JP4300258B2 - Method for catalytic decomposition of global warming gas - Google Patents

Method for catalytic decomposition of global warming gas Download PDF

Info

Publication number
JP4300258B2
JP4300258B2 JP34571399A JP34571399A JP4300258B2 JP 4300258 B2 JP4300258 B2 JP 4300258B2 JP 34571399 A JP34571399 A JP 34571399A JP 34571399 A JP34571399 A JP 34571399A JP 4300258 B2 JP4300258 B2 JP 4300258B2
Authority
JP
Japan
Prior art keywords
gas
global warming
mol
catalyst
warming gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34571399A
Other languages
Japanese (ja)
Other versions
JP2001162139A5 (en
JP2001162139A (en
Inventor
滝田祐作
石原達己
森山潤一
三宅秀典
山本理絵
Original Assignee
有限会社大分Tlo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社大分Tlo filed Critical 有限会社大分Tlo
Priority to JP34571399A priority Critical patent/JP4300258B2/en
Publication of JP2001162139A publication Critical patent/JP2001162139A/en
Publication of JP2001162139A5 publication Critical patent/JP2001162139A5/ja
Application granted granted Critical
Publication of JP4300258B2 publication Critical patent/JP4300258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素、ハロゲン元素と炭素よりなる化合物、又は水素、ハロゲン元素と窒素または硫黄からなる化合物(以下地球温暖化ガスと云う)を分解する方法に関する。詳しくは、特定の触媒の存在の下に地球温暖化ガスを水蒸気または水蒸気と分子状酸素により気相で分解する地球温暖化ガスの触媒分解方法に関する。
【0002】
【従来の技術】
前記地球温暖化ガスの分解に関しては、燃焼法(WO94/05399)がありCF4 を十分な滞留時間をかけて燃焼させている。また燃焼装置(特開平8−309147)の改良も提案されているが、処理能力の問題や高価な材質が必要である。爆轟法(特開平6−5 4 9 2 5)が提案されているが完全分解には適するが、連続的大量処理には課題がある。その他一般的に開発研究されている方法としてはセメントキルン燃焼法、プラズマ分解法、超臨界水法、触媒分解法などがある。それぞれには課題があり、セメントキルン燃焼法は地域性があり一般的な処理設備ではない。プラズマ分解法は装置の大型化と用役費が一般には問題である。超臨界水法は高温高圧条件であり設備的にも運転面でも課題がある。触媒分解法は燃焼法に比べ比較的低温であり設備的にも有利である。また少量分解も可能で小規模な手軽さもあるが触媒寿命に代表される性能向上が大きな課題である。
【0003】
地球温暖化ガスの触媒分解法の中で例えば、フッ素化合物ガスの触媒分解法としては、特公平6104183号公報において塩素を含むフルオロカーボン類(C2C13F3、C C12F2、CHC1F2、CC1F3など)は100%分解しているが、フッ化炭素であるCF4は550℃を越える高温においても分解活性を示さなかったと記載してある。分解触媒としての困難さを示している。
【0004】
分解剤としての提案がなされている。特開昭6135849においても活性炭にアルカリ土類金属の塩を担持させた処理剤で、フッ化炭素も含むガスを処理する方法がある。特開平8257359号公報では固体水素化物との反応除去を提案している。特開平7116466号公報、特開平7132211号公報において1100℃以上の高温において分解剤にて更にはフッ化水素を共存させたりしてフッ化炭素を分解処理している。これらの分解剤は処理とともに消費し少なくとも処理量以上に補給しなければいけないから、極めて不経済であり、大量処理には不向きであることは言うまでもない。
【0005】
【発明が解決しようとする課題】
地球温暖化ガスの接触分解法に関し、燃焼法、爆轟法に比べ、比較的低温であり小型設備も可能であるという長所があるが、最大の問題は触媒的に分解活性を示しかつ寿命の長い触媒が望まれていた。
上記課題に鑑み、鋭意検討を重ねた結果、比較的低温条件下、地球温暖化ガス用分解触媒の活性を示しかつ長寿命化を達成し、本発明はそれを用いる地球温暖化ガスの触媒分解方法を提案することを目的とする。
【0006】
【課題を解決するための手段】
地球温暖化ガス例えばフッ化炭素を水蒸気または水蒸気と分子状酸素の存在下で分解する反応においては、フッ化水素が副生する。触媒分解法に用いられる従来触媒の多くは金属酸化物を主成分とするが、金属酸化物の生成自由エネルギーよりも金属フッ化物の生成自由エネルギーの方が負に大きいためフッ化水素が共存すると金属酸化物は徐々にフッ化物に変化する。
本発明は上記課題を解決するため鋭意研究した結果、気相にてフッ素化合物ガスを水蒸気または水蒸気と分子状酸素の存在下で分解する反応において、硫酸塩を単独で触媒に用いることによって地球温暖化ガスを経済的に安価で効率よく接触分解させる地球温暖化ガスの触媒分解方法であり、その特徴は次の通りである。
(1)、水素、ハロゲン元素と炭素よりなる化合物、又は水素、ハロゲン元素と窒素または硫黄からなる化合物(以下地球温暖化ガスと云う)に、水蒸気または水蒸気と分子状酸素を存在させた雰囲気にし且つ所定の分解反応用の温度で、触媒を用いて前記地球温暖化ガスを気相にて分解するに際して、
前記地球温暖化ガスの濃度を0.01mol%〜70mol%とし、前記水分濃度を10mol%〜70mol%とし、前記分子状酸素の濃度を50mol%以下とし、分解反応用温度を250〜1000℃とし、前記触媒として、アルミニウム、ホウ素、Ca、Sr、ジルコニウム、イットリウム、希土類金属、クロム、マンガン、鉄、コバルト、ニッケルからなる群より選ばれた少なくとも1種以上の元素の硫酸塩からなる触媒を用いて、前記地球温暖化ガスを接触分解することを特徴とする地球温暖化ガスの触媒分解方法。
(2)、水素、ハロゲン元素と炭素よりなる化合物、又は水素、ハロゲン元素と窒素または硫黄からなる化合物(以下地球温暖化ガスと云う)に、水蒸気または水蒸気と分子状酸素を存在させた雰囲気に、炭酸ガス、酸素、窒素、アルゴン、ヘリュウム、空気、の単独又は複数の混合ガスを混入することを特徴とする上記(1)に記載の地球温暖化ガスの触媒分解方法。
(3)、前記地球温暖化ガスの炭素数が1から6であることを特徴とする前記(1)又は(2)に記載の地球温暖化ガスの触媒分解方法。
【0007】
以下、本発明の地球温暖化ガスの触媒分解方法について詳細に説明する。本発明において対象とする地球温暖化ガスとは前述のように、水素,ハロゲン元素(フッ素、臭素、ヨウ素、塩素)と炭素よりなる化合物,水素,ハロゲン元素と窒素または硫黄からなる化合物を指す。中でも、炭素数が1から6の化合物が燃焼効率上好ましい。例えば、テトラクロロメタン(CCl4)、トリクロロフルオロメタン(CCl3F)、ジクロロジフルオロメタン(CCl2F2)、クロロトリフルオロメタン(CClF3)、ヒドロクロロジフルオロメタン(CHClF2)、ヒドロトリフルオロメタン(CHF3)、テロラフルオロメタン(CF 4)、ヘキサフルオロエタン(C2F 6)、テロラフルオロエテン(C 2F 4)、オクタフルオロプロパン(C 3F 8)、ヘキサフルオロプロペン(C 3F 8)、デカフルオロブタン(C 4F 10)、シクロオクタフルオロブタン(C4F8)、オクタフルオロブテン(C4F8)、更にはその他パーフルオロ体、及びフッ化窒素(NF3)、6フッ化硫黄(SF6)等である。これらは単一化合物でも混合物でも良く、フッ化炭素以外のC F C(クロロフルオロカーボン)、H C F C(ハイドロクロロフルオロカーボン)やH F C(ハイドロフルオロカーボン)が含まれていても良い。
【0008】
本発明において使用する硫酸塩触媒について説明する。硫酸塩がアルミニウム、ホウ素、アルカリ土類金属、チタン、ジルコニウム、ランタン、セリウム、イットリウム、希土類金属、バナジウム、ニオブ、クロム、マンガン、鉄、コバルト、ニッケルからなる群より選ばれた少なくとも1種の元素と硫黄との酸化物とからなる触媒である。好ましくは、主成分になる硫酸塩は硫酸アルミニウム、硫酸ホウ素、硫酸チタン、硫酸ジルコニウム、硫酸クロムからなる群より選ばれた少なくとも1種または2種以上の複合種である。複合種とは、硫酸ジルコニウムと硫酸チタンの複合、硫酸アルミニウムと硫酸クロムの複合などを指す。特に好ましくは、硫酸アルミニウム,硫酸ジルコニウム,硫酸セリウムである。
【0009】
硫酸塩触媒の調製方法は、一般的な沈殿法もしくは蒸発乾固法で良い。例えば、各種の塩の場合はその水溶液(複数の原料塩の場合はそれぞれの原料塩の溶液を調製する)をアンモニア水などでアルカリ性となし、水酸化物を沈殿させる。得られた水酸化物を硫酸水溶液に溶解し、蒸発濃縮して沈殿を得ても良いし、蒸発乾固しても良い。塩基性の酸化物を原料として用いる場合は濃厚な硫酸水溶液に溶解させ、その溶液を濃縮する。得られた固体を乾燥する。乾燥温度は100℃から130℃が良い。得られた乾燥体は粉砕し粒度を揃えるか、更に粉砕し成型する。その後、250℃以上の条件で空気焼成する。好ましくは300℃以上、更に好ましくは350 ℃以上1200℃以下が良い。焼成時間は温度にもよるが1時間以上5 0時間程度で、好ましくは2時間以上24時間程度である。高温での長時間焼成は結晶化を促進することがあり、経済的に意味がない。短時間では効果が薄い。
【0010】
添加する金属は触媒調製時だけではなく焼成後の硫酸塩触媒に更にCe、Y、希土類元素、Cr、Fe、Co、Niからなる群より選ばれた少なくとも1種の元素を添加し含有しても良い。特にCe、La、Yは好ましい。添加金属塩は水酸化物、硝酸塩、塩化物、硫酸塩、リン酸塩などが他のものに比べて安価であり好ましい。添加量は硫黄1 g 原子に対し1g原子以下であり、好ましくは0.5g原子以下である。より好ましくは0.3 g 原子以下である。
【0011】
得られた触媒は塩の種類及び調製方法や条件により物性は異なる。例えば硫酸アルミニウムの場合、調製直後のBET表面積は20m2/g以上、好ましくは40m2/g以上である。XRDで観測するとAl2(SO4)3のピークが見える。調製方法により一部アモルファスの場合がある。
【0012】
次に本発明の供給ガスの組成について次に詳細に述べる。
まず、地球温暖化ガスの割合は0.01mol%から50mol%が好ましい。更に好ましくは0.05mol% から30mol%である。あまり少なすぎると経済的に問題で、多すぎると未反応が多くなり、触媒劣化を促進する。地球温暖化ガスは1種類でなくても良く、数種が含まれていても良い。
【0013】
地球温暖化ガスを含む供給ガス中には水蒸気が必要で、その割合は、供給基準で0.1mol%以上である。更に好ましくは5mol%以上70mol%以下である。5mol%より少なすぎると炭酸ガスへの選択率が低下し寿命劣化が早くあらわれる場合がある。一方70mol%より多すぎると経済的に不利になる。場合によっては、酸素を供給しても良い。地球温暖化ガスの種類と処理量及び反応温度によるが、酸素は供給基準で30mol%以下が好ましい。あまり多すぎると触媒の結晶化を促進して比表面積が小さくなり活性が低下する。
【0014】
酸素源として空気を用いると窒素が同伴されるが、問題にはならない。場合によっては、発熱反応なので、希釈ガスとして効果を示すことが期待される。更に積極的に分解後生成した炭酸ガスを反応系に循環することも可能である。その他、ヘリウム、アルゴンを用いることもできる。
【0015】
供給比率は基質の種類、処理量、温度などで変わるが、一般的には地球温暖化ガス:酸素:水蒸気(mol% )=1:1〜70:1〜500で、好ましくは地球温暖化ガス:酸素:水蒸気(mol%)=1:1〜40:1〜150である。
【0016】
本発明における分解反応条件について説明する。分解反応温度は分解すべき地球温暖化ガスの種類によるが、高温での分解は触媒寿命が急激に低下する傾向にあるので経済的でない。また、低温すぎると分解しない原料の割合が増加するので300℃以上1200℃以下が好ましい。更に好ましくは400℃から1000℃以下である。最も好ましいのは400℃以上850℃以下である。
【0017】
触媒当たりの供給ガス量である空間速度(space velocity)は10リッターGAS/リッター触媒・hr(以下50/hrと記す)から10000/hrが適当で、より好ましくは100/hrから5000/hrである。
【0018】
反応の形式は気相流通固定床が一般的であるが、流動層形式でも良い。反応器の材質は、処理量と原料種類によるが、少ない処理量であればS U S316管でも可能であるが、好ましくはインコネル、モネル、ハステロイC、ニッケルなどを用いる方が良い。
【0019】
連続流通方式で長時間反応させると、触媒はわずかながらも活性低下し、転化率が低下してくる。その場合、反応温度や触媒時間を調整し転化率を一定に保つことは有効な手段である。酸素量を制御する方法もありえる。
【0020】
【実施例】
以下に本発明の実施例を示すが、何ら本発明を限定するものではない。
【0021】
触媒調製例1(硫酸アルミニウムの調製法)
室温において、2リッタービーカーに2Nの硫酸水溶液を取り、これに水酸化アルミニウムを徐々に加えて完全に溶解した。この水溶液にアンモニア水を加えpH8.5に調整した。この溶液をホットプレート上で200℃程度で蒸発乾固した。得られた固形物を600℃の温度にて5時間、空気焼成し14から32メッシュに整粒し触媒として用いた。比表面積は20m2/g。XRDではAl2((SO4)3であることがわかった。
【0022】
触媒調製例2〜12(硫酸塩の調製)
触媒調製例2では、オキシ硝酸ジルコニウムを純水に溶解した水溶液にアンモニア水を加え、水酸化ジルコニウムを沈殿させ、固形物を濾別する。この固形物の一部を取り、秤量してから800℃で5時間焼成してジルコニアとなし、秤量して、水酸化ジルコニウム中のZrの量を決定する。この水酸化ジルコニウムを小過剰の1M硫酸と反応させ硫酸ジルコニウムの水溶液となす。この水溶液のpHを8.5に調整した後、蒸発乾固した。同様な方法で触媒調製例3では水酸化マグネシウムと硫酸からMgSO4を、触媒調製例4では水酸化カルシウムから同様にCaSO4を調製した。触媒調製例5,6では同様にSrSO4、BaSO4を調製した。触媒調製例7,8では酸化物を16M硫酸に溶解し、その後は調製例1と同様にCe2(SO4)3、La2(SO4)3を調製した。調製例9〜11では市販のMnSO4・5水和物、Fe(SO4)の水和物、Cr2(SO4)3の水和物を400℃で5時間空気焼成して調製した。調製例12では市販のCoSO4・7水和物を500℃で5時間空気焼成した。
【0023】
表1に触媒調製例13〜16(複合硫酸塩の調製)を示す。
表1の各例は、出発原料に2種類の硝酸塩Aと硝酸塩Bを所定比率で用いて水酸化物を作った以外は実施例1及び2に準じた。
【0024】
【表1】

Figure 0004300258
【0025】
実施例1〜14(反応例)
反応は常圧固定床流通型装置を用いた。反応管は内径16mmのステンレス管に内径13mmのステンレス管を連結させて使用した。窒素、酸素、塩化フッ化炭素のジクロロジフルオロメタン(CCl2F2、CFC12)の3種ガスはミキサーで混合され、反応管中の触媒層に送り込んだ。水はマイクロフィーダで注入した。反応後のガスはまず分解生成した酸を酸トラップ(ガス洗浄瓶で水を満たしてある)で捕捉し、酸除去したガスはTCDガスクロマトグラフィーにて分析した。
【0026】
触媒調製例1〜11にて調製した触媒を4.50gまたは9.00g仕込み、供給ガス組成は(CCl22 0.5 mol%、H2Oは57.6mol%、残りは空気) とした。生成物はほとんどの場合、炭酸ガスと未反応物しか検出できなかったことから、最終的には
CCl22+2H2O→CO2+2HF+2HCl
で分解が進行したものと考えられる。
【0027】
実施例1(CCl2F2の分解) 触媒調製例1触媒4.50gを用いて、0.50モル%のCCl2F2,57.6モル%の水蒸気,残部空気の混合ガスを40cm3/minで供給したときの反応結果は表2のようになった。
【0028】
【表2】
Figure 0004300258
【0029】
実施例2(CCl2F2の分解) 触媒調製例2触媒4.50gを用いて、0.50モル%のCCl2F2,57.6モル%の水蒸気,残部空気の混合ガスを40cm3/minで供給したときの反応結果は表3のようになった。
【0030】
【表3】
Figure 0004300258
【0031】
実施例3(CCl2F2の分解) 触媒調製例3触媒4.50gを用いて、0.50モル%のCCl2F2,57.6モル%の水蒸気,残部空気の混合ガスを40cm3/minで供給したときの反応結果は表4のようになった。
【0032】
【表4】
Figure 0004300258
【0033】
実施例4(CCl2F2の分解) 触媒調製例4触媒4.50gを用いて、0.50モル%のCCl2F2,57.6モル%の水蒸気,残部空気の混合ガスを40cm3/minで供給したときの反応結果は表5のようになった。
【0034】
【表5】
Figure 0004300258
【0035】
実施例5(CCl2F2の分解) 触媒調製例5触媒4.50gを用いて、0.50モル%のCCl2F2,57.6モル%の水蒸気,残部空気の混合ガスを40cm3/minで供給したときの反応結果は表6のようになった。
【0036】
【表6】
Figure 0004300258
【0037】
実施例6(CCl2F2の分解) 触媒調製例6触媒4.50gを用いて、0.50モル%のCCl2F2,57.6モル%の水蒸気,残部空気の混合ガスを40cm3/minで供給したときの反応結果は表7のようになった。
【0038】
【表7】
Figure 0004300258
【0039】
実施例7(CCl2F2の分解) 触媒調製例7触媒4.50gを用いて、0.50モル%のCCl2F2,57.6モル%の水蒸気,残部空気の混合ガスを40cm3/minで供給したときの反応結果は表8のようになった。
【0040】
【表8】
Figure 0004300258
【0041】
実施例8(CCl2F2の分解) 触媒調製例8触媒4.50gを用いて、0.50モル%のCCl2F2,57.6モル%の水蒸気,残部空気の混合ガスを40cm3/minで供給したときの反応結果は表9のようになった。
【0042】
【表9】
Figure 0004300258
【0043】
実施例9(CCl2F2の分解) 触媒調製例9触媒4.50gを用いて、4.50gを用いて、0.50モル%のCCl2F2,57.6モル%の水蒸気,残部空気の混合ガスを40cm3/minで供給したときの反応結果は以下の表10のようになった。
【0044】
【表10】
Figure 0004300258
【0045】
実施例10(CCl2F2の分解) 触媒調製例10触媒4.50gを用いて、0.50モル%のCCl2F2,57.6モル%の水蒸気,残部空気の混合ガスを40cm3/minで供給したときの反応結果は以下の表11のようになった。
【0046】
【表11】
Figure 0004300258
【0047】
実施例11(CCl2F2の分解) 触媒調製例11触媒4.50gを用いて、0.50モル%のCCl2F2,57.6モル%の水蒸気,残部空気の混合ガスを40cm3/minで供給したときの反応結果は以下の表のようになった。
で供給したときの反応結果は以下の表12のようになった。
【0048】
【表12】
Figure 0004300258
【0049】
実施例12(CCl2F2の分解) 触媒調製例12触媒4.50gを用いて、0.50モル%のCCl2F2,57.6モル%の水蒸気,残部空気の混合ガスを40cm3/minで供給したときの反応結果は以下の表13のようになった。
【0050】
【表13】
Figure 0004300258
【0051】
実施例13(CF4の分解) 触媒調製例1触媒4.50gを用いて、0.50モル%のCF4,57.6モル%の水蒸気,残部空気の混合ガスを40.1cm 3 /minで供給したときの反応結果は表14のようになった。
【0052】
【表14】
Figure 0004300258
【0053】
実施例14(CF4の分解) 触媒調製例2触媒4.50gを用いて、0.50モル%のCF4,57.6モル%の水蒸気,残部空気の混合ガスを40.1 cm3/minで供給したときの反応結果は表15のようになった。
【0054】
【表15】
Figure 0004300258
【0055】
実施例15(CF3CHF2の分解) 触媒調製例2触媒9.00gを用いて、0.50モル%のCF3CHF2,20.1モル%の水蒸気,残部空気の混合ガスを69.7 cm3/minで供給したときの反応結果は表16のようになった。
【0056】
【表16】
Figure 0004300258
【0057】
実施例16(酸素の効果) 触媒調製例1触媒9.00gを用いて、反応温度400℃,全流速を69.7 cm3/min ,CF3CH2F濃度を0.50モル%,水蒸気濃度を20.1モル%で固定し、窒素をバランスガスとし、酸素濃度を変化させた時の反応結果を表17に示す。
【0058】
【表17】
Figure 0004300258
【0059】
実施例17(CF3CH2F濃度の効果) 触媒調製例1触媒9.00gを用いて、反応温度400℃,全流速を69.7 cm3/min ,水蒸気濃度を20.1モル%で固定し、窒素をバランスガスとし、CF3CH2F濃度を変化させた時の反応結果を表18に示す。
【0060】
【表18】
Figure 0004300258
【0061】
実施例18(水蒸気の効果) 触媒調製例1触媒9.00gを用いて、反応温度400℃,全流速を69.7 cm3/min ,CF3CH2F濃度を0.50モル%,酸素濃度を8.87モル%で固定し、窒素をバランスガスとし、水蒸気濃度を変化させた時の反応結果を表19に示す。
【0062】
【表19】
Figure 0004300258
【0063】
実施例1(触媒作用)
実施例1,2の最終温度で3時間反応を行った後、触媒を取り出したところ、XRDで見る限り変化は見られず、AlF3、ZrF4の結晶は全く見られなかった。
【0064】
実施例20(HFCガスとCF4の混合ガス)
CCl2F2とCCl3Fの混合物(モル比1:1)及び窒素ガスの代わりに炭酸ガスを使用した以外は実施例1同様に反応分解した。500℃で混合物の転化率は100%であった。
【0065】
実施例21(NF3の分解)
CCl2F2の代わりにNF3を、窒素の代わりにヘリウムを使用した以外は実施例1と同様にして反応を行った。300℃において転化率は100%に達した。生成ガスの中には窒素ガスの他に20%のNOが生成した。
【0066】
【発明の効果】
本発明の地球温暖化ガスの接触分解法よれば、地球温暖化ガスを水蒸気、場合によっては酸素の存在下で、硫酸塩触媒を用いることで、該硫酸塩触媒の分解活性能を高め地球温暖化ガス分解反応を効率良く実現し、しかも硫酸塩触媒自体の長寿命化を実現したものであり、工業的活用を有利に可能ならしめたものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for decomposing hydrogen, a compound composed of a halogen element and carbon, or a compound composed of hydrogen, a halogen element and nitrogen or sulfur (hereinafter referred to as global warming gas). More specifically, the present invention relates to a method for catalytically decomposing a global warming gas by decomposing the global warming gas in the gas phase with water vapor or water vapor and molecular oxygen in the presence of a specific catalyst.
[0002]
[Prior art]
Regarding the decomposition of the global warming gas, there is a combustion method (WO94 / 05399), and CF 4 is burned over a sufficient residence time. Improvement of the combustion apparatus (Japanese Patent Laid-Open No. 8-309147) has also been proposed, but it requires a problem of processing ability and expensive materials. Although the detonation method (Japanese Patent Laid-Open No. 6-5 4 9 2 5) has been proposed, it is suitable for complete decomposition, but there are problems in continuous mass processing. Other commonly developed methods include cement kiln combustion, plasma decomposition, supercritical water, and catalytic decomposition. Each has its own problems, and the cement kiln combustion method has regional characteristics and is not a general treatment facility. In the plasma decomposition method, the enlargement of the apparatus and the utility cost are generally problems. The supercritical water method is a high-temperature and high-pressure condition and has problems in terms of equipment and operation. The catalytic decomposition method is relatively low in temperature compared to the combustion method and is advantageous in terms of equipment. In addition, although it can be decomposed in a small amount and is easy on a small scale, improvement of the performance represented by the catalyst life is a major issue.
[0003]
Among the catalytic cracking methods of global warming gas, for example, as the catalytic cracking method of fluorine compound gas, JP-B-6104183 discloses fluorocarbons containing chlorine (C 2 C1 3 F 3 , C C1 2 F 2 , CHC1F 2 and CC1F 3) it is being degraded 100%, CF 4 is fluorinated carbon are described as showed no degradation activity at high temperatures in excess of 550 ° C.. It shows the difficulty as a decomposition catalyst.
[0004]
Proposals as decomposing agents have been made. In Japanese Patent Laid-Open No. 6135849, there is a method of treating a gas containing carbon fluoride with a treating agent in which an alkaline earth metal salt is supported on activated carbon. Japanese Patent Laid-Open No. 8257359 proposes reaction removal with a solid hydride. In JP-A-7116466 and JP-A-7321221, the carbon fluoride is decomposed at a high temperature of 1100 ° C. or more by further coexisting hydrogen fluoride with a decomposition agent. Since these decomposing agents must be consumed together with the treatment and replenished at least more than the treatment amount, it is needless to say that they are extremely uneconomical and unsuitable for mass treatment.
[0005]
[Problems to be solved by the invention]
The catalytic cracking method of global warming gas has the advantage that it is relatively low temperature compared to the combustion method and detonation method, and small equipment is possible, but the biggest problem is that it exhibits catalytic cracking activity and long life. A long catalyst was desired.
As a result of intensive studies in view of the above problems, the activity of the cracking catalyst for global warming gas was demonstrated and a long life was achieved under relatively low temperature conditions. The purpose is to propose a method.
[0006]
[Means for Solving the Problems]
In the reaction of decomposing a global warming gas such as carbon fluoride in the presence of water vapor or water vapor and molecular oxygen, hydrogen fluoride is by-produced. Most of the conventional catalysts used in catalytic cracking methods are mainly composed of metal oxides, but the free energy of formation of metal fluorides is negatively greater than the free energy of formation of metal oxides. The metal oxide gradually changes to fluoride.
As a result of diligent research in order to solve the above-mentioned problems, the present invention has proved that the use of sulfate alone as a catalyst in a reaction in which a fluorine compound gas is decomposed in the gas phase in the presence of water vapor or water vapor and molecular oxygen leads to global warming. This is a catalytic cracking method of global warming gas that efficiently and efficiently catalytically decomposes gasified gas, and its features are as follows.
(1) An atmosphere in which water vapor or water vapor and molecular oxygen are present in hydrogen, a compound composed of a halogen element and carbon, or a compound composed of hydrogen, a halogen element and nitrogen or sulfur (hereinafter referred to as a global warming gas). And when decomposing the global warming gas in the gas phase using a catalyst at a predetermined temperature for decomposition reaction,
The concentration of the global warming gas is 0.01 mol% to 70 mol%, the water concentration is 10 mol% to 70 mol%, the concentration of molecular oxygen is 50 mol% or less, and the temperature for decomposition reaction is 250 to 1000 ° C. As the catalyst, a catalyst comprising a sulfate of at least one element selected from the group consisting of aluminum, boron, Ca, Sr, zirconium , yttrium, rare earth metal, chromium, manganese, iron, cobalt, nickel is used. And a method for catalytically decomposing the global warming gas, comprising catalytically decomposing the global warming gas.
(2) In an atmosphere in which water vapor or water vapor and molecular oxygen are present in a compound comprising hydrogen, a halogen element and carbon, or a compound comprising hydrogen, a halogen element and nitrogen or sulfur (hereinafter referred to as a global warming gas). The method for catalytically decomposing a global warming gas as described in (1) above, wherein one or a plurality of mixed gases of carbon dioxide, oxygen, nitrogen, argon, helium, and air are mixed.
(3) The method for catalytically decomposing a global warming gas as described in (1) or (2) above, wherein the carbon number of the global warming gas is 1 to 6.
[0007]
Hereinafter, the method for catalytic decomposition of a global warming gas according to the present invention will be described in detail. As described above, the target global warming gas in the present invention refers to a compound composed of hydrogen or a halogen element (fluorine, bromine, iodine, chlorine) and carbon, or a compound composed of hydrogen or a halogen element and nitrogen or sulfur. Of these, compounds having 1 to 6 carbon atoms are preferred in terms of combustion efficiency. For example, tetrachloromethane (CCl 4 ), trichlorofluoromethane (CCl 3 F), dichlorodifluoromethane (CCl 2 F 2 ), chlorotrifluoromethane (CClF 3 ), hydrochlorodifluoromethane (CHClF 2 ), hydrotrifluoromethane ( CHF 3 ), terafluoromethane (CF 4 ), hexafluoroethane (C 2 F 6 ), terafluoroethane (C 2 F 4 ), octafluoropropane (C 3 F 8 ), hexafluoropropene (C 3 F 8 ), Decafluorobutane (C 4 F 10 ), cyclooctafluorobutane (C 4 F 8 ), octafluorobutene (C 4 F 8 ), other perfluoro compounds, and nitrogen fluoride (NF 3 ), 6 Such as sulfur fluoride (SF 6 ). These may be a single compound or a mixture, and may contain CFC (chlorofluorocarbon), HCFC (hydrochlorofluorocarbon) or HFC (hydrofluorocarbon) other than fluorocarbon.
[0008]
The sulfate catalyst used in the present invention will be described. Sulfate is at least one element selected from the group consisting of aluminum, boron, alkaline earth metals, titanium, zirconium, lanthanum, cerium, yttrium, rare earth metals, vanadium, niobium, chromium, manganese, iron, cobalt, nickel And a catalyst composed of an oxide of sulfur. Preferably, the sulfate as a main component is at least one or two or more complex species selected from the group consisting of aluminum sulfate, boron sulfate, titanium sulfate, zirconium sulfate, and chromium sulfate. The composite species refers to a composite of zirconium sulfate and titanium sulfate, a composite of aluminum sulfate and chromium sulfate, and the like. Particularly preferred are aluminum sulfate, zirconium sulfate and cerium sulfate.
[0009]
The preparation method of the sulfate catalyst may be a general precipitation method or evaporation to dryness method. For example, in the case of various salts, the aqueous solution (in the case of a plurality of raw material salts, a solution of each raw material salt) is made alkaline with ammonia water or the like to precipitate the hydroxide. The obtained hydroxide may be dissolved in an aqueous sulfuric acid solution and evaporated to concentrate to obtain a precipitate, or may be evaporated to dryness. When a basic oxide is used as a raw material, it is dissolved in a concentrated aqueous sulfuric acid solution, and the solution is concentrated. The resulting solid is dried. The drying temperature is preferably 100 ° C to 130 ° C. The obtained dried product is pulverized to uniform particle size, or further pulverized and molded. Thereafter, air firing is performed at 250 ° C. or higher. The temperature is preferably 300 ° C or higher, more preferably 350 ° C or higher and 1200 ° C or lower. Although depending on the temperature, the firing time is from 1 hour to 50 hours, preferably from 2 hours to 24 hours. Long firing at a high temperature may promote crystallization and is economically meaningless. Less effective in a short time.
[0010]
The metal to be added is added not only at the time of catalyst preparation but also by adding at least one element selected from the group consisting of Ce, Y, rare earth elements, Cr, Fe, Co, Ni to the sulfate catalyst after calcination. Also good. Ce, La, and Y are particularly preferable. As the additive metal salt, hydroxide, nitrate, chloride, sulfate, phosphate and the like are preferable because they are less expensive than others. The amount added is 1 g atom or less, preferably 0.5 g atom or less, per 1 g sulfur atom. More preferably, it is 0.3 g atom or less.
[0011]
The obtained catalyst has different physical properties depending on the kind of salt and the preparation method and conditions. For example, in the case of aluminum sulfate, the BET surface area immediately after preparation is 20 m 2 / g or more, preferably 40 m 2 / g or more. When observed with XRD, the peak of Al 2 (SO 4 ) 3 is visible. Depending on the preparation method, it may be partially amorphous.
[0012]
Next, the composition of the supply gas of the present invention will be described in detail.
First, the proportion of global warming gas is preferably 0.01 mol% to 50 mol%. More preferably, it is 0.05 mol% to 30 mol%. If the amount is too small, it is economically problematic. If the amount is too large, unreacted reactions increase and catalyst deterioration is promoted. The global warming gas may not be one kind, and several kinds may be included.
[0013]
Water vapor is required in the supply gas including the global warming gas, and the ratio is 0.1 mol% or more based on the supply standard. More preferably, it is 5 mol% or more and 70 mol% or less . If the amount is less than 5 mol% , the selectivity to carbon dioxide gas decreases, and the life deterioration may occur quickly. On the other hand, if it is more than 70 mol% , it is economically disadvantageous. In some cases, oxygen may be supplied. Depending on the type of global warming gas, the amount of treatment, and the reaction temperature, oxygen is preferably 30 mol% or less on a supply basis. If the amount is too large, crystallization of the catalyst is promoted, the specific surface area is reduced, and the activity is lowered.
[0014]
When air is used as the oxygen source, nitrogen is entrained, but this is not a problem. In some cases, since it is an exothermic reaction, it is expected to be effective as a diluent gas. It is also possible to circulate the carbon dioxide gas generated after active decomposition to the reaction system. In addition, helium and argon can be used.
[0015]
The supply ratio varies depending on the type of substrate, the amount of treatment, the temperature, etc., but in general, global warming gas: oxygen: water vapor (mol%) = 1: 1 to 70: 1 to 500, preferably global warming gas : Oxygen: water vapor (mol%) = 1: 1 to 40: 1 to 150.
[0016]
The decomposition reaction conditions in the present invention will be described. Although the decomposition reaction temperature depends on the kind of global warming gas to be decomposed, decomposition at a high temperature is not economical because the catalyst life tends to decrease rapidly. Moreover, since the ratio of the raw material which does not decompose | disassemble will increase when too low temperature, 300 to 1200 degreeC is preferable. More preferably, it is 400 to 1000 ° C. Most preferred is 400 ° C. or higher and 850 ° C. or lower.
[0017]
The space velocity, which is the amount of gas supplied per catalyst, is suitably from 10 liter GAS / liter catalyst · hr (hereinafter referred to as 50 / hr) to 10,000 / hr, more preferably from 100 / hr to 5000 / hr. is there.
[0018]
The reaction format is generally a gas-phase circulation fixed bed, but may be a fluidized bed format. The material of the reactor depends on the processing amount and the type of raw material, but if it is a small processing amount, a SU S316 tube can be used, but it is preferable to use Inconel, Monel, Hastelloy C, nickel or the like.
[0019]
When the reaction is continued for a long time in the continuous flow system, the activity of the catalyst slightly decreases, and the conversion rate decreases. In that case, adjusting the reaction temperature and the catalyst time to keep the conversion rate constant is an effective means. There can also be a method of controlling the amount of oxygen.
[0020]
【Example】
Examples of the present invention are shown below, but the present invention is not limited at all.
[0021]
Catalyst preparation example 1 (Preparation method of aluminum sulfate)
At room temperature, 2N sulfuric acid aqueous solution was taken in a 2 liter beaker, and aluminum hydroxide was gradually added thereto to completely dissolve it. Aqueous ammonia was added to this aqueous solution to adjust the pH to 8.5. This solution was evaporated to dryness at about 200 ° C. on a hot plate. The obtained solid was air calcined at a temperature of 600 ° C. for 5 hours to adjust the particle size to 14 to 32 mesh and used as a catalyst. Specific surface area is 20 m 2 / g. XRD showed Al 2 ((SO 4 ) 3 .
[0022]
Catalyst preparation examples 2 to 12 (preparation of sulfate)
In Catalyst Preparation Example 2, ammonia water is added to an aqueous solution in which zirconium oxynitrate is dissolved in pure water to precipitate zirconium hydroxide, and the solid matter is separated by filtration. A portion of this solid is taken, weighed and then calcined at 800 ° C. for 5 hours to form zirconia and weighed to determine the amount of Zr in the zirconium hydroxide. This zirconium hydroxide is reacted with a small excess of 1 M sulfuric acid to form an aqueous solution of zirconium sulfate. The pH of this aqueous solution was adjusted to 8.5 and then evaporated to dryness. In the same manner, MgSO 4 was prepared from magnesium hydroxide and sulfuric acid in Catalyst Preparation Example 3, and CaSO 4 was similarly prepared from calcium hydroxide in Catalyst Preparation Example 4. In Catalyst Preparation Examples 5 and 6, SrSO 4 and BaSO 4 were similarly prepared. In Catalyst Preparation Examples 7 and 8, the oxide was dissolved in 16M sulfuric acid, and then Ce 2 (SO 4 ) 3 and La 2 (SO 4 ) 3 were prepared in the same manner as Preparation Example 1. In Preparation Examples 9 to 11, commercially available MnSO 4 · 5 hydrate, Fe 2 (SO 4 ) 3 hydrate, and Cr 2 (SO 4 ) 3 hydrate were prepared by air calcination at 400 ° C. for 5 hours. did. In Preparation Example 12, commercially available CoSO 4 · 7 hydrate was air calcined at 500 ° C. for 5 hours.
[0023]
Table 1 shows catalyst preparation examples 13 to 16 (preparation of composite sulfate).
Each example in Table 1 was in accordance with Examples 1 and 2 except that hydroxides were prepared using two types of nitrate A and nitrate B in a predetermined ratio as starting materials.
[0024]
[Table 1]
Figure 0004300258
[0025]
Examples 1 to 14 (reaction example)
For the reaction, an atmospheric pressure fixed bed flow type apparatus was used. The reaction tube was used by connecting a stainless steel tube having an inner diameter of 13 mm to a stainless steel tube having an inner diameter of 16 mm. Three gases of nitrogen, oxygen and chlorofluorocarbon dichlorodifluoromethane (CCl 2 F 2 , CFC12) were mixed by a mixer and sent to the catalyst layer in the reaction tube. Water was injected with a microfeeder. After the reaction, the decomposed acid was first captured by an acid trap (filled with water in a gas washing bottle), and the acid-removed gas was analyzed by TCD gas chromatography.
[0026]
The catalyst prepared in Catalyst Preparation Examples 1 to 11 was charged with 4.50 g or 9.00 g, and the feed gas composition was (CCl 2 F 2 0.5 mol%, H 2 O 57.6 mol%, the rest being air). In most cases, the product could only detect carbon dioxide and unreacted material, so in the end
CCl 2 F 2 + 2H 2 O → CO 2 + 2HF + 2HCl
It is considered that the decomposition progressed.
[0027]
Example 1 (Decomposition of CCl 2 F 2 ) Catalyst Preparation Example 1 Using 4.50 g of catalyst, a mixed gas of 0.50 mol% CCl 2 F 2 , 57.6 mol% water vapor and the balance air was supplied at 40 cm 3 / min. The results of the reaction were as shown in Table 2.
[0028]
[Table 2]
Figure 0004300258
[0029]
With Example 2 (degradation of CCl2 F2) Catalyst Preparation Example 2 Catalyst 4.50 g, reaction when supplied 0.50 mol% of CCl 2 F 2, 57.6 mol% of water vapor, a mixed gas of balance air at 40 cm 3 / min The results are shown in Table 3.
[0030]
[Table 3]
Figure 0004300258
[0031]
Example 3 (Decomposition of CCl 2 F 2 ) Catalyst Preparation Example 3 Using 4.50 g of catalyst, a mixed gas of 0.50 mol% of CCl 2 F 2 , 57.6 mol% of water vapor and the remaining air was supplied at 40 cm 3 / min. The results of the reaction were as shown in Table 4.
[0032]
[Table 4]
Figure 0004300258
[0033]
Example 4 (Decomposition of CCl 2 F 2 ) Catalyst Preparation Example 4 Using 4.50 g of the catalyst, a mixed gas of 0.50 mol% CCl 2 F 2 , 57.6 mol% water vapor and the balance air was supplied at 40 cm 3 / min. The reaction results were as shown in Table 5.
[0034]
[Table 5]
Figure 0004300258
[0035]
Example 5 (Decomposition of CCl 2 F 2 ) Catalyst Preparation Example 5 Using 4.50 g of the catalyst, a mixed gas of 0.50 mol% CCl 2 F 2 , 57.6 mol% water vapor and the balance air was supplied at 40 cm 3 / min. The reaction results were as shown in Table 6.
[0036]
[Table 6]
Figure 0004300258
[0037]
Example 6 (Decomposition of CCl 2 F 2 ) Catalyst Preparation Example 6 Using 4.50 g of catalyst, a mixed gas of 0.50 mol% of CCl 2 F 2 , 57.6 mol% of water vapor and the remaining air was supplied at 40 cm 3 / min. The reaction results were as shown in Table 7.
[0038]
[Table 7]
Figure 0004300258
[0039]
Example 7 (Decomposition of CCl 2 F 2 ) Catalyst Preparation Example 7 Using 4.50 g of catalyst, a mixed gas of 0.50 mol% CCl 2 F 2 , 57.6 mol% water vapor and the balance air was supplied at 40 cm 3 / min. The reaction results were as shown in Table 8.
[0040]
[Table 8]
Figure 0004300258
[0041]
Example 8 (Decomposition of CCl 2 F 2 ) Catalyst Preparation Example 8 Using 4.50 g of catalyst, a mixed gas of 0.50 mol% CCl 2 F 2 , 57.6 mol% water vapor and the balance air was supplied at 40 cm 3 / min. The reaction results were as shown in Table 9.
[0042]
[Table 9]
Figure 0004300258
[0043]
Example 9 (Decomposition of CCl 2 F 2 ) Catalyst Preparation Example 9 Using 4.50 g of catalyst, using 4.50 g, a mixed gas of 0.50 mol% CCl 2 F 2 , 57.6 mol% water vapor and the balance air was 40 cm. The reaction results when fed at 3 / min are as shown in Table 10 below.
[0044]
[Table 10]
Figure 0004300258
[0045]
Example 10 (Decomposition of CCl 2 F 2 ) Catalyst Preparation Example 10 Using 4.50 g of catalyst, a mixed gas of 0.50 mol% of CCl 2 F 2 , 57.6 mol% of water vapor and the balance air was supplied at 40 cm 3 / min. The reaction results were as shown in Table 11 below.
[0046]
[Table 11]
Figure 0004300258
[0047]
Example 11 (Decomposition of CCl 2 F 2 ) Catalyst Preparation Example 11 Using 4.50 g of catalyst, a mixed gas of 0.50 mol% of CCl 2 F 2 , 57.6 mol% of water vapor and the balance air was supplied at 40 cm 3 / min. The reaction results were as shown in the table below.
Table 12 below shows the reaction results when fed in
[0048]
[Table 12]
Figure 0004300258
[0049]
Example 12 (Decomposition of CCl 2 F 2 ) Catalyst Preparation Example 12 Using 4.50 g of catalyst, a mixed gas of 0.50 mol% of CCl 2 F 2 , 57.6 mol% of water vapor and the balance air was supplied at 40 cm 3 / min. The reaction results were as shown in Table 13 below.
[0050]
[Table 13]
Figure 0004300258
[0051]
Example 13 (Decomposition of CF 4 ) Catalyst Preparation Example 1 Reaction when 4.50 g of catalyst is used and a mixed gas of 0.50 mol% CF 4 , 57.6 mol% water vapor and the balance air is supplied at 40.1 cm 3 / min The results are shown in Table 14.
[0052]
[Table 14]
Figure 0004300258
[0053]
Example 14 (Decomposition of CF 4 ) Catalyst Preparation Example 2 Reaction result when 4.50 g of catalyst was used and a mixed gas of 0.50 mol% CF 4 , 57.6 mol% water vapor and the balance air was supplied at 40.1 cm 3 / min Was as shown in Table 15.
[0054]
[Table 15]
Figure 0004300258
[0055]
Example 15 (Decomposition of CF 3 CHF 2 ) Catalyst Preparation Example 2 Using 9.00 g of catalyst, 0.50 mol% of CF 3 CHF 2 , 20.1 mol% of water vapor and the remaining air mixed gas were supplied at 69.7 cm 3 / min. The reaction results obtained are as shown in Table 16.
[0056]
[Table 16]
Figure 0004300258
[0057]
Using Example 16 (oxygen effect) Catalyst Preparation Example 1 Catalyst 9.00 g, reaction temperature 400 ° C., the total flow rate of 69.7 cm3 / min, CF 3 CH 2 F concentration 0.50 mol%, 20.1 mol% of water vapor concentration Table 17 shows the reaction results when the oxygen concentration was changed with nitrogen being used as the balance gas.
[0058]
[Table 17]
Figure 0004300258
[0059]
Example 17 (Effect of CF 3 CH 2 F Concentration) Catalyst Preparation Example 1 Using 9.00 g of catalyst, fixing a reaction temperature of 400 ° C., a total flow rate of 69.7 cm 3 / min, a water vapor concentration of 20.1 mol%, and nitrogen Table 18 shows the reaction results when the balance gas is used and the CF3CH2F concentration is changed.
[0060]
[Table 18]
Figure 0004300258
[0061]
Example 18 (Effect of water vapor) Catalyst Preparation Example 1 Using 9.00 g of catalyst, reaction temperature of 400 ° C., total flow rate of 69.7 cm 3 / min, CF 3 CH 2 F concentration of 0.50 mol%, oxygen concentration of 8.87 mol% Table 19 shows the reaction results when the water vapor concentration was changed with nitrogen as the balance gas.
[0062]
[Table 19]
Figure 0004300258
[0063]
Example 1 9 (Catalysis)
After the reaction for 3 hours at the final temperature of Examples 1 and 2, the catalyst was taken out. As a result of XRD, no change was observed, and AlF 3 and ZrF 4 crystals were not observed at all.
[0064]
Example 20 (mixed gas of HFC gas and CF4)
The reaction was decomposed in the same manner as in Example 1 except that a mixture of CCl 2 F 2 and CCl 3 F (molar ratio 1: 1) and carbon dioxide gas were used instead of nitrogen gas. At 500 ° C., the conversion of the mixture was 100%.
[0065]
Example 21 (Decomposition of NF 3 )
The reaction was performed in the same manner as in Example 1 except that NF 3 was used instead of CCl 2 F 2 and helium was used instead of nitrogen. At 300 ° C, the conversion reached 100%. In addition to nitrogen gas, 20% NO was produced in the product gas.
[0066]
【The invention's effect】
According to the catalytic cracking method of a global warming gas of the present invention, the use of a sulfate catalyst in the presence of water vapor and possibly oxygen as the global warming gas increases the decomposition activity of the sulfate catalyst. As a result, the gasification gas decomposition reaction is efficiently realized, and the life of the sulfate catalyst itself is extended, and industrial utilization can be advantageously made possible.

Claims (3)

水素、ハロゲン元素と炭素よりなる化合物、又は水素、ハロゲン元素と窒素または硫黄からなる化合物(以下地球温暖化ガスと云う)に、水蒸気または水蒸気と分子状酸素を存在させた雰囲気にし且つ所定の分解反応用の温度で、触媒を用いて前記地球温暖化ガスを気相にて分解するに際して、
前記地球温暖化ガスの濃度を0.01mol%〜70mol%とし、前記水分濃度を10mol%〜70mol%とし、前記分子状酸素の濃度を50mol%以下とし、分解反応用温度を250〜1000℃とし、前記触媒として、アルミニウム、ホウ素、Ca、Sr、ジルコニウム、イットリウム、希土類金属、クロム、マンガン、鉄、コバルト、ニッケルからなる群より選ばれた少なくとも1種以上の元素の硫酸塩からなる触媒を用いて、前記地球温暖化ガスを接触分解することを特徴とする地球温暖化ガスの触媒分解方法。
Hydrogen, a compound composed of a halogen element and carbon, or a compound composed of hydrogen, a halogen element and nitrogen or sulfur (hereinafter referred to as a global warming gas) in an atmosphere in which water vapor or water vapor and molecular oxygen are present, and predetermined decomposition When cracking the global warming gas in the gas phase using a catalyst at the reaction temperature,
The concentration of the global warming gas is 0.01 mol% to 70 mol%, the water concentration is 10 mol% to 70 mol%, the concentration of molecular oxygen is 50 mol% or less, and the temperature for decomposition reaction is 250 to 1000 ° C. As the catalyst, a catalyst comprising a sulfate of at least one element selected from the group consisting of aluminum, boron, Ca, Sr, zirconium , yttrium, rare earth metal, chromium, manganese, iron, cobalt, nickel is used. And a method for catalytically decomposing the global warming gas, comprising catalytically decomposing the global warming gas.
水素、ハロゲン元素と炭素よりなる化合物、又は水素、ハロゲン元素と窒素または硫黄からなる化合物(以下地球温暖化ガスと云う)に、水蒸気または水蒸気と分子状酸素を存在させた雰囲気に、炭酸ガス、酸素、窒素、アルゴン、ヘリュウム、空気、の単独又は複数の混合ガスを混入することを特徴とする請求項1に記載の地球温暖化ガスの触媒分解方法。Carbon dioxide gas in an atmosphere in which water vapor or water vapor and molecular oxygen are present in a compound consisting of hydrogen, a halogen element and carbon, or a compound consisting of hydrogen, a halogen element and nitrogen or sulfur (hereinafter referred to as a global warming gas) 2. The method for catalytically decomposing a global warming gas according to claim 1, wherein a mixed gas of oxygen, nitrogen, argon, helium, or air is mixed. 前記地球温暖化ガスの炭素数が1から6であることを特徴とする請求項1又は請求項2に記載の地球温暖化ガスの触媒分解方法。The method for catalytic decomposition of a global warming gas according to claim 1 or 2, wherein the carbon number of the global warming gas is 1 to 6.
JP34571399A 1999-12-06 1999-12-06 Method for catalytic decomposition of global warming gas Expired - Fee Related JP4300258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34571399A JP4300258B2 (en) 1999-12-06 1999-12-06 Method for catalytic decomposition of global warming gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34571399A JP4300258B2 (en) 1999-12-06 1999-12-06 Method for catalytic decomposition of global warming gas

Publications (3)

Publication Number Publication Date
JP2001162139A JP2001162139A (en) 2001-06-19
JP2001162139A5 JP2001162139A5 (en) 2005-05-19
JP4300258B2 true JP4300258B2 (en) 2009-07-22

Family

ID=18378467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34571399A Expired - Fee Related JP4300258B2 (en) 1999-12-06 1999-12-06 Method for catalytic decomposition of global warming gas

Country Status (1)

Country Link
JP (1) JP4300258B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1297884A3 (en) * 2001-09-28 2003-04-16 Japan Pionics Co., Ltd. Treating agent and method for decomposition of fluorocarbons
JP4112845B2 (en) * 2001-11-13 2008-07-02 日本パイオニクス株式会社 Sulfur fluoride decomposition treatment agent and decomposition treatment method
JP2011045832A (en) * 2009-08-27 2011-03-10 Hitachi Ltd Fluorine compound decomposition catalyst

Also Published As

Publication number Publication date
JP2001162139A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
US6942841B2 (en) Process for treating fluorine compound-containing gas
KR100351211B1 (en) Chromium-based fluorinated catalyst, preparation method of the catalyst and fluorination method using the catalyst
CN102105423B (en) Process for preparing 2,3,3,3-tetrafluoropropene
CN102405203A (en) Process for preparation of 2,3,3,3-tetrafluoropropene
EP3792236A1 (en) Method for preparing 1,2-difluoroethylene and/or 1,1,2-trifluoroethane
CN102105422B (en) Process for preparing 2,3,3,3-tetrafluoropropene and 1,3,3,3-tetrafluoropropene
US20060024226A1 (en) Catalyst and method for decomposition of perfluoro-compound in waste gas
EP2417086B1 (en) Process for preparing 3,3,3-trifluoropropene
JPH10323537A (en) Catalytic cracking method of prefluoro compound
JPH11171806A (en) Production of pentafluoroethane, and fluorinated catalyst and its production
KR101867507B1 (en) Acid-resistant catalyst for decomposing perfluorinated compounds and use thereof
CN1157755A (en) Bulk catalysts based on chromium oxide, their process of preparation and their application in fluorination of halogenated hydrocarbons
JP3412165B2 (en) Fluorination catalyst and method for fluorination of halogenated hydrocarbon
KR101343471B1 (en) Fluorination catalyst and process to produce fluorinated hydrocarbons
CN102933532A (en) Catalyst life improvement for vapor phase manufacture of 1-chloro-3,3,3-trifluoropropene
JP2008231096A (en) Catalyst for synthesis of cf3i and cf3cf2i
CN1177522A (en) Catalyst for fluorination of halogenated hydrocarbon
US6162957A (en) Catalytic decomposition of perfluoro-compound
JP3786441B2 (en) Reaction method using phosphate catalyst
CN1035323C (en) Process for the manufacture of 1,1,1,2-tetrafluoro-2-chloroethane and of pentafluoroethane
JP4300258B2 (en) Method for catalytic decomposition of global warming gas
JP2001162139A5 (en)
JP3900579B2 (en) Decomposition method of hydrofluorocarbon
KR20180121730A (en) Acid-resistant catalyst for decomposing perfluorinated compounds having increased forming strength and use thereof
JP3900566B2 (en) Catalytic cracking of fluorinated hydrocarbons

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090225

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees