JP2006339873A - 薄膜圧電共振器、フィルタ及び電圧制御発振器 - Google Patents

薄膜圧電共振器、フィルタ及び電圧制御発振器 Download PDF

Info

Publication number
JP2006339873A
JP2006339873A JP2005160242A JP2005160242A JP2006339873A JP 2006339873 A JP2006339873 A JP 2006339873A JP 2005160242 A JP2005160242 A JP 2005160242A JP 2005160242 A JP2005160242 A JP 2005160242A JP 2006339873 A JP2006339873 A JP 2006339873A
Authority
JP
Japan
Prior art keywords
cavity
electrode
thin film
film piezoelectric
piezoelectric resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005160242A
Other languages
English (en)
Inventor
Naoko Yanase
直子 梁瀬
Kenya Sano
賢也 佐野
Yasuaki Yasumoto
恭章 安本
Ryoichi Ohara
亮一 尾原
Kazuhiko Itaya
和彦 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005160242A priority Critical patent/JP2006339873A/ja
Priority to DE200660002656 priority patent/DE602006002656D1/de
Priority to EP20060251391 priority patent/EP1732213B1/en
Priority to US11/376,266 priority patent/US7525399B2/en
Priority to CNB2006100653573A priority patent/CN100530955C/zh
Priority to KR20060026306A priority patent/KR100758093B1/ko
Publication of JP2006339873A publication Critical patent/JP2006339873A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42FSHEETS TEMPORARILY ATTACHED TOGETHER; FILING APPLIANCES; FILE CARDS; INDEXING
    • B42F13/00Filing appliances with means for engaging perforations or slots
    • B42F13/02Filing appliances with means for engaging perforations or slots with flexible or resilient means
    • B42F13/06Filing appliances with means for engaging perforations or slots with flexible or resilient means with strips or bands
    • B42F13/08Filing appliances with means for engaging perforations or slots with flexible or resilient means with strips or bands of metal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02125Means for compensation or elimination of undesirable effects of parasitic elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/564Monolithic crystal filters implemented with thin-film techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor
    • H03H9/568Electric coupling means therefor consisting of a ladder configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42PINDEXING SCHEME RELATING TO BOOKS, FILING APPLIANCES OR THE LIKE
    • B42P2241/00Parts, details or accessories for books or filing appliances
    • B42P2241/20Protecting; Reinforcing; Preventing deformations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/025Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks comprising an acoustic mirror

Abstract

【課題】 空洞若しくは音響反射層上に配設される励振部の結晶性を向上することができ、励振部の容量値のばらつきを減少することができる薄膜圧電共振器及びフィルタを提供する。
【解決手段】 薄膜圧電共振器1において、第1の空洞21及び第2の空洞23を有する基板2と、第1の空洞21上に配設され、第1の電極4、第1の圧電体5及び第2の電極6を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部71と、第2の空洞23上に配設され、第3の電極4、第2の圧電体5及び第4の電極6を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部73とを備え、第1の励振部71端から第1の空洞21の開口端までの間の平均距離d1に対して、第2の励振部73端から第2の空洞23の開口端までの間の平均距離d2が異なる。
【選択図】 図1

Description

本発明は、薄膜圧電共振器、フィルタ及び電圧制御発振器に関し、特に圧電体薄膜の厚み方向の縦振動を利用する薄膜圧電共振器、この薄膜圧電共振器を備えたフィルタ及びこのフィルタが組み込まれた電圧制御発振器に関する。
移動体通信機或いはその内部の電圧制御発振器(Voltage Controlled Oscillator:以下、単に「VCO」という。)を構築する高周波フィルタ(RF)や中間周波数(IF)フィルタには、弾性表面波(Surface Acoustic Wave:以下、単に「SAW」という。)素子が使用されている。SAW素子の共振周波数は櫛型電極間距離に反比例するという関係があり、1GHzを超える周波数領域において櫛型電極間距離は1μm以下になる。このため、利用周波数の高周波数化への対応がSAW素子においては難しくなる傾向にある。
SAW素子に代わり、近年注目を集めている共振器として、薄膜圧電体の膜厚方向の縦振動モードを利用した薄膜圧電共振器がある。この薄膜圧電共振器はFBRA(Film Bulk Acoustic Resonator)或いはBAW(Bulk Acoustic Wave)素子等とも称せられている。この薄膜圧電共振器において、共振周波数は薄膜圧電体の音速及び膜厚によって定まる。通常、薄膜圧電体の膜厚が1μm〜2μmの場合に2GHzの共振周波数が得られ、薄膜圧電体の膜厚が0.4μm〜0.8μmの場合に5GHzの共振周波数が得られるので、近年の成膜技術においては数十GHzまでの高周波数化を実現することができる。
下記非特許文献1には、図39に示すように、薄膜圧電共振器101により構成された梯子型フィルタ102を移動体通信機のRFフィルタとして利用する技術が開示されている。梯子型フィルタ102は、入力端子Pinと出力端子Poutとの間に、複数個の薄膜圧電共振器101を直並列接続することにより構築されている。また、図40に示すように、薄膜圧電共振器101は、バリキャップ104及び増幅器105と組み合わせて移動体通信機のVCO103を構築することができる。
下記特許文献1には、現在、最も代表的な薄膜圧電共振器の構造並びにその製造方法が開示されており、この薄膜圧電共振器の製造方法は以下の通りである。まず最初に、シリコン(Si)基板表面に異方性エッチングを利用して窪みを形成し、引き続き基板上に犠牲層を形成する。犠牲層には、例えばホウ素及びリンをドープしたシリケートガラス(BPSG)層が使用されている。その後、Si基板表面が露出するまで犠牲層の表面を研磨し、犠牲層の表面が平坦化される。この結果、Si基板に予め形成した窪みには犠牲層を埋め込み、その周辺にはSi基板表面を露出することができる。引き続き、犠牲層上に下部電極、圧電体膜、上部電極のそれぞれが順次成膜される。その後、犠牲層に達するまで穴が穿けられ、この穴を通じて犠牲層を選択エッチングにより除去することによって、Si基板と下部電極との間に予め形成した窪みに相当する空洞(キャビティ)を形成する。これら一連の製造工程が終了すると、薄膜圧電共振器が完成する。
また、下記非特許文献2には、Siウェハ表面上に上下電極に挟まれる圧電体薄膜を形成し、Siウェハ裏面からシリコンディープリアクティブイオンエッチング(Si-Deep-RIE(Reactive Ion Etching))法により空洞を形成して、薄膜圧電共振器を製作する技術が開示されている。圧電体薄膜には酸化亜鉛(ZnO)や窒化アルミニウム(AlN)等が使用されている。
一方、下記非特許文献3においては、空洞に代えて音響反射層を設けた薄膜圧電共振器が開示されている。この薄膜圧電共振器の製造方法は以下の通りである。まず最初に、Si基板表面上に窪みを形成し、この基板表面上に音響インピーダンスの高い膜と低い膜とを交互に積層した音響反射層を形成する。引き続き、音響反射層が基板の窪みに埋設され、かつ基板表面が平坦になるまで音響反射層が研磨される。そして、この窪みに埋設された音響反射層上に下部電極、圧電体薄膜、上部電極のそれぞれを積層することにより、薄膜圧電共振器を完成させることができる。
特開2000−69594号公報 IEEE TRANSECTIONS ON MICROWAVE THEORY AND TECHNIQUES、VOL. 43、 NO.12、p.2933、DECEMBER 1995. Proc. IEEE Ultrasonics Symposium、pp. 969 - 972 (2002). IEEE MTT - S Digest TH5D - 4. pp. 2001 - 2004.
しかしながら、前述の薄膜圧電共振器、この薄膜圧電共振器により構成されたフィルタ並びにこのフィルタに構築された電圧制御発振器においては、以下の点について配慮がなされていなかった。
薄膜圧電共振器は、基板に配設された空洞上又は音響反射層上に下部電極、圧電体、上部電極のそれぞれを順次積層し、これら空洞又は音響反射層、下部電極、圧電体及び上部電極の重複領域を励振部とする構造を採用している。この励振部の平面形状や平面サイズに対する、空洞の開口形状や開口サイズ、又は音響反射層の平面の輪郭形状や輪郭サイズは、薄膜圧電共振器の製造プロセス条件の変化によって影響を受ける。つまり、製造プロセス条件に変化が発生すると、その変化前後に製造された各々の薄膜圧電共振器により構築されたフィルタの周波数通過特性にばらつきが発生する。
前述の図39に示す梯子型フィルタ102において、梯子段数、直並列の接続順序、各々の薄膜圧電共振器101の容量値、接続配線長等は、フィルタ機能の設計上重要なパラメータである。フィルタの入出力のインピーダンスは設計される回路の要求に合わせる必要があり、通常は50オームに設定されている。1つのフィルタを構成する薄膜圧電共振器101の個数や個々の容量値は、フィルタの回路設計上の要求から決まる。薄膜圧電共振器101の容量値は励振部の平面サイズ(平面面積)に比例し、梯子型フィルタ102は様々な励振部の平面サイズを有する薄膜圧電共振器101を組み合わせて構成されている。
梯子型フィルタ102の設計上、小さい容量値を有する薄膜圧電共振器101を組み合わせる場合、小さな平面サイズの励振部を有する薄膜圧電共振器101を組み合わせることは良策ではない。励振部の平面サイズが小さい場合、励振部の平面面積に対する周縁長の割合が大きくなる。周縁長の割合の増大は励振部の周辺から振動エネルギが逃げる割合を増大することに繋がり、平面面積が大きい励振部に対して平面面積が小さい励振部においては、エネルギ損失が増大し、共振特性が劣化する傾向にある。このような傾向を避けるためには、2倍の容量値を有する励振部(薄膜圧電共振器101)を直列に接続し、1つの薄膜圧電共振器101の励振部の平面面積が小さくなり過ぎないように、梯子型フィルタ102が設計されている。
逆に、大きい容量値を有する薄膜圧電共振器101を必要とする場合、振動エネルギが逃げる割合を小さくすることができるが、空洞上に励振部を支持する薄膜圧電共振器101は励振部を支持する機械的強度(膜強度)の不足に伴う破断の危険性や、撓みに伴う共振特性の劣化等を生じる。このような破断の危険性や振動特性の劣化を避けるためには、1/2倍の容量値を有する励振部(薄膜圧電共振器101)を並列に接続し、1つの薄膜圧電共振器101の励振部の平面面積が大きくなり過ぎないように、梯子型フィルタ102が設計されている。ところが、このようにフィルタ特性の設計上の要求や各々の薄膜圧電共振器101の特性上の要求に基づき、各々の励振部の容量値調整を行っても、励振部の平面面積にはばらつきが生じる。
薄膜圧電共振器101の構造上、空洞の開口サイズ又は音響反射層の輪郭サイズは、励振部の周辺から染み出す振動エネルギを十分に減衰する長さ以上に、励振部の平面サイズに比べて大きくする必要がある。最低限、一定の間隔を隔てて、励振部を取り囲むように、空洞又は音響反射層が設けられる。この場合、複数の薄膜圧電共振器101から構築される梯子型フィルタ102においては、薄膜圧電共振器101毎に開口サイズが異なる空洞又は輪郭サイズが異なる音響反射層を作製する。この結果、以下の問題点が発生する。
前述の特許文献1に開示されている薄膜圧電共振器101の製造プロセスにおいては、図41に示すように、基板110の開口サイズが異なる空洞111内に犠牲層112を埋設する平坦研磨処理後に、開口サイズが大きくなるに従い空洞111内の犠牲層112の表面の窪みが大きくなるディッシング(dishing)113が発生し易い。また、図42に示すように、開口サイズが小さくなるに従い空洞111内の犠牲層112及びその周辺の基板110表面が浸食されるエロージョン(erosion)114が発生し易い。ディッシング113やエロージョン114は犠牲層112の表面(基板110の表面)の平坦度を劣化し、犠牲層112の表面上に成膜される下部電極及び圧電体の結晶性が劣化する。
更に、犠牲層112を除去する工程においては、空洞111の開口サイズが異なることに伴い除去される犠牲層112の体積が異なるので、犠牲層112を取り除くエッチング時間が空洞112毎に異なり、エッチングの終点設定が難しい。更に、化学的な反応によりエッチングが進行する場合、梯子型フィルタ102のそれぞれの薄膜圧電共振器101の配置位置によってエッチャントの供給状況が変化し、薄膜圧電共振器101毎に犠牲層112のエッチング速度が異なる。具体的には、中心位置に配置された薄膜圧電共振器101の犠牲層112とその周囲に配置された薄膜圧電共振器101の犠牲層112との間においては、エッチャントの濃度に局所的なばらつきが発生し、双方の間のエッチング速度が異なる。このエッチング速度のばらつきによっても、エッチングの終点設定が難しく、すべての犠牲層112を取り除くためにはエッチングに過剰な時間を要する。
非特許文献2に開示されている薄膜圧電共振器101の製造プロセスにおいては、基板110に下部電極、圧電体、上部電極を積層し励振部を形成した後、励振部直下の基板110の裏面からSi-Deep-RIE法により空洞111を形成すると、エッチング時のマイクロローディング効果が発生し易い。このマイクロローディング効果は開口サイズが小さい空洞111内のエッチング速度が開口サイズが大きい空洞111内のエッチング速度に比べて遅くなる現象である。開口サイズが小さい空洞111内においてエッチングを完全に終了させる条件に設定した場合、開口サイズが大きい空洞111内においてはオーバーエッチング時間が長くなり、図43に示すように、ストッパ層115の真上の横掘れすなわちノッチ116が発生し易くなる。
また、ウエットエッチングと同様に空洞111の配設密度によってもエッチング速度が変化し、梯子型フィルタ102においては、薄膜圧電共振器101の空洞111内の犠牲層とその周囲に配設された他の薄膜圧電共振器101の空洞111内の犠牲層との間のエッチング速度が異なる。このような場合においても、空洞111の配設位置によってオーバーエッチング時間の増加を招き、他の薄膜圧電共振器101の空洞111内にノッチ116が発生する。ノッチ116の発生は空洞111の開口サイズを変化させ、励振部(圧電体キャパシタ)に付加される寄生容量値を変化させてしまうので、梯子型フィルタ102の周波数特性が変化する。
また、梯子型フィルタ102において、複数の薄膜圧電共振器101の空洞111同士が近接して配置されているため、ノッチ116は隣り合う空洞111間の壁を薄くし、場合によって壁が破壊され、基板110の機械的強度が弱くなる。また、大きなノッチ116は空洞111の開口端形状を応力集中が発生し易い凸凹に変えてしまうので、励振部の薄膜の破断に対する機械的強度が弱くなる。更に、ノッチ116に起因する開口端の凸凹に励振部が接する場合には、共振特性にスプリアスを発生させてしまい、梯子型フィルタ102のフィルタ特性を劣化させてしまう。
更に、非特許文献3に開示されている薄膜圧電共振器101の製造プロセスにおいては、前述の特許文献1に開示されている薄膜圧電共振器101の製造プロセスと同様に、基板に埋設された音響反射層の平坦研磨処理に伴い、ディッシング113やエロージョン114が発生し易く、音響反射層の表面上に成膜される下部電極及び圧電体の結晶性が劣化する。
本発明は上記課題を解決するためになされたものであり、空洞若しくは音響反射層上に配設される励振部の結晶性を向上することができ、励振部の容量値のばらつきを減少することができる薄膜圧電共振器を提供することである。
更に、本発明の目的は、フィルタ特性を向上することができる、薄膜圧電共振器により構築されたフィルタ並びに電圧制御発振器を提供することである。
上記課題を解決するため、本発明の実施の形態に係る第1の特徴は、薄膜圧電共振器において、互いに離間配置された第1の空洞及び第2の空洞を有する基板と、第1の空洞上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部と、第2の空洞上に配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部と、を備え、第1の励振部端から第1の空洞の開口端までの間の第1の平均距離に対して、第2の励振部端から第2の空洞の開口端までの間の第2の平均距離が異なることである。
本発明の実施の形態に係る第2の特徴は、フィルタにおいて、互いに離間配置された第1の空洞及び第2の空洞を有する基板と、第1の空洞上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部を有する第1の薄膜圧電共振器と、第2の空洞上に配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部を有する第2の薄膜圧電共振器と、を備え、第1の励振部端から第1の空洞の開口端までの間の第1の平均距離に対して、第2の励振部端から第2の空洞の開口端までの間の第2の平均距離が異なることである。
本発明の実施の形態に係る第3の特徴は、薄膜圧電共振器において、互いに離間配置された第1の空洞及び第2の空洞を有する基板と、第1の空洞上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部と、第2の空洞上に配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部と、を備え、第1の空洞の開口形状と第2の空洞の開口形状とが同一であり、かつ第1の空洞の開口サイズと第2の空洞の開口サイズとが同一であることである。
本発明の実施の形態に係る第4の特徴は、フィルタにおいて、互いに離間配置された第1の空洞及び第2の空洞を有する基板と、第1の空洞上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部を有する第1の薄膜圧電共振器と、第2の空洞上に配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部を有する第2の薄膜圧電共振器と、を備え、第1の空洞の開口形状と第2の空洞の開口形状とが同一であり、かつ前記第1の空洞の開口サイズと前記第2の空洞の開口サイズとが同一であることである。
本発明の実施の形態に係る第5の特徴は、薄膜圧電共振器において、第1の空洞及びこの第1の空洞の周囲に互いに離間配置された複数の第2の空洞を有する基板と、第1の空洞上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部と、複数の第2の空洞上にそれぞれ配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される複数の第2の励振部と、を備え、第1の空洞の開口サイズが、複数の第2の空洞のそれぞれの開口サイズに比べて大きいことである。
本発明の実施の形態に係る第6の特徴は、フィルタにおいて、第1の空洞及びこの第1の空洞の周囲に互いに離間配置された複数の第2の空洞を有する基板と、第1の空洞上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部を有する第1の薄膜圧電共振器と、複数の第2の空洞上にそれぞれ配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部をそれぞれ有する複数の第2の薄膜圧電共振器と、を備え、第1の空洞の開口サイズが、複数の第2の空洞のそれぞれの開口サイズに比べて大きいことである。
本発明の実施の形態に係る第7の特徴は、薄膜圧電共振器において、互いに離間配置された第1の音響反射層及び第2の音響反射層を有する基板と、第1の音響反射層上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部と、第2の音響反射層上に配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部と、を備え、第1の励振部端から第1の音響反射層の輪郭端までの間の第1の平均距離に対して、第2の励振部端から第2の音響反射層の輪郭端までの間の第2の平均距離が異なることである。
本発明の実施の形態に係る第8の特徴は、フィルタにおいて、互いに離間配置された第1の音響反射層及び第2の音響反射層を有する基板と、第1の音響反射層上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部を有する第1の薄膜圧電共振器と、第2の音響反射層上に配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部を有する第2の薄膜圧電共振器と、を備え、第1の励振部端から第1の音響反射層の輪郭端までの間の第1の平均距離に対して、第2の励振部端から第2の音響反射層の輪郭端までの間の第2の平均距離が異なることである。
本発明の実施の形態に係る第8の特徴は、薄膜圧電共振器において、互いに離間配置された第1の音響反射層及び第2の音響反射層を有する基板と、第1の音響反射層上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部と、第2の音響反射層上に配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部と、を備え、第1の音響反射層の輪郭形状と前記第2の音響反射層の輪郭形状とが同一であり、かつ第1の音響反射層の輪郭サイズと第2の音響反射層の輪郭サイズとが同一であることである。
本発明の実施の形態に係る第9の特徴は、フィルタにおいて、互いに離間配置された第1の音響反射層及び第2の音響反射層を有する基板と、第1の音響反射層上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部を有する第1の薄膜圧電共振器と、第2の音響反射層上に配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部を有する第2の薄膜圧電共振器と、を備え、第1の音響反射層の輪郭形状と第2の音響反射層の輪郭形状とが同一であり、かつ第1の音響反射層の輪郭サイズと第2の音響反射層の輪郭サイズとが同一であることである。
本発明によれば、空洞若しくは音響反射層上に配設される励振部の結晶性を向上することができ、励振部の容量値のばらつきを減少することができる薄膜圧電共振器を提供することができる。
更に、本発明によれば、フィルタ特性を向上することができる、薄膜圧電共振器により構築されたフィルタ並びに電圧制御発振器を提供することができる。
以下、本発明の最良の実施の形態について図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付け、重複する説明は省略する。
(第1の実施の形態)
[薄膜圧電共振器の構造]
図1及び図2に示すように、第1の実施の形態に係るフィルタ(薄膜圧電共振器フィルタ)1は、互いに離間配置された空洞(第1の空洞)21、22、24、26、27及び空洞(第2の空洞)23、25を有する基板2と、空洞21、22、24、26、27上に配設され、下層電極(第1の電極)4、圧電体(第1の圧電体)5及び上層電極(第2の電極)6を順次積層し、これらの重複領域により周囲の輪郭が規定される励振部(第1の励振部)71、72、74、76、77を有する薄膜圧電共振器(第1の薄膜圧電共振器)31、32、34、36、37と、空洞23、25上に配設され、下層電極(第3の電極)4、圧電体(第2の圧電体)5及び上層電極(第4の電極)6を順次積層し、これらの重複領域により周囲の輪郭が規定される励振部(第2の励振部)73、75を有する薄膜圧電共振器(第2の薄膜圧電共振器)33、35と、を備えている。そして、このフィルタ1において、励振部71、72、74、76、77端から空洞21、22、24、26、27の開口端までの間の平均距離(第1の平均距離)d1に対して、励振部73、75端から空洞23、25の開口端までの間の平均距離(第2の平均距離)d2が異なり、平均距離d1に対して平均距離d2が少なくともアライメント余裕寸法よりも長く設定されている。
第1の実施の形態に係るフィルタ1は、この配列個数に限定されるものではないが、図1中、中央部に薄膜圧電共振器34を配置し、薄膜圧電共振器34の周囲であって右側に薄膜圧電共振器31〜33を配置し、薄膜圧電共振器34の周囲であって左側に薄膜圧電共振器35〜37を配置しており、合計7個の薄膜圧電共振器31〜37を組み合わせ構成されている。
薄膜圧電共振器31〜37(総称して説明する場合は符号3を使用する。)は圧電体5の厚み方向の縦振動の共振を利用している。圧電体5の振動を閉じ込める下層電極4直下の空洞21〜27(総称して説明する場合は符号2Hを使用する。また、後述する実施の形態においては音響反射層に相当する。)は下層電極4と上層電極6と双方に重複する圧電体5とにより構成された励振部71〜77(総称して説明する場合は符号7を使用する。)端から振動が漏れる長さλ以上の大きさを最低限必要としている。すなわち、励振部7端から空洞2Hまでの間の平均距離dは励振部7の全周辺(1つの励振部の全周囲)においてd>λに設定されている。ここで、励振部7は、空洞2H(又は音響反射層)、下層電極4、圧電体5及び上層電極6のすべての重複領域により構築されている。
図3には、1つの薄膜圧電共振器3の空洞2Hと励振部7との平面的な位置関係を、双方の平面形状を単純な四角形とした場合において示す。長さλは1μm〜2μmの範囲内に見積もることができるので、平均距離dは、長さλに製造上のアライメント余裕寸法を加算した値に基づき設定されている。ここで、アライメント余裕寸法とは、空洞2Hの配置位置に対する励振部7の配置位置の、製造装置のアライメントずれ(製造上のマスク合わせずれ)に対する余裕寸法である。複数の異なる大きさを有する共振器を組み合わせた一般的なフィルタにおいては、個々の共振器の大きさに関わらず、空洞の開口端と励振部端との間の距離は一定である。この場合、前述のような問題が発生するので、製造プロセスにおいて厳しい管理が要求される。そこで、製造プロセスがロバストとなる下記頑強設計手法(robust design method)において、第1の実施の形態に係るフィルタ1の空洞2H(又は音響反射層)が製作されている。
(1)第1の設計手法
この第1の設計手法は、基板2の空洞2H内に予め埋設された犠牲層をエッチングを行って除去する製造プロセスの採用を前提とした手法である。まず初めに、フィルタ1を構成する薄膜圧電共振器3中、最も容量が大きい励振部(最も平面サイズが大きい)を有する薄膜圧電共振器3において、空洞2Hの開口サイズと開口形状とが平均距離d>長さλの関係を満たすデザインがなされる。次に、他の薄膜圧電共振器3において、先にデザインした最も大きい空洞2Hの開口サイズ及び開口形状と同一の開口サイズ及び開口形状を有する空洞2Hがデザインされる。その後、薄膜圧電共振器3と他の薄膜圧電共振器3との間の配置位置並びに配線レイアウト(下層電極4の引出配線及び上層電極6の引出配線のパターン)を考慮し、空洞2Hの開口サイズ及び開口形状のデザインが若干調整される。空洞2Hの開口サイズと励振部7の平面サイズとの間の差が大きくなり過ぎると、空洞2Hの製造時に励振部7の膜強度が低下するので、下層電極4、圧電体5及び上層電極6のそれぞれの応力設計に基づき、膜強度を保つ範囲内において調整がなされる。
このような設計手法に基づき製作されたフィルタ1においては、少なくとも1つの薄膜圧電共振器3の励振部7端と空洞2Hの開口端との間の平均距離dが、他の薄膜圧電共振器3の励振部7端と空洞2Hの開口端との間の平均距離dに対して異なる。空洞2Hの開口サイズ若しくは開口形状は、励振部端から空洞の開口端までの間の距離が一定の場合に比べて、分布が狭くなり揃っていることから、基板平坦化工程において発生するディッシング(図41中、符号113。)やエロージョン(図42中、符号114。)を抑制することができる。基板平坦度は特に下層電極4及び圧電体5の結晶性や表面モフォロジー(morphology)に影響を及ぼし、平坦な下地は結晶性の良い平坦な圧電体5を成膜することができる。圧電体5の結晶性及び平坦度は、薄膜圧電共振器3の性能を示す機械結合係数及びQ値に対して大きな相関を持っており、高性能の薄膜圧電共振器3を製作する上において重要なパラメータである。
また、製造プロセス中において開口サイズが小さい空洞2H内に埋設された犠牲層や分布が狭い犠牲層をエッチングにより除去する場合、複数の薄膜圧電共振器3毎のエッチング時間のばらつきが少なく、製造プロセスの工程管理が容易になる。更に、薄膜圧電共振器3の周囲を他の薄膜圧電共振器3が取り囲むレイアウトにおいて構築される、例えば7個以上の薄膜圧電共振器3を組み合わせた構築されるフィルタ1においては、中央部に配置される薄膜圧電共振器3の空洞2H内に埋設された犠牲層のエッチング速度は、周囲に配置される他の薄膜圧電共振器3の空洞2H内に埋設された犠牲層のエッチング速度に対して、エッチング液の濃度が局所的に不均一になるために遅くなる。このような現象を考慮して、中央部に配置される薄膜圧電共振器3の犠牲層の大きさを周辺に配置される他の薄膜圧電共振器3の犠牲層の大きさに比べて小さくデザインすることにより、犠牲層のエッチング終点時間をフィルタ1内において均一に揃えることができる。このようなデザインを採用するフィルタ1おいては、製造プロセスの基板平坦化工程により発生するディッシングやエロージョンを抑制することができる。
(2)第2の設計手法
この第2の設計手法は、基板2裏面から表面に向かってDeep-RIE法によるエッチングを行って空洞2Hを形成する製造プロセスの採用を前提とした手法である。まず初めに、フィルタ1を構成する薄膜圧電共振器3中、最も容量が大きい励振部を有する薄膜圧電共振器3において、空洞2Hの開口サイズと開口形状とが平均距離d>長さλの関係を満たすデザインがなされる。次に、他の薄膜圧電共振器3において、先にデザインした最も大きい空洞2Hの開口サイズ及び開口形状と同一の開口サイズ及び開口形状を有する空洞2Hがデザインされる。その後、薄膜圧電共振器3と他の薄膜圧電共振器3との間の配置位置並びに配線レイアウトを考慮し、空洞2Hの開口サイズ及び開口形状のデザインが若干調整される。空洞2Hの開口サイズと励振部7の平面サイズとの間の差が大きくなり過ぎると、空洞2Hの製造時に励振部7の膜強度が低下するので、下層電極4、圧電体5及び上層電極6のそれぞれの応力設計に基づき、膜強度を保つ範囲内において調整がなされる。
このような設計手法に基づき製作されたフィルタ1においては、少なくとも1つの薄膜圧電共振器3の励振部7端と空洞2Hの開口端との間の平均距離dが、他の薄膜圧電共振器3の励振部7端と空洞2Hの開口端との間の平均距離dに対して異なる。空洞2Hの開口サイズ若しくは開口形状は、励振部端から空洞の開口端までの間の距離が一定の場合に比べて、分布が狭くなり揃っていることから、Deep-RIE工程において基板2のエッチング速度のばらつきを抑制することができ、すべての薄膜圧電共振器3の空洞2Hが完成するまでのオーバーエッチング時間を短縮することができる。オーバーエッチング時間の短縮はノッチ(図43中、符号116。)の発生を抑制するができ、この結果、薄膜圧電共振器3に付加される寄生容量の見積もりマージンを減少することができ、フィルタ1のフィルタ特性を向上することができる。また、フィルタ1においては、隣接して配置される薄膜圧電共振器3間の距離をノッチが抑制することができる分近づけることができるので、配線長を短くすることができ、配線抵抗を低減することができる。
更に、Deep-RIE工程後に行われるストッパ除去工程(基板2と下層電極4との間に配設されたエッチングストッパ層を除去する工程)においては、空洞2Hの内壁面をノッチが存在しない平面として形成することができる。すなわち、空洞2H内において、ドライエッチング時のノッチによる影の生成やウエットエッチング時のノッチによる袋小路形状が無くなり、犠牲層の残査を無くすことができるので、共振特性上のスプリアスの発生を防止することができ、フィルタ特性を向上することができる。
1つの薄膜圧電共振器3を中心としてその周囲に45度毎に8つの薄膜圧電共振器3を配設した合計9個、若しくはそれ以上の個数の薄膜圧電共振器3により構築されるフィルタ1の製造プロセスにおいて、中央部に配置される薄膜圧電共振器3の空洞2Hを形成するRIEのエッチング速度は、周囲に配置される薄膜圧電共振器3の空洞2Hを形成するRIEのエッチング速度に対して、ローディング効果により遅くなる。このような現象を考慮して、中央部に配置される薄膜圧電共振器3の空洞2Hの開口サイズを、周囲に配置される薄膜圧電共振器3の空洞2Hの開口サイズに比べて大きくデザインすることによって、フィルタ1においてすべての薄膜圧電共振器3の空洞2Hのエッチング終点時間を揃えることができ、基板2のオーバーエッチング時間を短縮することができる。
(3)空洞の開口端と励振部端との間の平均距離
ここで、薄膜圧電共振器3において、空洞2Hの開口端と励振部7端との間の平均距離dについて説明する。この平均距離dの定義は、後述する音響反射層の輪郭と励振部7端との間の平均距離dについても同様である。
図4に示すように、空洞2Hの開口形状が四角形、励振部7の平面形状(平面の輪郭形状)が開口形状に対して非相似形状に設定されかつ一回り小さい四角形の場合、平均距離dは、空洞2Hの開口形状並びに励振部7の平面形状(輪郭形状)に関係なく、空洞2Hの開口端から励振部7端に向かって法線を引き、空洞2Hの開口端と、それに対向する励振部7端と、これらの間において最大の離間距離となる2本の法線とにより囲まれた領域内の面積S1、S2、S3及びS4の合計の面積Sを、励振部7端の長さL1、L2、L3及びL4の合計の周囲長Lにより割った値(d=S/L)である。
また、図5に示すように、空洞2Hの開口形状が円形、励振部7の平面形状が空洞2H内に収まる平面サイズを有する四角形の場合、平均距離dは、空洞2Hの開口面積から励振部7の平面面積を差し引いた面積Sを、励振部7端の長さL1、L2、L3及びL4の合計の周囲長Lにより割った値(d=S/L)である。
更に、図6に示すように、空洞2Hの開口形状が四角形、励振部7の平面形状が四角形であって(図4に示す場合同様)、開口形状の一部(一辺)と励振部7端の一部(一辺)とが重複した位置関係にある場合、平均距離dは、その重複部分を除き、空洞2Hの開口端と、それに対向する励振部7端と、これらの間において最大の離間距離となる2本の法線とにより囲まれた領域内の面積S1、S2及びS3の合計の面積Sを、励振部7端の長さL1、L2及びL3の合計の周囲長Lにより割った値(d=S/L)である。
[第1の実施例]
次に、前述の薄膜圧電共振器3及びそれにより構築されるフィルタ1の具体的な第1の実施例を説明する。
(1)空洞の開口サイズに対するノッチ量の変化に関する評価
フィルタ1を構築する薄膜圧電共振器3の空洞2Hは、ボッシュ方式を採用するICP-RIE装置(Inductively Coupled Plasma - Reactive ion etching)を使用し、基板2の裏面から表面に向かってエッチングすることにより製作した。ボッシュ方式とは、エッチングガスにSF6ガスとC48ガスとを使用し、SF6は基板2具体的にはシリコンをエッチングする役割を担い、C48はエッチング穴の側壁にポリマーの保護膜を生成する役割を担い、エッチングと保護膜の生成プロセスとを交互い行いながら垂直にかつ深くSiをエッチングする方式である。
図7には、正方形状の開口形状を有する空洞2Hの製作において、空洞2Hの開口サイズとエッチング時間との関係を示す。基板2には200μmの厚さを有するSi基板が使用される。図7中、横軸は空洞2Hの開口サイズ(一辺の長さ:μm)であり、縦軸はエッチング時間(分)である。エッチングのストッパ層にはSi熱酸化(SiO2)膜を用いた。
図7に示すように、4つのエッチング条件(条件1〜条件4)において各々エッチング時間を測定したが、エッチング条件に関わらず、空洞2Hの開口サイズが変化すればエッチング時間が変化し、開口サイズが大きくなるに従い、エッチング時間は短くなる傾向が見られる。更に、エッチング時間が短く、製造プロセス上有利な条件ほどエッチング時間の分布が大きくなっている。例えば、空洞2Hの開口サイズが100μm×100μm〜200μm×200μmの範囲内の薄膜圧電共振器3を組み合わせてフィルタ1を製作する場合、オーバーエッチング時間は、最低4分間、長くて30分ほど必要である。基板2として例えば6インチサイズのウェハが使用される場合には、ウェハの中心から端部までの間においてエッチング状態が変化し、この変化に相当するエッチング時間差分がオーバーエッチング時間のマージンとして必要になる。製造装置の特性にも依存するが、オーバーエッチング時間のマージンはおよそ1分30秒〜2分程度である。一方、基板2の裏面からのエッチングが開始されてから基板2の表面上のストッパ層に達し、この後にノッチが成長する速度は1分間当たりおよそ2μmである。第1の実施例に係る薄膜圧電共振器3及びフィルタ1は、このようなDeep-RIEの評価結果に基づき製作されている。
(2)薄膜圧電共振器の製造方法
次に、第1の実施例に係る薄膜圧電共振器3及びフィルタ1の具体的な製造方法を説明する。
まず最初に、基板2を準備する。基板2には、例えば1kΩ・cm以上の高抵抗値を有する(100)結晶面を有するSi基板が使用される。この基板2の表面上に下地層201を形成する(図8参照。)。下地層201には200nmの膜厚を有するSi熱酸化膜が使用される。下地層201は、下層電極4の下地として使用されるとともに、空洞2Hを形成する際のエッチングストッパ層として使用される。
図8に示すように、薄膜圧電共振器3の形成領域において、下地層201上に下層電極4を形成する。下層電極4には例えば200nm〜250nmの膜厚のAl又はAl合金膜が使用される。下層電極4は、スパッタリング法等により基板2の表面全域に成膜された後に、リソグラフィによりマスクを形成し、このマスクを使用してRIE等のエッチングによりパターンニングされる。
図9に示すように、薄膜圧電共振器3の形成領域において、下層電極4上に圧電体5が形成される。圧電体5には例えば1500nm〜3000nmの膜厚のAlNが使用される。圧電体5は、スパッタリング法等により基板2の表面全域に成膜された後に、リソグラフィによりマスクを形成し、このマスクを使用してRIE等のエッチングによりパターンニングされる。また、圧電体5には、AlNに代えて、同様の六方晶系結晶構造を有するZnOを使用することができる。
図10に示すように、薄膜圧電共振器3の形成領域において、圧電体5上に上層電極6を形成する。上層電極6には例えば200nm〜300nmの膜厚のAl、Al合金、Mo等が使用される。上層電極6は、スパッタリング法等により基板2の表面全域に成膜された後に、リソグラフィによりマスクを形成し、このマスクを使用してRIE等のエッチングによりパターンニングされる。
次に、並列型フィルタ1においては、図示しないが、上層電極6上に共振周波数をずらすための質量負荷層が形成される。引き続き、図11に示すように、基板2の裏面上において、空洞2Hの形成領域が開口されたマスク10を形成する。マスク10は例えばリソグラフィにより形成される。
図12に示すように、マスク10を使用し、基板2の裏面から表面に向かってDeep-RIEを行い、基板2の薄膜圧電共振器3の形成領域に空洞2Hを形成する。この空洞2Hの形成に際して、下地層201はエッチングストッパ層として機能する。
そして、空洞2H内において露出する下地層201を例えばウエットエッチングにより除去し、引き続きマスク10を除去することにより、前述の図2に示す第1の実施の形態に係る薄膜圧電共振器3及びこの薄膜圧電共振器3により構築されたフィルタ1を製作することができる。
(3)フィルタ及び薄膜圧電共振器の具体的な構造
図13に示すように、第1の実施例に係るフィルタ1は、薄膜圧電共振器32、34、36を電気的に直列に接続し、薄膜圧電共振器31、33、35、37を電気的に並列に接続した構造を採用し、合計7個の薄膜圧電共振器31〜37により構築されている(図1参照。)。フィルタ1を構築する薄膜圧電共振器31〜37のそれぞれの容量比は図14に示すように割り振られている。
薄膜圧電共振器31〜37のそれぞれにおいては、励振部71〜77の大きさ(容量値の大きさ)に関わらず、すべての空洞21〜27の開口サイズは同一である。薄膜圧電共振器31は、励振部71の平面形状を一辺165μmの正方形形状に設定し、この励振部71端から空洞21の開口端までの間の平均距離d1を10μmに設定し、空洞21の開口サイズを決定している。他の薄膜圧電共振器32〜37の空洞22〜27の開口サイズは薄膜圧電共振器31の空洞21の開口サイズと同一に設定されている。つまり、フィルタ1においては、平均距離dは、容量比が同一の薄膜圧電共振器31及び37の平均距離d1と、この平均距離d1とは異なる薄膜圧電共振器32〜36の平均距離d2(複数の値を持つ。)とを備えている。具体的には、平均距離dは、10μm〜35μmの範囲内において分布を持っている。
下層電極4は薄膜圧電共振器3の空洞2Hをすべて覆うように(空洞2H上の全域に)配設されている。基板2の表面上において下層電極4と上層電極6とが対向し、双方の間に寄生容量が発生するが、空洞2H上において下層電極4の段差が無いレイアウトになり、空洞2Hの開口周縁の全域に沿って下層電極4が基板2の表面に支持されている。つまり、下層電極4(励振部7)は空洞2H上に中空状態になっているが、下層電極4の膜の機械的強度は強く、下層電極4は破断に対して強い構造である。
このようなデザインが採用されるフィルタ1は、基板2の裏面から表面に向かってDeep-RIEにより空洞2Hを製作している。エッチングする基板2の厚さが200μm、前述の図7に示す「条件4」に基づきエッチングを行うと、図15に示すように、エッチング時間はおよそ43分である。基板2に6インチウェハが使用される場合、ウェハ面内においてエッチング量の均一性を確保するために、エッチング時間にオーバーエッチング時間の1分30秒が加えられる。オーバーエッチング時に発生するノッチ量は最大3μm程度である。アライメント装置のアライメント余裕寸法(アライメントずれ量)が例えば最大5μmであれば、空洞2Hの開口サイズに対して、下層電極4の平面サイズは8μm以上大きく設定される。空洞2Hを最低限のサイズ以上にデザインしても、ノッチ量を抑制することができるので、隣接する空洞2H同士の間隔を狭くすることができ、フィルタ1の小型化を実現することができる。ノッチによる寄生容量の変化は1つの薄膜圧電共振器3に対して最大2.5%程度である。スプリアスの発生は抑制されている。
[第1の比較例]
図16に第1の比較例を示し、この第1の比較例に係るフィルタ1Aの薄膜圧電共振器3においては、励振部7端から空洞2Hの開口端までの間の平均距離dがすべての薄膜圧電共振器31〜37において同一であり、すべて平均距離d1例えば10μmに設定されている。従って、空洞2Hは、一辺が135μm〜185μmまでの間の開口サイズを有する正方形形状の開口形状により構成されている。
このようなデザインが採用されるフィルタ1Aは、基板2の裏面から表面に向かってDeep-RIEにより空洞2Hを製作している。エッチングする基板2の厚さが200μm、前述の図7に示す面積分布が少ない「条件2」に基づきエッチングを行うと、図15に示すように、最も開口サイズが小さい空洞23及び25のエッチングに必要な時間はおよそ68分である。6インチウェハの使用を前提として、このエッチング時間にオーバーエッチング時間の1分30秒が更に加えられる。この場合、開口サイズが最も大きい空洞21及び27においては8分程度オーバーエッチングがなされ、ノッチ量は最大16μmに達する。アライメント装置のアライメント余裕寸法が例えば最大5μmであれば、空洞2Hの開口サイズに対して、下層電極4の平面サイズは21μm以上大きく設定しなくてはならない。ノッチ量が増大することから、隣接する空洞2Hの内壁間は基板2の機械的強度を確保するために離間する必要が生じ、フィルタ1Aの小型化を実現することが難しい。ノッチによる寄生容量の変化は1つの薄膜圧電共振器3に対して最大10%程度に達する。更に、空洞2Hの開口端の形状の乱れに起因して共振特性にスプリアスが発生し、フィルタ特性の劣化が観測された。更に、励振部7の破断に対する膜強度の低下が観測された。
[第2の実施例]
第1の実施の形態の第2の実施例に係るフィルタ1は、図17及び図18に示すように、薄膜圧電共振器32、33、34、36を電気的に直列に接続し、薄膜圧電共振器31、35を電気的に並列に接続した構造を採用し、合計6個の薄膜圧電共振器31〜36により構築されている。フィルタ1を構築する薄膜圧電共振器31〜36のそれぞれの容量比は図19に示すように割り振られている。
薄膜圧電共振器31〜36のそれぞれにおいては、励振部71〜76の大きさ(容量値の大きさ)に関わらず、すべての空洞21〜26の開口サイズは同一である。薄膜圧電共振器31は、励振部71の平面形状を一辺165μmの正方形形状に設定し、この励振部71端から空洞21の開口端までの間の平均距離d1を10μmに設定し、空洞21の開口サイズを決定している。他の薄膜圧電共振器32〜36の空洞22〜26の開口サイズは薄膜圧電共振器31の空洞21の開口サイズと同一に設定されている。つまり、フィルタ1においては、平均距離dは、薄膜圧電共振器31の平均距離d1と、この平均距離d1とは異なる薄膜圧電共振器32〜36の平均距離d2(複数の値を持つ。)とを備えている。具体的には、平均距離dは、10μm〜44μmの範囲内において分布を持っている。
各薄膜圧電共振器31〜36においては、下層電極4の空洞2Hを覆う面積を減少し、かつ下層電極4と上層電極6との重複をできる限り避け、寄生容量の発生を減少するようになっている。結果的に、共振特性において、空洞2H端の加工形状に起因するスプリアスの影響を減少することができる。このようにデザインされた薄膜圧電共振器3においては、下層電極4端の一部が空洞2Hの開口内に存在し、下層電極4の基板2の表面における支持領域が減少して、下層電極4(励振部7)の膜の機械的強度は低下する。下層電極4端の断面形状を十分に角度の低いテーパ形状に加工すれば、下層電極4上の圧電体5の応力を減少することができ、励振部7の全体としての機械的強度は十分に確保することができる。下層電極4端の断面形状は、下層電極4の基板2側の底面と端面とがなす角度を鋭角例えば約20度に設定したテーパ形状とする。
このようなデザインが採用されるフィルタ1は、基板2の裏面から表面に向かってDeep-RIEにより空洞2Hを製作している。エッチングする基板2の厚さが200μm、前述の図7に示す「条件4」に基づきエッチングを行うと、図15に示すように、エッチング時間はおよそ43分である。6インチウェハの使用を前提として、このエッチング時間にオーバーエッチング時間の1分30秒が更に加えられる。オーバーエッチング時に発生するノッチ量は最大3μm程度である。アライメント装置のアライメント余裕寸法が例えば最大5μmであれば、空洞2Hの開口サイズに対して、下層電極4の空洞2Hを跨ぐ部分の平面サイズは8μm以上大きく設定される。空洞2Hを最低限のサイズ以上にデザインしても、ノッチ量を抑制することができるので、隣接する空洞2H同士の間隔を狭くすることができ、フィルタ1の小型化を実現することができる。ノッチによる寄生容量の変化は1つの薄膜圧電共振器3に対して0%程度である。スプリアスの発生は抑制されている。
[第2の比較例]
図20に第2の比較例を示し、この第2の比較例に係るフィルタ1Bの薄膜圧電共振器3においては、励振部7端から空洞2Hの開口端までの間の平均距離dがすべての薄膜圧電共振器31〜36において同一であり、すべて平均距離d1例えば10μmに設定されている。従って、空洞2Hは、一辺が116μm〜185μmまでの間の開口サイズを有する正方形形状の開口形状により構成されている。
このようなデザインが採用されるフィルタ1Bは、基板2の裏面から表面に向かってDeep-RIEにより空洞2Hを製作している。エッチングする基板2の厚さが200μm、前述の図7に示す面積分布が少ない「条件2」に基づきエッチングを行うと、図15に示すように、最も開口サイズが小さい空洞25のエッチングに必要な時間はおよそ72分である。6インチウェハの使用を前提として、このエッチング時間にオーバーエッチング時間の1分30秒が更に加えられる。この場合、開口サイズが最も大きい空洞21においては10分程度オーバーエッチングがなされ、ノッチ量は最大23μmに達する。アライメント装置のアライメント余裕寸法が例えば最大5μmであれば、空洞2Hの開口サイズに対して、下層電極4の平面サイズは28μm以上大きく設定しなくてはならない。ノッチ量が増大することから、隣接する空洞2Hの内壁間は基板2の機械的強度を確保するために離間する必要が生じ、フィルタ1Bの小型化を実現することが難しい。ノッチによる寄生容量の変化はなく、共振特性において空洞2Hの開口端の形状の乱れに起因するスプリアスの発生も観測されなかったが、ノッチ量の増大に起因して励振部7の破断に対する膜強度の低下が観測された。
[第3の実施例]
第1の実施の形態の第3の実施例に係るフィルタ1は、基本的には前述の図1及び図13に示すフィルタ1と同様であるが、図21に示すように、容量値が小さい(平面サイズが小さい)励振部73を有する薄膜圧電共振器33の下層電極4端の一部を空洞23の開口内に配置し、同様に容量値が小さい励振部75を有する薄膜圧電共振器35の下層電極4端の一部を空洞25の開口内に配置し、それ以外の薄膜圧電共振器31、32、34、36及び37においては空洞2Hの開口の全域を覆うように下層電極4を配置している。薄膜圧電共振器31〜37のそれぞれの容量比は前述の図14に示すように割り振られている。
容量値が小さい薄膜圧電共振器33及び35においては、励振部7端と空洞2Hの開口端との間の平均距離dが大きくなるので、圧電体5の膜応力による破断に対して下層電極4の機械的強度が強く、下層電極4端が空洞2Hの開口内に存在していても下層電極4の機械的な膜強度を保つことができる。
このようにデザインされるフィルタ1は、ノッチ量の変化に基づく寄生容量の変化率を減少することができる。また、並列型の薄膜圧電共振器3において、共振特性をスプリアスの影響を受けない状態にすることができるので、フィルタ1のスカート特性を急峻にすることができる。フィルタ1は、前述の第1の実施例と同様の手順において、基板2の裏面から表面に向かってDeep-RIEにより空洞2Hを製作しているが、ノッチによる寄生容量の変化は1つの薄膜圧電共振器3に対して最大1.8%程度である。
[第3の比較例]
図22に第3の比較例を示し、この第3の比較例に係るフィルタ1Cの薄膜圧電共振器3においては、励振部7端から空洞2Hの開口端までの間の平均距離dがすべての薄膜圧電共振器31〜37において同一であり、すべて平均距離d1例えば10μmに設定されている。従って、空洞2Hは、一辺が135μm〜185μmまでの間の開口サイズを有する正方形形状の開口形状により構成されている。
このようなデザインが採用されるフィルタ1Cは、基板2の裏面から表面に向かってDeep-RIEにより空洞2Hを製作している。エッチングする基板2の厚さが200μm、前述の図7に示す面積分布が少ない「条件2」に基づきエッチングを行うと、図15に示すように、最も開口サイズが小さい空洞25のエッチングに必要な時間はおよそ65分である。6インチウェハの使用を前提として、このエッチング時間にオーバーエッチング時間の1分30秒が更に加えられる。この場合、開口サイズが最も大きい空洞21及び27においては10分程度オーバーエッチングがなされ、ノッチ量は最大16μmに達する。アライメント装置のアライメント余裕寸法が例えば最大5μmであれば、空洞2Hの開口サイズに対して、下層電極4の平面サイズは21μm以上大きく設定しなくてはならない。ノッチ量が増大することから、隣接する空洞2Hの内壁間は基板2の機械的強度を確保するために離間する必要が生じ、フィルタ1Cの小型化を実現することが難しい。ノッチによる寄生容量の変化は1つの薄膜圧電共振器3に対して最大10%程度に達する。更に、空洞2Hの開口端の形状の乱れに起因して共振特性にスプリアスが発生し、フィルタ特性の劣化が観測された。更に、励振部7の破断に対する膜強度の低下が観測された。
[第1の実施の形態の効果]
前述の図15に示す第1の実施例〜第3の実施例及び第1の比較例〜第3の比較例のそれぞれの測定結果に基づき、薄膜圧電共振器3の励振部7から空洞2Hの開口端までの平均距離dを一定にせず、空洞2Hの開口サイズの大きさの分布を抑制するようにデザインすることにより、エッチング時間の短縮、ノッチ量の抑制、寄生容量マージンの低減等を実現することができ、量産性に優れ、安定したフィルタ特性を備えたフィルタ1を製作することができる。
更に、薄膜圧電共振器3の下層電極4と空洞2Hとの間の双方の位置関係に基づき寄生容量の有無をデザインする場合においても、励振部7の平面サイズの大きさに関わらず、空洞2Hの開口をデザインし、フィルタ1のフィルタ特性を向上することができる。
(第2の実施の形態)
本発明の第2の実施の形態は、前述の第1の実施の形態に係る、基板2に裏面から表面に向かって空洞2Hを製作する、薄膜圧電共振器3及びフィルタ1において、空洞2Hの配置密度に対するエッチング速度の変化を評価し、その結果に基づき薄膜圧電共振器3及びフィルタ1を製作する例を説明するものである。
(1)空洞の配置密度に対するエッチング速度の変化
第2の実施の形態に係るフィルタ1は、後に詳細に説明するが、合計9個の薄膜圧電共振器3を規則的に配置して構築されており、図23に示すように、薄膜圧電共振器3の空洞2Hは基板2において行方向に3個、列方向に3個、合計9個配置されている。それぞれの空洞2Hは、いずれも同一開口形状を有し、正方形状において製作されている。表現を代えれば、基板2には、中央部に配置された1つの空洞2Hと、その周囲に45度毎に配置された8つの空洞2Hとが配置されている。
図24には、図23に示す空洞2Hの開口サイズとエッチング時間との関係を示す。基板2には200μmの厚さを有するSi基板が使用され、空洞2HはDeep-RIEにより製作される。空洞2Hのエッチング時には、基板2の表面に形成した下地層201(図8参照。Si熱酸化膜)をエッチングストッパ層として使用した。隣接する空洞2Hの離間寸法は30μmに設定される。図24中、横軸は空洞2Hの開口サイズ(一辺の長さ:μm)であり、縦軸はエッチング時間(分)である。
図24に示すように、中央部に配置された空洞2Hのエッチング時間は、周辺に配置された空洞2Hのエッチング時間に対して長い。この傾向は、空洞2Hの開口サイズが小さくなるに従って顕著になる結果が得られた。
(2)フィルタ及び薄膜圧電共振器の具体的な構造
第2の実施の形態に係るフィルタ1は、図25に示すように、薄膜圧電共振器34、35、36を電気的に直列に接続し、薄膜圧電共振器31、37、38、32、33、39を電気的に並列に接続した構造を採用し、合計9個の薄膜圧電共振器31〜39により構築されている。フィルタ1を構築する薄膜圧電共振器31〜39のそれぞれの容量比は図26に示すように割り振られている。
[実施例]
第2の実施の形態の実施例に係るフィルタ1は、前述の図24に示す結果に基づき作製されたものであって、図27に示すように、薄膜圧電共振器31、32、33、37、38、39の励振部71、72、73、77、78、79は一辺を165μmとする正方形状の平面形状において構成されている。これらの薄膜圧電共振器31等の空洞21等の開口は一辺を185μmとした正方形状の開口形状において構成されており、平均距離dは10μmに設定されている。薄膜圧電共振器34、36の励振部74、76の一辺を135μmとする正方形状の平面形状において構成されている。これらの薄膜圧電共振器34等の空洞24等の開口は一辺を185μmとした正方形状の開口形状において構成されており、平均距離dは25μmに設定されている。
中央に配置された薄膜圧電共振器35の空洞25の一辺は、一辺が185μmの空洞21等と同一のエッチング時間になるように193μmに設定され、このサイズの正方形状の平面形状において空洞25が構成されている。薄膜圧電共振器35の平均距離dは29μmに設定されている。そして、すべての薄膜圧電共振器31〜39において、下層電極4端の一部を空洞25Hの開口内に配置し、下層電極4に付加される寄生容量値を「ゼロ」に調整した。
このようなデザインが採用されるフィルタ1は、基板2の裏面から表面に向かってDeep-RIEにより空洞2Hを製作している。エッチングする基板2の厚さが200μm、エッチング時間はおよそ43分である。6インチウェハの使用を前提として、このエッチング時間にオーバーエッチング時間の1分30秒が更に加えられる。オーバーエッチング時に発生するノッチ量は最大3μm程度である。アライメント装置のアライメント余裕寸法が例えば最大5μmであれば、空洞2Hの開口サイズに対して、下層電極4の空洞2Hを跨ぐ部分の平面サイズは8μm以上大きく設定される。空洞2Hを最低限のサイズ以上にデザインしても、ノッチ量を抑制することができるので、励振部7の全体としての機械的強度は十分に確保することができた。
[比較例]
図28に第2の実施の形態の比較例を示し、この比較例に係るフィルタ1Dの薄膜圧電共振器3においては、励振部7端から空洞2Hの開口端までの間の平均距離dがすべての薄膜圧電共振器31〜39において同一であり、すべて平均距離d1例えば10μmに設定されている。従って、空洞2Hは、一辺が155μm〜185μmまでの間の開口サイズを有する正方形形状の開口形状により構成されている。
このようなデザインが採用されるフィルタ1Dは、基板2の裏面から表面に向かってDeep-RIEにより空洞2Hを製作している。エッチングする基板2の厚さが200μm、前述の図7に示す面積分布が少ない「条件2」に基づきエッチングを行うと、図24に示すように、周辺部に配置された薄膜圧電共振器3の、一辺155μmの開口サイズを有する空洞2Hのエッチングに必要な時間はおよそ67分である。周辺部に配置された薄膜圧電共振器3の、大きな開口サイズを有する空洞2Hのエッチングには更に4分間のオーバーエッチング時間が必要である。中央に配置された薄膜圧電共振器3の空洞2Hのエッチングには更に5分間のオーバーエッチング時間が必要である。そして、6インチウェハの使用を前提として、これらのエッチング時間にオーバーエッチング時間の1分30秒が更に加えられる。すなわち、オーバーエッチング時間は合計10分30秒になり、ノッチ量は21μmを観測した。この大きなノッチの発生により、空洞2Hの開口端に凸凹形状が発生し、この部分に応力集中による励振部7の膜の破断が基板2の一部において観測された。
[第2の実施の形態の効果]
第2の実施の形態に係るフィルタ1においては、空洞2Hの配置密度によるエッチング速度の変化が7個以上の薄膜圧電共振器3を配列した場合に観察されたので、Deep-RIEのエッチング特性に適合するように空洞2Hの配列数、開口サイズ等を調節することにより、オーバーエッチング時間を短縮することができる。
(第3の実施の形態)
本発明の第3の実施の形態は、基板2に配設される空洞2Hの断面構造が異なる薄膜圧電共振器3及びフィルタ1に適用した例を説明するものである。
(1)薄膜圧電共振器の製造方法
第3の実施の形態に係る薄膜圧電共振器3及びフィルタ1の製造方法は、まず最初に基板2に空洞(窪み若しくは凹部)2Hを形成する(図29参照。)。前述の第1及び第2の実施の形態に係る空洞2Hは基板2の裏面から表面に突き抜ける貫通穴を使用していたが、第3の実施の形態に係る空洞2Hは基板2の表面から一定の深さを有する止め穴を使用する。
図29に示すように、基板2の表面上の全面に犠牲層202を成膜する。犠牲層202には例えばCVD法若しくはスパッタリング法により成膜されたSi酸化膜やAl等の柔らかい材料を使用することができる。
図30に示すように、基板平坦化技術(CMP:chemical mechanical polishing)を用い、基板2の表面が露出するまで犠牲層202を研磨するとともに、空洞2H内に犠牲層202を埋設させる。
次に、前述の第1の実施の形態に係る、図8乃至図10に示す工程と同様に、空洞2H内に埋設された犠牲層202上に下層電極4、圧電体5、上層電極6のそれぞれを形成するとともに、これらの重複領域に励振部7を形成する。
図31に示すように、犠牲層202を選択的に例えばウエットエッチングにより除去することにより、空洞2H内を空にすることができる。そして、この工程が終了すると、第3の実施の形態に係る薄膜圧電共振器3及びフィルタ1を完成させることができる。
前述のCMPにおいて、犠牲層202は基板2よりも柔らかい材料を使用する場合が多く、基板2の表面を露出したときに空洞2H内に埋設された犠牲層202の表面に窪みが生じるディッシングが発生し易い(図41参照。)。ディッシング量は犠牲層202の面積に依存し、様々な大きさの犠牲層202を埋め込んだ場合、犠牲層202の面積が大きい方がディッシング量は大きくなる傾向がある。また、犠牲層202の配置密度(空洞2Hの配置密度)によっては、研磨面が窪むエロージョン(図42参照。)が発生し易い。CMPにおいては、同一パターン(同一開口サイズ)を有する空洞2H内に犠牲層202を埋め込む方が、多種類のパターン(多種類の開口サイズ)を有する空洞2H内に犠牲層202を埋め込む場合に比べて、研磨条件のウインドウが広い。そこで、様々なデザインを有するフィルタ1を製作する場合、薄膜圧電共振器3の励振部7の平面サイズに関わらず、CMPの仕上げ研磨面の平坦度が得られるようにデザインすることにより、フィルタ1のフィルタ特性を向上することができる。
[実施例]
第3の実施の形態の実施例に係るフィルタ1は、前述の図13に示す回路構成と同様であり、前述の図14に示すように薄膜圧電共振器3のそれぞれに容量値が割り振られている。
図32に示すように、フィルタ1は、薄膜圧電共振器3の励振部7の平面サイズに関わらず、CMPにおいて最も平坦な研磨面が得られるように、犠牲層202の平面サイズ(空洞2Hの開口サイズと等価である。)を設定している。その結果、中央部に配置される薄膜圧電共振器3の空洞2Hに埋設される犠牲層202の平面サイズに対して、周辺に配置される薄膜圧電共振器3の空洞2Hに埋設される犠牲層202の平面サイズは±5%の範囲内に設定される。
CMP後にディッシング及びエロージョンを観察したところ、基板2の表面からその深さ方向に向かって窪みは最大300nmの範囲内に止めることができた。空洞2H内に埋設された犠牲層202の表面上に下層電極4を成膜し、更にこの下層電極4上に圧電体5としてAlN圧電体薄膜を成膜し、このAlN圧電体薄膜をX線回折によるAlN(0002)ピークのロッキングカーブ半値幅を測定した結果、1.4°であった。
圧電体5上に更に上層電極6及び負荷電極を成膜し、その後に犠牲層202を除去した場合、薄膜圧電共振器3の電気機械結合係数k2を測定すると6.7%以上の数値が得られた。更に、帯域幅は70MHzに達し、良好なフィルタ特性を有するフィルタ1を実現することができた。
[比較例]
図33に第3の実施の形態の比較例を示し、この比較例に係るフィルタ1Eの薄膜圧電共振器3においては、励振部7端から空洞2Hの開口端(犠牲層202の輪郭)までの間の平均距離dがすべての薄膜圧電共振器31〜37において同一であり、すべて平均距離d1例えば5μmに設定されている。この結果、中央部に配置される薄膜圧電共振器3の空洞2Hに埋設された犠牲層202の平面サイズに対して、周辺部に配置される薄膜圧電共振器3の空洞2Hに配設された犠牲層202の平面サイズは±16%の範囲内になった。
CMP後にディッシング及びエロージョンを観察したところ、基板2の表面からその深さ方向に向かって窪みは最大2μmに達した。前述の実施例と同様に、X線回折によるAlN(0002)ピークのロッキングカーブ半値幅を測定した結果、4.3°であった。また、電気機械結合係数k2を測定すると3.7%であり、フィルタ1に要求される十分な帯域幅は得られなかった。
(第4の実施の形態)
本発明の第4の実施の形態は、基板2に音響反射層を配設し薄膜圧電共振器3及びフィルタ1に適用した例を説明するものである。
(1)薄膜圧電共振器の製造方法
第4の実施の形態に係る薄膜圧電共振器3及びフィルタ1の製造方法は、まず最初に基板2に空洞(窪み若しくは凹部)2Hを形成する(図34参照。)。
図34に示すように、基板2の表面上の全面に音響反射層203を成膜する。音響反射層203は、低音響インピーダンス層203Aと高音響インピーダンス層203Bとを、所望の共振周波数の1/4波長分の膜厚において、交互に複数積層した複合膜である。低音響インピーダンス層203Aには例えばSi酸化膜を使用することができ、高音響インピーダンス層203BにはWを使用することができる。
図35に示すように、CMPを用い、基板2の表面が露出するまで音響反射層203を研磨するとともに、空洞2H内に音響反射層203を埋設させる。
次に、前述の第1の実施の形態に係る、図8乃至図10に示す工程と同様に、図36に示すように、空洞2H内に埋設された音響反射層203上に下層電極4、圧電体5、上層電極6のそれぞれを形成するとともに、これらの重複領域に励振部7を形成する。そして、この工程が終了すると、第4の実施の形態に係る薄膜圧電共振器3及びフィルタ1を完成させることができる。
前述のCMPにおいて、音響反射層203は基板2よりも柔らかい材料を使用する場合が多く、基板2の表面を露出したときに空洞2H内に埋設された音響反射層203の表面に窪みが生じるディッシングが発生し易い(図41参照。)。ディッシング量は音響反射層203の面積に依存し、様々な大きさの音響反射層203を埋め込んだ場合、音響反射層203の面積が大きい方がディッシング量は大きくなる傾向がある。また、音響反射層203の配置密度(空洞2Hの配置密度)によっては、研磨面が窪むエロージョン(図42参照。)が発生し易い。CMPにおいては、同一パターン(同一開口サイズ)を有する空洞2H内に音響反射層203を埋め込む方が、多種類のパターン(多種類の開口サイズ)を有する空洞2H内に音響反射層203を埋め込む場合に比べて、研磨条件のウインドウが広い。そこで、様々なデザインを有するフィルタ1を製作する場合、薄膜圧電共振器3の励振部7の平面サイズに関わらず、CMPの仕上げ研磨面の平坦度が得られるようにデザインすることにより、フィルタ1のフィルタ特性を向上することができる。
ディッシングやエロージョンにより、音響反射層203の層厚さが変化してしまうと、圧電振動の反射率の低下を招き、薄膜圧電共振器3のQ値が低下する。このため、十分なフィルタ特性を得ることができない。
[実施例]
第4の実施の形態の実施例に係るフィルタ1は、前述の図13に示す回路構成と同様であり、前述の図14に示すように薄膜圧電共振器3のそれぞれに容量値が割り振られている。
図37に示すように、フィルタ1は、薄膜圧電共振器3の励振部7の平面サイズに関わらず、CMPにおいて最も平坦な研磨面が得られるように、音響反射層203の平面サイズ(空洞2Hの開口サイズと等価である。)を設定している。その結果、中央部に配置される薄膜圧電共振器3の空洞2Hに埋設される音響反射層203の平面サイズに対して、周辺に配置される薄膜圧電共振器3の空洞2Hに埋設される音響反射層203の平面サイズは±5%の範囲内に設定される。
CMP後にディッシング及びエロージョンを観察したところ、基板2の表面からその深さ方向に向かって窪みは最大300nmの範囲内に止めることができた。空洞2H内に埋設された音響反射層203の表面上に下層電極4を成膜し、更にこの下層電極4上に圧電体5としてAlN圧電体薄膜を成膜し、このAlN圧電体薄膜をX線回折によるAlN(0002)ピークのロッキングカーブ半値幅を測定した結果、1.4°であった。
圧電体5上に更に上層電極6及び負荷電極を成膜し、フィルタ1を製作した場合、薄膜圧電共振器3の電気機械結合係数k2を測定すると5.5%以上の数値が得られた。更に、Q値が700程度となり、フィルタの通過帯域減衰が2dBに達し、良好なフィルタ特性を有するフィルタ1を実現することができた。
[比較例]
図38に第4の実施の形態の比較例を示し、この比較例に係るフィルタ1Fの薄膜圧電共振器3においては、励振部7端から空洞2Hの開口端(音響反射層203の輪郭)までの間の平均距離dがすべての薄膜圧電共振器31〜37において同一であり、すべて平均距離d1例えば5μmに設定されている。この結果、中央部に配置される薄膜圧電共振器3の空洞2Hに埋設された音響反射層203の平面サイズに対して、周辺部に配置される薄膜圧電共振器3の空洞2Hに配設された音響反射層203の平面サイズは±16%の範囲内になった。
CMP後にディッシング及びエロージョンを観察したところ、基板2の表面からその深さ方向に向かって窪みは最大2μmに達した。前述の実施例と同様に、X線回折によるAlN(0002)ピークのロッキングカーブ半値幅を測定した結果、4.3°であった。また、電気機械結合係数k2を測定すると2.7%以上の数値が得られた。更に、Q値が300程度となり、フィルタの通過帯域減衰、帯域減衰量はいずれも不適格であった。
なお、本発明は前述の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において、変更可能である。例えば、本発明は、薄膜圧電共振器やフィルタに限定されるものではなく、フィルタを更に組み込んだ装置、具体的には電圧制御発振器に適用することができる。
本発明の第1の実施の形態に係る薄膜圧電共振器及びフィルタの平面図である。 図1に示すF2−F2切断線において切断した薄膜圧電共振器及びフィルタの断面図である。 図1に示す薄膜圧電共振器において空洞と励振部との間の位置関係を説明する要部平面図である。 図1に示す薄膜圧電共振器において平均距離を説明する模式的な要部平面図である。 図1に示す薄膜圧電共振器において平均距離を説明する模式的な要部平面図である。 図1に示す薄膜圧電共振器において平均距離を説明する模式的な要部平面図である。 第1の実施の形態の第1の実施例に係る、空洞の開口サイズとエッチング時間との関係を示す図である。 第1の実施例に係る薄膜圧電共振器及びフィルタの製造方法を説明する第1の工程断面図である。 第2の工程断面図である。 第3の工程断面図である。 第4の工程断面図である。 第5の工程断面図である。 第1の実施例に係るフィルタの回路図である。 第1の実施例に係るフィルタの各薄膜圧電共振器の容量比を示す図である。 本発明の第1の実施の形態の第1の実施例〜第3の実施例に係る薄膜圧電共振器のデザイン項目、エッチング条件並びに効果を示す図である。 第1の実施の形態の第1の比較例に係る薄膜圧電共振器及びフィルタの平面図である。 第1の実施の形態の第2の実施例に係るフィルタの回路図である。 第2の実施例に係る薄膜圧電共振器及びフィルタの平面図である。 第2の実施例に係るフィルタの各薄膜圧電共振器の容量比を示す図である。 第1の実施の形態の第2の比較例に係る薄膜圧電共振器及びフィルタの平面図である。 第1の実施の形態の第3の実施例に係る薄膜圧電共振器及びフィルタの平面図である。 第1の実施の形態の第3の比較例に係る薄膜圧電共振器及びフィルタの平面図である。 本発明の第2の実施の形態に係るフィルタにおいて薄膜圧電共振器の空洞の配置レイアウトを示す平面図である。 第2の実施の形態に係る、空洞の開口サイズとエッチング時間との関係を示す図である。 第2の実施の形態に係る薄膜圧電共振器及びフィルタの平面図である。 図25に示すフィルタの各薄膜圧電共振器の容量比を示す図である。 第2の実施の形態の実施例に係る薄膜圧電共振器及びフィルタの平面図である。 第2の実施の形態の比較例に係る薄膜圧電共振器及びフィルタの平面図である。 本発明の第3の実施の形態に係る薄膜圧電共振器及びフィルタの製造方法を説明する第1の工程断面図である。 第2の工程断面図である。 第3の工程断面図である。 第3の実施の形態の実施例に係る薄膜圧電共振器及びフィルタの平面図である。 第3の実施の形態の比較例に係る薄膜圧電共振器及びフィルタの平面図である。 本発明の第4の実施の形態に係る薄膜圧電共振器及びフィルタの製造方法を説明する第1の工程断面図である。 第2の工程断面図である。 第3の工程断面図である。 第4の実施の形態の実施例に係る薄膜圧電共振器及びフィルタの平面図である。 第4の実施の形態の比較例に係る薄膜圧電共振器及びフィルタの平面図である。 先行技術に係る梯子型フィルタの回路図である。 先行技術に係るVCOの回路図である。 先行技術に係る課題を説明する薄膜圧電共振器の要部断面図である。 先行技術に係る課題を説明する薄膜圧電共振器の要部断面図である。 先行技術に係る課題を説明する薄膜圧電共振器の要部断面図である。
符号の説明
1 フィルタ
2 基板
2H、21〜29 空洞
201 下地層
202 犠牲層
203 音響反射層
3、31〜39 薄膜圧電共振器
4 下層電極
5 圧電体
6 上層電極
7 励振部

Claims (14)

  1. 互いに離間配置された第1の空洞及び第2の空洞を有する基板と、
    前記第1の空洞上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部と、
    前記第2の空洞上に配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部と、を備え、
    前記第1の励振部端から前記第1の空洞の開口端までの間の第1の平均距離に対して、前記第2の励振部端から前記第2の空洞の開口端までの間の第2の平均距離が異なることを特徴とする薄膜圧電共振器。
  2. 前記第1の電極と前記第3の電極とが同一層により構成され、前記第1の圧電体と前記第2の圧電体とが同一層により構成され、更に前記第2の電極と前記第4の電極とが同一層により構成されていることを特徴とする請求項1に記載の薄膜圧電共振器。
  3. 前記第1の平均距離に対して、前記第2の平均距離がアライメント余裕寸法よりも長いことを特徴とする請求項1又は請求項2に記載の薄膜圧電共振器。
  4. 互いに離間配置された第1の空洞及び第2の空洞を有する基板と、
    前記第1の空洞上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部を有する第1の薄膜圧電共振器と、
    前記第2の空洞上に配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部を有する第2の薄膜圧電共振器と、を備え、
    前記第1の励振部端から前記第1の空洞の開口端までの間の第1の平均距離に対して、前記第2の励振部端から前記第2の空洞の開口端までの間の第2の平均距離が異なることを特徴とするフィルタ。
  5. 互いに離間配置された第1の空洞及び第2の空洞を有する基板と、
    前記第1の空洞上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部と、
    前記第2の空洞上に配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部と、を備え、
    前記第1の空洞の開口形状と前記第2の空洞の開口形状とが同一であり、かつ前記第1の空洞の開口サイズと前記第2の空洞の開口サイズとが同一であることを特徴とする薄膜圧電共振器。
  6. 互いに離間配置された第1の空洞及び第2の空洞を有する基板と、
    前記第1の空洞上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部を有する第1の薄膜圧電共振器と、
    前記第2の空洞上に配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部を有する第2の薄膜圧電共振器と、を備え、
    前記第1の空洞の開口形状と前記第2の空洞の開口形状とが同一であり、かつ前記第1の空洞の開口サイズと前記第2の空洞の開口サイズとが同一であることを特徴とするフィルタ。
  7. 第1の空洞及びこの第1の空洞の周囲に互いに離間配置された複数の第2の空洞を有する基板と、
    前記第1の空洞上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部と、
    前記複数の第2の空洞上にそれぞれ配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される複数の第2の励振部と、を備え、
    前記第1の空洞の開口サイズが、前記複数の第2の空洞のそれぞれの開口サイズに比べて大きいことを特徴とする薄膜圧電共振器。
  8. 前記複数の第2の励振部は6以上配設されていることを特徴とする請求項7に記載の薄膜圧電共振器。
  9. 第1の空洞及びこの第1の空洞の周囲に互いに離間配置された複数の第2の空洞を有する基板と、
    前記第1の空洞上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部を有する第1の薄膜圧電共振器と、
    前記複数の第2の空洞上にそれぞれ配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部をそれぞれ有する複数の第2の薄膜圧電共振器と、を備え、
    前記第1の空洞の開口サイズが、前記複数の第2の空洞のそれぞれの開口サイズに比べて大きいことを特徴とするフィルタ。
  10. 互いに離間配置された第1の音響反射層及び第2の音響反射層を有する基板と、
    前記第1の音響反射層上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部と、
    前記第2の音響反射層上に配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部と、を備え、
    前記第1の励振部端から前記第1の音響反射層の輪郭端までの間の第1の平均距離に対して、前記第2の励振部端から前記第2の音響反射層の輪郭端までの間の第2の平均距離が異なることを特徴とする薄膜圧電共振器。
  11. 互いに離間配置された第1の音響反射層及び第2の音響反射層を有する基板と、
    前記第1の音響反射層上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部を有する第1の薄膜圧電共振器と、
    前記第2の音響反射層上に配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部を有する第2の薄膜圧電共振器と、を備え、
    前記第1の励振部端から前記第1の音響反射層の輪郭端までの間の第1の平均距離に対して、前記第2の励振部端から前記第2の音響反射層の輪郭端までの間の第2の平均距離が異なることを特徴とするフィルタ。
  12. 互いに離間配置された第1の音響反射層及び第2の音響反射層を有する基板と、
    前記第1の音響反射層上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部と、
    前記第2の音響反射層上に配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部と、を備え、
    前記第1の音響反射層の輪郭形状と前記第2の音響反射層の輪郭形状とが同一であり、かつ前記第1の音響反射層の輪郭サイズと前記第2の音響反射層の輪郭サイズとが同一であることを特徴とする薄膜圧電共振器。
  13. 互いに離間配置された第1の音響反射層及び第2の音響反射層を有する基板と、
    前記第1の音響反射層上に配設され、第1の電極、第1の圧電体及び第2の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第1の励振部を有する第1の薄膜圧電共振器と、
    前記第2の音響反射層上に配設され、第3の電極、第2の圧電体及び第4の電極を順次積層し、これらの重複領域により周囲の輪郭が規定される第2の励振部を有する第2の薄膜圧電共振器と、を備え、
    前記第1の音響反射層の輪郭形状と前記第2の音響反射層の輪郭形状とが同一であり、かつ前記第1の音響反射層の輪郭サイズと前記第2の音響反射層の輪郭サイズとが同一であることを特徴とするフィルタ。
  14. 前記請求項1乃至請求項3、請求項5、請求項7、請求項8、請求項10若しくは請求項12に記載の薄膜圧電共振器、又は請求項4、請求項6、請求項9、請求項11若しくは請求項13に記載のフィルタを備えたことを特徴とする電圧制御発振器。
JP2005160242A 2005-05-31 2005-05-31 薄膜圧電共振器、フィルタ及び電圧制御発振器 Pending JP2006339873A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005160242A JP2006339873A (ja) 2005-05-31 2005-05-31 薄膜圧電共振器、フィルタ及び電圧制御発振器
DE200660002656 DE602006002656D1 (de) 2005-05-31 2006-03-15 Piezoelektrischer Dünnschichtresonator, Filter und Spannungsgesteuerter Oszillator
EP20060251391 EP1732213B1 (en) 2005-05-31 2006-03-15 Thin-film piezoelectric resonator, filter and voltage-controlled oscillator
US11/376,266 US7525399B2 (en) 2005-05-31 2006-03-16 Thin-film piezoelectric resonator, filter and voltage-controlled oscillator
CNB2006100653573A CN100530955C (zh) 2005-05-31 2006-03-23 薄膜压电共振器、滤波器
KR20060026306A KR100758093B1 (ko) 2005-05-31 2006-03-23 박막 압전 공진기, 필터 및 전압 제어 발진기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005160242A JP2006339873A (ja) 2005-05-31 2005-05-31 薄膜圧電共振器、フィルタ及び電圧制御発振器

Publications (1)

Publication Number Publication Date
JP2006339873A true JP2006339873A (ja) 2006-12-14

Family

ID=37038326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005160242A Pending JP2006339873A (ja) 2005-05-31 2005-05-31 薄膜圧電共振器、フィルタ及び電圧制御発振器

Country Status (6)

Country Link
US (1) US7525399B2 (ja)
EP (1) EP1732213B1 (ja)
JP (1) JP2006339873A (ja)
KR (1) KR100758093B1 (ja)
CN (1) CN100530955C (ja)
DE (1) DE602006002656D1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225228A (ja) * 2008-03-18 2009-10-01 Sony Corp バンドパスフィルタ装置、その製造方法、テレビジョンチューナおよびテレビジョン受信機
WO2021200677A1 (ja) * 2020-03-31 2021-10-07 株式会社村田製作所 弾性波装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221665A (ja) * 2006-02-20 2007-08-30 Toshiba Corp 薄膜圧電共振器及びその製造方法、並びに、これを用いたフィルタ
FR2927743B1 (fr) * 2008-02-15 2011-06-03 St Microelectronics Sa Circuit de filtrage comportant des resonateurs acoustiques couples
JP2010091467A (ja) * 2008-10-09 2010-04-22 Rohm Co Ltd 圧力センサおよび圧力センサの製造方法
US9515605B1 (en) 2015-08-25 2016-12-06 Microsemi Storage Solutions (U.S.), Inc. Variable gain electro-mechanical oscillator and method for starting balanced oscillations
US9490746B1 (en) 2015-08-27 2016-11-08 Maxlinear Asia Singapore PTE LTD Voltage-controlled oscillator and a method for tuning oscillations
JP2017103267A (ja) * 2015-11-30 2017-06-08 セイコーエプソン株式会社 圧電素子、圧電素子の形成方法および超音波装置
KR102460752B1 (ko) * 2016-08-03 2022-10-31 삼성전기주식회사 박막 벌크 음향 공진기 및 이를 포함하는 필터
CN107317565B (zh) * 2017-06-02 2023-06-30 四川省三台水晶电子有限公司 Baw梯形滤波器的布局设计方法
US11063558B2 (en) * 2018-08-28 2021-07-13 Texas Instruments Incorporated Direct-current tuning of bulk acoustic wave resonator devices
US10614842B1 (en) * 2018-09-19 2020-04-07 Sae Magnetics (H.K.) Ltd. Thin-film piezoelectric-material element with protective film composition and insulating film through hole exposing lower electrode film
CN110112284B (zh) * 2019-05-27 2021-09-17 京东方科技集团股份有限公司 柔性声电基板及其制备方法、柔性声电装置
DE112020003512T5 (de) * 2019-07-22 2022-04-07 Ngk Insulators, Ltd. Verbundkörper und akustisches Wellenelement
CN113644895B (zh) * 2021-06-30 2024-02-23 中国电子科技集团公司第十三研究所 薄膜体声波谐振器滤波器及滤波器组件

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5692279A (en) 1995-08-17 1997-12-02 Motorola Method of making a monolithic thin film resonator lattice filter
US6087198A (en) * 1998-02-12 2000-07-11 Texas Instruments Incorporated Low cost packaging for thin-film resonators and thin-film resonator-based filters
US6060818A (en) 1998-06-02 2000-05-09 Hewlett-Packard Company SBAR structures and method of fabrication of SBAR.FBAR film processing techniques for the manufacturing of SBAR/BAR filters
EP1170862B1 (en) * 2000-06-23 2012-10-10 Murata Manufacturing Co., Ltd. Piezoelectric resonator and piezoelectric filter using the same
DE10058339A1 (de) * 2000-11-24 2002-06-06 Infineon Technologies Ag Bulk-Acoustic-Wave-Filter
JP2002374145A (ja) 2001-06-15 2002-12-26 Ube Electronics Ltd 圧電薄膜共振子
JP3954395B2 (ja) * 2001-10-26 2007-08-08 富士通株式会社 圧電薄膜共振子、フィルタ、および圧電薄膜共振子の製造方法
US6670866B2 (en) * 2002-01-09 2003-12-30 Nokia Corporation Bulk acoustic wave resonator with two piezoelectric layers as balun in filters and duplexers
JP2003298392A (ja) * 2002-03-29 2003-10-17 Fujitsu Media Device Kk フィルタチップ及びフィルタ装置
JP3879643B2 (ja) * 2002-09-25 2007-02-14 株式会社村田製作所 圧電共振子、圧電フィルタ、通信装置
JP2004158970A (ja) * 2002-11-05 2004-06-03 Ube Ind Ltd 薄膜圧電共振器を用いた帯域フィルタ
US7242130B2 (en) * 2003-11-07 2007-07-10 Matsushita Electric Industrial Co., Ltd. Piezoelectric device, antenna duplexer, and method of manufacturing piezoelectric resonators used therefor
US7235915B2 (en) * 2003-11-18 2007-06-26 Matsushita Electric Industrial Co., Ltd. Acoustic resonator device, filter device, manufacturing method for acoustic resonator device, and communication apparatus
JP2005160242A (ja) 2003-11-27 2005-06-16 Matsushita Electric Ind Co Ltd モータ駆動装置およびモータ駆動方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009225228A (ja) * 2008-03-18 2009-10-01 Sony Corp バンドパスフィルタ装置、その製造方法、テレビジョンチューナおよびテレビジョン受信機
WO2021200677A1 (ja) * 2020-03-31 2021-10-07 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
US20060267711A1 (en) 2006-11-30
CN1874147A (zh) 2006-12-06
EP1732213B1 (en) 2008-09-10
KR100758093B1 (ko) 2007-09-11
EP1732213A1 (en) 2006-12-13
DE602006002656D1 (de) 2008-10-23
US7525399B2 (en) 2009-04-28
CN100530955C (zh) 2009-08-19
KR20060124554A (ko) 2006-12-05

Similar Documents

Publication Publication Date Title
JP2006339873A (ja) 薄膜圧電共振器、フィルタ及び電圧制御発振器
KR102248528B1 (ko) 음향 공진기 및 그 제조 방법
JP3944161B2 (ja) 薄膜バルク波音響共振器及び薄膜バルク波音響共振器の製造方法
JP4950267B2 (ja) 薄膜バルク音響共鳴器フィルタの製造方法および薄膜バルク音響共鳴器フィルタを用いた回路
KR100950391B1 (ko) 압전 박막 공진기 및 필터
CN110324022B (zh) 谐振器及其制备方法
JP4838292B2 (ja) パターン化された音響ミラーを固体的に取り付けられたマルチ共振器バルク音波フィルタ
KR102052829B1 (ko) 음향 공진기 및 이를 포함하는 음향 공진기 필터
JP2005236337A (ja) 薄膜音響共振器及びその製造方法
JP2007028669A (ja) 薄膜音響共振器の製造方法
JP6594619B2 (ja) 圧電薄膜共振器、フィルタおよびデュプレクサ
JP2008301453A (ja) 薄膜圧電共振器及びこれを用いたフィルタ回路
US20100109809A1 (en) Thin film piezoelectric resonator and thin film piezoelectric filter
CN111130486A (zh) 一种薄膜体声波谐振器结构及其制造方法、滤波器以及双工器
JP2008182543A (ja) 薄膜圧電共振器とそれを用いた薄膜圧電フィルタ
JP4895323B2 (ja) 薄膜圧電共振器
JP5032370B2 (ja) 薄膜共振子の製造方法
JP2009290591A (ja) Bawフィルタ
JP2009290367A (ja) Baw共振装置およびその製造方法
JP2009290364A (ja) Baw共振装置およびその製造方法
CN112260659B (zh) 一种高q值薄膜体声波谐振器及其制备方法
JP2010147869A (ja) Baw共振装置およびその製造方法
JP2009290368A (ja) Baw共振装置の製造方法
CN117394819A (zh) 一种声表面波谐振器及其制备方法、滤波器
JP2010147873A (ja) Bawフィルタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202