JP2006336037A - Vapor phase deposition system, and vapor phase deposition method - Google Patents

Vapor phase deposition system, and vapor phase deposition method Download PDF

Info

Publication number
JP2006336037A
JP2006336037A JP2005158883A JP2005158883A JP2006336037A JP 2006336037 A JP2006336037 A JP 2006336037A JP 2005158883 A JP2005158883 A JP 2005158883A JP 2005158883 A JP2005158883 A JP 2005158883A JP 2006336037 A JP2006336037 A JP 2006336037A
Authority
JP
Japan
Prior art keywords
mask
temperature
substrate
base material
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005158883A
Other languages
Japanese (ja)
Inventor
Kiyoshi Akagi
清 赤木
Keiichi Aoki
圭一 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2005158883A priority Critical patent/JP2006336037A/en
Publication of JP2006336037A publication Critical patent/JP2006336037A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor phase deposition system and a vapor phase deposition method capable of preventing the non-uniformity of quality in a deposition film surface by preventing pattern deviation caused by the distortion, expansion/contraction or the like of a mask when patterning and depositing a raw film by the vapor phase deposition method by using the mask. <P>SOLUTION: The vapor phase deposition system comprises: a vapor deposition chamber which is evacuated by an evacuation means by depositing at least one layer of a raw film on a substrate by a vapor phase deposition method; a substrate arrangement means of the substrate; a raw material evaporation means to evaporate a raw material; and a mask arrangement means of a mask to regulate the deposition area of a deposition film with respect to the substrate. The vapor phase deposition system is capable of controlling the temperature of the mask to the temperature history of the substrate by a temperature control mechanism at least while depositing the raw material film on the substrate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、真空中にて原料を蒸発し、基材に堆積させて膜を得る気相堆積装置及び気相堆積方法に関する。更に詳しくは、基材に対する堆積膜の形成領域を制限するマスク制限物を使用した気相堆積装置及び気相堆積方法に関する。   The present invention relates to a vapor phase deposition apparatus and a vapor phase deposition method for obtaining a film by evaporating a raw material in a vacuum and depositing it on a substrate. More specifically, the present invention relates to a vapor deposition apparatus and a vapor deposition method using a mask restrictor that restricts a region where a deposited film is formed on a substrate.

従来、基材に原料膜を堆積させる方法としては(真空)蒸着法、スパッタ法、化学蒸着法(CVD)、MBE(分子線エピタキシ)法、MOCVD(有機金属化学気相堆積)法等の気相堆積法が広く知られている。これら気相堆積法を使用した技術としては、例えば、半導体デバイスに用いられるタングステンの成膜技術、光で通信を行う光インタ−コネクションの分野で使用されるシリコンベ−スの発光材料、液晶表示装置においてスイッチング素子として使用される液晶表示用薄膜トランジスタ、発光素子、受光素子、圧電素子、透明導電電極、能動素子に用いられる酸化亜鉛結晶膜、アクティブマトリックス液晶ディスプレイや超LSI等に適応される薄膜半導体、放射線像変換パネルの蛍光体層等が挙げられ幅広い分野で使用されている。   Conventionally, as a method for depositing a raw material film on a base material, a vacuum (vacuum) vapor deposition method, a sputtering method, a chemical vapor deposition method (CVD), an MBE (molecular beam epitaxy) method, a MOCVD (metal organic chemical vapor deposition) method or the like is used. Phase deposition methods are widely known. Technologies using these vapor deposition methods include, for example, a tungsten film forming technology used in semiconductor devices, a silicon-based light emitting material used in the field of optical interconnection that communicates with light, and a liquid crystal display device. Thin film semiconductors adapted for thin film transistors for liquid crystal displays used as switching elements, light emitting elements, light receiving elements, piezoelectric elements, transparent conductive electrodes, zinc oxide crystal films used for active elements, active matrix liquid crystal displays, VLSI, etc., The phosphor layer of a radiation image conversion panel can be mentioned and used in a wide range of fields.

これら、気相堆積法により薄膜を形成する際、放射線像変換パネルの蛍光体層の形成の様に広い面積で薄膜を形成する場合と、アクティブマトリックス液晶ディスプレイの様に高精細化でパターン化された薄膜を形成する場合とがある。   When forming a thin film by vapor deposition, the thin film is formed with a large area, like the phosphor layer of a radiation image conversion panel, and it is patterned with high definition like an active matrix liquid crystal display. In some cases, a thin film is formed.

パターン化された薄膜を気相堆積法により形成する際、基材に対して必要とする箇所のみに原料膜を堆積させる領域を制御する技術は各種あり、マスクと呼ばれる所望の開口部を有した部材を使用して行っている。必要とする箇所にのみ薄膜を形成する手段にマスクを使用することは、非常に有効な方法であるが、基板上に原料膜を堆積する際、堆積パターンのズレが発生し品質に悪影響を及ぼすことが知られている。この様に、堆積パターンのズレ等による品質への影響を避けるため、これまでに対応が取られてきた。例えば、マスクに張力を付与し、基材へのマスクの密着性を向上させる方法が知られている(例えば、特許文献1を参照。)。特許文献1に記載の技術では、マスクに張力を付与し、基材へのマスクの密着性を向上させるため、マスク保持装置が複雑となっており、取り扱いが煩雑である。又、マスクを温度制御することで、マスクの歪み、伸縮等を防止する技術が知られている(例えば、特許文献2を参照。)。特許文献2に記載の技術では、マスクの歪み、伸縮等を防止することが出来、マスクのパターンズレを防止することは出来るが別の問題として、マスクのみの温度制御を行っても基材温度との差異に伴い、マスク近傍と薄膜面の中心とで品質差が生じ堆積膜面内品質不均一問題の回避には不十分である。   When a patterned thin film is formed by a vapor deposition method, there are various techniques for controlling a region in which a raw material film is deposited only at a necessary position on a substrate, and a desired opening called a mask has been provided. This is done using members. Using a mask as a means for forming a thin film only where it is needed is a very effective method, but when depositing a raw material film on a substrate, a deviation of the deposition pattern occurs, which adversely affects quality. It is known. Thus, in order to avoid the influence on the quality due to the deviation of the deposition pattern and the like, measures have been taken so far. For example, a method is known in which tension is applied to the mask to improve the adhesion of the mask to the substrate (see, for example, Patent Document 1). In the technique described in Patent Document 1, since the tension is applied to the mask and the adhesion of the mask to the base material is improved, the mask holding device is complicated and handling is complicated. In addition, a technique for preventing mask distortion, expansion and contraction, etc. by controlling the temperature of the mask is known (see, for example, Patent Document 2). With the technique described in Patent Document 2, it is possible to prevent mask distortion, expansion and contraction, etc., and to prevent mask pattern displacement, but as another problem, even if temperature control of only the mask is performed, the substrate temperature Therefore, a difference in quality occurs between the vicinity of the mask and the center of the thin film surface, which is insufficient for avoiding the problem of uneven quality in the deposited film surface.

この様な状況から、マスクを使用し気相堆積法により原料膜をパターン化して堆積する際、パターンズレを防止し、堆積膜面内品質不均一を防止した気相堆積装置及び気相堆積方法の開発が望まれている。
特開2004−3030号公報 特開2001−323364号公報
Under these circumstances, when depositing a raw material film by patterning using a mask by a vapor deposition method, pattern displacement is prevented, and the deposited film in-plane quality non-uniformity is prevented, and a vapor deposition method. Development is desired.
JP 2004-3030 A JP 2001-323364 A

本発明は、上記状況に鑑みなされたものであり、その目的は、マスクを使用し気相堆積法により原料膜をパターン化して堆積する際、パターンズレを防止し、堆積膜面内品質不均一を防止した気相堆積装置及び気相堆積方法を提供することである。   The present invention has been made in view of the above situation, and its purpose is to prevent pattern misalignment when depositing a raw material film by vapor phase deposition using a mask, and non-uniform quality in the deposited film surface. It is an object of the present invention to provide a vapor deposition apparatus and a vapor deposition method that prevent the above.

本発明の上記目的は、以下の構成により達成された。   The above object of the present invention has been achieved by the following constitution.

(請求項1)
気相堆積法によって基材上に少なくとも1層の原料膜を堆積させる、減圧手段で減圧される蒸着室と、基材の基材配置手段と、原料を蒸発させる原料蒸発手段と、基材に対して堆積膜の形成領域を規制するマスクのマスク配置手段とを有する気相堆積装置において、
少なくとも前記基材上に前記原料膜を堆積させる間、前記マスクを温度制御機構により前記基材の温度履歴に合わせて温度制御することが可能であることを特徴とする気相堆積装置。
(Claim 1)
Depositing at least one layer of a raw material film on a base material by a vapor deposition method, a deposition chamber depressurized by a decompression means, a base material placement means for the base material, a raw material evaporation means for evaporating the raw material, and a base material In contrast, a vapor deposition apparatus having a mask arrangement means for a mask that regulates a formation region of a deposited film,
At least during the deposition of the source film on the substrate, the temperature of the mask can be controlled in accordance with the temperature history of the substrate by a temperature control mechanism.

(請求項2)
前記温度制御機構は加熱・冷却が可能な媒体の温度制御手段と、該媒体を基材配置手段及びマスク配置手段へ循環させる循環手段と、該媒体の循環量の循環量制御手段とを有していることを特徴とする請求項1に記載の気相堆積装置。
(Claim 2)
The temperature control mechanism includes a temperature control unit for a medium that can be heated and cooled, a circulation unit that circulates the medium to the substrate arrangement unit and the mask arrangement unit, and a circulation amount control unit for the circulation amount of the medium. The vapor deposition apparatus according to claim 1, wherein

(請求項3)
前記マスクは基材に接触する状態で配設されていることを特徴とする請求項1又は2に記載の気相堆積装置。
(Claim 3)
The vapor phase deposition apparatus according to claim 1, wherein the mask is disposed in contact with a base material.

(請求項4)
前記マスクは基材と、非接触の状態で配設されていることを特徴とする請求項1又は2に記載の気相堆積装置。
(Claim 4)
The vapor phase deposition apparatus according to claim 1, wherein the mask is disposed in a non-contact state with the base material.

(請求項5)
前記マスクは基材と同じ材質であることを特徴とする請求項1〜4の何れか1項に記載の気相堆積装置。
(Claim 5)
The vapor phase deposition apparatus according to claim 1, wherein the mask is made of the same material as the base material.

(請求項6)
気相堆積装置を使用し、基材上に少なくとも1層の原料膜を堆積させる気相堆積方法において、前記気相堆積装置が請求項1〜5の何れか1項に記載の気相堆積装置であることを特徴とする気相堆積方法。
(Claim 6)
The vapor phase deposition apparatus according to any one of claims 1 to 5, wherein the vapor phase deposition apparatus uses a vapor deposition apparatus to deposit at least one raw material film on a substrate. A vapor deposition method characterized by the above.

マスクを使用し気相堆積法により原料膜をパターン化して堆積する際、パターンズレを防止し、堆積膜面内品質不均一を防止した気相堆積装置及び気相堆積方法を提供することが出来、安定した堆積膜面品質の製品を作製することが可能となり、生産効率の向上が可能となった。   Provided are a vapor deposition apparatus and a vapor deposition method that prevent pattern misalignment and prevent in-plane quality non-uniformity when a source film is patterned and deposited by a vapor deposition method using a mask. This makes it possible to produce products with stable deposited film surface quality, and to improve production efficiency.

本発明に係る実施の形態を図1〜図5を参照しながら説明するが、本発明はこれに限定されるものではない。   Embodiments according to the present invention will be described with reference to FIGS. 1 to 5, but the present invention is not limited thereto.

図1は蒸着室と、基材配置手段と、マスク配置手段と、原料蒸発手段とを有する気相堆積装置の模式図である。図1の(a)は蒸着室と、基材配置手段及びマスク配置手段の温度制御手段と、原料蒸発手段とを有する気相堆積装置の模式図である。図1の(b)は図1の(a)に示す気相堆積装置を構成している各部、各手段の関係を示す概略ブロック図である。   FIG. 1 is a schematic view of a vapor deposition apparatus having a vapor deposition chamber, a substrate placement means, a mask placement means, and a raw material evaporation means. FIG. 1A is a schematic view of a vapor deposition apparatus having a vapor deposition chamber, temperature control means for substrate placement means and mask placement means, and raw material evaporation means. FIG. 1B is a schematic block diagram showing the relationship between each part and means constituting the vapor deposition apparatus shown in FIG.

図中、1aは気相堆積装置を示す。気相堆積装置1aは蒸着室101と、基材配置手段102と、マスク配置手段103と、温度制御機構104aと、原料蒸発手段105、制御手段2とを有している。   In the figure, reference numeral 1a denotes a vapor deposition apparatus. The vapor deposition apparatus 1 a includes a vapor deposition chamber 101, a base material placement unit 102, a mask placement unit 103, a temperature control mechanism 104 a, a raw material evaporation unit 105, and a control unit 2.

101aは蒸着室101に配設された排気口を示し減圧手段である排気手段(不図示)に繋がっており、メインバルブ101bを介して蒸着室101を設定した真空度にするようになっている。蒸着室101の真空度は、必要に応じて適宜設定することが可能となっている。101cは蒸着室101の真空度を測定する測定手段である真空度測定計を示す。真空度測定計としては特に限定はなく、例えば電離真空計、ピラニ真空計が挙げられる。101dは不活性ガス導入口を示し、必要に応じてガス導入バルブ101eを介してN2、Ar、Ne、He等の不活性ガスが雰囲気ガスとして導入される。 Reference numeral 101a denotes an exhaust port provided in the vapor deposition chamber 101, which is connected to an exhaust means (not shown) that is a decompression means, and is configured to have a set degree of vacuum through the main valve 101b. . The degree of vacuum in the vapor deposition chamber 101 can be appropriately set as necessary. Reference numeral 101c denotes a vacuum measuring meter which is a measuring means for measuring the vacuum degree of the vapor deposition chamber 101. There is no limitation in particular as a vacuum measuring meter, For example, an ionization vacuum gauge and a Pirani vacuum gauge are mentioned. Reference numeral 101d denotes an inert gas inlet, and an inert gas such as N 2 , Ar, Ne, or He is introduced as an atmospheric gas through a gas introduction valve 101e as necessary.

基材配置手段102は、基材配置部材102aと、温度測定手段102bとを有し、温度制御機構104aにより温度制御が可能となっている。基材配置部材102aに配置された基材3は複数枚配置してもよく、基材配置部材102aのいかなる位置に配置することも可能となっている。基材配置部材102aとしては、基材の平面性を保持し配置出来れば特に限定はなく、例えば、ステンレス鋼、アルミニウム等が挙げられる。   The base material arranging means 102 has a base material arranging member 102a and a temperature measuring means 102b, and the temperature can be controlled by the temperature control mechanism 104a. A plurality of the substrates 3 arranged on the substrate arrangement member 102a may be arranged, and can be arranged at any position on the substrate arrangement member 102a. The substrate placement member 102a is not particularly limited as long as the planarity of the substrate can be maintained and placed, and examples thereof include stainless steel and aluminum.

温度測定手段102bは基材配置部材102aに配置された基材3の温度を測定し、結果を制御手段2にフィードバックする様になっている。フィードバックされた情報に従って、基材配置部材102aに熱媒体を循環させる温度制御機構104aを制御することで、基材上へ原料を堆積中に、基材の温度を一定に保持すること等が可能となっている。温度測定手段102bとしては特に限定はなく、例えば熱電対、温度センサー等が挙げられる。   The temperature measuring means 102 b measures the temperature of the base material 3 placed on the base material placement member 102 a and feeds back the result to the control means 2. By controlling the temperature control mechanism 104a that circulates the heat medium to the base material arranging member 102a according to the fed back information, the temperature of the base material can be kept constant while the raw material is deposited on the base material. It has become. The temperature measuring unit 102b is not particularly limited, and examples thereof include a thermocouple and a temperature sensor.

102dは基材配置部材102aを回転させる回転手段を示す。回転手段は特に限定はなく、例えば回転モーターでもよいし、プーリーを介してベルトであってもよい。本図は回転モーターの場合を示している。又、基材配置部材102aは回転させてもよいし、固定であってもよい。本図は回転させる場合を示している。   Reference numeral 102d denotes a rotating means for rotating the base material arranging member 102a. The rotating means is not particularly limited, and may be, for example, a rotary motor or a belt via a pulley. This figure shows the case of a rotary motor. Further, the base material arranging member 102a may be rotated or fixed. This figure has shown the case where it rotates.

マスク配置手段103は、マスク配置部材103aを有し、温度制御機構104aにより温度制御が可能となっている。4はマスク配置部材103aに配置されたマスクを示す。マスク配置部材103aとしては、マスクの平面性を保持し配置出来れば特に限定はなく、例えば、ステンレス鋼、アルミニウム、銅等が挙げられる。マスク配置部材103aは基材配置部材102aに取り付けられている。本図はマスク4と基材3とは密着している場合を示している。   The mask arrangement means 103 has a mask arrangement member 103a, and the temperature can be controlled by the temperature control mechanism 104a. Reference numeral 4 denotes a mask arranged on the mask arrangement member 103a. The mask placement member 103a is not particularly limited as long as the mask planarity can be maintained and placed, and examples thereof include stainless steel, aluminum, and copper. The mask arrangement member 103a is attached to the base material arrangement member 102a. This figure has shown the case where the mask 4 and the base material 3 are closely_contact | adhering.

マスク配置手段103の下側に、基材3への原料の堆積を制御する原料堆積制御手段の遮蔽板(不図示)を配設してもかまわない。遮蔽板(不図示)はどのような形式でもかまわないが、機能としては完全に閉じることで基材3の蒸気堆積を完全に防止出来る形式のものが好ましい。   A shielding plate (not shown) of raw material deposition control means for controlling the deposition of the raw material on the base material 3 may be disposed below the mask placement means 103. The shielding plate (not shown) may be of any type, but preferably has a type that can completely prevent vapor deposition of the substrate 3 by being completely closed.

温度制御機構104aは、加熱・冷却が可能な媒体の温度制御手段(不図示)と、加熱・冷却が可能な媒体を基材配置手段102の基材配置部材102a及びマスク配置手段103のマスク配置部材103aへ循環させる循環手段(不図示)と、媒体の循環量の循環量制御手段(不図示)とを有している。温度制御機構104aにより、基材配置部材102a、マスク配置部材103aへ所定温度に制御された媒体を循環させることで、基材配置部材102aに配置された基材3、及びマスク配置部材103aに配置されたマスク4を所定温度とすることが可能となっている。   The temperature control mechanism 104a includes a temperature control unit (not shown) for a medium that can be heated and cooled, and a medium that can be heated and cooled, and a mask arrangement for the substrate arrangement member 102a of the substrate arrangement unit 102 and the mask arrangement unit 103. Circulation means (not shown) for circulation to the member 103a and circulation amount control means (not shown) for the circulation amount of the medium are provided. The medium controlled to a predetermined temperature is circulated to the substrate arrangement member 102a and the mask arrangement member 103a by the temperature control mechanism 104a, thereby arranging the substrate 3 on the substrate arrangement member 102a and the mask arrangement member 103a. It is possible to set the mask 4 to a predetermined temperature.

温度制御機構104aにより、基材配置部材102a及びマスク配置部材103aへ媒体を循環させる方法は、同一媒体を基材配置部材102a及びマスク配置部材103aへ循環させてもよいし、それぞれ個別に循環させてもよい。本図は同一媒体を基材配置部材102a及びマスク配置部材103aへ循環させる場合を示している。同一の所定温度に制御された媒体を基材配置部材102a及びマスク配置部材103aへ循環させるためマスク4の温度履歴は基材3の温度履歴と同じように制御することが可能となっている。   In the method of circulating the medium to the substrate arrangement member 102a and the mask arrangement member 103a by the temperature control mechanism 104a, the same medium may be circulated to the substrate arrangement member 102a and the mask arrangement member 103a or individually circulated. May be. This figure shows a case where the same medium is circulated to the base material arranging member 102a and the mask arranging member 103a. Since the medium controlled to the same predetermined temperature is circulated to the base material placement member 102a and the mask placement member 103a, the temperature history of the mask 4 can be controlled in the same manner as the temperature history of the base material 3.

媒体としては、例えば、合成系有機熱媒体油等が挙げられる。媒体の温度制御手段としては、例えば、ヒーターとチラーの組合せ等が挙げられる。循環量制御手段としては、例えば、フローメーターとポンプの組合せ等が挙げられる。   Examples of the medium include synthetic organic heat medium oil. Examples of the medium temperature control means include a combination of a heater and a chiller. Examples of the circulation amount control means include a combination of a flow meter and a pump.

105は蒸着室101の下部に設けられた原料蒸発手段を示す。原料蒸発手段105は、加熱手段(不図示)を有する原料容器105aと、原料容器105aの加熱用の電流供給部105dとを有している。原料容器105aの加熱手段としては特に限定はなく、例えばスパッタ方式、抵抗加熱方式等が挙げられる。本図では抵抗加熱方式の場合を示している。原料容器105aの開口部には原料105bが設定した温度に達する迄は、安定した堆積膜面を得るために、制御可能な可動式の蓋(付図示)を配設することが好ましい。尚、原料蒸発手段105は、原料容器105a内の原料105bの温度を測定するための、熱電対、温度センサー等の測定手段105cを配設し、測定手段105cの結果を制御手段2にフィードバックし、予め制御手段2に入力してある設定温度に対し、演算処理し設定温度を維持する様に制御することが好ましい。本図は原料容器105aの温度を制御する場合を示している。これらの制御と可動式の蓋(付図示)の制御と組合せ、設定温度に達したのに合わせ蓋を開ける様な制御も可能である。   Reference numeral 105 denotes a raw material evaporation means provided in the lower part of the vapor deposition chamber 101. The raw material evaporation means 105 has a raw material container 105a having heating means (not shown) and a current supply unit 105d for heating the raw material container 105a. The heating means for the raw material container 105a is not particularly limited, and examples thereof include a sputtering method and a resistance heating method. This figure shows the resistance heating method. In order to obtain a stable deposited film surface, it is preferable to dispose a controllable movable lid (attached) to the opening of the raw material container 105a until the temperature of the raw material 105b reaches a set temperature. The raw material evaporation means 105 is provided with a measuring means 105c such as a thermocouple or a temperature sensor for measuring the temperature of the raw material 105b in the raw material container 105a, and feeds back the result of the measuring means 105c to the control means 2. It is preferable to perform control on the set temperature input in advance to the control means 2 so as to maintain the set temperature. This figure shows a case where the temperature of the raw material container 105a is controlled. A combination of these controls and control of a movable lid (illustrated) can also be performed to open the lid when the set temperature is reached.

気相堆積装置1aを構成している各部、各手段の関係を図1の(b)に示す概略ブロック図により説明する。基材の温度測定手段102bにより測定された基材配置部材102aに保持された基材3の温度に関する情報は制御手段2のCPUに入力される。制御手段2に入力された情報はメモリーに予め入力されている設定温度と演算処理を行い、基材配置部材102a及びマスク配置部材103aに所定の温度に調整された熱媒体を循環させる温度制御機構104aを制御し、媒体の循環量と媒体の温度とを制御することが可能となっている。この制御により、基材3とマスク4との温度を同じ温度履歴で同じ温度にすることが可能となっている。測定手段105cにより測定された原料容器105a内の原料105bの温度の結果を制御手段2にフィードバックし、予め制御手段2に入力してある設定温度に対し、演算処理し、原料容器105aに配設された加熱手段(不図示)の電流供給部105dの電流調整を行うことで原料105bの温度を一定に制御することが可能となっている。これらの原料105bの温度の結果を、温度制御機構104aにフィードバックして、基材3とマスク4との加熱開始のタイミングを決めるのに使用することも勿論可能である。   The relationship between each part and each means constituting the vapor deposition apparatus 1a will be described with reference to a schematic block diagram shown in FIG. Information on the temperature of the base material 3 held by the base material arrangement member 102a measured by the base material temperature measurement means 102b is input to the CPU of the control means 2. The information input to the control means 2 performs a calculation process with a preset temperature previously input to the memory, and a temperature control mechanism that circulates the heat medium adjusted to a predetermined temperature through the base material arranging member 102a and the mask arranging member 103a. 104a can be controlled to control the circulation amount of the medium and the temperature of the medium. By this control, the temperature of the base material 3 and the mask 4 can be set to the same temperature with the same temperature history. The result of the temperature of the raw material 105b in the raw material container 105a measured by the measuring means 105c is fed back to the control means 2, and the arithmetic processing is performed for the set temperature input in advance to the control means 2, and the result is arranged in the raw material container 105a. By adjusting the current of the current supply unit 105d of the heating means (not shown), the temperature of the raw material 105b can be controlled to be constant. It is of course possible to feed back the temperature results of these raw materials 105b to the temperature control mechanism 104a and use them to determine the heating start timing of the substrate 3 and the mask 4.

図2は蒸着室と、基材配置手段と、マスク配置手段と、原料蒸発手段とを有する他の気相堆積装置の模式図である。図2の(a)は蒸着室と、基材配置手段の温度制御手段と、マスク配置手段の温度制御手段と、原料蒸発手段とを有する気相堆積装置の模式図である。図2の(b)は図2の(a)に示す気相堆積装置を構成している各部、各手段の関係を示す概略ブロック図である。   FIG. 2 is a schematic view of another vapor deposition apparatus having a vapor deposition chamber, a base material arranging means, a mask arranging means, and a raw material evaporation means. FIG. 2A is a schematic diagram of a vapor deposition apparatus having a vapor deposition chamber, a temperature control means for a substrate placement means, a temperature control means for a mask placement means, and a raw material evaporation means. FIG. 2B is a schematic block diagram showing the relationship between each part and each means constituting the vapor deposition apparatus shown in FIG.

図中、1bは気相堆積装置を示す。104a′は基材配置部材102aの温度を制御するための温度制御機構を示し、103cはマスク配置部材103aの温度を制御するための温度制御機構を示す。図1に示す気相堆積装置との違いは、図1に示す気相堆積装置は基材配置部材102aとマスク配置部材103aとの温度制御を一緒に行う方式に対し本図で示す気相堆積装置は基材配置部材102aとマスク配置部材103aとの温度制御をそれぞれ単独に行う方式となっている点である。103bはマスク配置部材103aの温度測定手段を示す。温度測定手段103bとしては特に限定はなく、温度測定手段102bと同じであることが好ましい。その他の符号は図1と同義である。   In the figure, 1b represents a vapor deposition apparatus. Reference numeral 104a 'denotes a temperature control mechanism for controlling the temperature of the substrate arrangement member 102a, and 103c denotes a temperature control mechanism for controlling the temperature of the mask arrangement member 103a. The vapor deposition apparatus shown in FIG. 1 is different from the vapor deposition apparatus shown in FIG. 1 in that the vapor deposition apparatus shown in FIG. 1 is different from the system in which the temperature control of the substrate placement member 102a and the mask placement member 103a is performed together. The apparatus is a system in which the temperature control of the substrate arrangement member 102a and the mask arrangement member 103a is performed independently. Reference numeral 103b denotes a temperature measuring means for the mask arrangement member 103a. The temperature measuring unit 103b is not particularly limited, and is preferably the same as the temperature measuring unit 102b. Other symbols are the same as those in FIG.

基材配置手段102は、基材配置部材102aと、温度測定手段102bとを有し、温度制御機構104a′により温度制御が可能となっている。温度制御機構104a′は、加熱・冷却が可能な媒体の温度制御手段(不図示)と、加熱・冷却が可能な媒体を基材配置手段102の基材配置部材102a及びマスク配置手段103のマスク配置部材103aへ循環させる循環手段(不図示)と、媒体の循環量の循環量制御手段(不図示)とを有している。温度制御機構104a′は基材配置部材102aへ所定温度に制御された媒体を循環させる様になっており、これにより基材配置部材102aに配置された基材3を所定温度とすることが可能となっている。   The base material arranging means 102 has a base material arranging member 102a and a temperature measuring means 102b, and the temperature can be controlled by the temperature control mechanism 104a ′. The temperature control mechanism 104 a ′ includes a temperature control unit (not shown) for a medium that can be heated and cooled, and a medium that can be heated and cooled, and a mask for the substrate arrangement member 102 a of the substrate arrangement unit 102 and the mask arrangement unit 103. Circulation means (not shown) for circulation to the arrangement member 103a and circulation amount control means (not shown) for the circulation amount of the medium are provided. The temperature control mechanism 104a 'circulates the medium controlled to a predetermined temperature to the base material arranging member 102a, and thereby the base material 3 arranged on the base material arranging member 102a can be set to the predetermined temperature. It has become.

温度測定手段102bは基材配置部材102aに配置された基材3の温度を測定し、結果を制御手段2にフィードバックする様になっている。フィードバックされた情報に従って、温度制御機構104a′を制御することで、基材上へ原料を堆積中に、基材の温度を一定に保持すること等が可能となっている。   The temperature measuring means 102 b measures the temperature of the base material 3 placed on the base material placement member 102 a and feeds back the result to the control means 2. By controlling the temperature control mechanism 104a ′ according to the fed back information, it is possible to keep the temperature of the substrate constant while depositing the raw material on the substrate.

マスク配置手段103は、マスク配置部材103aと、温度測定手段103bとを有している。マスク配置部材103aは温度制御機構103cからの所定温度に制御された媒体の循環が可能となっている。本図はマスク4と基材3とは密着している場合を示している。   The mask arrangement unit 103 includes a mask arrangement member 103a and a temperature measurement unit 103b. The mask placement member 103a can circulate the medium controlled to a predetermined temperature from the temperature control mechanism 103c. This figure has shown the case where the mask 4 and the base material 3 are closely_contact | adhering.

温度測定手段103bはマスク配置部材103aに配置されたマスク4の温度を測定し、結果を制御手段2にフィードバックする様になっている。フィードバックされた情報に従って、マスク配置部材103aに所定温度に制御された媒体を循環させている温度制御機構103cを制御し、媒体の温度及び媒体の循環量を制御することで、基材上へ原料を堆積中にマスク4温度を基材3の温度履歴に合わせ制御することが可能となっている。   The temperature measuring means 103b measures the temperature of the mask 4 arranged on the mask arrangement member 103a and feeds back the result to the control means 2. According to the fed back information, the temperature control mechanism 103c that circulates the medium controlled to a predetermined temperature in the mask arrangement member 103a is controlled, and the temperature of the medium and the circulation amount of the medium are controlled. During deposition, the temperature of the mask 4 can be controlled in accordance with the temperature history of the substrate 3.

気相堆積装置1bを構成している各部、各手段の関係を図2の(b)に示す概略ブロック図により説明する。基材の温度測定手段102bにより測定された基材配置部材102aに保持された基材3の温度に関する情報は制御手段2のCPUに入力される。制御手段2に入力された情報はメモリーに予め入力されている設定温度と演算処理を行い、基材配置部材102aに配設された、所定の温度に調整された熱媒体を循環させる温度制御機構104a′を制御し、媒体の循環量と媒体の温度とを制御することが可能となっている。   The relationship between each part and each means constituting the vapor deposition apparatus 1b will be described with reference to a schematic block diagram shown in FIG. Information on the temperature of the base material 3 held by the base material arrangement member 102a measured by the base material temperature measurement means 102b is input to the CPU of the control means 2. The information input to the control means 2 performs a calculation process with the preset temperature input in advance in the memory, and a temperature control mechanism that circulates the heat medium adjusted to a predetermined temperature, which is arranged in the base material arrangement member 102a. 104a 'can be controlled to control the circulation amount of the medium and the temperature of the medium.

マスクの温度測定手段103bにより測定されたマスク配置部材103aに保持されたマスク4の温度に関する情報は制御手段2のCPUに入力される。制御手段2に入力された情報はメモリーに予め入力されている設定温度と演算処理を行い、マスク配置部材103aに配設された、所定の温度に調整された媒体を循環させる温度制御機構103cを制御し、熱媒体の循環量と料熱媒体の温度とを制御することが可能となっている。この時、温度制御機構103cによる媒体の循環量と媒体の温度は、基材3の温度履歴に合わせマスク4の温度を制御する方式となっている。測定手段105cにより測定された原料容器105a内の原料105bの温度の結果を制御手段2にフィードバックし、予め制御手段2に入力してある設定温度に対し、演算処理し、原料容器105aに配設された加熱手段(不図示)の電流供給部104dの電流調整を行うことで原料105bの温度を一定に制御することが可能となっている。これらの原料105bの温度の結果を、基材3の温度制御機構104a′及びマスク4の温度制御機構103cにフィードバックして、基材3及びマスク4の加熱開始のタイミングを決めるのに使用することも勿論可能である。   Information on the temperature of the mask 4 held by the mask arrangement member 103a measured by the mask temperature measuring means 103b is input to the CPU of the control means 2. The information input to the control means 2 performs a calculation process with a preset temperature previously input to the memory, and a temperature control mechanism 103c disposed in the mask arrangement member 103a for circulating the medium adjusted to a predetermined temperature. It is possible to control and control the circulation amount of the heat medium and the temperature of the heat medium. At this time, the circulation amount of the medium and the temperature of the medium by the temperature control mechanism 103 c are a system in which the temperature of the mask 4 is controlled in accordance with the temperature history of the substrate 3. The result of the temperature of the raw material 105b in the raw material container 105a measured by the measuring means 105c is fed back to the control means 2, and the arithmetic processing is performed for the set temperature input in advance to the control means 2, and the result is arranged in the raw material container 105a. By adjusting the current of the current supply unit 104d of the heating means (not shown), the temperature of the raw material 105b can be controlled to be constant. The result of the temperature of the raw material 105b is fed back to the temperature control mechanism 104a ′ of the base material 3 and the temperature control mechanism 103c of the mask 4, and used to determine the timing of starting the heating of the base material 3 and the mask 4. Of course it is possible.

図1、図2に示す様に、基材の温度を一定に保持するように制御しながら基材上にマスクを使用し、気相堆積法によって少なくとも1層の原料膜を堆積させる時、基材の温度調整の履歴に合わせ、マスクの温度を制御することで次の効果が得られる。   As shown in FIG. 1 and FIG. 2, when a mask is used on a substrate while controlling the temperature of the substrate to be kept constant, and at least one source film is deposited by vapor deposition, The following effects can be obtained by controlling the mask temperature in accordance with the temperature adjustment history of the material.

基材の温度にマスクの温度を合わせる際、基材の温度との差の変動を少なくすることが可能になるため、基材温度との差異に伴う、マスク近傍と堆積膜面の中心との品質差が生じることを抑え堆積膜面内品質不均一がなくなり安定品質の堆積膜面を得ることが可能となった。   When adjusting the temperature of the mask to the temperature of the base material, it becomes possible to reduce the fluctuation of the difference from the temperature of the base material, so the difference between the base material temperature and the vicinity of the mask and the center of the deposited film surface It is possible to suppress the quality difference and eliminate the non-uniform quality in the deposited film surface, and obtain a stable deposited film surface.

図3は図1に示す気相堆積装置で、基材とマスクとを非接触に配置した場合の気相堆積装置の模式図である。   FIG. 3 is a schematic view of the vapor phase deposition apparatus shown in FIG. 1 when the substrate and the mask are arranged in a non-contact manner.

図中、1cは気相堆積装置を示す。Xはマスク4と基材配置部材102aに配置された基材3との間隙を示す。間隙Xは、非堆積領域への堆積膜形成等を考慮し、堆積厚みの1/3〜2倍が好ましい。他の符号は図1と同義である。基材3及びマスク4の温度制御の方式も図1に示す温度制御の方式と同じである。   In the figure, 1c represents a vapor deposition apparatus. X represents a gap between the mask 4 and the base material 3 disposed on the base material arranging member 102a. The gap X is preferably 1/3 to 2 times the deposition thickness in consideration of formation of a deposited film in a non-deposition region. Other reference numerals are the same as those in FIG. The temperature control method for the substrate 3 and the mask 4 is also the same as the temperature control method shown in FIG.

図4は図2に示す気相堆積装置で、基材とマスクとを非接触に配置した場合の気相堆積装置の模式図である。   FIG. 4 is a schematic view of the vapor deposition apparatus shown in FIG. 2 in which the substrate and the mask are arranged in a non-contact manner.

図中、1dは気相堆積装置を示す。他の符号は図2と同義である。基材3及びマスク4の温度制御の方式も図2に示す温度制御の方式と同じである。   In the figure, reference numeral 1d denotes a vapor deposition apparatus. Other symbols are the same as those in FIG. The temperature control method for the substrate 3 and the mask 4 is also the same as the temperature control method shown in FIG.

図3、図4に示す様に、マスクを基材と間隙を持って配置することで、図1及び図2に示すマスクを基材と密着する方式に対して更に次ぎの効果が得られる。
1)堆積膜自体のマスク近傍での欠損、膜厚減少等のダメージを防止することが可能となり、更に高品質の堆積膜面を得ることが可能となった。
As shown in FIGS. 3 and 4, by arranging the mask with a gap from the base material, the following effects can be further obtained with respect to the method in which the mask shown in FIGS. 1 and 2 is in close contact with the base material.
1) It is possible to prevent damage such as defects in the vicinity of the mask of the deposited film itself and a reduction in film thickness, and it is possible to obtain a higher quality deposited film surface.

図5は基材の温度制御の履歴と、マスクの温度制御の温度制御の関係を示す概略履歴曲線である。   FIG. 5 is a schematic history curve showing the relationship between the temperature control history of the substrate and the temperature control of the mask temperature control.

図中、Aは基材の温度を50℃から100℃にする場合の履歴曲線である。この場合、基材の温度は段階的に上昇する制御を行っている。Bはマスクの温度を基材の温度に合わせるため、基材の温度履歴曲線と同じような制御を行い50℃から100℃にした場合の履歴曲線である。Cはマスクの温度を基材の温度に合わせるため、基材の温度制御とは異なる二次関数で示される様な曲線で表される制御を行い50℃から100℃にした場合の履歴曲線である。本発明において、基材の温度履歴に合わせてマスクの温度制御するとは、本図に示されるA、Bの関係で制御することをいう。   In the figure, A is a hysteresis curve when the temperature of the substrate is changed from 50 ° C to 100 ° C. In this case, the temperature of the substrate is controlled to increase stepwise. B is a history curve when the temperature of the mask is adjusted to 50 ° C to 100 ° C by performing the same control as the temperature history curve of the substrate in order to match the temperature of the substrate. C is a hysteresis curve when the temperature is changed from 50 ° C. to 100 ° C. in order to adjust the temperature of the mask to the temperature of the substrate, so that the control represented by a curve expressed by a quadratic function different from the temperature control of the substrate is performed. is there. In the present invention, controlling the temperature of the mask in accordance with the temperature history of the substrate means controlling according to the relationship between A and B shown in the figure.

図1〜図4に示されるマスクに使用する材質としては、基材と同じ材質を使用することが好ましい。本発明に係わる蒸発源に使用する材料は特に限定はなく、例えば半導体デバイスに用いられるタングステンの成膜技術、光で通信を行う光インタ−コネクションの分野で使用されるシリコンベ−スの発光材料、液晶表示装置においてスイッチング素子として使用される液晶表示用薄膜トランジスタ、発光素子、受光素子、圧電素子、透明導電電極、能動素子に用いられる酸化亜鉛結晶膜、アクティブマトリックス液晶ディスプレイや超LSI等に適応される薄膜半導体、放射線像変換パネルの蛍光体層等に使用する蒸発源が挙げられる。   The material used for the mask shown in FIGS. 1 to 4 is preferably the same material as the base material. The material used for the evaporation source according to the present invention is not particularly limited. For example, a tungsten film forming technique used in semiconductor devices, a silicon-based light emitting material used in the field of optical interconnection that performs optical communication, Applicable to thin film transistor for liquid crystal display used as switching element in liquid crystal display device, light emitting element, light receiving element, piezoelectric element, transparent conductive electrode, zinc oxide crystal film used for active element, active matrix liquid crystal display, super LSI, etc. Examples include evaporation sources used for thin film semiconductors, phosphor layers of radiation image conversion panels, and the like.

以下、実施例を挙げて本発明の具体的な効果を示すが、本発明の態様はこれらに限定されるものではない。   Hereinafter, although an example is given and the concrete effect of the present invention is shown, the mode of the present invention is not limited to these.

実施例1
(基材の準備)
基材は大きさ300mm×300mmの2mm厚のアルミニウム板を使用した。
Example 1
(Preparation of base material)
The substrate used was a 2 mm thick aluminum plate having a size of 300 mm × 300 mm.

(蒸発原料)
原料には臭化セシウムを使用した。
(Evaporation raw material)
Cesium bromide was used as a raw material.

(マスクの準備)
材料として厚さ2mmのアルミニウムを使用し、基材の周囲を50mmマスクするような、開口部が250mm×250mmであるマスク作製した。
(堆積膜の形成)
図1に示される気相堆積装置を使用し、堆積膜の形成時の基材の温度制御とマスクの温度制御を図5に示す様に、基材の温度制御の履歴曲線に合わせた場合と、履歴曲線に合わせずに行い、堆積膜を形成し試料No.101〜104とした。尚、図1に示される気相堆積装置で基材及びマスクの温度制御を行わない他は全て同じ条件で堆積膜の形成を行い比較試料としNo.105とした。図3に示される気相堆積装置で基材及びマスクの温度制御を行わない他は全て同じ条件で堆積膜の形成を行い比較試料としNo.106とした。
(Preparation of mask)
Using aluminum having a thickness of 2 mm as a material, a mask with an opening of 250 mm × 250 mm was prepared so as to mask the periphery of the substrate by 50 mm.
(Formation of deposited film)
When the vapor phase deposition apparatus shown in FIG. 1 is used and the temperature control of the substrate and the temperature control of the mask at the time of forming the deposited film are matched with the history curve of the temperature control of the substrate as shown in FIG. , Without conforming to the history curve, a deposited film was formed, and sample No. 101-104. Note that the deposited film was formed under the same conditions except that the temperature control of the base material and the mask was not performed in the vapor deposition apparatus shown in FIG. 105. The deposited film was formed under the same conditions except that the temperature control of the base material and the mask was not performed in the vapor deposition apparatus shown in FIG. 106.

堆積膜の形成条件として、原料容器としてモリブデン製の直方体状容器を使用し、加熱は抵抗加熱方式とした。原料容器には準備した臭化セシウムを800g充填した。
気相堆積装置の蒸着室内は真空ポンプを使用して0.1Paに調整し、原料容器内の温度が800℃に保持する様に制御しながら通電加熱して基材への蒸着を実施した。基材へは原料膜厚が300μmとなったところで原料の蒸発を終了させた。堆積膜の形成時の基材の温度は100℃になるように制御した。図3に示される気相堆積装置の場合、マスクと基材間の間隙は200μmとした。
As the conditions for forming the deposited film, a rectangular parallelepiped container made of molybdenum was used as a raw material container, and the heating was a resistance heating method. The raw material container was filled with 800 g of the prepared cesium bromide.
The inside of the vapor deposition chamber of the vapor phase deposition apparatus was adjusted to 0.1 Pa using a vacuum pump, and the vapor deposition on the base material was carried out by energizing heating while controlling the temperature inside the raw material container at 800 ° C. The evaporation of the raw material was terminated when the film thickness of the raw material reached 300 μm. The temperature of the substrate during the formation of the deposited film was controlled to be 100 ° C. In the case of the vapor deposition apparatus shown in FIG. 3, the gap between the mask and the substrate was 200 μm.

評価
得られた試料No.101〜106につき堆積領域内の膜密度、堆積膜のマスク境界端部の安定性につき、以下に示す方法で計測し、以下に示す評価ランクに従って評価した結果を表1に示す。
Evaluation The obtained sample No. Table 1 shows the results obtained by measuring the film density in 101 to 106 in the deposition region and the stability of the mask boundary edge of the deposition film by the following method and evaluating the film according to the following evaluation rank.

堆積領域内の膜密度の計測方法
堆積膜の形成領域において中央部と端部の膜密度を、試料より1cm角に切り出し、質量を測定し、以下の計算式に従って指標値算出した。
Method for Measuring Film Density in Deposition Area In the deposition film formation area, the film density at the center and the edge was cut into 1 cm square from the sample, the mass was measured, and the index value was calculated according to the following calculation formula.

絶対値(MC−ME)/MC
式中、MCは中央部の膜密度、MEは端部の膜密度を示す。
Absolute value (MC-ME) / MC
In the formula, MC represents the film density at the center, and ME represents the film density at the end.

評価ランク
◎:0.01未満
○:0.01以上、0.05未満
△:0.05以上、0.1未満
×:0.1以上、0.15未満
××:0.15以上
堆積膜の端部の安定性の評価方法
光学顕微鏡を使用し100倍で目視による観察を行った。
Evaluation rank ◎: Less than 0.01 ○: 0.01 or more, less than 0.05 Δ: 0.05 or more, less than 0.1 ×: 0.1 or more, less than 0.15 XX: 0.15 or more Deposited film Method for evaluating the stability of the end of the sample Using an optical microscope, observation was performed visually at a magnification of 100 times.

評価ランク
○:端部に欠損、凹みがない
△:端部に実技上問題とならない程度の僅かな欠損、凹みが確認される
×:端部に性能に影響を与える欠損、凹みの発生が確認される
Evaluation rank ○: There are no defects or dents at the end. △: Slight defects or dents are confirmed at the end that do not cause any practical problems. ×: Defects or dents that affect performance are confirmed at the end. Be done

Figure 2006336037
Figure 2006336037

本発明の有効性が確認された。   The effectiveness of the present invention was confirmed.

実施例2
実施例1の試料No.103を作製する際、基材とマスクとの間隙を表2に示す様に変えた他は全て同じ条件で堆積膜の形成を行い試料を作製しNo.201〜205とした。
Example 2
Sample No. 1 of Example 1 No. 103 was prepared by forming a deposited film under the same conditions except that the gap between the base material and the mask was changed as shown in Table 2, and a sample was prepared. 201-205.

評価
得られた試料No.101〜106につき実施例1と同じ項目を同じ方法で評価し、同じ評価ランクに従って評価した結果を表2に示す。
Evaluation The obtained sample No. The same items as in Example 1 were evaluated for 101 to 106 by the same method, and the results of evaluation according to the same evaluation rank are shown in Table 2.

Figure 2006336037
Figure 2006336037

試料No.205は、マスクと基材間の間隙が広くなることで、蒸気がマスクと基材間の間隙を回り込み、本来は必要としない箇所に迄堆積膜が形成されてしまい、マスクとしての機能を果たせなくなることを確認した。本発明の有効性が確認された。   Sample No. In 205, the gap between the mask and the base material becomes wide, so that the vapor wraps around the gap between the mask and the base material, and a deposited film is formed even at a place where it is not necessary, so that the function as a mask can be achieved. I confirmed that it disappeared. The effectiveness of the present invention was confirmed.

実施例3
実施例1の試料No.103を作製する際、マスクに使用する材質を表3に示す様に変えた他は全て同じ条件で堆積膜の形成を行い試料を作製しNo.301〜305とした。
Example 3
Sample No. 1 of Example 1 No. 103 was prepared by forming a deposited film under the same conditions except that the material used for the mask was changed as shown in Table 3, and a sample was prepared. 301 to 305.

評価
得られた試料No.301〜303につき実施例1と同じ項目を同じ方法で評価し、同じ評価ランクに従って評価した結果を表3に示す。
Evaluation The obtained sample No. The same items as in Example 1 were evaluated for 301 to 303 by the same method, and the results of evaluation according to the same evaluation rank are shown in Table 3.

Figure 2006336037
Figure 2006336037

本発明の有効性が確認された。   The effectiveness of the present invention was confirmed.

蒸着室と、基材配置手段と、マスク配置手段と、原料蒸発手段とを有する気相堆積装置の模式図である。It is a schematic diagram of the vapor deposition apparatus which has a vapor deposition chamber, a base-material arrangement | positioning means, a mask arrangement | positioning means, and a raw material evaporation means. 蒸着室と、基材配置手段と、マスク配置手段と、原料蒸発手段とを有する他の気相堆積装置の模式図である。It is a schematic diagram of the other vapor deposition apparatus which has a vapor deposition chamber, a base-material arrangement | positioning means, a mask arrangement | positioning means, and a raw material evaporation means. 図1に示す気相堆積装置で、基材とマスクとを非接触に配置した場合の気相堆積装置の模式図である。FIG. 2 is a schematic view of the vapor deposition apparatus when the substrate and the mask are arranged in a non-contact manner in the vapor deposition apparatus shown in FIG. 1. 図2に示す気相堆積装置で、基材とマスクとを非接触に配置した場合の気相堆積装置の模式図である。FIG. 3 is a schematic diagram of a vapor deposition apparatus when a substrate and a mask are arranged in a non-contact manner in the vapor deposition apparatus shown in FIG. 2. 基材の温度制御の履歴と、マスクの温度制御の温度制御の関係を示す概略履歴曲線である。5 is a schematic history curve showing the relationship between the temperature control history of the substrate and the temperature control of the mask temperature control.

符号の説明Explanation of symbols

1a〜1d 気相堆積装置
101 蒸着室
101a 排気口
101c 真空度測定計
101d 不活性ガス導入口
102 基材配置手段
102a 基材配置部材
102b、103b 温度測定手段
102c 電流供給部
102d 回転手段
103a マスク配置部材
104a、104a′、103c 温度制御機構
105 原料蒸発手段
105a 原料容器
105b 原料
105c 測定手段
2 制御手段
3 基材
4 マスク
X 間隙
DESCRIPTION OF SYMBOLS 1a-1d Vapor deposition apparatus 101 Vapor deposition chamber 101a Exhaust port 101c Vacuum measuring meter 101d Inert gas introduction port 102 Base material arrangement means 102a Base material arrangement member 102b, 103b Temperature measurement means 102c Current supply part 102d Rotation means 103a Mask arrangement Member 104a, 104a ', 103c Temperature control mechanism 105 Raw material evaporation means 105a Raw material container 105b Raw material 105c Measuring means 2 Control means 3 Base material 4 Mask X Gap

Claims (6)

気相堆積法によって基材上に少なくとも1層の原料膜を堆積させる、減圧手段で減圧される蒸着室と、基材の基材配置手段と、原料を蒸発させる原料蒸発手段と、基材に対して堆積膜の形成領域を規制するマスクのマスク配置手段とを有する気相堆積装置において、
少なくとも前記基材上に前記原料膜を堆積させる間、前記マスクを温度制御機構により前記基材の温度履歴に合わせて温度制御することが可能であることを特徴とする気相堆積装置。
Depositing at least one layer of a raw material film on a base material by a vapor deposition method, a deposition chamber depressurized by a decompression means, a base material placement means for the base material, a raw material evaporation means for evaporating the raw material, and a base material In contrast, a vapor deposition apparatus having a mask arrangement means for a mask that regulates a formation region of a deposited film,
At least during the deposition of the source film on the substrate, the temperature of the mask can be controlled in accordance with the temperature history of the substrate by a temperature control mechanism.
前記温度制御機構は加熱・冷却が可能な媒体の温度制御手段と、該媒体を基材配置手段及びマスク配置手段へ循環させる循環手段と、該媒体の循環量の循環量制御手段とを有していることを特徴とする請求項1に記載の気相堆積装置。 The temperature control mechanism includes a temperature control unit for a medium that can be heated and cooled, a circulation unit that circulates the medium to the substrate arrangement unit and the mask arrangement unit, and a circulation amount control unit for the circulation amount of the medium. The vapor deposition apparatus according to claim 1, wherein 前記マスクは基材に接触する状態で配設されていることを特徴とする請求項1又は2に記載の気相堆積装置。 The vapor phase deposition apparatus according to claim 1, wherein the mask is disposed in contact with a base material. 前記マスクは基材と、非接触の状態で配設されていることを特徴とする請求項1又は2に記載の気相堆積装置。 The vapor phase deposition apparatus according to claim 1, wherein the mask is disposed in a non-contact state with the base material. 前記マスクは基材と同じ材質であることを特徴とする請求項1〜4の何れか1項に記載の気相堆積装置。 The vapor phase deposition apparatus according to claim 1, wherein the mask is made of the same material as the base material. 気相堆積装置を使用し、基材上に少なくとも1層の原料膜を堆積させる気相堆積方法において、前記気相堆積装置が請求項1〜5の何れか1項に記載の気相堆積装置であることを特徴とする気相堆積方法。 The vapor phase deposition apparatus according to any one of claims 1 to 5, wherein the vapor phase deposition apparatus uses a vapor deposition apparatus to deposit at least one raw material film on a substrate. A vapor deposition method characterized by the above.
JP2005158883A 2005-05-31 2005-05-31 Vapor phase deposition system, and vapor phase deposition method Pending JP2006336037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005158883A JP2006336037A (en) 2005-05-31 2005-05-31 Vapor phase deposition system, and vapor phase deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005158883A JP2006336037A (en) 2005-05-31 2005-05-31 Vapor phase deposition system, and vapor phase deposition method

Publications (1)

Publication Number Publication Date
JP2006336037A true JP2006336037A (en) 2006-12-14

Family

ID=37556851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005158883A Pending JP2006336037A (en) 2005-05-31 2005-05-31 Vapor phase deposition system, and vapor phase deposition method

Country Status (1)

Country Link
JP (1) JP2006336037A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104952A (en) * 2017-12-11 2019-06-27 株式会社アルバック Vapor evaporation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104952A (en) * 2017-12-11 2019-06-27 株式会社アルバック Vapor evaporation device

Similar Documents

Publication Publication Date Title
KR101137901B1 (en) Thin-film deposition evaporator
JP4653089B2 (en) Vapor deposition source using pellets for manufacturing OLEDs
JP2019081949A (en) Evaporation source device, film deposition apparatus, film deposition method, and manufacturing method of electronic device
JP2015519477A (en) Sputtering method for pre-stabilized plasma processing
JP2010196082A (en) Vacuum vapor deposition apparatus
JP2017538864A (en) Mask configuration for masking a substrate in a processing chamber, apparatus for depositing a layer on a substrate, and method for aligning a mask configuration for masking a substrate in a processing chamber
JP5597505B2 (en) Sputtering equipment
WO2009157228A1 (en) Sputtering apparatus, sputtering method and light emitting element manufacturing method
JP2006348337A (en) Vapor deposition film-forming apparatus and vapor deposition source
JP4251857B2 (en) Vacuum film forming apparatus and vacuum film forming method
JP2006336037A (en) Vapor phase deposition system, and vapor phase deposition method
TW202127695A (en) Method and apparatus for deposition of piezo-electric materials
JP4445497B2 (en) Thin film deposition apparatus and thin film deposition method using the same
JP2002348658A (en) Evaporation source, thin-film forming method and forming apparatus therewith
JP2009149919A (en) Film thickness monitoring device and vapor deposition apparatus having the same
JP2014070239A (en) Vapor deposition device
JP2006124761A (en) Vapor deposition apparatus
JPH03183778A (en) Method and device for forming deposited film
JP2004111386A5 (en) Manufacturing apparatus and method for producing layer containing organic compound
US20240084439A1 (en) Crucible, evaporation source, evaporation method, evaporation system, and method of manufacturing a device
JP2004014311A (en) Forming method of organic thin film
US20100028534A1 (en) Evaporation unit, evaporation method, controller for evaporation unit and the film forming apparatus
JP2005281784A (en) Cooling structure for substrate
JP7202971B2 (en) Evaporation Source Apparatus, Film Forming Apparatus, Film Forming Method, and Electronic Device Manufacturing Method
JP2014019883A (en) Vacuum deposition and vacuum deposition method