JPH10263365A - Decomposition of hydrofluoricarbon - Google Patents

Decomposition of hydrofluoricarbon

Info

Publication number
JPH10263365A
JPH10263365A JP9070030A JP7003097A JPH10263365A JP H10263365 A JPH10263365 A JP H10263365A JP 9070030 A JP9070030 A JP 9070030A JP 7003097 A JP7003097 A JP 7003097A JP H10263365 A JPH10263365 A JP H10263365A
Authority
JP
Japan
Prior art keywords
hydrofluorocarbon
catalyst
decomposing
mol
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9070030A
Other languages
Japanese (ja)
Other versions
JP3900579B2 (en
Inventor
Tetsuo Nakajo
哲夫 中條
Yusaku Takita
祐作 滝田
Tatsuki Ishihara
達己 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP07003097A priority Critical patent/JP3900579B2/en
Publication of JPH10263365A publication Critical patent/JPH10263365A/en
Application granted granted Critical
Publication of JP3900579B2 publication Critical patent/JP3900579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst capable of efficiently decomposing hydroluorocarbons and long in life and to provide a decomposing method of hydrolufrocarbons using the catalyst. SOLUTION: In a reaction by which the hydroluorocarbons are decomposed in gas phase in the presence of steam or the steam and a molecular oxygen, the catalyst in which the total amount of alkali metals is <=300 wt.ppm and consisting of an oxide of phosphorus and the oxide of at least one kind element selected from a group consisting of aluminum, boron and alkaline earth metals is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はハイドロフルオロカ
ーボンを分解する方法に関する。詳しくは、特定の触媒
の存在の下にハイドロフルオロカーボンを水蒸気または
水蒸気と分子状酸素により気相で分解する方法に関す
る。
[0001] The present invention relates to a method for decomposing a hydrofluorocarbon. More specifically, the present invention relates to a method for decomposing a hydrofluorocarbon in a gas phase with steam or steam and molecular oxygen in the presence of a specific catalyst.

【0002】[0002]

【従来の技術】ハイドロフルオロカーボンの分解に関し
ては、燃焼法、セメントキルン燃焼法、プラズマ分解
法、爆轟法、超臨界水法、触媒分解法などが提案されて
いる。それぞれには課題があり、燃焼法は高温燃焼の為
の高価な燃焼炉、ダイオキシン対策などが必要である。
セメントキルン燃焼法は地域性があり一般的な処理設備
ではない。プラズマ分解法は装置の大型化と用役費が一
般には問題である。爆轟法は完全分解には適するが、連
続的大量処理には課題がある。超臨界水法は高温高圧条
件であり設備的にも運転面でも課題がある。触媒分解法
は、燃焼法に比べ比較的低温であり設備的に有利であ
る。また少量分解も可能で小規模な手軽さもあるが触媒
寿命に代表される性能向上が大きな課題である。
2. Description of the Related Art With respect to the decomposition of hydrofluorocarbons, a combustion method, a cement kiln combustion method, a plasma decomposition method, a detonation method, a supercritical water method, a catalytic decomposition method and the like have been proposed. Each has its own problems, and the combustion method requires an expensive combustion furnace for high-temperature combustion and measures against dioxin.
The cement kiln combustion method is regional and not a general treatment facility. The plasma decomposition method generally has a problem with an increase in the size of the apparatus and utility costs. Although the detonation method is suitable for complete disassembly, there are problems with continuous high-volume processing. The supercritical water method is under high temperature and high pressure conditions, and has problems in terms of equipment and operation. The catalytic decomposition method has a relatively low temperature as compared with the combustion method, and is advantageous in terms of equipment. In addition, small-scale decomposition is possible and small-scale and easy, but improvement of performance represented by catalyst life is a major issue.

【0003】触媒分解法としては、光分解法(特開平1
−143630号公報、特開平4−83515号公
報)、担体や金属を担持した触媒を用いる方法(特開平
3−12220号公報、特開平3−66388号公報、
特開平3−106419号公報、特開平3−42015
号公報)、合金を用いる方法(特開平3−249945
号公報、特開平4−122443号公報)など精力的に
開発されている。一方、リン酸を触媒とする研究におい
て、日本化学会誌,645(1991)にはAlPO4 触媒はすぐ
に失活しBPO4 触媒は10時間程度の寿命があると記
載されている。BPO4 分解触媒(Ind.Eng.Chem.Res.1
995,34,967-970)は1%の水を供給することで35時間
程度の耐久性を報告している。また、同一発明人は特開
平8-104656号公報の実施例33でリン酸マグネシウムを
用いたクロロジフルオロメタンの消失を記載している
が、分解物の種類(分解の程度)や触媒寿命については
明確ではない。
As a catalytic decomposition method, a photo decomposition method (Japanese Patent Laid-Open No.
JP-A-143630, JP-A-4-83515), a method using a catalyst carrying a carrier or a metal (JP-A-3-12220, JP-A-3-66388,
JP-A-3-106419, JP-A-3-42015
JP-A-3-249945), and a method using an alloy (JP-A-3-249945)
And Japanese Patent Application Laid-Open No. 4-122443). On the other hand, in a study using phosphoric acid as a catalyst, the Journal of the Chemical Society of Japan, 645 (1991) describes that the AlPO 4 catalyst is immediately deactivated and the BPO 4 catalyst has a life of about 10 hours. BPO 4 decomposition catalyst (Ind. Eng. Chem. Res. 1
995, 34, 967-970) report a durability of about 35 hours by supplying 1% water. In addition, the same inventor describes the disappearance of chlorodifluoromethane using magnesium phosphate in Example 33 of JP-A-8-104656. However, regarding the type of decomposition product (degree of decomposition) and catalyst life, Not clear.

【0004】[0004]

【発明が解決しようとする課題】ハイドロフルオロカー
ボンを分解する方法に関し、燃焼法に比べ比較的低温で
あり小型設備も可能であるという長所があるが、最大の
問題は高活性かつ寿命の長い触媒で、特に長寿命触媒が
望まれていた。上記課題に鑑み、鋭意検討を重ねた結
果、比較的低温条件下、ハイドロフルオロカーボン用分
解触媒の高活性かつ長寿命化を達成し、本発明はそれを
用いる分解方法を提案する事を目的とする。
The method for decomposing hydrofluorocarbon has the advantages that the temperature is relatively low and that small equipment is possible as compared with the combustion method, but the biggest problem is a catalyst having high activity and long life. In particular, long-life catalysts have been desired. In view of the above problems, as a result of intensive studies, the present invention has achieved a high activity and a long life of a hydrofluorocarbon decomposition catalyst under relatively low temperature conditions, and an object of the present invention is to propose a decomposition method using the same. .

【0005】[0005]

【課題を解決するための手段】ハイドロフルオロカーボ
ンの分解反応においてフッ化水素が副生する。触媒分解
法に用いられる従来触媒の多くは金属酸化物を主成分と
するが、金属酸化物の生成自由エネルギーよりも金属フ
ッ化物の生成自由エネルギーの方が負に大きいためフッ
化水素が共存すると金属酸化物は徐々にフッ化物に変化
する。本発明は上記課題を解決するため鋭意研究した結
果、気相にてハイドロフルオロカーボンを水蒸気または
水蒸気と分子状酸素の存在下、分解する反応おいて、ア
ルカリ金属の総量が300ppm以下である、リンの酸
化物とアルミニウム、ホウ素およびアルカリ土類金属か
らなる群より選ばれた少なくとも1種の元素の酸化物と
からなる触媒を用いることを特徴とするハイドロフルオ
ロカーボンの分解法を見出した。
Means for Solving the Problems Hydrogen fluoride is by-produced in the decomposition reaction of hydrofluorocarbon. Many of the conventional catalysts used in the catalytic decomposition method mainly contain metal oxides, but the free energy of formation of metal fluoride is more negative than the free energy of formation of metal oxides. The metal oxide gradually changes to fluoride. The present invention has conducted intensive studies to solve the above-mentioned problems, and as a result, in a reaction of decomposing hydrofluorocarbon in a gas phase in the presence of water vapor or water vapor and molecular oxygen, the total amount of alkali metals is 300 ppm or less. A hydrofluorocarbon decomposition method characterized by using a catalyst comprising an oxide and an oxide of at least one element selected from the group consisting of aluminum, boron and alkaline earth metals has been found.

【0006】以下、本発明について詳細に説明する。本
発明においてハイドロフルオロカーボンとは一部の水素
がフッ素で置換された炭化水素を指す。また、飽和、不
飽和いずれも含む。中でも、炭素数が1から4のフッ化
炭化水素が好ましい。例えば、炭素数1として、CH3
F、CH22 、CHF3 であり、炭素数2として、C
25 F、C242 、C233 、C22
4 、C2 HF5 のアルカン類であり、C23 F、C2
22 、C2 HF3 のアルケン類であり、同様にし
て、炭素数3および4も容易に例示することができる。
これらは単一化合物でも混合物でも良い。また、他のH
CFC(ハイドロクロロフルオロカーボン)やCFC
(クロロフルオロカーボン)、有機塩素化合物、有機臭
素化合物、炭化水素類が混合されていても良い。
Hereinafter, the present invention will be described in detail. In the present invention, the hydrofluorocarbon refers to a hydrocarbon in which a part of hydrogen is replaced by fluorine. In addition, both saturated and unsaturated are included. Among them, a fluorinated hydrocarbon having 1 to 4 carbon atoms is preferable. For example, if the number of carbon atoms is 1, CH 3
F, CH 2 F 2 , and CHF 3.
2 H 5 F, C 2 H 4 F 2, C 2 H 3 F 3, C 2 H 2 F
4 , C 2 HF 5 alkanes; C 2 H 3 F, C 2
Alkenes of H 2 F 2 and C 2 HF 3 , and similarly, C 3 and C 4 can be easily exemplified.
These may be a single compound or a mixture. In addition, other H
CFC (hydrochlorofluorocarbon) or CFC
(Chlorofluorocarbon), an organic chlorine compound, an organic bromine compound, and hydrocarbons may be mixed.

【0007】本発明における触媒について説明する。ア
ルカリ金属の総量が300wtppm以下であるリンの酸
化物とアルミニウム、ホウ素およびアルカリ土類金属か
らなる群より選ばれた少なくとも1種の元素の酸化物と
からなる触媒である。具体的には、アルカリ金属の総量
が300wtppm以下である、リン酸アルミニウム、リ
ン酸ホウ素、リン酸マグネシウム、リン酸カルシウム、
リン酸バリウム、リン酸ストロンチウム及びこれらの混
合物である。特にリン酸アルミニウム、リン酸ホウ素、
リン酸マグネシウム、リン酸カルシウムが好ましい。更
に好ましくはリン酸アルミニウムである。
The catalyst of the present invention will be described. A catalyst comprising an oxide of phosphorus having a total amount of alkali metal of 300 wtppm or less and an oxide of at least one element selected from the group consisting of aluminum, boron and alkaline earth metals. Specifically, aluminum phosphate, boron phosphate, magnesium phosphate, calcium phosphate, wherein the total amount of alkali metals is 300 wtppm or less,
Barium phosphate, strontium phosphate and mixtures thereof. Especially aluminum phosphate, boron phosphate,
Magnesium phosphate and calcium phosphate are preferred. More preferably, it is aluminum phosphate.

【0008】これらの触媒の中には、アルカリ金属の総
量を300wtppm以下、好ましくは70wtppm以下
にすることが必要である。アルカリ金属とは特にナトリ
ウム、カリウム、リチウムなどをさす。使用する原料
は、できるだけアルカリ金属を含まないものを用いる。
場合によっては、精製により除去する。アルカリ金属が
300wtppmを越えて存在すると活性低下を引き起こ
し、反応温度を上昇させても十分な活性に達成しない
し、触媒寿命も短い。
[0008] Among these catalysts, it is necessary to make the total amount of alkali metals not more than 300 wtppm, preferably not more than 70 wtppm. Alkali metal particularly refers to sodium, potassium, lithium and the like. As a raw material to be used, one containing as little alkali metal as possible is used.
In some cases, it is removed by purification. If the alkali metal is present in excess of 300 wtppm, the activity will be reduced, and even if the reaction temperature is increased, sufficient activity will not be achieved, and the catalyst life will be short.

【0009】調製方法は一般的な沈殿方法で良い。例え
ば、硝酸塩とリン酸の混合水溶液に希釈アンモニア水を
滴下し中和沈殿させ、必要に応じて熟成放置する。その
後、水洗し洗浄水の電導度などで十分に水洗した事を確
認する。場合によっては、スラリーの一部を取り含有す
るアルカリ金属を測定する。更に濾過し乾燥する。乾燥
温度は100℃から130℃が良い。得られた乾燥体は
粉砕し粒度を揃えるか、更に粉砕し成型する。その後、
500℃以上の条件で空気焼成する。好ましくは800
℃以上、更に好ましくは900℃以上1200℃以下が
良い。焼成時間は温度にもよるが1時間以上50時間程
度で、好ましくは2時間以上24時間程度である。高温
での長時間焼成は結晶化を促進すること、経済的に意味
がない。短時間では効果が薄い。
The preparation method may be a general precipitation method. For example, a diluted aqueous ammonia is dropped into a mixed aqueous solution of nitrate and phosphoric acid to neutralize and precipitate, and the mixture is left to be aged if necessary. After that, wash with water and confirm that it was sufficiently washed with the conductivity of the washing water. In some cases, a portion of the slurry is taken and the contained alkali metal is measured. Further filter and dry. The drying temperature is preferably from 100 ° C to 130 ° C. The obtained dried product is crushed to make the particle size uniform, or further crushed and molded. afterwards,
Air calcination is performed at a temperature of 500 ° C. or more. Preferably 800
C. or higher, more preferably 900 to 1200.degree. The sintering time depends on the temperature, but is about 1 hour to about 50 hours, preferably about 2 hours to about 24 hours. Prolonged firing at high temperatures promotes crystallization and is economically insignificant. The effect is weak in a short time.

【0010】触媒調製時または焼成後の触媒に更にC
e、La、Y、Cr、Fe、Co、Niからなる群より
選ばれた少なくとも1種の元素を添加し含有しても良
い。特にCe、Fe、Yは好ましい。添加金属塩は硝酸
塩、塩化物、酸化物、リン酸塩などが好ましいが、硝酸
塩が調製しやすい。添加量はリン1g原子に対し1g原
子以下であり、好ましくは0. 5g原子以下である。よ
り好ましくは0. 3g原子以下である。
When preparing the catalyst or after calcination, the catalyst
At least one element selected from the group consisting of e, La, Y, Cr, Fe, Co, and Ni may be added and contained. Particularly, Ce, Fe, and Y are preferable. The added metal salt is preferably a nitrate, a chloride, an oxide, a phosphate, or the like, but a nitrate is easily prepared. The addition amount is 1 g atom or less, preferably 0.5 g atom or less per 1 g of phosphorus. It is more preferably at most 0.3 g atom.

【0011】得られた触媒は塩の種類及び調製方法や条
件により物性は異なる。例えばリン酸アルミニウムの場
合、調製直後のBET表面積は50m2 /g以上、好ま
しくは80m2 /g以上である。XRDで観測するとア
モルファスな状態で、場合により一部AlPO4 のピー
クが見える。また、当該技術分野で通常行われている方
法であるが、この触媒はアルミナ、炭化珪素、窒化珪
素、活性炭など担体に担持した状態で使用しても良い。
The properties of the obtained catalyst differ depending on the kind of salt, the preparation method and the conditions. For example, in the case of aluminum phosphate, the BET surface area immediately after preparation is 50 m 2 / g or more, preferably 80 m 2 / g or more. When observed by XRD, an AlPO 4 peak is partially visible in some cases in an amorphous state. Although this is a method usually used in the art, this catalyst may be used in a state of being supported on a carrier such as alumina, silicon carbide, silicon nitride, and activated carbon.

【0012】次に本発明の供給ガス組成について述べ
る。まず、ハイドロフルオロカーボンを含む供給ガス
(供給ガス)の供給基準の割合は0. 05mol%から
50mol%が好ましい。更に好ましくは0. 1mol
%から30mol%である。あまり少なすぎると経済的
に問題で、多すぎると触媒劣化を促進する。
Next, the supply gas composition of the present invention will be described. First, the supply standard ratio of the supply gas containing hydrofluorocarbon (supply gas) is preferably 0.05 mol% to 50 mol%. More preferably 0.1 mol
% To 30 mol%. If the amount is too small, it is economically problematic, and if it is too large, catalyst deterioration is accelerated.

【0013】ハイドロフルオロカーボンを含む供給ガス
(供給ガス)中には水蒸気が必要で、その割合は、供給
基準で5mol%以上である。更に好ましくは20mo
l%以上70mol%以下である。少なすぎると炭酸ガ
スへの選択率が低下し寿命劣化が早くあらわれ、一方多
すぎると経済的に不利になる。場合によっては、酸素を
供給しても良い。ハイドロフルオロカーボンを含む供給
ガス(供給ガス)の種類は組成と処理量及び反応温度に
よるが、酸素は供給基準で30mol%以下が好まし
い。あまり多すぎると触媒の結晶化を促進して比表面積
が小さくなり活性が低下する。
The supply gas (supply gas) containing hydrofluorocarbon requires steam, and its ratio is 5 mol% or more on a supply basis. More preferably 20 mo
1% or more and 70 mol% or less. If the amount is too small, the selectivity to carbon dioxide is reduced and the life is deteriorated quickly, while if it is too large, it is economically disadvantageous. In some cases, oxygen may be supplied. The type of supply gas (supply gas) containing hydrofluorocarbon depends on the composition, the amount of treatment, and the reaction temperature, but oxygen is preferably 30 mol% or less on a supply basis. If the amount is too large, crystallization of the catalyst is promoted, the specific surface area is reduced, and the activity is reduced.

【0014】酸素源として空気を用いると窒素が同伴さ
れるが、問題にはならない。場合によっては、発熱反応
なので、希釈ガスとして効果を示すことが期待される。
更に積極的に分解後生成した炭酸ガスを反応系に循環す
ることも可能である。その他、ヘリウム、アルゴンを用
いることもできる。供給比率は基質の種類と組成、処理
量、温度などで変わるが、一般的には供給ガス:酸素:
水蒸気(mol%)=1:1〜50:1〜150で、好
ましくは供給ガス:酸素:水蒸気(mol%)=1:1
〜20:1〜50である。
When air is used as the oxygen source, nitrogen is entrained, but this is not a problem. In some cases, since it is an exothermic reaction, it is expected to exhibit an effect as a diluent gas.
Further, it is possible to circulate the carbon dioxide gas generated after the decomposition into the reaction system. In addition, helium and argon can be used. The supply ratio varies depending on the type and composition of the substrate, the processing amount, the temperature, etc., but generally, the supply gas: oxygen:
Water vapor (mol%) = 1: 1 to 50: 1 to 150, preferably supply gas: oxygen: water vapor (mol%) = 1: 1
-20: 1-50.

【0015】本発明における分解反応条件について説明
する。分解反応温度は分解すべきハイドロフルオロカー
ボンの種類と組成によるが、高温での分解は触媒寿命が
急激に低下する傾向にあるので経済的でない。また、低
温すぎると分解しない原料の割合が増加するので150
℃以上600℃以下が好ましい。更に好ましくは200
℃から550℃である。触媒当たりの供給ガス量である
空間速度(space velocity)は50リッターGAS/リ
ッター触媒・hr(以下50/hrと記す)から100
00/hrが適当で、より好ましくは100/hrから
5000/hrである。
The decomposition reaction conditions in the present invention will be described. The decomposition reaction temperature depends on the type and composition of the hydrofluorocarbon to be decomposed, but decomposition at a high temperature is not economical because the catalyst life tends to be sharply reduced. On the other hand, if the temperature is too low, the ratio of raw materials that do not decompose increases, so
The temperature is preferably in the range of not lower than 600C and not higher than 600C. More preferably 200
° C to 550 ° C. The space velocity, which is the amount of gas supplied per catalyst, is from 100 liter GAS / liter catalyst · hr (hereinafter referred to as 50 / hr) to 100 liters.
00 / hr is appropriate, and more preferably 100 / hr to 5000 / hr.

【0016】反応の形式は気相流通固定床が一般的であ
るが、流動層形式でも良い。反応器の材質は、処理量と
原料種類によるが、少ない処理量であればSUS316
管でも可能であるが、好ましくはインコネル、モネル、
ハステロイC、ニッケルなどを用いる方が良い。連続流
通方式で長時間反応させると、触媒はわずかながらも活
性低下し、転化率が低下してくる。その場合、反応温度
や接触時間を調整し転化率を一定に保つことは有効な手
段である。酸素量を制御する方法もありえる。
The reaction is generally carried out in a fixed bed in a gas phase, but may be carried out in a fluidized bed. The material of the reactor depends on the processing amount and the kind of raw material.
Tubes are also possible, but preferably Inconel, Monel,
It is better to use Hastelloy C, nickel or the like. When the reaction is carried out for a long time in a continuous flow system, the activity of the catalyst is slightly reduced, and the conversion is reduced. In this case, it is an effective means to adjust the reaction temperature and the contact time to keep the conversion constant. There may be a way to control the amount of oxygen.

【0017】[0017]

【実施例】以下に本発明の実施例を示すが、何ら本発明
を限定するものではない。 触媒調製例1〜3(リン酸アルミニウムの調製法) 硝酸アルミニウム九水和物(純正化学社製 試薬特級
Na 70wtppm、K 2wtppm)と85%リン酸
(純正化学社製 試薬特級 Na 4wtppm、K 4
wtppm)を精製せずそのまま用いた。まず、室温にお
いて、2リッタービーカーにて硝酸アルミニウムと85
%リン酸の水溶液と、10%アンモニア水を同時に5リ
ッタービーカー中の攪拌された400mlの純水に10
時間かけて滴下しpH7に調製した。この時できた沈殿
を一晩放置熟成した。その後、純水にて濾過洗浄を繰り
返し、その濾液の電導度を測定した。得られた固形物は
広げて乾燥器に入れ120℃にて乾燥させた。更に所定
の温度にて5時間、空気焼成し14から32メッシュに
整粒した。得られた触媒の一部をベリセリウス法にて処
理し原子吸光法にてアルカリ含量を測定した。
The present invention will be described in more detail with reference to the following Examples, which by no means limit the present invention. Catalyst Preparation Examples 1 to 3 (Preparation method of aluminum phosphate) Aluminum nitrate nonahydrate (special grade reagent manufactured by Junsei Chemical Co., Ltd.)
Na 70 wtppm, K 2 wtppm) and 85% phosphoric acid (Junsei Chemical Co., Ltd., reagent special grade Na 4 wtppm, K 4
wtppm) was used without purification. First, at room temperature, aluminum nitrate and 85 were used in a 2 liter beaker.
Aqueous solution of 10% phosphoric acid and 10% aqueous ammonia were simultaneously added to 400 ml of pure water stirred in a 5 liter beaker.
It was dropped over time to adjust the pH to 7. The precipitate formed at this time was aged overnight. Thereafter, filtration and washing were repeated with pure water, and the conductivity of the filtrate was measured. The obtained solid was spread, placed in a drier, and dried at 120 ° C. Further, the mixture was calcined in air at a predetermined temperature for 5 hours and sized to 14 to 32 mesh. A part of the obtained catalyst was treated by the Belizerius method, and the alkali content was measured by the atomic absorption method.

【0018】触媒調製例 焼成温度 Na K 比表面積 XRD 1 1000℃ 2wtppm 以下 検出限界以下 131m2/g アモルファス 2 800℃ 2wtppm 以下 検出限界以下 Catalyst preparation example Firing temperature Na K Specific surface area XRD 1 1000 ° C 2 wtppm or less Detection limit or less 131 m 2 / g Amorphous 2 800 ° C 2 wtppm or less Detection limit or less

【0019】触媒調製例3 硝酸アルミニウム九水和物(Na 570wtppm、K
50wtppm)と85%リン酸(純正化学社製 試薬
特級 Na 4wtppm、K 4wtppm)を精製せず
そのまま用いた。触媒調製例1と同様に調製し、濾過
し、取り扱い易くする程度の量の水洗しか、実施しなか
った。得られた固形物は広げて乾燥器に入れ120℃に
て乾燥させた。更に1000℃にて5時間、空気焼成し
14から32メッシュに整粒した。得られた触媒の一部
を触媒調製例1同様分析したところ、Na 167wtp
pm、K 11wtppmであった。
Catalyst Preparation Example 3 Aluminum nitrate nonahydrate (Na 570 wt ppm, K
(50 wtppm) and 85% phosphoric acid (special grade Na 4 wtppm, K 4 wtppm, manufactured by Junsei Chemical Co., Ltd.) were used without purification. The catalyst was prepared in the same manner as in Catalyst Preparation Example 1, filtered, and washed only with an amount of water for facilitating handling. The obtained solid was spread, placed in a drier, and dried at 120 ° C. The mixture was further calcined in air at 1000 ° C. for 5 hours and sized to 14 to 32 mesh. When a part of the obtained catalyst was analyzed in the same manner as in Catalyst Preparation Example 1, Na 167 wtp
pm, K was 11 wtppm.

【0020】触媒調製例4〜6(リン酸塩の調製) 触媒調製例1と同様に、触媒調製例4ではホウ酸とリン
酸から調製した。触媒調製例5では硝酸マグネシウムと
リン酸から、触媒調製例6では同様にCa3(PO4)2
調製した。
Catalyst Preparation Examples 4 to 6 (Preparation of Phosphate) As in Catalyst Preparation Example 1, Catalyst Preparation Example 4 was prepared from boric acid and phosphoric acid. In catalyst preparation example 5, Ca 3 (PO 4 ) 2 was prepared from magnesium nitrate and phosphoric acid in catalyst preparation example 6 in the same manner.

【0021】触媒調製例7〜11(リン酸アルミニウム
に金属を添加した調製) 触媒調製例1でのリン酸アルミニウム調製時に以下の金
属を添加した。添加量はそれぞれ10%である。
Catalyst Preparation Examples 7 to 11 (Preparation of Adding Metal to Aluminum Phosphate) The following metals were added during preparation of aluminum phosphate in Catalyst Preparation Example 1. The amount added is 10% each.

【0022】 [0022]

【0023】実施例1〜11(反応例) 反応は常圧固定床流通型反応装置を用いた。反応管は内
径16mmのステンレス管に内径13mmのステンレス
管を連結させて使用した。窒素、酸素、HFC134a
(CF3 CFH2 )の3種ガスはミキサーで混合され、
反応管中の触媒層に送り込んだ。水はマイクロフィーダ
ーで注入した。反応後のガスはまず分解生成した酸を酸
トラップ(ガス洗浄瓶で水を満たしてある)で捕捉し、
酸除去したガスはTCDガスクロマトグラフィーにて分
析した。
Examples 1 to 11 (Reaction Example) The reaction was carried out in a fixed-bed flow reactor under normal pressure. The reaction tube was used by connecting a stainless steel tube having an inner diameter of 13 mm to a stainless steel tube having an inner diameter of 16 mm. Nitrogen, oxygen, HFC134a
The three gases (CF 3 CFH 2 ) are mixed by a mixer,
It was sent to the catalyst layer in the reaction tube. Water was injected with a microfeeder. The gas after the reaction first captures the acid generated by decomposition with an acid trap (filled with water with a gas washing bottle),
The gas from which the acid was removed was analyzed by TCD gas chromatography.

【0024】触媒調製例1〜13にて調製した触媒を1
3. 5g仕込み、供給ガス組成は HFC134a:O2 :N2 :H2 O=0. 5:9.
3:37. 4:57. 8(ml/分) (HFC134aは0. 5mol%、H2 Oは55mo
l%、残りは空気)とした。実施例1の500℃の分解
反応で生成した分解ガスについて調べると、HFC13
4aの転化率(HFC134aが分解消失した割合)は
100%で、分解生成物はCO2 のみ検出された。検出
した生成物中の選択率はCO2 が100%となる。形式
上、完全に分解すると C224 +H2 O+1. 5O2 → 2CO2 +4
HF
The catalysts prepared in Catalyst Preparation Examples 1 to 13 were
3.5 g was charged, and the supply gas composition was HFC134a: O 2 : N 2 : H 2 O = 0.5: 9.
3: 37.4: 57.8 (ml / min) (0.5 mol% for HFC134a, 55 mol for H 2 O)
1%, the rest being air). The decomposition gas generated by the decomposition reaction at 500 ° C. in Example 1 was examined.
The conversion rate of 4a (the rate at which HFC134a decomposed and disappeared) was 100%, and only CO 2 was detected as a decomposition product. The selectivity in the detected product is 100% for CO 2 . Formally, when completely decomposed, C 2 H 2 F 4 + H 2 O + 1.5O 2 → 2CO 2 +4
HF

【0025】[0025]

【表1】 実施例1と3より、アルカリ金属を多く含む触媒は活性
低下を招くことを示している。
[Table 1] Examples 1 and 3 show that a catalyst containing a large amount of alkali metal causes a decrease in activity.

【0026】[0026]

【表2】 [Table 2]

【0027】比較例1(水蒸気の効果) 触媒調製例1にて調製した触媒を13. 5g仕込み、供
給ガス組成HFC134a:O2 :N2 :H2 O=0.
5:20. 9:83. 6:0(ml/分)とした。反応
温度と結果を示す。400℃において134a転化率1
0%以下であった。
Comparative Example 1 (Effect of Steam) 13.5 g of the catalyst prepared in Catalyst Preparation Example 1 was charged, and the supply gas composition was HFC134a: O 2 : N 2 : H 2 O = 0.
5: 20.9: 83.6: 0 (ml / min). The reaction temperature and the results are shown. Conversion of 134a at 400 ° C. 1
0% or less.

【0028】実施例12 実施例7の反応(反応温度400℃)を約100時間ま
で継続しさせた触媒を反応器から抜き出しXRDにて結
晶状態を調べた。反応前後での大きな変化がなく、Al
PO4 とCePO4 に帰属されるピークが見られた。こ
のことは、触媒がAlF3 のようにフッ素化されること
なく活性を保持したことを示している。
Example 12 A catalyst in which the reaction of Example 7 (reaction temperature: 400 ° C.) was continued up to about 100 hours was taken out of the reactor, and the crystal state was examined by XRD. No significant change before and after the reaction
Peaks attributed to PO 4 and CePO 4 were observed. This indicates that the catalyst retained its activity without being fluorinated like AlF 3 .

【0029】実施例13 HFC134a、HCFC22、CFC12の混合物
(組成;50%、30%、20%)及び窒素ガスの代わ
りに炭酸ガス使用した以外は実施例7と同様に反応分解
した。400℃で混合物の転化率100%であった。
Example 13 A reactive decomposition was carried out in the same manner as in Example 7 except that a mixture of HFC134a, HCFC22 and CFC12 (composition: 50%, 30%, 20%) and carbon dioxide gas were used instead of nitrogen gas. At 400 ° C., the conversion of the mixture was 100%.

【0030】実施例20 HFC23、HFC143a、HCFC133a、CF
C134aの混合物(組成;10%、60%、15%、
15%)を実施例7と同様に反応分解した。400℃で
混合物の転化率100%であった。
Example 20 HFC23, HFC143a, HCFC133a, CF
C134a mixture (composition: 10%, 60%, 15%,
15%) was decomposed in the same manner as in Example 7. At 400 ° C., the conversion of the mixture was 100%.

【0031】[0031]

【発明の効果】本発明によれば、ハイドロフルオロカー
ボンまたはハイドロフルオロカーボンを含むガスを水蒸
気、場合によっては酸素の存在下、特定の触媒を用いる
ことで分解反応を効率良く、長寿命に実施することがで
きる。
According to the present invention, a hydrofluorocarbon or a gas containing a hydrofluorocarbon is used in the presence of water vapor and, in some cases, oxygen, in the presence of a specific catalyst, whereby the decomposition reaction can be carried out efficiently and with a long life. it can.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 気相にてハイドロフルオロカーボンを水
蒸気または水蒸気と分子状酸素の存在下、分解する反応
において、アルカリ金属の総量が300wtppm以下で
あるリンの酸化物とアルミニウム、ホウ素およびアルカ
リ土類金属からなる群より選ばれた少なくとも1種の元
素の酸化物とからなる触媒を用いることを特徴とするハ
イドロフルオロカーボンの分解法。
In a reaction for decomposing a hydrofluorocarbon in a vapor phase in the presence of water vapor or water vapor and molecular oxygen, a phosphorus oxide having a total amount of alkali metal of 300 wtppm or less and aluminum, boron and alkaline earth metal A method for decomposing a hydrofluorocarbon, comprising using a catalyst comprising an oxide of at least one element selected from the group consisting of:
【請求項2】 アルカリ金属の総量が70wtppm以下
である請求項1記載のハイドロフルオロカーボンの分解
法。
2. The method for decomposing a hydrofluorocarbon according to claim 1, wherein the total amount of the alkali metal is 70 wtppm or less.
【請求項3】 供給ガス中の水分濃度が5mol%以上
である請求項1ないし請求項2記載のハイドロフルオロ
カーボンの分解法。
3. The method for decomposing a hydrofluorocarbon according to claim 1, wherein the water concentration in the supply gas is 5 mol% or more.
【請求項4】 供給ガス中の水分濃度が20mol%以
上70mol%以下である請求項3記載のハイドロフル
オロカーボンの分解法。
4. The method for decomposing a hydrofluorocarbon according to claim 3, wherein the water concentration in the supply gas is from 20 mol% to 70 mol%.
【請求項5】 主たる分解生成ガスである炭酸ガスを含
むガスを供給ガス中に戻す請求項1から請求項4記載の
ハイドロフルオロカーボンの分解法。
5. The method for decomposing hydrofluorocarbon according to claim 1, wherein a gas containing carbon dioxide, which is a main decomposition product gas, is returned to the supply gas.
【請求項6】 供給ガス中の分子状酸素の濃度が30m
ol%以下である請求項1から請求項5記載のハイドロ
フルオロカーボンの分解法。
6. The supply gas has a molecular oxygen concentration of 30 m.
The method for decomposing a hydrofluorocarbon according to any one of claims 1 to 5, which is not more than ol%.
【請求項7】 ハイドロフルオロカーボンを含む供給ガ
スの濃度が0. 05mol%以上から50mol%以下
である請求項1から請求項6記載のハイドロフルオロカ
ーボンの分解法。
7. The method for decomposing a hydrofluorocarbon according to claim 1, wherein the concentration of the supply gas containing the hydrofluorocarbon is from 0.05 mol% to 50 mol%.
【請求項8】 反応温度が150℃以上600℃以下で
ある請求項1から請求項7記載のハイドロフルオロカー
ボンの分解法。
8. The method for decomposing a hydrofluorocarbon according to claim 1, wherein the reaction temperature is 150 ° C. or higher and 600 ° C. or lower.
【請求項9】 請求項1記載の触媒が、更にCe、L
a、Y、Cr、Fe、Co、Niからなる群より選ばれ
た少なくとも1種の元素を含有する請求項1から請求項
8記載のハイドロフルオロカーボンの分解法。
9. The catalyst according to claim 1, further comprising Ce, L.
9. The method for decomposing a hydrofluorocarbon according to claim 1, comprising at least one element selected from the group consisting of a, Y, Cr, Fe, Co, and Ni.
【請求項10】 ハイドロフルオロカーボンの炭素数が
1から4である請求項1から請求項9記載の分解法。
10. The decomposition method according to claim 1, wherein the hydrofluorocarbon has 1 to 4 carbon atoms.
JP07003097A 1997-03-24 1997-03-24 Decomposition method of hydrofluorocarbon Expired - Fee Related JP3900579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07003097A JP3900579B2 (en) 1997-03-24 1997-03-24 Decomposition method of hydrofluorocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07003097A JP3900579B2 (en) 1997-03-24 1997-03-24 Decomposition method of hydrofluorocarbon

Publications (2)

Publication Number Publication Date
JPH10263365A true JPH10263365A (en) 1998-10-06
JP3900579B2 JP3900579B2 (en) 2007-04-04

Family

ID=13419798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07003097A Expired - Fee Related JP3900579B2 (en) 1997-03-24 1997-03-24 Decomposition method of hydrofluorocarbon

Country Status (1)

Country Link
JP (1) JP3900579B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323537A (en) * 1997-03-24 1998-12-08 Showa Denko Kk Catalytic cracking method of prefluoro compound
JP2006341185A (en) * 2005-06-08 2006-12-21 Tokyo Institute Of Technology Decomposition treatment method of chlorofluorocarbon, and decomposition treating agent therefor
WO2010098220A1 (en) * 2009-02-27 2010-09-02 セントラル硝子株式会社 Process for producing difluoromethylcarbonyl compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663357A (en) * 1990-10-26 1994-03-08 Tosoh Corp Device for treating waste gas containing organic halogen compounds
JPH08104656A (en) * 1994-10-06 1996-04-23 Showa Denko Kk Reaction process using phosphate catalyst
JP3593875B2 (en) * 1997-03-24 2004-11-24 昭和電工株式会社 Method for catalytic decomposition of perfluoro compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663357A (en) * 1990-10-26 1994-03-08 Tosoh Corp Device for treating waste gas containing organic halogen compounds
JPH08104656A (en) * 1994-10-06 1996-04-23 Showa Denko Kk Reaction process using phosphate catalyst
JP3786441B2 (en) * 1994-10-06 2006-06-14 昭和電工株式会社 Reaction method using phosphate catalyst
JP3593875B2 (en) * 1997-03-24 2004-11-24 昭和電工株式会社 Method for catalytic decomposition of perfluoro compounds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323537A (en) * 1997-03-24 1998-12-08 Showa Denko Kk Catalytic cracking method of prefluoro compound
JP2006341185A (en) * 2005-06-08 2006-12-21 Tokyo Institute Of Technology Decomposition treatment method of chlorofluorocarbon, and decomposition treating agent therefor
WO2010098220A1 (en) * 2009-02-27 2010-09-02 セントラル硝子株式会社 Process for producing difluoromethylcarbonyl compound

Also Published As

Publication number Publication date
JP3900579B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
KR100461758B1 (en) Catalyst for decomposition of perfluoro-compound in waste-gas and method of decomposition with thereof
JP3593875B2 (en) Method for catalytic decomposition of perfluoro compounds
JP3977887B2 (en) Treatment method for fluorine compound-containing gas
EP1038858A1 (en) Process for the preparation of pentafluoroethane, fluorination catalysts and process for the preparation thereof
WO1998033755A1 (en) The catalytic manufacture of pentafluoropropenes
CN101175564A (en) Chromia based fluorination catalyst
JPH09220469A (en) Catalyst using chromium oxide as base, its production and application for fluorination of halogenated hydrocarbon
JPH05269382A (en) Mass catalyst with chromium oxide and nickel oxide as major components and its application to fluorination of halogenated hydrocarbon
Bickle et al. Catalytic destruction of chlorofluorocarbons and toxic chlorinated hydrocarbons
CN102176968B (en) Fluorination catalyst and process to produce fluorinated hydrocarbons
MX2011002368A (en) Fluorination catalyst and process to produce fluorinated hydrocarbons.
JP3789277B2 (en) Reagent for decomposing fluorine compounds, decomposing method and use thereof
TWI461362B (en) Production method of difluorinated carbonyl group
US6162957A (en) Catalytic decomposition of perfluoro-compound
JP3786441B2 (en) Reaction method using phosphate catalyst
TW200808440A (en) Absorption composition and process for purifying streams of substances
CN1301245A (en) Use of Ce/Zr mixed oxide phase for manufacture of styrene by dehydrogenation of ethylbenzene
JP3900579B2 (en) Decomposition method of hydrofluorocarbon
JP2023505582A (en) Method for Improving Catalyst Stability in HFC-23 Recycling
JP2996598B2 (en) Chromium-based fluorination catalyst, its production method and fluorination method
JP3900566B2 (en) Catalytic cracking of fluorinated hydrocarbons
JP4300258B2 (en) Method for catalytic decomposition of global warming gas
JP3158720B2 (en) Method for purifying 1,1,1,2-tetrafluoroethane
JP5059819B2 (en) Method for dehydrochlorination of chloroalkanes
JP2001162139A5 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees