting of ETFE, PTFE, FEP, PFA, PVDF, PVF, and PCTFE. By alloying, it becomes easy to become amorphous and the transparency can be improved. In particular, an alloy of PVDF and PMMA is suitable for the purpose of the present invention because it is made of a relatively inexpensive material and is excellent in transparency and workability. The alloy of 80 parts by mass of PVDF and 20 parts by mass of PMMA is particularly excellent in transparency, and the light transmittance at a wavelength of 250 nm of the film (trade name: DX film, manufactured by Denki Kagaku Kogyo Co., Ltd.) is 80 as measured above. Since it shows ˜90% or more, it is particularly suitable for the purpose of the present invention.
これらのフッ素含有樹脂は、耐候性が樹脂の中でも最も高く、屋外で太陽光に晒される環境下で劣化が最も少ない樹脂として知られている。従って、青色や紫色の光源や紫外光源を持つ白色光源に用いる樹脂として、最も耐久性に優れる樹脂であり、白色光源の寿命を従来に比べて大幅に延ばすことができる。 These fluorine-containing resins have the highest weather resistance among the resins, and are known as resins having the least deterioration under an environment exposed to sunlight outdoors. Therefore, it is the most excellent resin as a resin used for a white light source having a blue or violet light source or an ultraviolet light source, and the life of the white light source can be greatly extended compared to the conventional one.
更に、フッ素含有樹脂の大部分は、数ある樹脂の中で屈折率が1.4以下と最も小さい群に属し、気体の屈折率との差が小さいので、光を気体中に取りだす効率が高いという特長がある。また、アッベ数が大きく、色収差が小さいという利点もある。 Furthermore, most of the fluorine-containing resins belong to the smallest group with a refractive index of 1.4 or less among many resins, and since the difference from the refractive index of gas is small, the efficiency of taking out light into the gas is high. There is a feature. In addition, there is an advantage that the Abbe number is large and the chromatic aberration is small.
本発明の組成物は、次に例示する用途に於いて、封止材として好適に用いられる。即ち、表面実装LEDの場合、溶剤で希釈して本発明の組成物を主成分としたスクリーン印刷用インクを作成し、スクリーン印刷をして、乾燥、真空加熱することによりLED素子を本発明の組成物で埋め込むことができる。また、砲弾型LEDの場合は、リードフレームにLED素子を固定しワイヤボンドした後、加熱溶融した本発明の組成物をその上にポッティングし、真空中で加熱硬化して、LED素子を組成物で覆うことができる。場合によっては、他の樹脂層でLED素子を埋め、その上に、本発明の組成物の層を形成してもよい。この時、LED素子を埋める樹脂には屈折率の高い樹脂を用いると、光の取り出し効率が上がり、好適である。 The composition of the present invention is suitably used as a sealing material in the following exemplified applications. That is, in the case of a surface-mounted LED, an ink for screen printing mainly composed of the composition of the present invention is prepared by diluting with a solvent, screen-printed, dried, and vacuum-heated to form the LED element of the present invention. It can be embedded with a composition. In the case of a bullet-type LED, an LED element is fixed to a lead frame and wire-bonded, and then the composition of the present invention heated and melted is potted thereon and heated and cured in a vacuum to form the LED element. Can be covered. In some cases, the LED element may be filled with another resin layer, and a layer of the composition of the present invention may be formed thereon. At this time, it is preferable to use a resin having a high refractive index as the resin for filling the LED element because the light extraction efficiency is increased.
また、本発明の組成物をシート状に加工して蛍光体シートとして使用することが好ましい。この場合の利点は、上記ポッティングやスクリーン印刷による方法の場合、樹脂が軟化もしくは溶融する工程を経るので、蛍光体が樹脂中で移動して分布が不均一になる可能性があり、それによって、光源の色調や色分布が変化する可能性があるという欠点がある。本発明のシートを用いるとき、組み立て工程に於いて蛍光体が位置を変えることがなく、更にシートに均一に蛍光体を分散させておけば、あとから蛍光体の分布が不均一になって発光色の偏りが生じたり、色調が変わったりすることが防止できる。 Moreover, it is preferable to process the composition of the present invention into a sheet and use it as a phosphor sheet. The advantage in this case is that, in the case of the above-mentioned method by potting or screen printing, since the resin undergoes a process of softening or melting, there is a possibility that the phosphor moves in the resin and the distribution becomes non-uniform. There is a drawback that the color tone and color distribution of the light source may change. When the sheet of the present invention is used, the phosphor does not change its position in the assembly process, and if the phosphor is evenly dispersed in the sheet, the phosphor will be unevenly distributed later to emit light. It is possible to prevent color deviation and color change.
前記の様な蛍光体粉が分散したシートは溶融Tダイ押し出し成形法や、あらかじめ準備したシートの表面に蛍光体と樹脂の混合物を塗布することによって製造できる。 The above-mentioned sheet in which the phosphor powder is dispersed can be produced by a melt T-die extrusion method or by applying a mixture of a phosphor and a resin to the surface of a previously prepared sheet.
更に、前記蛍光体シートを複数層としたり、前記蛍光体シート表面に別のシートで覆って複数層のシートとしたり、蛍光体複合シートすることもでき、用途に応じて使い分けることが好ましい。 Furthermore, the phosphor sheet may be formed into a plurality of layers, or the phosphor sheet surface may be covered with another sheet to form a plurality of layers, or a phosphor composite sheet.
本発明の発光素子は、青色発光素子又は紫外発光素子と、それによって例えば580nmに発光する特性を有する窒化物蛍光体や酸窒化物蛍光体と、更に前記窒化物蛍光体や酸窒化物蛍光体の励起光を透過しやすいフッ素含有樹脂とを含んでいるので、発光特性に優れ、しかも長寿命の発光素子である。 The light emitting device of the present invention includes a blue light emitting device or an ultraviolet light emitting device, a nitride phosphor or an oxynitride phosphor having a characteristic of emitting light at, for example, 580 nm, and the nitride phosphor or oxynitride phosphor. Since it contains a fluorine-containing resin that easily transmits the excitation light, it is a light-emitting element having excellent light emission characteristics and a long lifetime.
(実施例1)
αサイアロン蛍光体を以下のようにして合成した。原料粉末の配合組成として、窒化ケイ素粉末(電気化学工業(株)製、9FWグレード)を83.0質量部と、窒化アルミニウム粉末(トクヤマ(株)製、Fグレード)を10.5質量部と、酸化ユーロピウム粉末(信越化学工業(株)製、RUグレード)を1.5質量部と、硫化カルシウム粉末(和光純薬工業(株)製)を5.5質量部とした。
Example 1
The α sialon phosphor was synthesized as follows. As the composition of the raw material powder, 83.0 parts by mass of silicon nitride powder (manufactured by Denki Kagaku Kogyo Co., Ltd., 9 FW grade) and 10.5 parts by mass of aluminum nitride powder (F grade made by Tokuyama Co., Ltd.) Europium oxide powder (manufactured by Shin-Etsu Chemical Co., Ltd., RU grade) was 1.5 parts by mass, and calcium sulfide powder (manufactured by Wako Pure Chemical Industries, Ltd.) was 5.5 parts by mass.
次に、上記原料粉末を、エタノール溶媒中において、窒化ケイ素質ポットとボールによる湿式ボールミル混合を3時間行い、ろ過し、乾燥して混合粉末を得た。混合粉末の酸素量をLECO社製酸素分析計で測定したところ、1.2質量%であった。混合粉末100gを内径100mm、高さ60mmの窒化ホウ素製坩堝に充填し、カーボンヒーターの電気炉で大気圧の窒素雰囲気中、1750℃で12時間の加熱処理を行った。得られた生成物を瑪瑙乳鉢で解砕し、目開き45μmの篩を通した。これらの操作によりα型サイアロンの蛍光体である合成粉末を得た。 Next, the raw material powder was wet ball mill mixed with a silicon nitride pot and balls in an ethanol solvent for 3 hours, filtered and dried to obtain a mixed powder. It was 1.2 mass% when the oxygen content of mixed powder was measured with the oxygen analyzer by LECO. 100 g of the mixed powder was filled in a boron nitride crucible having an inner diameter of 100 mm and a height of 60 mm, and was subjected to heat treatment at 1750 ° C. for 12 hours in a nitrogen atmosphere at atmospheric pressure using an electric furnace of a carbon heater. The obtained product was crushed in an agate mortar and passed through a sieve having an opening of 45 μm. By these operations, a synthetic powder which is a phosphor of α-sialon was obtained.
得られた粉末の金属成分分析値から計算して得た、α型サイアロン粉末の組成は、Ca0.48Eu0.05Si10.4Al1.6O0.5N15.5であり、組成X+Y=0.53、Y/(X+Y)=0.09であった。組成から計算される酸素量は、1.36質量%であった。得られたサイアロン蛍光体の酸素量をLECO社製酸素分析計で測定したところ、1.40質量%であった。また、蛍光特性について日立製作所製蛍光分光光度計を用いて測定したところ、励起波長400nmで測定した発光スペクトルのピーク波長は580nmであった。 The composition of the α-type sialon powder obtained by calculation from the metal component analysis value of the obtained powder is Ca 0.48 Eu 0.05 Si 10.4 Al 1.6 O 0.5 N 15.5. X + Y = 0.53, Y / (X + Y) = 0.09. The amount of oxygen calculated from the composition was 1.36% by mass. It was 1.40 mass% when the oxygen amount of the obtained sialon fluorescent substance was measured with the oxygen analyzer made from LECO. Moreover, when the fluorescence characteristic was measured using a fluorescence spectrophotometer manufactured by Hitachi, the peak wavelength of the emission spectrum measured at an excitation wavelength of 400 nm was 580 nm.
得られたαサイアロン蛍光体30gを、水100gにエポキシ系シランカップリング剤(信越シリコーン(株)製、KBE402)0.3gと共に加え、撹拌しながら一晩放置し、ろ過乾燥して、シランカップリング剤で処理されたαサイアロン蛍光体を得た。得られたシランカップリング剤処理αサイアロン蛍光体粉体1質量部と、旭硝子(株)社製、サイトップ(CTX−809A、パーフルオロブテニルビニルエーテルポリマーのフッ素系溶媒溶液)100質量部とをビーカーにとってよく撹拌混合し、蛍光体と樹脂の組成物を得た。 30 g of the obtained α sialon phosphor was added to 100 g of water together with 0.3 g of an epoxy silane coupling agent (KBE402, manufactured by Shin-Etsu Silicone Co., Ltd.), left overnight with stirring, filtered and dried, An α sialon phosphor treated with a ring agent was obtained. 1 part by mass of the obtained silane coupling agent-treated α-sialon phosphor powder and 100 parts by mass of CYTOP (CTX-809A, fluorine-based solvent solution of perfluorobutenyl vinyl ether polymer) manufactured by Asahi Glass Co., Ltd. The beaker was well stirred and mixed to obtain a phosphor and resin composition.
前記組成物を、表面実装パッケージに実装した波長450nmを発光ピーク波長とするLEDの上に滴下し、真空乾燥機中で180℃1時間加熱した。これにより、450nmの青色発光するLEDと、青色光を吸収して黄色光を発光する酸窒化物蛍光体と、フッ素系樹脂を含む、白色発光素子が形成された。この素子を85℃の恒温槽に入れ、20mAの電流を流し続け、初期と1年後の全光量を測定した。初期を100とすると、1年後は95であった。 The composition was dropped on an LED having an emission peak wavelength of 450 nm mounted on a surface mount package, and heated at 180 ° C. for 1 hour in a vacuum dryer. As a result, a white light-emitting element including an LED emitting blue light of 450 nm, an oxynitride phosphor that absorbs blue light and emits yellow light, and a fluororesin was formed. This element was put into a thermostat of 85 ° C., and a current of 20 mA was continuously supplied, and the total amount of light at the beginning and after one year was measured. If the initial value is 100, it was 95 after one year.
(比較例1)実施例1で合成したシランカップリング剤処理αサイアロン蛍光体0.5質量部とエポキシ樹脂(サンユレック製NLD−SL−2101)5.0質量部とを混練し、発光波長450nmの青色LEDの上にポッティングし、真空脱気し、110℃で加熱硬化を行い、表面実装LEDを作製した。この表面実装LEDを85℃の恒温槽に入れ、20mAの電流を流し続け、初期と1年後の全光量を測定した。実施例1の初期値を100とすると、比較例1の初期値は96、1年後は62であった。 (Comparative Example 1) 0.5 parts by mass of the silane coupling agent-treated α-sialon phosphor synthesized in Example 1 and 5.0 parts by mass of an epoxy resin (NLD-SL-2101 manufactured by Sanyu Rec) were kneaded, and the emission wavelength was 450 nm. A blue LED was potted, vacuum degassed, and heat-cured at 110 ° C. to produce a surface-mounted LED. This surface-mounted LED was placed in a constant temperature bath at 85 ° C., and a current of 20 mA was kept flowing, and the total amount of light at the initial stage and after one year was measured. Assuming that the initial value of Example 1 is 100, the initial value of Comparative Example 1 was 96 and 62 after one year.
(実施例2)実施例1の組成物を底の平らな石英容器に入れ、加熱して溶媒を揮発させ、厚さ100μmの蛍光体が分散したシートを作成した。このシートを、耐久性試験のためアイスーパーUVテスターに入れ、300時間放置した。シートの蛍光特性評価のため、日立製作所製蛍光分光光度計を用いて300nmの励起光を当てて発する蛍光のピーク強度を比較したところ、耐久性試験初期を100とすると、耐久性試験後は92であった。 (Example 2) The composition of Example 1 was placed in a flat quartz container at the bottom and heated to volatilize the solvent to prepare a sheet in which a phosphor having a thickness of 100 µm was dispersed. This sheet was placed in an eye super UV tester for durability test and allowed to stand for 300 hours. In order to evaluate the fluorescence characteristics of the sheet, the peak intensity of fluorescence emitted by applying excitation light of 300 nm using a fluorescence spectrophotometer manufactured by Hitachi, Ltd. was compared. Met.
(比較例2)実施例1で合成したαサイアロン蛍光体粉体20質量部、水添ビスフェノールA型エポキシ樹脂(XY8000、ジャパンエポキシレジン社製)100質量部、酸無水物(MeHHP)80質量部、硬化促進剤1質量部を自公転式撹拌機で混合し、脱泡した後、ガラス板の間に挟んで硬化させ、厚さ100μmのシートを作成した。このシートについて、実施例2と同様に耐久性試験と蛍光測定を行った。耐久性試験の初期値は51であり、耐久性試験後は22であった(実施例2の初期値を100として)。 (Comparative Example 2) 20 parts by mass of α-sialon phosphor powder synthesized in Example 1, 100 parts by mass of hydrogenated bisphenol A type epoxy resin (XY8000, manufactured by Japan Epoxy Resin Co., Ltd.), 80 parts by mass of acid anhydride (MeHHP) Then, 1 part by mass of a curing accelerator was mixed with a self-revolving stirrer, defoamed, and then sandwiched between glass plates to be cured to prepare a sheet having a thickness of 100 μm. This sheet was subjected to a durability test and fluorescence measurement in the same manner as in Example 2. The initial value of the durability test was 51, and 22 after the durability test (assuming the initial value of Example 2 was 100).
(実施例3)
原料粉末の配合組成として、窒化ケイ素粉(電気化学工業(株)製、9FWグレード)を33.5質量部と、窒化アルミニウム粉(トクヤマ(株)製、Fグレード)を29.5質量部と、酸化ユーロピウム粉(信越化学工業(株)製、RUグレード)を2.5質量部と、窒化カルシウム(和光純薬工業(株)製)を35.0質量部とした。
(Example 3)
As composition of the raw material powder, 33.5 parts by mass of silicon nitride powder (manufactured by Denki Kagaku Kogyo Co., Ltd., 9 FW grade) and 29.5 parts by mass of aluminum nitride powder (F grade made by Tokuyama Co., Ltd.) Europium oxide powder (manufactured by Shin-Etsu Chemical Co., Ltd., RU grade) was 2.5 parts by mass, and calcium nitride (manufactured by Wako Pure Chemical Industries, Ltd.) was 35.0 parts by mass.
次に、上記原料粉末を、キシレン溶媒中において、窒化ケイ素質ポットとボールによる湿式ボールミル混合を3時間行い、ろ過し、乾燥して混合粉末を得た。混合粉末100gを内径100mm、高さ60mmの窒化ホウ素製坩堝に充填し、カーボンヒーターの電気炉で圧力0.9MPaの窒素雰囲気中、1800℃12時間の加熱処理を行った。得られた生成物を瑪瑙乳鉢で解砕し、目開き45μmの篩を通し、CaAlSiN3:Eu蛍光体粉末を得た。 Next, the raw material powder was subjected to wet ball mill mixing with a silicon nitride pot and balls in a xylene solvent for 3 hours, filtered and dried to obtain a mixed powder. 100 g of the mixed powder was filled in a boron nitride crucible having an inner diameter of 100 mm and a height of 60 mm, and heat treatment was performed at 1800 ° C. for 12 hours in a nitrogen atmosphere at a pressure of 0.9 MPa in a carbon heater electric furnace. The obtained product was crushed in an agate mortar and passed through a sieve having an opening of 45 μm to obtain a CaAlSiN 3 : Eu phosphor powder.
前記蛍光体粉末について、励起波長400nmで測定した発光スペクトルのピーク波長は650nmであり、ピーク波長における発光強度を100として、以下相対的に比較する。 With respect to the phosphor powder, the peak wavelength of the emission spectrum measured at an excitation wavelength of 400 nm is 650 nm.
得られたCaAlSiN3:Eu蛍光体粉末5.0gを、マグネシウムエトキシド(化学式:Mg(OC2H5)2)0.5gを溶解したイソプロパノール50mlに良く分散させた。分散液を良く撹拌しながら、15%アンモニア水溶液50mlを滴下した。得られたスラリーをろ過洗浄乾燥し、1100℃にて窒素雰囲気で1時間焼成してマグネシア被膜付き蛍光体を得た。 The obtained CaAlSiN 3 : Eu phosphor powder (5.0 g) was well dispersed in 50 ml of isopropanol in which 0.5 g of magnesium ethoxide (chemical formula: Mg (OC 2 H 5 ) 2 ) was dissolved. While stirring the dispersion well, 50 ml of a 15% aqueous ammonia solution was added dropwise. The obtained slurry was filtered, washed and dried, and fired at 1100 ° C. in a nitrogen atmosphere for 1 hour to obtain a phosphor with a magnesia film.
得られた蛍光体を透過型電子顕微鏡で観察した結果、マグネシア膜の厚さはおよそ60nmであった。蛍光スペクトルを測定した結果、発光スペクトル強度は115であった。 As a result of observing the obtained phosphor with a transmission electron microscope, the thickness of the magnesia film was approximately 60 nm. As a result of measuring the fluorescence spectrum, the emission spectrum intensity was 115.
この蛍光体粉体10質量部と、市販のPVDF(アルケマ(株)製、商品名:カイナーPVDF、1000HD)72質量部と、市販のPMMA(三菱レーヨン(株)製、商品名:アクリペット、MF001)8質量部と、を加熱、溶融、混合し、Tダイ付き押し出し成型機によって、厚さ200μmのシートを作成した。このシートについて、実施例2と同様にアイスーパーUVテスターを用いた耐久性試験を行った。励起波長400nmで測定した発光スペクトルのピーク波長における発光強度は、耐久性試験前を100とすると、耐久性試験後は95であった。 10 parts by mass of this phosphor powder, 72 parts by mass of commercially available PVDF (manufactured by Arkema Co., Ltd., trade name: Kyner PVDF, 1000HD), and commercially available PMMA (manufactured by Mitsubishi Rayon Co., Ltd., trade name: Acripet, MF001) 8 parts by mass were heated, melted, and mixed, and a sheet having a thickness of 200 μm was prepared by an extrusion molding machine with a T-die. This sheet was subjected to a durability test using an eye super UV tester in the same manner as in Example 2. The emission intensity at the peak wavelength of the emission spectrum measured at an excitation wavelength of 400 nm was 95 after the durability test, assuming that 100 before the durability test.
(実施例4)窒化ケイ素粉末(電気化学工業(株)製、9FWグレード)90.1質量部、窒化アルミニウム粉末(トクヤマ(株)製、Fグレード)9.0質量部、酸化ユーロピウム粉末(信越化学工業(株)製、RUグレード)0.9質量部を、エタノール溶媒中、窒化珪素製ポットとボールを用いて2時間混合し、ろ過、乾燥して混合粉末を得た。混合粉末100gを内径100mm、高さ60mmの窒化ホウ素製坩堝に充填し、カーボンヒーターの電気炉で0.9MPaの窒素雰囲気中、1900℃で12時間の加熱処理を行い、得られた生成物を瑪瑙乳鉢で解砕し、目開き45μmの篩を通した。これらの操作によりβ型サイアロンの蛍光体である合成粉末を得た。蛍光特性について日立製作所製蛍光分光光度計を用いて測定したところ、励起波長400nmで測定した発光スペクトルのピーク波長は540nmであった。 (Example 4) 90.1 parts by mass of silicon nitride powder (manufactured by Denki Kagaku Kogyo Co., Ltd., 9FW grade), 9.0 parts by mass of aluminum nitride powder (manufactured by Tokuyama Co., Ltd., F grade), europium oxide powder (Shin-Etsu) 0.9 part by mass of Chemical Industry Co., Ltd., RU grade) was mixed in an ethanol solvent for 2 hours using a silicon nitride pot and ball, filtered and dried to obtain a mixed powder. A boron nitride crucible with an inner diameter of 100 mm and a height of 60 mm is filled with 100 g of the mixed powder, and a heat treatment is performed at 1900 ° C. for 12 hours in a nitrogen atmosphere of 0.9 MPa in an electric furnace of a carbon heater. The mixture was crushed in an agate mortar and passed through a sieve having an opening of 45 μm. By these operations, a synthetic powder which is a phosphor of β-sialon was obtained. When the fluorescence characteristics were measured using a fluorescence spectrophotometer manufactured by Hitachi, the peak wavelength of the emission spectrum measured at an excitation wavelength of 400 nm was 540 nm.
得られた蛍光体10gを、水50gにエポキシ系シランカップリング剤(信越シリコーン(株)製、KBE402)0.1gと共に加え、撹拌しながら一晩放置し、ろ過乾燥し、シランカップリング剤で処理された酸窒化物蛍光体を得た。得られたシランカップリング剤処理βサイアロン蛍光体粉体1質量部と、旭硝子(株)製、サイトップ(CTX−809A、パーフルオロブテニルビニルエーテルポリマーのフッ素系溶媒溶液)100質量部とをビーカーにとってよく撹拌混合し、蛍光体と樹脂の組成物を得た。この組成物を底の平らな石英容器に入れ、加熱して溶媒を揮発させ、厚さ100μmの蛍光体が分散したシートを作成した。 10 g of the obtained phosphor was added to 50 g of water together with 0.1 g of an epoxy-based silane coupling agent (KBE402, manufactured by Shin-Etsu Silicone Co., Ltd.), left overnight with stirring, filtered and dried, and a silane coupling agent. A treated oxynitride phosphor was obtained. 1 part by mass of the obtained silane coupling agent-treated β sialon phosphor powder and 100 parts by mass of Cytop (CTX-809A, fluorine-based solvent solution of perfluorobutenyl vinyl ether polymer) manufactured by Asahi Glass Co., Ltd. The mixture of the phosphor and the resin was obtained by stirring and mixing well. This composition was placed in a flat quartz container at the bottom and heated to volatilize the solvent to prepare a sheet in which a phosphor having a thickness of 100 μm was dispersed.
このシートを、耐久性試験のためアイスーパーUVテスターに入れ、300時間放置した。シートの蛍光特性を日立製作所製蛍光分光光度計を用いて400nmの励起光を当てて発する蛍光のピーク強度を比較したところ、耐久性試験初期を100とすると、耐久性試験後は94であった。 This sheet was placed in an eye super UV tester for durability test and allowed to stand for 300 hours. When the fluorescence intensity of the sheet was compared with the peak intensity of fluorescence emitted by applying excitation light of 400 nm using a fluorescence spectrophotometer manufactured by Hitachi, assuming that the initial durability test was 100, it was 94 after the durability test. .
(比較例3)実施例4で合成したβサイアロン蛍光体粉体20質量部、水添ビスフェノールA型エポキシ樹脂(XY8000、ジャパンエポキシレジン(株)製)100質量部、酸無水物(MeHHP)80質量部、硬化促進剤1質量部を自公転式撹拌機で混合し、脱泡した後、ガラス板の間に挟んで硬化させ、厚さ200μmのシートを作成した。このシートについて、実施例4と同様に耐久性試験と蛍光測定を行った。耐久性試験初期は92であり、耐久性試験後は51であった。 (Comparative Example 3) 20 parts by mass of β sialon phosphor powder synthesized in Example 4, 100 parts by mass of hydrogenated bisphenol A type epoxy resin (XY8000, manufactured by Japan Epoxy Resins Co., Ltd.), 80 acid anhydride (MeHHP) Mass parts and 1 part by mass of a curing accelerator were mixed with a self-revolving stirrer, defoamed, and then sandwiched between glass plates to be cured, thereby forming a sheet having a thickness of 200 μm. This sheet was subjected to a durability test and fluorescence measurement in the same manner as in Example 4. The initial durability test was 92, and 51 after the durability test.
本発明の組成物は、発光効率が高く、従来品よりも著しく耐久性に優れるので、発光効率の高い発光素子、特に、青色〜紫外光を発する発光素子と蛍光体を組み合わせた白色の発光素子を実現できるので産業上極めて有用である。特に、紫外発光LEDを励起光源とする白色発光LEDの長寿命化と発光効率が向上するので、水銀フリー照明として、現在主流の蛍光灯に代わる次世代の照明として利用される可能性があり、産業上および地球環境保全の観点から非常に有用である。 Since the composition of the present invention has high luminous efficiency and remarkably superior durability compared to conventional products, a light emitting element with high luminous efficiency, particularly a white light emitting element combining a light emitting element emitting blue to ultraviolet light and a phosphor. Is extremely useful in industry. In particular, since the lifetime of white light-emitting LEDs that use ultraviolet light-emitting LEDs as an excitation light source and the light emission efficiency are improved, there is a possibility of being used as next-generation lighting that replaces the current mainstream fluorescent lamps as mercury-free lighting, It is very useful from the viewpoint of industrial and global environmental conservation.
本発明の組成物の実施態様である封止材、蛍光シート、蛍光複合シートは、前記組成物を実用するに際して、それぞれの用途に好適に使用でき、発光素子の組立に於いて作業効率を高める効果を呈することができるので、産業上有用である。 The sealing material, the fluorescent sheet, and the fluorescent composite sheet, which are embodiments of the composition of the present invention, can be suitably used for each application when the composition is put to practical use, and increase the work efficiency in the assembly of the light emitting device. Since an effect can be exhibited, it is industrially useful.
本発明の発光素子は、前記組成物と、青色〜紫外光を発する素子とを含んでいるので、水銀フリー照明として、現在主流の蛍光灯に代わる次世代の照明として、利用される可能性があり、産業上および地球環境保全の観点から非常に有用である。 Since the light-emitting device of the present invention contains the composition and a device that emits blue to ultraviolet light, it may be used as mercury-free lighting, as next-generation lighting that replaces the current mainstream fluorescent lamps. Yes, it is very useful from the viewpoint of industrial and global environmental conservation.
Claims (9)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005173186A JP5020480B2 (en) | 2005-06-14 | 2005-06-14 | Phosphor composition and use thereof |
US11/917,513 US8497623B2 (en) | 2005-06-14 | 2006-06-14 | Phosphor-containing resin composition and sheet, and light emitting devices employing them |
CN2010101651406A CN101851432B (en) | 2005-06-14 | 2006-06-14 | Resin composition and sheet containing phosphor, and light emitting element using such composition and sheet |
CN2006800206991A CN101193983B (en) | 2005-06-14 | 2006-06-14 | Resin composition and sheet containing phosphor, and light emitting element using such composition and sheet |
KR1020127021881A KR20120109645A (en) | 2005-06-14 | 2006-06-14 | Resin composition and sheet containing phosphor, and light emitting element using such composition and sheet |
KR1020077029117A KR101201266B1 (en) | 2005-06-14 | 2006-06-14 | Resin composition and sheet containing phosphor, and light emitting element using such composition and sheet |
PCT/JP2006/311955 WO2006134982A1 (en) | 2005-06-14 | 2006-06-14 | Resin composition and sheet containing phosphor, and light emitting element using such composition and sheet |
EP09004769.7A EP2075288B1 (en) | 2005-06-14 | 2006-06-14 | Resin composition and sheet containing phosphor, and light emitting element using such composition and sheet |
EP06766724.6A EP1892268B1 (en) | 2005-06-14 | 2006-06-14 | Resin composition and sheet containing phosphor, and light emitting element using such composition and sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005173186A JP5020480B2 (en) | 2005-06-14 | 2005-06-14 | Phosphor composition and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006348088A true JP2006348088A (en) | 2006-12-28 |
JP5020480B2 JP5020480B2 (en) | 2012-09-05 |
Family
ID=37644266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005173186A Expired - Fee Related JP5020480B2 (en) | 2005-06-14 | 2005-06-14 | Phosphor composition and use thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5020480B2 (en) |
CN (1) | CN101193983B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101864290A (en) * | 2010-06-22 | 2010-10-20 | 彩虹集团公司 | Nitrogen oxide fluorescent gel and preparation method thereof |
WO2013129509A1 (en) * | 2012-02-27 | 2013-09-06 | 三菱化学株式会社 | Wavelength conversion member and method for manufacturing same, light-emitting device and lighting fixture including wavelength conversion member, and resin composition |
WO2014178288A1 (en) | 2013-04-30 | 2014-11-06 | 創光科学株式会社 | Ultraviolet light-emitting device |
JP2015076585A (en) * | 2013-10-11 | 2015-04-20 | 住友電工プリントサーキット株式会社 | Led module and led lighting fixture |
JPWO2015037608A1 (en) * | 2013-09-12 | 2017-03-02 | 創光科学株式会社 | UV light emitting device |
US10361346B2 (en) | 2015-10-27 | 2019-07-23 | Soko Kagaku Co., Ltd. | Nitride semiconductor ultraviolet light emitting device and method for manufacturing same |
US10388834B2 (en) | 2015-08-03 | 2019-08-20 | Soko Kagaku Co., Ltd. | Nitride semiconductor wafer, manufacturing method thereof, nitride semiconductor ultraviolet light-emitting element, and nitride semiconductor ultraviolet light-emitting device |
US10412829B2 (en) | 2015-08-03 | 2019-09-10 | Soko Kagaku Co., Ltd. | Nitride semiconductor light-emitting element base and manufacturing method thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG190320A1 (en) * | 2010-12-13 | 2013-07-31 | Toray Industries | Phosphor sheet, led and light emitting device using same and method for producing led |
JP6546583B2 (en) * | 2014-04-02 | 2019-07-17 | デンカ株式会社 | Hydrophobized phosphor and light emitting device |
KR102237112B1 (en) | 2014-07-30 | 2021-04-08 | 엘지이노텍 주식회사 | Light emitting device and light suource module |
CN105990496B (en) * | 2015-03-04 | 2018-11-16 | 光宝光电(常州)有限公司 | LED encapsulation structure and its manufacturing method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0197901A (en) * | 1987-10-09 | 1989-04-17 | Fujitsu Ltd | Resin molding for optical parts |
JPH08287714A (en) * | 1995-04-18 | 1996-11-01 | Minebea Co Ltd | Fluorescent lighting system |
JPH11163417A (en) * | 1997-09-26 | 1999-06-18 | Matsushita Electric Ind Co Ltd | Light-emitting diode |
JP2001102639A (en) * | 1999-09-30 | 2001-04-13 | Sumitomo 3M Ltd | Light-emitting diode and laser diode device sealed with fluoropolymer |
JP2003318448A (en) * | 2002-02-19 | 2003-11-07 | Nichia Chem Ind Ltd | Light emitting device and its forming method |
JP2004099607A (en) * | 2002-08-21 | 2004-04-02 | Asahi Glass Co Ltd | 2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran and polymer comprising the same as monomer |
JP2004315822A (en) * | 2003-04-15 | 2004-11-11 | Solvay Solexis Spa | Amorphous perfluorinated polymer |
JP2005015651A (en) * | 2003-06-26 | 2005-01-20 | Asahi Glass Co Ltd | Fluorine-containing polymer and resist composition |
JP2005099474A (en) * | 2003-09-25 | 2005-04-14 | Asahi Glass Co Ltd | Antireflection substrate and article using the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3910517B2 (en) * | 2002-10-07 | 2007-04-25 | シャープ株式会社 | LED device |
JP4418758B2 (en) * | 2002-12-13 | 2010-02-24 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Irradiation system having a radiation source and a light emitter |
-
2005
- 2005-06-14 JP JP2005173186A patent/JP5020480B2/en not_active Expired - Fee Related
-
2006
- 2006-06-14 CN CN2006800206991A patent/CN101193983B/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0197901A (en) * | 1987-10-09 | 1989-04-17 | Fujitsu Ltd | Resin molding for optical parts |
JPH08287714A (en) * | 1995-04-18 | 1996-11-01 | Minebea Co Ltd | Fluorescent lighting system |
JPH11163417A (en) * | 1997-09-26 | 1999-06-18 | Matsushita Electric Ind Co Ltd | Light-emitting diode |
JP2001102639A (en) * | 1999-09-30 | 2001-04-13 | Sumitomo 3M Ltd | Light-emitting diode and laser diode device sealed with fluoropolymer |
JP2003318448A (en) * | 2002-02-19 | 2003-11-07 | Nichia Chem Ind Ltd | Light emitting device and its forming method |
JP2004099607A (en) * | 2002-08-21 | 2004-04-02 | Asahi Glass Co Ltd | 2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran and polymer comprising the same as monomer |
JP2004315822A (en) * | 2003-04-15 | 2004-11-11 | Solvay Solexis Spa | Amorphous perfluorinated polymer |
JP2005015651A (en) * | 2003-06-26 | 2005-01-20 | Asahi Glass Co Ltd | Fluorine-containing polymer and resist composition |
JP2005099474A (en) * | 2003-09-25 | 2005-04-14 | Asahi Glass Co Ltd | Antireflection substrate and article using the same |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101864290A (en) * | 2010-06-22 | 2010-10-20 | 彩虹集团公司 | Nitrogen oxide fluorescent gel and preparation method thereof |
WO2013129509A1 (en) * | 2012-02-27 | 2013-09-06 | 三菱化学株式会社 | Wavelength conversion member and method for manufacturing same, light-emitting device and lighting fixture including wavelength conversion member, and resin composition |
WO2014178288A1 (en) | 2013-04-30 | 2014-11-06 | 創光科学株式会社 | Ultraviolet light-emitting device |
US9450157B2 (en) | 2013-04-30 | 2016-09-20 | Soko Kagaku Co., Ltd. | Ultraviolet light emitting device using metal non-bondable amorphous fluororesin molding compound |
JPWO2015037608A1 (en) * | 2013-09-12 | 2017-03-02 | 創光科学株式会社 | UV light emitting device |
US9972758B2 (en) | 2013-09-12 | 2018-05-15 | Soko Kagaku Co., Ltd. | Ultraviolet light emitting device |
JP2015076585A (en) * | 2013-10-11 | 2015-04-20 | 住友電工プリントサーキット株式会社 | Led module and led lighting fixture |
US10388834B2 (en) | 2015-08-03 | 2019-08-20 | Soko Kagaku Co., Ltd. | Nitride semiconductor wafer, manufacturing method thereof, nitride semiconductor ultraviolet light-emitting element, and nitride semiconductor ultraviolet light-emitting device |
US10412829B2 (en) | 2015-08-03 | 2019-09-10 | Soko Kagaku Co., Ltd. | Nitride semiconductor light-emitting element base and manufacturing method thereof |
US10361346B2 (en) | 2015-10-27 | 2019-07-23 | Soko Kagaku Co., Ltd. | Nitride semiconductor ultraviolet light emitting device and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
CN101193983B (en) | 2011-04-06 |
CN101193983A (en) | 2008-06-04 |
JP5020480B2 (en) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5020480B2 (en) | Phosphor composition and use thereof | |
EP1892268B1 (en) | Resin composition and sheet containing phosphor, and light emitting element using such composition and sheet | |
Yang et al. | Designed glass frames full color in white light-emitting diodes and laser diodes lighting | |
JP4420021B2 (en) | White light emitting diode device | |
US7928648B2 (en) | Yellow light emitting Ce3+-activated silicate phosphor with new composition, manufacturing method thereof and white LEDs including phosphor | |
KR101035029B1 (en) | Ceramic composite light converting member and light emitting device using the same | |
EP2975100B1 (en) | Yellow light emitting phosphor and light emitting device package using the same | |
US20070090381A1 (en) | Semiconductor light emitting device | |
JP5454473B2 (en) | Phosphor ceramics, method for producing the same, and light emitting device | |
JPWO2016117623A1 (en) | Sintered phosphor, light emitting device, lighting device, vehicle headlamp, and method for manufacturing sintered phosphor | |
JP2006261512A (en) | Light emitting device and lighting apparatus | |
JP2014234487A (en) | Wavelength conversion member and light-emitting device | |
JP2011012215A (en) | Ceramic composite | |
JP2008231218A (en) | Phosphor material and white light-emitting diode | |
JP2007059898A (en) | Semiconductor light-emitting device | |
JP2014172940A (en) | Fluophor dispersion ceramic plate | |
JP2009280793A (en) | Fluorescent substance, wavelength converter, light emitter and lighting installation | |
JP5004616B2 (en) | Phosphor, method for manufacturing the same, wavelength converter and light emitting device | |
CN112645592B (en) | Preparation and application of efficient adjustable composite fluorescent glass material | |
JP5509997B2 (en) | Method for producing ceramic composite for light conversion | |
JP4863794B2 (en) | Wavelength converting material, method for producing the same, and light emitting device using the same | |
JP2008007564A (en) | Oxynitride fluorescent body and light emitting device using this | |
JP2014003070A (en) | Light-emitting device and lighting apparatus | |
JP6357107B2 (en) | Phosphor, light emitting device and lighting device | |
TWI572694B (en) | Yellow light emitting phosphor and light emitting device package using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101109 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20101202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120522 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120613 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5020480 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150622 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |