JP2006341185A - Decomposition treatment method of chlorofluorocarbon, and decomposition treating agent therefor - Google Patents

Decomposition treatment method of chlorofluorocarbon, and decomposition treating agent therefor Download PDF

Info

Publication number
JP2006341185A
JP2006341185A JP2005168774A JP2005168774A JP2006341185A JP 2006341185 A JP2006341185 A JP 2006341185A JP 2005168774 A JP2005168774 A JP 2005168774A JP 2005168774 A JP2005168774 A JP 2005168774A JP 2006341185 A JP2006341185 A JP 2006341185A
Authority
JP
Japan
Prior art keywords
chlorofluorocarbon
mgo
acid
decomposition
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005168774A
Other languages
Japanese (ja)
Other versions
JP4902969B2 (en
Inventor
Kenichi Akishika
研一 秋鹿
Tsukasa Tamai
司 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2005168774A priority Critical patent/JP4902969B2/en
Publication of JP2006341185A publication Critical patent/JP2006341185A/en
Application granted granted Critical
Publication of JP4902969B2 publication Critical patent/JP4902969B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a decomposition method of chlorofluorocarbon which is capable of fixing fluorine and chlorine as a stable and non-toxic salt of an alkaline earth metal in the single reaction system without producing toxic materials such as an acidic gas, carbon tetrachloride and the like at all. <P>SOLUTION: The decomposition treatment method of chlorofluorocarbon comprises treating chlorofluorocarbon with a mixture of a magnesium chloride and calcium oxide which has undergone the acid treatment with sulfuric acid and phosphoric acid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、クロロフルオロカーボンを分解処理するための方法および処理剤に関する。   The present invention relates to a method and a treating agent for decomposing chlorofluorocarbon.

クロロフルオロカーボンは、不燃性・無毒性であることから理想的なガスとして、冷媒、噴霧剤、消化剤、発泡剤等に非常に幅広く用いられている。しかし、使用済みのクロロフルオロカーボンは、その化学的安定性ゆえに大気中で分解されにくいため、オゾン層を破壊し、また温室効果ガスとして地球温暖化を招く等、地球環境に対する深刻な影響が懸念されている。このため、クロロフルオロカーボンの代替品の開発と並行して、使用済みのクロロフルオロカーボンを有効に分解処理する技術の開発が急務とされている。   Since chlorofluorocarbons are nonflammable and non-toxic, they are very widely used as refrigerants, sprays, digestives, foaming agents and the like as ideal gases. However, since used chlorofluorocarbons are difficult to decompose in the atmosphere due to their chemical stability, there is a concern about the serious impact on the global environment, such as destroying the ozone layer and causing global warming as a greenhouse gas. ing. For this reason, in parallel with the development of alternatives to chlorofluorocarbons, there is an urgent need to develop technologies for effectively decomposing used chlorofluorocarbons.

現在実用化されているクロロフルオロカーボン分解プロセスは、クロロフルオロカーボンを水蒸気存在下で高温処理する加水分解反応が主流である。クロロフルオロカーボンを加水分解すると、例えば、
CCl+2HO−−−>2HF+2HCl+CO
のようにHF、HClのような酸性ガスが生成する。生成した酸性ガスは、NaOHで中和処理されることによりNaCl、NaFに転化される。NaClはそのまま排水として処理される。NaFは、排水に流すことができないため、Ca(OH)で処理されて固体CaFに転化される。このように、現行のクロロフルオロカーボン分解プロセスでは、分解反応後の中和処理に追加の工程が必要となる上、分解時にHF、HClが生成するため、処理装置に高価な耐腐食性材料を採用しなければならず、処理コストの増大を招く。さらにHF、HClの生成は、安全面、環境面でも問題がある。
The chlorofluorocarbon decomposition process currently in practical use is mainly a hydrolysis reaction in which chlorofluorocarbon is treated at a high temperature in the presence of water vapor. Hydrolysis of chlorofluorocarbons, for example,
CCl 2 F 2 + 2H 2 O ---> 2HF + 2HCl + CO 2
Thus, an acidic gas such as HF and HCl is generated. The generated acid gas is converted into NaCl and NaF by neutralizing with NaOH. NaCl is treated as waste water as it is. NaF, it is not possible to flow the effluent is treated with Ca (OH) 2 is converted to a solid CaF 2. In this way, the current chlorofluorocarbon decomposition process requires additional steps for neutralization after the decomposition reaction, and HF and HCl are generated during decomposition, so expensive corrosion-resistant materials are used in the processing equipment. This increases the processing cost. Furthermore, the production of HF and HCl has problems in terms of safety and environment.

加水分解によらないクロロフルオロカーボン分解法として、極少量のフッ酸を加えて加熱し、粒子表面の一部をMgFに変化させたMgOをクロロフルオロカーボンと反応させることにより、
CCl+MgO−−−>1/2CO+1/2CCl+MgF
のようにフッ素をアルカリ土類金属塩として固定化する方法も報告されている(玉井他、Bull. Chem. Soc. Jpn.、77、1239、2004)。アルカリ土類金属ハロゲン化物は比較的高温でも安定で無害であることから、ハロゲンをアルカリ土類金属塩として固定化する方法は望ましい方法である。玉井他の方法は、塩基性物質であるMgOの表面をフッ酸と反応させて表面の一部をMgFに変化させることでMgOに酸点を付与することにより、MgOのクロロフルオロカーボンに対する反応性を高めることに成功したものである。しかし、玉井他の方法では、フッ素はMgFとして固定化することができるが、塩素が有害な四塩化炭素として残存する。塩素を固定化するためには、例えば、生成したCClにCaOを反応させることにより、
CCl+2CaO−−−>CaCl+CO
のように塩素を塩化カルシウムとして固定化する追加の処理工程が必要となる(B.M. Weckhuysen他、J. Phys. Chem. B、102、3773、1998)。
As a chlorofluorocarbon decomposition method not based on hydrolysis, a very small amount of hydrofluoric acid is added and heated, and MgO having a part of the particle surface changed to MgF 2 is reacted with chlorofluorocarbon.
CCl 2 F 2 + MgO ---> 1 / 2CO 2 + 1 / 2CCl 4 + MgF 2
A method for immobilizing fluorine as an alkaline earth metal salt has also been reported (Tamai et al., Bull. Chem. Soc. Jpn., 77, 1239, 2004). Since alkaline earth metal halides are stable and harmless even at relatively high temperatures, the method of fixing halogens as alkaline earth metal salts is a desirable method. The method of Tamai et al. Reacts MgO with chlorofluorocarbons by reacting the surface of MgO, which is a basic substance, with hydrofluoric acid and changing part of the surface to MgF 2 to give acid sites to MgO. Has succeeded in increasing However, in Tamai et al.'S method, fluorine can be immobilized as MgF 2 , but chlorine remains as harmful carbon tetrachloride. In order to immobilize chlorine, for example, by reacting CaO with the generated CCl 4 ,
CCl 4 + 2CaO ---> CaCl 2 + CO 2
As described above, an additional treatment step for immobilizing chlorine as calcium chloride is required (BM Weckhuysen et al., J. Phys. Chem. B, 102, 3773, 1998).

クロロフルオロカーボンのフッ素と塩素を単一反応系で一度に固定化する方法として、酸化バナジウムのような遷移金属酸化物を担持させたMgOをクロロフルオロカーボンと反応させることにより、
CCl+2MgO−−−>CO+MgCl+MgF
のようにフッ素と塩素を効率的に固定化する方法が報告されている(玉井他、Chem. Lett.、32、436、2003)。しかし、この方法では、CClが過剰になる(MgOの転化率が一定値を超える)と、
CCl+MgCl−−−>CCl+MgF
のように、一度固定化された塩素が四塩化炭素に転化してしまう。また、クロロフルオロカーボンの分解反応中に酸化バナジウムが揮発するという実用上好ましくない問題もある。
As a method of immobilizing fluorine and chlorine of chlorofluorocarbon at once in a single reaction system, by reacting MgO supporting a transition metal oxide such as vanadium oxide with chlorofluorocarbon,
CCl 2 F 2 + 2MgO ---> CO 2 + MgCl 2 + MgF 2
As described above, a method for efficiently immobilizing fluorine and chlorine has been reported (Tamai et al., Chem. Lett., 32, 436, 2003). However, in this method, when CCl 2 F 2 becomes excessive (conversion rate of MgO exceeds a certain value),
CCl 2 F 2 + MgCl 2 ---> CCl 4 + MgF 2
As described above, once fixed chlorine is converted into carbon tetrachloride. In addition, there is another problem that vanadium oxide volatilizes during the decomposition reaction of chlorofluorocarbon.

玉井他、Bull. Chem. Soc. Jpn.、77、1239、2004Tamai et al., Bull. Chem. Soc. Jpn., 77, 1239, 2004 B.M. Weckhuysen他、J. Phys. Chem. B、102、3773、1998B.M.Weckhuysen et al., J. Phys. Chem. B, 102, 3773, 1998 玉井他、Chem. Lett.、32、436、2003Tamai et al., Chem. Lett., 32, 436, 2003

本発明の目的は、クロロフルオロカーボンの分解処理法として、上述した酸性ガスや四塩化炭素等の有害物質を一切生成することなく、フッ素と塩素を単一反応系において安定で無害なアルカリ土類金属塩として固定化することができる方法およびそのための分解処理剤を提供することにある。   An object of the present invention is to provide a stable and harmless alkaline earth metal that generates fluorine and chlorine in a single reaction system without producing any of the above-mentioned harmful substances such as acid gas and carbon tetrachloride as a method for decomposing chlorofluorocarbon. An object of the present invention is to provide a method that can be immobilized as a salt and a decomposition treatment agent therefor.

本発明によると、クロロフルオロカーボンを、硫酸またはリン酸で酸処理された酸化マグネシウムと酸化カルシウムとの混合物で処理することを特徴とする、クロロフルオロカーボンの分解処理方法が提供される。
さらに本発明によると、硫酸またはリン酸で酸処理された酸化マグネシウムと酸化カルシウムとの混合物を含んでなる、クロロフルオロカーボンの分解処理剤が提供される。
According to the present invention, there is provided a method for decomposing chlorofluorocarbon, characterized in that chlorofluorocarbon is treated with a mixture of magnesium oxide and calcium oxide treated with sulfuric acid or phosphoric acid.
Further, according to the present invention, there is provided a chlorofluorocarbon decomposition treatment agent comprising a mixture of magnesium oxide and calcium oxide acid-treated with sulfuric acid or phosphoric acid.

本発明によると、HF、HCl等の酸性ガスや四塩化炭素等の有害物質を一切生成することなく、クロロフルオロカーボン中のフッ素と塩素を単一反応系において安定で無害なアルカリ土類金属塩として固定化することができる。本発明の方法は、耐腐食性を要しない簡便な装置で実施することができ、分解処理剤も安価に調製することができ、しかも遷移金属を含まないので環境負荷も小さい。   According to the present invention, fluorine and chlorine in chlorofluorocarbons are produced as stable and harmless alkaline earth metal salts in a single reaction system without producing any harmful gases such as acidic gases such as HF and HCl and carbon tetrachloride. Can be immobilized. The method of the present invention can be carried out with a simple apparatus that does not require corrosion resistance, the decomposition treatment agent can be prepared at a low cost, and the transition metal is not included, so the environmental load is small.

本発明によるクロロフルオロカーボンの分解処理方法は、クロロフルオロカーボンを、硫酸またはリン酸で酸処理された酸化マグネシウムと酸化カルシウムとの混合物で処理することを特徴とする。クロロフルオロカーボンは、塩素化およびフッ素化されたメタンやエタンの総称であって一般に式CCl4−nまたはCCl6−nで表わされるが、なかには水素や臭素が含まれるものもあり、そのようなクロロフルオロカーボンも本発明による分解処理対象となる。クロロフルオロカーボンの具体例として、CClF、CCl、CClF、CClF−CF、CClF−CClF、CClF−CClF等が挙げられる。クロロフルオロカーボンは、単独で処理しても、2種以上の混合物として処理してもよい。クロロフルオロカーボンは、分解処理に際し、キャリアガスとの混合ガスとして処理することが好ましい。キャリアガスとしては、乾燥空気、ヘリウム、窒素、アルゴン等を用いることができる。キャリアガスとの混合ガス中、クロロフルオロカーボンの濃度は0.1体積%以上であることが好ましく、0.5体積%以上であることがさらに好ましい。クロロフルオロカーボンは、キャリアガスで希釈することなく100%クロロフルオロカーボンとして処理することもできる。 The method for decomposing chlorofluorocarbon according to the present invention is characterized in that chlorofluorocarbon is treated with a mixture of magnesium oxide and calcium oxide that has been acid-treated with sulfuric acid or phosphoric acid. Chlorofluorocarbon is a generic name for chlorinated and fluorinated methane and ethane, and is generally represented by the formula CCl n F 4-n or C 2 Cl n F 6-n , but some of them contain hydrogen or bromine. Such chlorofluorocarbons are also subject to decomposition treatment according to the present invention. Examples of chlorofluorocarbons, CClF 3, CCl 2 F 2 , CCl 3 F, CClF 2 -CF 3, CClF 2 -CClF 2, CCl 2 F-CClF 2 and the like. The chlorofluorocarbon may be treated alone or as a mixture of two or more. The chlorofluorocarbon is preferably treated as a mixed gas with a carrier gas in the decomposition treatment. As the carrier gas, dry air, helium, nitrogen, argon or the like can be used. In the mixed gas with the carrier gas, the concentration of chlorofluorocarbon is preferably 0.1% by volume or more, and more preferably 0.5% by volume or more. The chlorofluorocarbon can also be treated as 100% chlorofluorocarbon without dilution with a carrier gas.

本発明によると、このようなクロロフルオロカーボンを、硫酸またはリン酸で酸処理された酸化マグネシウム(MgO)と酸化カルシウム(CaO)との混合物で処理する。MgOを硫酸(HSO)またはリン酸(HPO)で酸処理することにより、塩基性物質であるMgOの表面に酸点が付与され、よって酸処理されたMgOのクロロフルオロカーボンに対する触媒活性が向上する。酸点の量または酸強度は、昇温脱理法(TPD)においてアンモニア(NH)を吸着させる方法(以下「NH−TPD法」という。)により測定することができる。本願明細書においては、便宜上、硫酸またはリン酸で酸処理されたMgOを、それぞれMgSO-MgOおよびMg(PO-MgOのように表示する。MgOの酸処理量としては、NH−TPD法で測定されるNH吸着量が、単位BET表面積当たり好適には0.1マイクロモル/m以上、より好適には0.3マイクロモル/m以上、さらに好適には0.5マイクロモル/m以上となるような処理量とする。NH吸着量が、単位BET表面積当たり0.1マイクロモル/mより少ないと、所期のクロロフルオロカーボン分解反応が進行しない。なお、NH吸着量の上限に特に制限はない。 According to the present invention, such a chlorofluorocarbon is treated with a mixture of magnesium oxide (MgO) and calcium oxide (CaO) acid-treated with sulfuric acid or phosphoric acid. By acid-treating MgO with sulfuric acid (H 2 SO 4 ) or phosphoric acid (H 3 PO 4 ), acid sites are given to the surface of MgO, which is a basic substance, and thus the acid-treated MgO has a resistance to chlorofluorocarbon Catalytic activity is improved. The amount of acid sites or acid strength can be measured by a method of adsorbing ammonia (NH 3 ) in a temperature rising detriment method (TPD) (hereinafter referred to as “NH 3 -TPD method”). In the present specification, for the sake of convenience, MgO treated with sulfuric acid or phosphoric acid is represented as MgSO 4 —MgO and Mg 3 (PO 4 ) 2 —MgO, respectively. As the acid treatment amount of MgO, the NH 3 adsorption amount measured by the NH 3 -TPD method is preferably 0.1 μmol / m 2 or more, more preferably 0.3 μmol / m 2 per unit BET surface area. The amount of treatment is set to m 2 or more, more preferably 0.5 micromol / m 2 or more. When the NH 3 adsorption amount is less than 0.1 μmol / m 2 per unit BET surface area, the intended chlorofluorocarbon decomposition reaction does not proceed. There is no special limitation on the upper limit of the adsorbed NH 3 amount.

酸処理は、粒状のMgOを水に懸濁させ、これに硫酸またはリン酸を所定量添加して撹拌混合した後、水分を蒸発させることで実施することができる。その際、硫酸またはリン酸の添加量を変えることによりMgOの酸処理量を調節することができる。撹拌混合は、室温で、1〜24時間、好ましくは3〜18時間程度行えばよい。水分蒸発は、70〜90℃程度に加熱して行うことができる。水分蒸発後の酸処理されたMgOには、水酸化マグネシウムMg(OH)が含まれるため、その脱水処理のため、水分蒸発後に乾燥、焼成処理を施すことが好ましい。乾燥は、大気雰囲気中、100〜120℃程度に加熱して行うことができる。また焼成は、大気雰囲気中、500〜700℃で2〜5時間処理することにより行うことができる。 The acid treatment can be carried out by suspending granular MgO in water, adding a predetermined amount of sulfuric acid or phosphoric acid thereto, stirring and mixing, and then evaporating the water. At that time, the acid treatment amount of MgO can be adjusted by changing the addition amount of sulfuric acid or phosphoric acid. The stirring and mixing may be performed at room temperature for 1 to 24 hours, preferably about 3 to 18 hours. Moisture evaporation can be performed by heating to about 70 to 90 ° C. Since the acid-treated MgO after moisture evaporation contains magnesium hydroxide Mg (OH) 2, it is preferable to perform drying and baking after moisture evaporation for the dehydration treatment. Drying can be performed by heating to about 100 to 120 ° C. in an air atmosphere. Moreover, baking can be performed by processing at 500-700 degreeC for 2 to 5 hours in air | atmosphere.

酸処理されたMgOの形状は、クロロフルオロカーボンの分解処理工程の通気性および接触効率の点から粒状であることが好ましい。その場合の粒径としては、当業者であれば通気性および接触効率のバランスを考慮して適当な範囲を決定することができるが、一般に粒径が0.01mm未満では圧力損失の不利益が大きくなり好ましくなく、反対に10mmを超えると接触効率が低下するため分解処理能力が損なわれるので好ましくない。酸処理MgOの粒径は、好ましくは0.01〜10mm、より好ましくは0.1〜6mmの範囲である。   The shape of the acid-treated MgO is preferably granular from the viewpoint of air permeability and contact efficiency in the chlorofluorocarbon decomposition treatment step. In this case, those skilled in the art can determine an appropriate range in consideration of the balance between air permeability and contact efficiency. In general, if the particle size is less than 0.01 mm, there is a disadvantage of pressure loss. On the contrary, if it exceeds 10 mm, the contact efficiency is lowered and the decomposition treatment capacity is impaired, which is not preferable. The particle diameter of the acid-treated MgO is preferably 0.01 to 10 mm, more preferably 0.1 to 6 mm.

このように硫酸またはリン酸で酸処理されたMgOに酸化カルシウム(CaO)を混合することにより、クロロフルオロカーボンの分解処理剤を得る。混合するCaOに特に制限はないが、クロロフルオロカーボンの分解処理工程の通気性および接触効率の点から、酸処理MgOと同様に、形状が粒状であること、そしてその粒径は、好ましくは0.01〜10mm、より好ましくは0.1〜6mmの範囲であることが好ましい。また、酸処理MgOとの混合を容易にするために、両者の粒径の差を小さくすることが好ましく、さらに両者の粒径をほぼ同一とすることがより好ましい。   Thus, by mixing calcium oxide (CaO) with MgO acid-treated with sulfuric acid or phosphoric acid, a chlorofluorocarbon decomposition treatment agent is obtained. Although there is no restriction | limiting in particular in CaO to mix, From the point of the breathability and contact efficiency of the decomposition | disassembly process of a chlorofluorocarbon, like the acid treatment MgO, a shape is granular and the particle size becomes like this. It is preferable that it is in the range of 01 to 10 mm, more preferably 0.1 to 6 mm. In order to facilitate mixing with the acid-treated MgO, it is preferable to reduce the difference between the particle sizes of the two, and it is more preferable that the particle sizes of the two are substantially the same.

酸処理MgOとCaOとの混合割合は、モル比として一般に1:20〜5:1、好ましくは1:5〜2:1の範囲内にすればよい。酸処理MgOに付与された酸点の量が多い場合には、酸処理MgOの混合モル比を小さく、したがってCaOの混合モル比を大きくすることができる。酸処理MgOの混合モル比が上記範囲の下限を外れると、クロロフルオロカーボンに対する分解反応性が低下する。反対に、酸処理MgOの混合モル比が上記範囲の上限を外れると、CaOが不十分となり、ハロゲンの吸収固定効率が低下する。酸処理MgOとCaOとの混合方法については、両者の物理混合物が均質に形成される方法であれば特に制限はない。   The mixing ratio of the acid-treated MgO and CaO is generally within a range of 1:20 to 5: 1, preferably 1: 5 to 2: 1 as a molar ratio. When the amount of acid sites added to the acid-treated MgO is large, the mixed molar ratio of the acid-treated MgO can be reduced, and thus the mixed molar ratio of CaO can be increased. When the mixing molar ratio of the acid-treated MgO is outside the lower limit of the above range, the decomposition reactivity with respect to the chlorofluorocarbon decreases. On the other hand, if the mixing molar ratio of the acid-treated MgO is outside the upper limit of the above range, CaO becomes insufficient and the halogen absorption and fixation efficiency decreases. The mixing method of acid-treated MgO and CaO is not particularly limited as long as the physical mixture of both is formed uniformly.

本発明による分解処理法では、クロロフルオロカーボンに含まれるハロゲン(フッ素および塩素)がすべて酸化カルシウムに吸収される形で固定化される。これは、Mgのハロゲン化物(MgF、MgClF等)よりもCaのハロゲン化物(CaF、CaClF等)の方が熱力学的に安定であることによる。実質的に、酸処理MgOはクロロフルオロカーボンの分解反応の触媒としてのみ関与する。また本発明による分解処理法の生成物は、クロロフルオロカーボンに含まれるフッ素と塩素の比率によって異なる。したがって、例えばクロロフルオロカーボンがCClである場合、分解反応式は主として
CCl+2CaO−−−>2CaClF+CO(但し、CaClFの一部がCaFとCaClに分かれる場合はある。)
となり、例えばクロロフルオロカーボンがCClFである場合、分解反応式は主として
CClF+2CaO−−−>CaClF+CaCl+CO(但し、CaClFの一部がCaFとCaClに分かれる場合はある。)
となり、例えばクロロフルオロカーボンがCClFである場合、分解反応式は主として
CClF+2CaO−−−>CaClF+CaF+CO(但し、CaClFの一部がCaFとCaClに分かれる場合はある。)
となる。このように、本発明の方法によると、遷移金属酸化物を用いることなく、またHClやHFといった酸性ガスや四塩化炭素等の有害物質を一切生成することなく、フッ素と塩素を単一反応系において安定で無害なアルカリ土類金属(Ca)塩として固定化することができる。
In the decomposition treatment method according to the present invention, all halogens (fluorine and chlorine) contained in the chlorofluorocarbon are fixed in a form that is absorbed by calcium oxide. This is because Ca halides (CaF 2 , CaClF, etc.) are thermodynamically more stable than Mg halides (MgF 2 , MgClF, etc.). In effect, the acid-treated MgO is involved only as a catalyst for the chlorofluorocarbon decomposition reaction. The product of the decomposition treatment method according to the present invention varies depending on the ratio of fluorine and chlorine contained in the chlorofluorocarbon. Therefore, for example, when the chlorofluorocarbon is CCl 2 F 2 , the decomposition reaction formula is mainly CCl 2 F 2 + 2CaO −−> 2CaClF + CO 2 (however, a part of CaClF may be divided into CaF 2 and CaCl 2 ).
For example, when the chlorofluorocarbon is CCl 3 F, the decomposition reaction formula is mainly CCl 3 F + 2CaO ---> CaClF + CaCl 2 + CO 2 (however, a part of CaClF may be divided into CaF 2 and CaCl 2 ).
Next, for example, when chlorofluorocarbon is CClF 3, the decomposition reaction formulas mainly CClF 3 + 2CaO ---> CaClF + CaF 2 + CO 2 ( although some CaClF there if divided into CaF 2 and CaCl 2.)
It becomes. Thus, according to the method of the present invention, fluorine and chlorine can be converted into a single reaction system without using transition metal oxides and without generating any harmful gases such as acidic gases such as HCl and HF and carbon tetrachloride. Can be immobilized as a stable and harmless alkaline earth metal (Ca) salt.

本発明による分解処理法では、酸点を付与させた酸処理MgOのクロロフルオロカーボンに対する触媒活性が高いため、クロロフルオロカーボンを分解処理する際の雰囲気温度を比較的低く抑えることができ、処理コスト面でも有利である。具体的には、本発明によると、クロロフルオロカーボンを、好ましくは400〜700℃、より好ましくは450〜600℃の範囲内の雰囲気温度で分解処理することができる。   In the decomposition treatment method according to the present invention, since the catalytic activity of acid-treated MgO imparted with acid sites to chlorofluorocarbons is high, the atmospheric temperature during decomposition treatment of chlorofluorocarbons can be kept relatively low, and also in terms of treatment costs. It is advantageous. Specifically, according to the present invention, the chlorofluorocarbon can be decomposed at an atmospheric temperature in the range of preferably 400 to 700 ° C, more preferably 450 to 600 ° C.

本発明による分解処理法は、例えば、図1に示したような流通系装置を用いて実施することができる。所望の雰囲気温度を提供する加熱器(例、電気炉)を具備する反応管に、本発明による分解処理剤(酸処理MgO+CaO)を充填し、これに必要に応じてキャリアガス(例、ヘリウム)で希釈したクロロフルオロカーボンを所定流量で流通させればよい。流量は、分解処理剤の充填量、処理対象のクロロフルオロカーボンの種類、そのキャリアガス中濃度その他の反応変数によって、当業者であれば、装置出口においてクロロフルオロカーボンが100%分解処理されるように適宜決定することができる。また、本発明による分解処理剤は反応体であり消費されるので、分解処理剤を適宜供給することによりクロロフルオロカーボンを連続的に分解処理することができる。例えば、図1に示したような流通系装置において流路切換可能な複数の反応管を設けること、流動床式処理装置を応用すること等が考えられる。   The decomposition treatment method according to the present invention can be implemented using, for example, a distribution system apparatus as shown in FIG. A reaction tube equipped with a heater (eg, electric furnace) that provides a desired ambient temperature is filled with the decomposition treatment agent (acid-treated MgO + CaO) according to the present invention, and a carrier gas (eg, helium) as necessary. The chlorofluorocarbon diluted with 1 may be circulated at a predetermined flow rate. The flow rate is appropriately determined by those skilled in the art so that the chlorofluorocarbon is 100% decomposed at the outlet of the apparatus depending on the amount of the decomposition treatment agent, the type of chlorofluorocarbon to be processed, the concentration in the carrier gas, and other reaction variables. Can be determined. Further, since the decomposition treatment agent according to the present invention is a reactant and consumed, the chlorofluorocarbon can be continuously decomposed by appropriately supplying the decomposition treatment agent. For example, it is conceivable to provide a plurality of reaction tubes whose flow paths can be switched in the flow system as shown in FIG.

実施例で用いたMgOを以下のように調製した。MgO(宇部マテリアルズ株式会社製「100A」)10gを蒸留水150mLに懸濁させ、室温にて一晩撹拌後、80℃に加熱してペースト状になるまで水分を蒸発させた。得られたペーストを室温にて数日乾燥させMg(OH)を得た。得られたMg(OH)を、He気流下で600℃まで2時間で昇温し、その温度で3時間保持する焼成処理により脱水し、MgOを得た。 MgO used in the examples was prepared as follows. 10 g of MgO (“100A” manufactured by Ube Materials Co., Ltd.) was suspended in 150 mL of distilled water, stirred overnight at room temperature, then heated to 80 ° C. to evaporate the water until it became a paste. The obtained paste was dried at room temperature for several days to obtain Mg (OH) 2 . The obtained Mg (OH) 2 was dehydrated by a baking treatment in which the temperature was raised to 600 ° C. for 2 hours under a He stream and held at that temperature for 3 hours to obtain MgO.

参考例
MgOの各種酸処理による酸点発現について調べた。酸処理の酸として、HF、HCl、HSO及びHPOを使用した。上記方法で得られたMgO2gを蒸留水50mLに懸濁させ、その懸濁液に各酸水溶液を滴下した。滴下量は、MgF、MgCl、MgSO及びMg(POが、それぞれMgF-MgO全体、MgCl-MgO全体、MgSO-MgO全体及びMg(PO-MgO全体の10モル%となるように調製した。各酸水溶液を滴下した後、室温で8時間撹拌し、その後80℃に加熱して水を蒸発除去した。酸処理後の各MgOを乾燥機内で温度110℃でさらに乾燥した。乾燥後、各MgOを焼成炉内で、ヘリウム気流中、600℃で3時間焼成した。調製された試料を、それぞれMgF-MgO、MgCl-MgO、MgSO-MgO及びMg(PO-MgOと表記する。調製した各酸処理試料について、BET比表面積及びNH−TPDを測定した。その結果を、未処理MgOのデータと共に、下記表1に示す。
Reference Example The expression of acid sites by various acid treatments of MgO was examined. HF, HCl, H 2 SO 4 and H 3 PO 4 were used as acids for the acid treatment. 2 g of MgO obtained by the above method was suspended in 50 mL of distilled water, and each acid aqueous solution was dropped into the suspension. The dropping amounts are MgF 2 , MgCl 2 , MgSO 4 and Mg 3 (PO 4 ) 2 , respectively, MgF 2 -MgO, MgCl 2 -MgO, MgSO 4 -MgO and Mg 3 (PO 4 ) 2 -MgO. It prepared so that it might become 10 mol% of the whole. After each acid aqueous solution was dropped, the mixture was stirred at room temperature for 8 hours, and then heated to 80 ° C. to remove water by evaporation. Each MgO after the acid treatment was further dried at a temperature of 110 ° C. in a dryer. After drying, each MgO was baked in a helium stream at 600 ° C. for 3 hours in a baking furnace. The prepared samples are denoted as MgF 2 -MgO, MgCl 2 -MgO, MgSO 4 -MgO, and Mg 3 (PO 4 ) 2 -MgO, respectively. For each acid treatment samples were prepared and the BET specific surface area and NH 3 -TPD. The results are shown in Table 1 below together with the untreated MgO data.

Figure 2006341185
Figure 2006341185

NH−TPDの測定結果から、HF、HSO及びHPOで処理されたMgOは、処理前MgOに比べ、酸点が有意に増加したことがわかる。図2に、各酸処理MgOのXRDパターンを示す。図2から、HSO処理したMgO(d)については、表面の一部がMgSOに転化したことがわかる。表1から酸点が増加したことがわかるHF処理およびHPO処理したMgOについては、おそらく酸とMgOとの反応による塩の結晶性が低いため、XRD図には表れていない。 From the measurement results of NH 3 -TPD, it can be seen that MgO treated with HF, H 2 SO 4, and H 3 PO 4 has a significantly increased acid point as compared with MgO before treatment. FIG. 2 shows the XRD pattern of each acid-treated MgO. From Figure 2, for the H 2 SO 4 treated MgO (d), it can be seen that the portion of the surface is converted to MgSO 4. HF-treated and H 3 PO 4- treated MgO, whose acid sites are increased from Table 1, are not shown in the XRD diagram, probably because of the low crystallinity of the salt due to the reaction between the acid and MgO.

実施例1
MgSO-MgOにCaOを物理混合して、クロロフルオロカーボンの分解処理反応について調べた。CaO(Aldrich社製、純度99.9%)10gを蒸留水150mLに懸濁させ、10時間撹拌した。その後80℃に加熱して水分を蒸発させた。次いで乾燥機で110℃にて乾燥し、得られたCa(OH)を5K/分で昇温し450℃で2時間、その後600℃で4時間焼成してCaOを得た。図1に示したようなクロロフルオロカーボン分解装置を使用し、石英製の反応管の中央部に、MgSO-MgO(0.20g)とCaO(0.28g)を一緒にメノウ乳鉢に入れ、十分に混ざり合うようにメノウ乳棒ですり潰した粒径約0.2mmの混合粉体(混合モル比1:1)を充填した。次いで、充填したMgSO-MgO+CaOを電気炉により600℃で3時間加熱処理した。その後所定の反応温度(450℃)に降温し、反応を行った。クロロフルオロカーボンにはCClを用い、これをヘリウム(He)で1体積%に希釈して30mL/分の流量で反応管に流通させた。反応出口ガスを、熱伝導度検出器を具備したガスクロマトグラフ(GC−TCD)で分析したところ、反応により生成したガスはCOのみで、CCl、CClF等の有害ガスは検出されなかった。MgSO-MgO+CaOによるクロロフルオロカーボン分解反応の結果を図3に示す。図中、縦軸のCCl転化率は、式:{1−(反応管を通過した未反応CClの濃度/反応管に導入したCClの濃度)}×100(%)から算出したものである。図3からわかるように、初期には導入したCClの70%程度が反応して無害なCOに転化した。その後次第に活性が低下したが、5時間経過後でも約30%の転化率を維持した。また、反応5時間後のXRDパターンを図4に示す。図4は、MgSO-MgOにCaOを物理混合した系ではクロロフルオロカーボンのハロゲンがCaClFおよび少量のCaFとして固定化されたことを示している。なお、XRDパターンにCaFに相当するCaClは認められない。これは、CaClは結晶性が悪く、XRDでは検出できないためである。また、クロロフルオロカーボンのカーボンの一部がCaCOとして固定されたこともわかる。
Example 1
The decomposition treatment reaction of chlorofluorocarbon was investigated by physically mixing CaO with MgSO 4 -MgO. 10 g of CaO (Aldrich, purity 99.9%) was suspended in 150 mL of distilled water and stirred for 10 hours. Thereafter, the mixture was heated to 80 ° C. to evaporate water. Subsequently, it dried at 110 degreeC with the dryer, and obtained Ca (OH) 2 was heated at 5 K / min, and it baked at 450 degreeC for 2 hours, and then at 600 degreeC for 4 hours, and obtained CaO. Using a chlorofluorocarbon decomposition apparatus as shown in FIG. 1, put MgSO 4 -MgO (0.20 g) and CaO (0.28 g) together in an agate mortar in the center of a quartz reaction tube. A mixed powder (mixing molar ratio of 1: 1) having a particle size of about 0.2 mm ground with an agate pestle was mixed. Next, the filled MgSO 4 —MgO + CaO was heat-treated at 600 ° C. for 3 hours in an electric furnace. Thereafter, the temperature was lowered to a predetermined reaction temperature (450 ° C.) to carry out the reaction. CCl 2 F 2 was used as the chlorofluorocarbon, which was diluted to 1% by volume with helium (He) and circulated through the reaction tube at a flow rate of 30 mL / min. When the reaction outlet gas was analyzed by a gas chromatograph (GC-TCD) equipped with a thermal conductivity detector, the gas produced by the reaction was only CO 2 and no harmful gases such as CCl 4 and CCl 3 F were detected. It was. The results of the chlorofluorocarbon decomposition reaction with MgSO 4 —MgO + CaO are shown in FIG. In the figure, CCl 2 F 2 conversion on the vertical axis, wherein: {1- (the concentration of CCl 2 F 2 which is introduced into the concentration / reaction tube unreacted CCl 2 F 2 was passed through the reaction tube)} × 100 ( %). As can be seen from FIG. 3, about 70% of the introduced CCl 2 F 2 reacted and converted to harmless CO 2 at the beginning. Thereafter, the activity gradually decreased, but the conversion rate of about 30% was maintained even after 5 hours. Moreover, the XRD pattern 5 hours after reaction is shown in FIG. FIG. 4 shows that chlorofluorocarbon halogen was immobilized as CaClF and a small amount of CaF 2 in a system in which CaO was physically mixed with MgSO 4 —MgO. Incidentally, CaCl 2 corresponding to the CaF 2 in the XRD pattern is not observed. This is because CaCl 2 has poor crystallinity and cannot be detected by XRD. It can also be seen that part of the carbon of the chlorofluorocarbon was fixed as CaCO 3 .

実施例2
Mg(PO-MgOにCaOを物理混合して、クロロフルオロカーボンの分解処理反応について調べた。CaOは、実施例1と同様にして調製した。図1に示したようなクロロフルオロカーボン分解装置を使用し、石英製の反応管の中央部に、Mg(PO-MgO(0.20g)とCaO(0.28g)を一緒にメノウ乳鉢に入れ、十分に混ざり合うようにメノウ乳棒ですり潰した粒径約0.2mmの混合粉体(混合モル比1:1)を充填した。次いで、充填したMg(PO-MgO+CaOを電気炉により600℃で3時間加熱処理した。その後所定の反応温度(450℃)に降温し、反応を行った。クロロフルオロカーボンにはCClを用い、これをヘリウム(He)で1体積%に希釈して30mL/分の流量で反応管に流通させた。反応出口ガスを、熱伝導度検出器を具備したガスクロマトグラフ(GC−TCD)で分析したところ、反応により生成したガスはCOのみで、CCl、CClF等の有害ガスは検出されなかった。Mg(PO-MgO+CaOによるクロロフルオロカーボン分解反応の結果を図3に示す。図中、縦軸のCCl転化率は実施例1で定義したとおりである。図3からわかるように、初期には導入したCClの60%程度が反応して無害なCOに転化した。その後次第に活性が低下したが、5時間経過後でも約20%の転化率を維持した。また、反応5時間後のXRDパターンを図4に示す。図4は、Mg(PO-MgOにCaOを物理混合した系ではクロロフルオロカーボンのハロゲンがCaClFおよび少量のCaFとして固定化されたことを示している。なお、XRDパターンにCaFに相当するCaClは認められない。これは、CaClは結晶性が悪く、XRDでは検出できないためである。また、クロロフルオロカーボンのカーボンの一部がCaCOとして固定されたこともわかる。
Example 2
CaO was physically mixed with Mg 3 (PO 4 ) 2 —MgO, and the decomposition treatment reaction of chlorofluorocarbon was examined. CaO was prepared in the same manner as in Example 1. Using a chlorofluorocarbon decomposition apparatus as shown in FIG. 1, together with Mg 3 (PO 4 ) 2 -MgO (0.20 g) and CaO (0.28 g) in the center of a quartz reaction tube, agate It was put in a mortar and filled with a mixed powder (mixing molar ratio of 1: 1) having a particle size of about 0.2 mm, which was ground with an agate pestle so as to be sufficiently mixed. Next, the filled Mg 3 (PO 4 ) 2 —MgO + CaO was heat-treated at 600 ° C. for 3 hours in an electric furnace. Thereafter, the temperature was lowered to a predetermined reaction temperature (450 ° C.) to carry out the reaction. CCl 2 F 2 was used as the chlorofluorocarbon, which was diluted to 1% by volume with helium (He) and circulated through the reaction tube at a flow rate of 30 mL / min. When the reaction outlet gas was analyzed by a gas chromatograph (GC-TCD) equipped with a thermal conductivity detector, the gas produced by the reaction was only CO 2 and no harmful gases such as CCl 4 and CCl 3 F were detected. It was. The results of the chlorofluorocarbon decomposition reaction with Mg 3 (PO 4 ) 2 —MgO + CaO are shown in FIG. In the figure, the conversion rate of CCl 2 F 2 on the vertical axis is as defined in Example 1. As can be seen from FIG. 3, about 60% of the introduced CCl 2 F 2 reacted and converted to harmless CO 2 in the initial stage. Thereafter, the activity gradually decreased, but a conversion rate of about 20% was maintained even after 5 hours. Moreover, the XRD pattern 5 hours after reaction is shown in FIG. FIG. 4 shows that the halogen of chlorofluorocarbon was immobilized as CaClF and a small amount of CaF 2 in a system in which CaO was physically mixed with Mg 3 (PO 4 ) 2 —MgO. Incidentally, CaCl 2 corresponding to the CaF 2 in the XRD pattern is not observed. This is because CaCl 2 has poor crystallinity and cannot be detected by XRD. It can also be seen that part of the carbon of the chlorofluorocarbon was fixed as CaCO 3 .

比較例1
MgF-MgOにCaOを物理混合して、クロロフルオロカーボンの分解処理反応について調べた。CaOは、実施例1と同様にして調製した。図1に示したようなクロロフルオロカーボン分解装置を使用し、石英製の反応管の中央部に、MgF-MgO(0.20g)とCaO(0.28g)を一緒にメノウ乳鉢に入れ、十分に混ざり合うようにメノウ乳棒ですり潰した粒径約0.2mmの混合粉体(混合モル比1:1)を充填した。次いで、充填したMgF-MgO+CaOを電気炉により600℃で3時間加熱処理した。その後所定の反応温度(450℃)に降温し、反応を行った。クロロフルオロカーボンにはCClを用い、これをヘリウム(He)で1体積%に希釈して30mL/分の流量で反応管に流通させた。反応出口ガスを、熱伝導度検出器を具備したガスクロマトグラフ(GC−TCD)で分析したところ、未反応のCClガス以外は、いかなる生成物も検出されなかった。実施例1、2と同様にCCl転化率(%)の経時変化を図3に示す。MgF-MgOにCaOを物理混合した系は、クロロフルオロカーボンに対する反応性が無いことがわかる。この系では、
MgF+CaO−−−>MgO+CaF(ΔH=−63kJ/モル)
のようなハロゲン交換反応が起こり、酸点が消失したためである。このことは、図4に示した5時間後のXRDパターンに、CaFは認められるものの、実施例1と実施例2で見られたCaClFおよびCaCOが存在しないことからもわかる。
Comparative Example 1
The decomposition treatment reaction of chlorofluorocarbon was examined by physically mixing CaO with MgF 2 -MgO. CaO was prepared in the same manner as in Example 1. Using a chlorofluorocarbon decomposition apparatus as shown in FIG. 1, put MgF 2 -MgO (0.20 g) and CaO (0.28 g) together in an agate mortar in the center of a quartz reaction tube. A mixed powder (mixing molar ratio of 1: 1) having a particle size of about 0.2 mm ground with an agate pestle was mixed. Next, the filled MgF 2 —MgO + CaO was heat-treated at 600 ° C. for 3 hours in an electric furnace. Thereafter, the temperature was lowered to a predetermined reaction temperature (450 ° C.) to carry out the reaction. CCl 2 F 2 was used as the chlorofluorocarbon, which was diluted to 1% by volume with helium (He) and circulated through the reaction tube at a flow rate of 30 mL / min. When the reaction outlet gas was analyzed by a gas chromatograph (GC-TCD) equipped with a thermal conductivity detector, no product other than unreacted CCl 2 F 2 gas was detected. As with Examples 1 and 2, the change with time in the CCl 2 F 2 conversion (%) is shown in FIG. It can be seen that the system in which CaO is physically mixed with MgF 2 -MgO has no reactivity to chlorofluorocarbons. In this system,
MgF 2 + CaO ---> MgO + CaF 2 (ΔH 0 = −63 kJ / mol)
This is because the halogen exchange reaction as shown in FIG. This can be seen from the absence of CaClF and CaCO 3 found in Examples 1 and 2 although CaF 2 is observed in the XRD pattern after 5 hours shown in FIG.

本発明による方法を実施することができる流通系装置の一例を示す概略図である。It is the schematic which shows an example of the distribution system apparatus which can implement the method by this invention. 各酸処理MgOのXRDパターン図である。It is a XRD pattern figure of each acid processing MgO. 各酸処理MgO+CaOによるクロロフルオロカーボン分解反応の結果を示すグラフである。It is a graph which shows the result of the chlorofluorocarbon decomposition | disassembly reaction by each acid treatment MgO + CaO. 反応5時間後のXRDパターン図である。It is a XRD pattern figure 5 hours after reaction.

Claims (2)

クロロフルオロカーボンを、硫酸またはリン酸で酸処理された酸化マグネシウムと酸化カルシウムとの混合物で処理することを特徴とする、クロロフルオロカーボンの分解処理方法。   A method for decomposing chlorofluorocarbons, comprising treating chlorofluorocarbons with a mixture of magnesium oxide and calcium oxide acid-treated with sulfuric acid or phosphoric acid. 硫酸またはリン酸で酸処理された酸化マグネシウムと酸化カルシウムとの混合物を含んでなる、クロロフルオロカーボンの分解処理剤。   A decomposition treatment agent for chlorofluorocarbon, comprising a mixture of magnesium oxide and calcium oxide treated with sulfuric acid or phosphoric acid.
JP2005168774A 2005-06-08 2005-06-08 Method for decomposing chlorofluorocarbon and decomposing agent therefor Expired - Fee Related JP4902969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005168774A JP4902969B2 (en) 2005-06-08 2005-06-08 Method for decomposing chlorofluorocarbon and decomposing agent therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005168774A JP4902969B2 (en) 2005-06-08 2005-06-08 Method for decomposing chlorofluorocarbon and decomposing agent therefor

Publications (2)

Publication Number Publication Date
JP2006341185A true JP2006341185A (en) 2006-12-21
JP4902969B2 JP4902969B2 (en) 2012-03-21

Family

ID=37638542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005168774A Expired - Fee Related JP4902969B2 (en) 2005-06-08 2005-06-08 Method for decomposing chlorofluorocarbon and decomposing agent therefor

Country Status (1)

Country Link
JP (1) JP4902969B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159209A (en) * 2015-02-27 2016-09-05 国立研究開発法人産業技術総合研究所 Ammonia decomposition catalyst, production method of catalyst, and ammonia decomposition method using catalyst
WO2022182559A1 (en) * 2021-02-25 2022-09-01 Saudi Arabian Oil Company Methods of producing isomerization catalysts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263365A (en) * 1997-03-24 1998-10-06 Showa Denko Kk Decomposition of hydrofluoricarbon
JPH11165071A (en) * 1997-12-02 1999-06-22 Ube Ind Ltd Fluorine-containing compound-decomposing catalyst and fluorine-containing compound-decomposing method
JP2001079344A (en) * 1999-09-16 2001-03-27 Ueda Sekkai Seizo Kk Agent and method for decomposing organic halogen compound
JP2001149775A (en) * 1999-11-25 2001-06-05 Ishihara Sangyo Kaisha Ltd Removing method of harmful material
JP2002224565A (en) * 2000-12-01 2002-08-13 Japan Pionics Co Ltd Agent and method for decomposing fluorocarbon
JP2004097914A (en) * 2002-09-06 2004-04-02 Nippon Shokubai Co Ltd Catalyst for removal of organic halogen compound and method for removing organic halogen compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263365A (en) * 1997-03-24 1998-10-06 Showa Denko Kk Decomposition of hydrofluoricarbon
JPH11165071A (en) * 1997-12-02 1999-06-22 Ube Ind Ltd Fluorine-containing compound-decomposing catalyst and fluorine-containing compound-decomposing method
JP2001079344A (en) * 1999-09-16 2001-03-27 Ueda Sekkai Seizo Kk Agent and method for decomposing organic halogen compound
JP2001149775A (en) * 1999-11-25 2001-06-05 Ishihara Sangyo Kaisha Ltd Removing method of harmful material
JP2002224565A (en) * 2000-12-01 2002-08-13 Japan Pionics Co Ltd Agent and method for decomposing fluorocarbon
JP2004097914A (en) * 2002-09-06 2004-04-02 Nippon Shokubai Co Ltd Catalyst for removal of organic halogen compound and method for removing organic halogen compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159209A (en) * 2015-02-27 2016-09-05 国立研究開発法人産業技術総合研究所 Ammonia decomposition catalyst, production method of catalyst, and ammonia decomposition method using catalyst
WO2022182559A1 (en) * 2021-02-25 2022-09-01 Saudi Arabian Oil Company Methods of producing isomerization catalysts
US11679378B2 (en) 2021-02-25 2023-06-20 Saudi Arabian Oil Company Methods of producing isomerization catalysts

Also Published As

Publication number Publication date
JP4902969B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
KR20070011311A (en) Method and apparatus for treating gas containing fluorine-containing compounds
US6023007A (en) Catalytic decomposition of perfluoro-compound
KR19980069689A (en) Decomposition Method and Catalyst by Catalyst of Organic Halogen Compound
JP4488545B2 (en) Treatment method, treatment agent and treatment apparatus for exhaust gas containing halogen fluoride
JP4902969B2 (en) Method for decomposing chlorofluorocarbon and decomposing agent therefor
US6162957A (en) Catalytic decomposition of perfluoro-compound
JP5294553B2 (en) Method for producing carbon-containing alkaline earth metal oxide and method for decomposing organic halide
JP2010517904A (en) Preparation of hydrogen fluoride from calcium fluoride and sulfuric acid
JPH0312220A (en) Contact decomposition of chlorofluoroalkane
JP4629880B2 (en) How to recover hydrogen chloride gas
JP4357018B2 (en) Detoxification method using halogenated gas treatment agent
JP3190225B2 (en) CFC decomposition method
JPH0724255A (en) Decomposition treating method and device for fluorocarbon
JP2005067983A (en) Porous material, and production method therefor
JP5642337B2 (en) Halogen-containing compound decomposer
JP2006007219A (en) Decomposition equipment of carbon fluorides
JP2681034B2 (en) How to make CFCs harmless
KR102146628B1 (en) Adsorbent for removing acidic gas and Method for preparing the same
Gao et al. NF3 decomposition without water over Cr2O3 coated-Al2O3 reagents
JP2004255228A (en) Method for treating aqueous solution of halogen compound, acidic aqueous solution, or acidic gas, and its apparatus
JP2002370013A (en) Decomposition treatment agent of sulfur fluoride and decomposition treatment method using the same
JP3570136B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
KR100356305B1 (en) Reactive agent and process for decomposing nitrogen fluoride
JPH10286438A (en) Decomposing method of fluorine-containing compound
US20210402375A1 (en) Activated Carbon Catalyst for Hydrogen Peroxide Decomposition, Method for Producing Same, and Method for Decomposing Hydrogen Peroxide by Using Same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120104

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees