JP2006335920A - Manufacturing method of fine organic pigment - Google Patents

Manufacturing method of fine organic pigment Download PDF

Info

Publication number
JP2006335920A
JP2006335920A JP2005163584A JP2005163584A JP2006335920A JP 2006335920 A JP2006335920 A JP 2006335920A JP 2005163584 A JP2005163584 A JP 2005163584A JP 2005163584 A JP2005163584 A JP 2005163584A JP 2006335920 A JP2006335920 A JP 2006335920A
Authority
JP
Japan
Prior art keywords
salt
organic pigment
pigment
fine
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005163584A
Other languages
Japanese (ja)
Inventor
Junichi Tsuchida
純一 土田
Takeshi Sato
威 佐藤
Nobuyuki Segawa
信之 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2005163584A priority Critical patent/JP2006335920A/en
Publication of JP2006335920A publication Critical patent/JP2006335920A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a high grade fine organic pigment, which has conventionally been manufactured by the kneading over a long time by the solvent salt milling method, in a short time, at a low cost and with low energy. <P>SOLUTION: In the method for manufacturing the fine organic pigment by the solvent salt milling method in which a mixture of a crude organic pigment, a grinding auxiliary agent and a water-soluble organic solvent is kneaded, as the grinding auxiliary agent, sodium chloride is used whose median particle diameter (D50) by volume base is 1-50 μm, whose 95% particle diameter (D95) is ≤80 μm, and whose Mg content is 0.002-0.08 wt%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ソルベントソルトミリング法により、従来は容易に得ることができなかった非常に微細でかつ均一な粒子径に整粒された有機顔料を、低エネルギー負荷、低コストで製造する方法に関するものである。   The present invention relates to a method for producing an organic pigment sized to a very fine and uniform particle size, which could not be easily obtained by a solvent salt milling method, with low energy load and low cost. It is.

有機顔料には、例えば、アゾ顔料のように合成時に適切な反応条件を選択することにより微細で整粒された顔料粒子を得ることができるものもあるが、銅フタロシアニングリーン顔料のように合成時に生成する極めて微細で凝集した粒子を後工程で粒子成長、整粒させることにより顔料化するもの、銅フタロシアニンブルー顔料のように合成時に生成する粗大で不揃いな粒子を後工程で微細化し、整粒させることにより顔料化を行うものもあることが知られている。
粗大な粗製顔料粒子を顔料化する方法として、現在広く用いられている方法には、ソルベントソルトミリング法、乾式粉砕法等がある。
Some organic pigments, for example, azo pigments can obtain finely sized pigment particles by selecting appropriate reaction conditions during synthesis, but copper phthalocyanine green pigments can be obtained during synthesis. The fine and agglomerated particles that are produced are pigmented by particle growth and sizing in the subsequent process, and coarse and irregular particles generated during synthesis, such as copper phthalocyanine blue pigment, are refined and sized in the subsequent process. It is known that some pigments can be made by making them.
As a method for pigmenting coarse coarse pigment particles, currently widely used methods include a solvent salt milling method and a dry pulverization method.

乾式粉砕法は、粗大な粗製顔料粒子を、ボールミル、アトライター、振動ミル等により乾式で粉砕することで顔料化する方法であり、ソルベントソルトミリング法と比較して、単位エネルギー当たりの生産効率は良い。しかしながら、粒子径のばらつきが大きく、また粒子間の凝集力が極めて強いため、多数の微細な一次粒子が極めて強い力で結合した巨大な凝集体しか得られない。そのため、乾式粉砕法については、種々の改善方法が検討されているが、高品質品の顔料を得ることは困難である。例えば、特許文献1には、有機顔料クルードを乾式摩砕で微細化した有機顔料セミクルードを少量の有機溶剤の雰囲気下で混合撹拌することで顔料化を行う技術が開示されている。しかし、この技術では、結晶成長により顔料化を行うものであるので、微細かつ整粒された有機顔料を製造することはできない。   The dry pulverization method is a method of pigmenting coarse coarse pigment particles by dry pulverization with a ball mill, attritor, vibration mill, etc., and the production efficiency per unit energy is higher than that of the solvent salt milling method. good. However, since the particle size variation is large and the cohesive force between the particles is extremely strong, only a huge aggregate in which a large number of fine primary particles are combined with an extremely strong force can be obtained. For this reason, various improvement methods have been studied for the dry pulverization method, but it is difficult to obtain high-quality pigments. For example, Patent Document 1 discloses a technique for pigmentation by mixing and stirring an organic pigment semi-crude obtained by micronizing an organic pigment crude by dry milling in an atmosphere of a small amount of an organic solvent. However, with this technique, since pigmentation is performed by crystal growth, a fine and sized organic pigment cannot be produced.

一方、ソルベントソルトミリング法は、粗大な粗製顔料粒子を、塩化ナトリウムや硫酸ナトリウム等の無機塩類と、エチレングリコール、ジエチレングリコール、ポリエチレングリコール等の粘性の高い水溶性有機溶剤の存在下で、ニーダー等により機械的に摩砕して顔料化する方法である。ソルベントソルトミリング法は、微細化、整粒させるのに有効な方法であるが、微細な顔料を得るためには、長時間混練することが必要であり、電力消費量が大きく、単位エネルギー当たりの生産性が悪いことが大きな問題点であった。   On the other hand, the solvent salt milling method uses coarse kneaded pigment particles in a kneader or the like in the presence of inorganic salts such as sodium chloride and sodium sulfate and highly viscous water-soluble organic solvents such as ethylene glycol, diethylene glycol and polyethylene glycol. It is a method of mechanically grinding and pigmenting. The solvent salt milling method is an effective method for refining and sizing, but in order to obtain a fine pigment, it needs to be kneaded for a long time, consumes a large amount of power, and per unit energy. Productivity was a big problem.

また、ソルベントソルトミリング法で製造される顔料の品質を決定する要因としては、摩砕助剤の量および粒子径、水溶性有機溶剤の種類および量が知られている。ソルベントソルトミリング法で用いられる摩砕助剤の粒子径について、特許文献2には「好ましくは5〜200μmの平均粒度を有する塩、特に好ましくは10〜50μmの平均粒度を有する塩」と記載され、特許文献3には「平均粒子径0.5〜50μmの無機塩を用いることがより好ましい。」と記載されている。しかしながら、特許文献2および3では、ソルベントソルトミリング法において、どのような品質の摩砕助剤を用いれば短時間で効率良く粗大な顔料粒子を摩砕でき、低コスト、少エネルギーで所望の品質の微細顔料を得ることができるかと云う観点については検討されていなかった。
特開2002−88269号公報 特表2004−502855号公報 特開2002−121420号公報
Further, as factors that determine the quality of pigments produced by the solvent salt milling method, the amount and particle size of the grinding aid and the type and amount of the water-soluble organic solvent are known. Regarding the particle size of the grinding aid used in the solvent salt milling method, Patent Document 2 describes “preferably a salt having an average particle size of 5 to 200 μm, particularly preferably a salt having an average particle size of 10 to 50 μm”. Patent Document 3 describes that “it is more preferable to use an inorganic salt having an average particle diameter of 0.5 to 50 μm”. However, in Patent Documents 2 and 3, in the solvent salt milling method, any kind of grinding aid can be used to grind coarse pigment particles efficiently in a short time, and the desired quality can be achieved with low cost and low energy. The viewpoint of whether a fine pigment can be obtained has not been studied.
JP 2002-88269 A JP-T-2004-502855 JP 2002-121420 A

本発明は、従来はソルベントソルトミリング法により長時間かけて混練し製造していた高品位の微細有機顔料を、短時間、低コスト、低エネルギーで製造する方法を提供することを目的とする。また、本発明は、従来は得ることが困難であった非常に微細な有機顔料を容易に製造する方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a high-quality fine organic pigment that has been kneaded and produced for a long time by a solvent salt milling method in a short time, at low cost and with low energy. Another object of the present invention is to provide a method for easily producing a very fine organic pigment that has been difficult to obtain in the past.

本発明の微細有機顔料の製造方法は、粗製有機顔料と摩砕助剤と水溶性有機溶剤との混合物を混練するソルベントソルトミリング法による微細有機顔料の製造方法において、摩砕助剤として、体積基準のメディアン粒子径(D50)が1〜50μm、95%粒子径(D95)が80μm以下であり、Mg含有量が0.002〜0.08重量%である食塩を使用することを特徴とする。   The method for producing a fine organic pigment of the present invention is a fine organic pigment production method by a solvent salt milling method in which a mixture of a crude organic pigment, a grinding aid and a water-soluble organic solvent is kneaded. It is characterized by using sodium chloride having a standard median particle diameter (D50) of 1 to 50 μm, a 95% particle diameter (D95) of 80 μm or less, and an Mg content of 0.002 to 0.08 wt%. .

本発明の微細有機顔料の製造方法では、粗製有機顔料と摩砕助剤と水溶性有機溶剤との混合物を混練する際に、摩砕助剤として、適量のMgを含有し、表面が粗く角ばった形状の食塩を使用するため、微細でかつ均一な粒子径に整粒された有機顔料を、低エネルギー負荷、低コストで製造することができる。また、本発明の微細有機顔料の製造方法によれば、従来は得ることが困難であった微細な有機顔料を容易に製造することできる。   In the method for producing a fine organic pigment of the present invention, when a mixture of a crude organic pigment, a grinding aid and a water-soluble organic solvent is kneaded, it contains an appropriate amount of Mg as a grinding aid and has a rough surface. Since the salt having a wide shape is used, an organic pigment having a fine and uniform particle size can be produced with low energy load and low cost. Moreover, according to the method for producing a fine organic pigment of the present invention, a fine organic pigment that has been difficult to obtain conventionally can be easily produced.

本発明の微細有機顔料の製造方法は、粗製有機顔料と摩砕助剤と水溶性有機溶剤との混合物を混練するソルベントソルトミリング法による微細有機顔料の製造方法である。
本発明の方法で製造される微細有機顔料の平均一次粒子径は、ソルトミリングの条件や、有機顔料の種類によって異なるが、適切に条件を設定することで、0.01〜0.5μm程度の範囲で、任意の粒子径に制御することができる。
The method for producing a fine organic pigment of the present invention is a method for producing a fine organic pigment by a solvent salt milling method in which a mixture of a crude organic pigment, a grinding aid and a water-soluble organic solvent is kneaded.
The average primary particle size of the fine organic pigment produced by the method of the present invention varies depending on the conditions of salt milling and the type of organic pigment, but by appropriately setting the conditions, it is about 0.01 to 0.5 μm. The particle size can be controlled within a range.

本発明で使用する粗製有機顔料は、合成により得られたままの、(a)平均一次粒子径が10〜200μm程度の大きな粒子や、(b)平均一次粒子径が0.01μm以下の非常に微細な粒子が非常に強く凝集した粒子(凝集物)である。いずれの粒子も、そのままでは、インキ、塗料、プラスチックス等の着色用顔料としての価値が非常に低いものである。粗製有機顔料を、平均一次粒子径が0.01〜0.5μm程度の色彩上利用価値の高い粒子まで整粒するためには、顔料化と呼ばれる微細化または結晶成長処理が必要となる。本発明において、平均一次粒子径が0.01〜0.1μmの非常に微細な有機顔料を製造する場合には、粗製有機顔料として、粗製有機顔料を乾式粉砕法等で顔料化した0.1〜0.5μmの有機顔料を用いても良い。
粗製有機顔料としては、フタロシアニン系、アゾ系、キノフタロン系、キナクリドン系、イソインドリン系、ベンズイミダゾロン系、ジケトピロロピロール系、ペリレン系、ペリノン系、ジオキサジン系、ジアントラキノン系、アントラキノン系、ベンズイミダゾロン系、金属錯体系等の粗製有機顔料が挙げられる。
The crude organic pigment used in the present invention is obtained by synthesis (a) large particles having an average primary particle diameter of about 10 to 200 μm, and (b) a very large average primary particle diameter of 0.01 μm or less. It is a particle (aggregate) in which fine particles are very strongly aggregated. All the particles are very low in value as coloring pigments such as inks, paints, and plastics as they are. In order to regulate the crude organic pigment to particles having an average primary particle size of about 0.01 to 0.5 μm and high utility value in terms of color, a refinement or crystal growth treatment called pigmentation is required. In the present invention, when a very fine organic pigment having an average primary particle diameter of 0.01 to 0.1 μm is produced, 0.1% obtained by pigmenting the crude organic pigment as a crude organic pigment by a dry pulverization method or the like. An organic pigment having a thickness of ˜0.5 μm may be used.
Crude organic pigments include phthalocyanine, azo, quinophthalone, quinacridone, isoindoline, benzimidazolone, diketopyrrolopyrrole, perylene, perinone, dioxazine, dianthraquinone, anthraquinone, benz Examples include crude organic pigments such as imidazolones and metal complexes.

本発明の微細有機顔料の製造方法において、粗製有機顔料と摩砕助剤と水溶性有機溶剤との混合物を混練する際には、有機顔料の結晶成長や結晶転位を防止する目的で、有機顔料に置換基を導入した顔料誘導体を添加してもよい。添加する顔料誘導体としては、微粉砕する粗製有機顔料と同一の構造を母体とする顔料誘導体が好ましいこが、母体が異なる構造の顔料誘導体であっても良い。顔料誘導体の置換基としては、スルホン酸基、スルホン酸アミド基、フタルイミドメチル基等が挙げられる。   In the method for producing a fine organic pigment of the present invention, when kneading a mixture of a crude organic pigment, a grinding aid and a water-soluble organic solvent, the organic pigment is used for the purpose of preventing crystal growth and crystal dislocation of the organic pigment. A pigment derivative having a substituent introduced into may be added. The pigment derivative to be added is preferably a pigment derivative having the same structure as that of the crude organic pigment to be finely pulverized, but may be a pigment derivative having a structure different from the matrix. Examples of the substituent of the pigment derivative include a sulfonic acid group, a sulfonic acid amide group, and a phthalimidomethyl group.

本発明で使用する摩砕助剤は、体積基準のメディアン粒子径(D50)が1〜50μm、95%粒子径(D95)が80μm以下であり、Mg含有量が0.002〜0.08重量%の食塩である。
食塩の体積基準のメディアン粒子径(D50)は1〜20μmであることが好ましく、95%粒子径(D95)は30μm以下であることが好ましい。更に、特に微細な有機顔料が所望の場合は、摩砕助剤として使用される食塩も微細であることが必要であり、体積基準のメディアン粒子径(D50)が1〜10μm、95%粒子径(D95)は20μm以下の食塩が好適に用いられる。
The grinding aid used in the present invention has a volume-based median particle diameter (D50) of 1 to 50 μm, a 95% particle diameter (D95) of 80 μm or less, and an Mg content of 0.002 to 0.08 weight. % Salt.
The volume-based median particle diameter (D50) of sodium chloride is preferably 1 to 20 μm, and the 95% particle diameter (D95) is preferably 30 μm or less. Furthermore, when a fine organic pigment is desired, the salt used as a grinding aid must also be fine, and the volume-based median particle diameter (D50) is 1 to 10 μm, 95% particle diameter. (D95) is preferably a salt of 20 μm or less.

食塩のメディアン粒子径(D50)が50μmより大きいと、粗製有機顔料を微細にするための処理時間が長くなり、高コストとなる。一方、食塩のメディアン粒子径を1μm未満にするには、特殊な粉砕機で多大なエネルギーをかけることが必要であり、やはり高コストの要因となる。また、食塩の95%粒子径(D95)が80μmを超えると、粗大な食塩粒子が増え、粉砕効率を下げる要因になる。なお、食塩の95%粒子径(D95)の下限は、メディアン粒子径(D50)である。
食塩の体積基準のメディアン粒子径および95%粒子径は、レーザー回折式のマイクロトラック粒度分析計を用いて測定した粒度分布から算出したものであり、D50、D95粒子径は、それぞれこれより小さい粒子が全体の50%、95%ということを意味する。
When the median particle diameter (D50) of the salt is larger than 50 μm, the processing time for making the crude organic pigment fine becomes long and the cost becomes high. On the other hand, in order to reduce the median particle diameter of the salt to less than 1 μm, it is necessary to apply a great deal of energy with a special pulverizer, which is also a high cost factor. On the other hand, if the 95% particle diameter (D95) of the salt exceeds 80 μm, coarse salt particles increase, which causes a reduction in grinding efficiency. In addition, the minimum of the 95% particle diameter (D95) of salt is a median particle diameter (D50).
The volume-based median particle size and 95% particle size of sodium chloride are calculated from the particle size distribution measured using a laser diffraction microtrack particle size analyzer, and the D50 and D95 particle sizes are smaller than this, respectively. Means 50% or 95% of the total.

粗製有機顔料を摩砕する速度に影響を及ぼす因子は、食塩の粒子径だけではなく、食塩の形状も重要な因子である。食塩の粒子径が同等であっても、角ばった形状の食塩を使用して混練すると、目標品位に到達する時間は、丸まった形状の食塩を使用して混練する場合に比べ短時間であり、コスト的に有利である。また、角ばった形状の食塩を用いて混練することにより、丸まった形状の食塩では実現できない、微細でかつ均一な粒子径に整粒された微細有機顔料を製造することが可能となる。
体積基準のメディアン粒子径(D50)が1〜50μm、95%粒子径(D95)が80μm以下の食塩は、粒子径が大きい原料食塩を粉砕することで得られるが、粉砕食塩の形状は、原料食塩中のMg含有量によって異なる。
Factors affecting the speed of grinding the crude organic pigment are not only the particle size of the salt, but also the shape of the salt. Even if the particle size of the salt is equal, when kneading using a square shaped salt, the time to reach the target quality is shorter than when kneading using a round shaped salt, Cost is advantageous. In addition, by kneading using an angularly shaped salt, it becomes possible to produce a fine organic pigment with a fine and uniform particle size that cannot be realized with a rounded salt.
Sodium chloride having a volume-based median particle diameter (D50) of 1 to 50 μm and a 95% particle diameter (D95) of 80 μm or less can be obtained by pulverizing raw material salt with a large particle size. It depends on the Mg content in the salt.

原料食塩中のMg含有量が0.08重量%より多い場合には、角がとれ丸まった形状になり、表面も滑らかになる。一方、Mg含有量が0.08重量%以下の原料食塩を粉砕すると、角ばった形状で粗い表面の食塩粒子になる。また、Mg含有量が0.002重量%より少ない食塩は、試薬レベルで高コストとなり、工業的に使用しにくい。
したがって、本発明で使用する食塩は、Mg含有量が0.002〜0.08重量%であり、好ましくは、Mg含有量が0.005〜0.05重量%の範囲の食塩である。
When the Mg content in the raw material salt is more than 0.08% by weight, the corners are rounded and the surface becomes smooth. On the other hand, when raw material salt having an Mg content of 0.08% by weight or less is pulverized, salt particles with a rough shape and rough surface are formed. Further, sodium chloride having a Mg content of less than 0.002% by weight is expensive at the reagent level and is difficult to use industrially.
Therefore, the salt used in the present invention has a Mg content of 0.002 to 0.08% by weight, and preferably has a Mg content of 0.005 to 0.05% by weight.

また、食塩の品質としては、水分含有量も重要である。工業用並塩では通常1.0重量%以上の水分が含まれており、水分含有量が1.0重量%以上の食塩を乾燥せずにそのまま粉砕すると、粉砕された食塩の付着性が強く、放置するとすぐに固まってしまうことが多い。固まった食塩は、ソルベントソルトミリングの効率低下を招き、微粉砕した意味がなくなってしまう。粉砕した食塩が粉砕時の粒子径を保つためには、食塩の水分含有量が0.5重量%以下まで乾燥することが好ましく、より好ましくは0.3重量%以下まで乾燥する。特に好ましくは、食塩を高温で焼結して、水分含有量を0.2重量%以下にする。   In addition, the moisture content is also important as the quality of the salt. Industrial average salt usually contains 1.0% by weight or more of water, and if salt with a water content of 1.0% by weight or more is crushed as it is without drying, the adhesion of the crushed salt is strong. , Often hardens as soon as left unattended. The solidified salt causes a decrease in the efficiency of solvent salt milling, and the meaning of fine pulverization is lost. In order for the crushed salt to maintain the particle size at the time of pulverization, it is preferable that the moisture content of the salt is dried to 0.5% by weight or less, more preferably 0.3% by weight or less. Particularly preferably, the salt is sintered at a high temperature so that the water content is 0.2 wt% or less.

食塩を微粉砕するための粉砕機としては、ハンマーミル、ピンミル等の高速回転ミルを使用するのが一般的であるが、粉砕機の種類は限定されるものではない。
食塩の使用量は、粗製有機顔料の種類によって異なるが、粗製有機顔料1重量部に対し、食塩1〜30重量部であることが好ましく、より好ましくは食塩5〜15重量部である。粗製有機顔料に対する食塩の比率が大きいほど微細化効果が大きいが、1回の顔料処理量が少なくなり高コストの要因となる。本発明では、特定の粒子径およびMg含有量の食塩を使用することにより、従来と比べて食塩の使用量を増加させずに、高品質の微細な有機顔料を製造することができる。
As a pulverizer for finely pulverizing salt, a high-speed rotary mill such as a hammer mill or a pin mill is generally used, but the type of pulverizer is not limited.
Although the usage-amount of salt changes with kinds of crude organic pigment, it is preferable that it is 1-30 weight part of salt with respect to 1 weight part of crude organic pigment, More preferably, it is 5-15 weight part of salt. The larger the ratio of sodium chloride to the crude organic pigment, the greater the effect of miniaturization. However, the amount of pigment processed at one time is reduced, resulting in high cost. In the present invention, a high-quality fine organic pigment can be produced without increasing the amount of salt used compared to the conventional case by using salt with a specific particle diameter and Mg content.

本発明で使用する水溶性有機溶剤は、粗製有機顔料および食塩の混合物を適度な固さのドウにするためのものであり、水に溶解し、かつ食塩を実質的に溶解しないものであれば特に限定されない。水溶性有機溶剤としては、エチレングリコール、ジエチレングリコール、ポリエチレングリコール等の粘性の高い水溶性有機溶剤が用いられる。
水溶性有機溶剤の使用量は、粗製有機顔料の種類、食塩の量によって異なるが、粗製有機顔料1重量部に対して、一般的に0.1〜5重量部であり、好ましくは1〜2重量部である。
The water-soluble organic solvent used in the present invention is for making a mixture of a crude organic pigment and sodium chloride into a dough having an appropriate hardness, so long as it dissolves in water and does not substantially dissolve sodium chloride. There is no particular limitation. As the water-soluble organic solvent, a water-soluble organic solvent having high viscosity such as ethylene glycol, diethylene glycol, or polyethylene glycol is used.
The amount of water-soluble organic solvent used varies depending on the type of crude organic pigment and the amount of salt, but is generally 0.1 to 5 parts by weight, preferably 1 to 2 parts per 1 part by weight of the crude organic pigment. Parts by weight.

ソルベントソルトミリング法による粗製有機顔料の処理温度は、粗製有機顔料を微細化する効率から120℃以下、特に20〜70℃が好ましい。また、処理時間は、粗製有機顔料の種類、食塩の粒子径によって異なるが、2〜20時間程度である。
粗製有機顔料と食塩(摩砕助剤)と水溶性有機溶剤との混合物を混練する装置は、粗製有機顔料を機械的に摩砕することができる装置であればよく、代表的なものとしてニーダーを挙げることができる。この他に、スーパーミキサー(株式会社カワタ製)、トリミックス(株式会社井上製作所製)のようなバッチ型の混練機、KCKミル(浅田鉄工株式会社製)のような連続混練機を用いることもできる。またこれら以外の装置を用いることも可能である。
The processing temperature of the crude organic pigment by the solvent salt milling method is preferably 120 ° C. or less, particularly preferably 20 to 70 ° C. from the efficiency of refining the crude organic pigment. The treatment time is about 2 to 20 hours, although it varies depending on the type of the crude organic pigment and the particle diameter of the salt.
The apparatus for kneading the mixture of the crude organic pigment, sodium chloride (grinding aid), and water-soluble organic solvent may be any apparatus that can mechanically grind the crude organic pigment. Can be mentioned. In addition, a batch-type kneader such as a super mixer (manufactured by Kawata Co., Ltd.) or Trimix (manufactured by Inoue Seisakusho Co., Ltd.) or a continuous kneader such as a KCK mill (manufactured by Asada Tekko Co., Ltd.) may be used. it can. It is also possible to use devices other than these.

本発明においては、粗製有機顔料と摩砕助剤と水溶性有機溶剤との混合物を混練する工程の前または工程中に、必要に応じて樹脂、界面活性剤等を添加してもよい。使用する樹脂としては、特に制限はないが、ロジン、ロジン誘導体、ロジン変性マレイン酸樹脂、ロジン変性フェノール樹脂、ゴム誘導体、タンパク誘導体、塩素化ポリエチレン、塩素化ポリプロピレン、ポリ塩化ビニル、ポリ酢酸ビニル、エポキシ樹脂、アクリル樹脂、マレイン酸樹脂、スチレン樹脂、スチレン−マレイン酸共重合樹脂、ブチラール樹脂、ポリエステル樹脂、メラミン樹脂、フェノール樹脂、ポリウレタン樹脂、ポリアマイド樹脂、ポリイミド樹脂、アルキッド樹脂、ゴム系樹脂、セルロース類、ベンゾグアナミン樹脂、尿素樹脂、および上記樹脂のオリゴマー、モノマー類を挙げることができる。   In the present invention, a resin, a surfactant or the like may be added as necessary before or during the step of kneading the mixture of the crude organic pigment, the grinding aid and the water-soluble organic solvent. The resin to be used is not particularly limited, but rosin, rosin derivative, rosin modified maleic resin, rosin modified phenolic resin, rubber derivative, protein derivative, chlorinated polyethylene, chlorinated polypropylene, polyvinyl chloride, polyvinyl acetate, Epoxy resin, acrylic resin, maleic resin, styrene resin, styrene-maleic acid copolymer resin, butyral resin, polyester resin, melamine resin, phenol resin, polyurethane resin, polyamide resin, polyimide resin, alkyd resin, rubber resin, cellulose Benzoguanamine resins, urea resins, and oligomers and monomers of the above resins.

粗製有機顔料と摩砕助剤と水溶性有機溶剤との混合物の混練が終了したドウは、0.01〜0.5μm程度まで微細化した有機顔料粒子を取り出し、食塩(摩砕助剤)と水溶性有機溶剤を除去するため、ろ過・水洗を行うことが一般的である。最初に、ドウを水中に投入し、加熱して食塩を完全に溶解する。加熱温度と温水量は、食塩を完全に溶解することができれば、限定されない。次に、フィルタープレス等のろ過機でろ過・水洗し、食塩(摩砕助剤)と水溶性有機溶剤とを十分に除去する。洗浄に当たっては、ろ液の比伝導度などで洗浄度合いを調整できる。
フィルタープレス等のろ過機から取り出したプレスケーキは、箱型乾燥機やバンド乾燥機で乾燥し、さらにハンマーミル等で粉砕して粉末の微細有機顔料とすることができる。また、プレスケーキは、再び水を加えてスラリー化した後、スプレードライヤーで乾燥し、粉末の微細有機顔料とすることもできる。
After the kneading of the mixture of the crude organic pigment, the grinding aid and the water-soluble organic solvent is completed, the organic pigment particles refined to about 0.01 to 0.5 μm are taken out, and salt (grinding aid) and In order to remove the water-soluble organic solvent, it is common to perform filtration and washing with water. First, the dough is poured into water and heated to completely dissolve the salt. The heating temperature and the amount of hot water are not limited as long as the salt can be completely dissolved. Next, it is filtered and washed with a filter such as a filter press to sufficiently remove the salt (grinding aid) and the water-soluble organic solvent. In washing, the degree of washing can be adjusted by the specific conductivity of the filtrate.
The press cake taken out from a filter such as a filter press can be dried with a box-type dryer or a band dryer, and further pulverized with a hammer mill or the like to obtain a fine organic pigment in powder form. The press cake can be made into a fine organic pigment in powder form by adding water again to make a slurry, and then drying with a spray dryer.

本発明の方法により製造された微細有機顔料は、微細化され、かつ均一な粒子形状に整粒されているため、微細な粒子状態を保持したまま均一に水系または非水系ビヒクル中に分散させて顔料分散体とすると、安定した粘度特性を有する良好な分散体となる。該分散体をインクジェットインキとして用いると、優れた飛翔安定性と記録物の鮮明性、各種耐性を実現することできる。
また、該分散体を用いてカラーフィルタを作成すると、高い明度、鮮明性、透過率のカラーフィルタとなる。
Since the fine organic pigment produced by the method of the present invention is refined and sized into a uniform particle shape, it is uniformly dispersed in an aqueous or non-aqueous vehicle while maintaining a fine particle state. When a pigment dispersion is used, a good dispersion having stable viscosity characteristics is obtained. When the dispersion is used as an inkjet ink, excellent flight stability, sharpness of recorded matter, and various resistances can be realized.
Moreover, when a color filter is prepared using the dispersion, a color filter having high brightness, sharpness, and transmittance is obtained.

水系または非水系ビヒクルを構成する樹脂としては、石油樹脂、カゼイン、セラック、ロジン変性マレイン酸樹脂、ロジン変性フェノール樹脂、ニトロセルロース、セルロースアセテートブチレート、環化ゴム、塩化ゴム、酸化ゴム、塩酸ゴム、フェノール樹脂、アルキド樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、アミノ樹脂、エポキシ樹脂、ビニル樹脂、塩化ビニル、塩化ビニル−酢酸ビニル共重合体、アクリル樹脂、メタクリル樹脂、ポリウレタン樹脂、シリコーン樹脂、フッ素樹脂、乾性油、合成乾性油、スチレン変性マレイン酸、ポリアミド樹脂、ポリイミド樹脂、ベンゾグアナミン樹脂、メラミン樹脂、尿素樹脂塩素化ポリプロピレン、ブチラール樹脂、塩化ビニリデン樹脂等が挙げられる。   The resin constituting the aqueous or non-aqueous vehicle includes petroleum resin, casein, shellac, rosin modified maleic acid resin, rosin modified phenolic resin, nitrocellulose, cellulose acetate butyrate, cyclized rubber, chlorinated rubber, oxidized rubber, hydrochloric acid rubber , Phenolic resin, alkyd resin, polyester resin, unsaturated polyester resin, amino resin, epoxy resin, vinyl resin, vinyl chloride, vinyl chloride-vinyl acetate copolymer, acrylic resin, methacrylic resin, polyurethane resin, silicone resin, fluorine resin , Drying oil, synthetic drying oil, styrene-modified maleic acid, polyamide resin, polyimide resin, benzoguanamine resin, melamine resin, urea resin chlorinated polypropylene, butyral resin, vinylidene chloride resin and the like.

また、非水系ビヒクルを構成する樹脂として、感光性樹脂を用いることもできる。感光性樹脂としては、水酸基、カルボキシル基、アミノ基等の反応性の置換基を有する線状高分子にイソシアネート基、アルデヒド基、エポキシ基等の反応性置換基を有する(メタ)アクリル化合物やケイヒ酸を反応させて、(メタ)アクリロイル基、スチリル基等の光架橋性基を該線状高分子に導入した樹脂が用いられる。また、スチレン−無水マレイン酸共重合物やα−オレフィン−無水マレイン酸共重合物等の酸無水物を含む線状高分子をヒドロキシアルキル(メタ)アクリレート等の水酸基を有する(メタ)アクリル化合物によりハーフエステル化したものも用いられる。   A photosensitive resin can also be used as the resin constituting the non-aqueous vehicle. Examples of the photosensitive resin include (meth) acrylic compounds having a reactive substituent such as an isocyanate group, an aldehyde group, and an epoxy group on a linear polymer having a reactive substituent such as a hydroxyl group, a carboxyl group, or an amino group, A resin obtained by reacting an acid and introducing a photocrosslinkable group such as a (meth) acryloyl group or a styryl group into the linear polymer is used. Further, a linear polymer containing an acid anhydride such as a styrene-maleic anhydride copolymer or an α-olefin-maleic anhydride copolymer is converted into a (meth) acrylic compound having a hydroxyl group such as hydroxyalkyl (meth) acrylate. Half-esterified products are also used.

次に、本発明を、実施例および比較例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中「部」は「重量部」、「%」は「重量%」を表す。
[実施例1]
焼結乾燥した食塩(株式会社味食研製「ソフト塩S−50」、Mg含有量0.03%、水分含有量0.11%)を高速回転ミル(ホソカワミクロン株式会社製「ACM−10A型」)で粉砕した。マイクロトラック粒度分析計(日機装株式会社)を用いて、粉砕した食塩の粒度分布を測定したところ、体積基準のメディアン粒子径は6.2μm、95%粒子径は12.8μmであった。また、粉砕塩を走査型電子顕微鏡で観察したところ、角ばった形状で粗い表面の食塩粒子であった。
得られた粉砕塩1200部およびキノフタロン顔料(C.I.ピグメントイエロー138,BASF社製「パリオトールイエローK0961HD」)100部、およびジエチレングリコール120部を1ガロンニーダー(株式会社井上製作所製)中に仕込み、40℃で10時間混練した。混練の途中、6時間、8時間で少量のドウをサンプリングした。次に、10時間混練したドウを温水に投入し、約80℃に加熱しながらハイスピードミキサーで1時間撹拌してスラリー状とし、濾過、水洗して食塩およびジエチレングリコールを除いた後、80℃で一昼夜乾燥後、粉砕して94部の微細化キノフタロン顔料を得た。得られた微細化キノフタロン顔料の比表面積をJISZ8830−1990に従って測定したところ、113m2/gであった。また、電子顕微鏡で観察して、平均粒子径および粒子径のばらつき範囲を求めた。6時間、8時間混練したサンプルについても同様に後処理して、比表面積および粒子径の測定を行った。結果を表1に示す。
EXAMPLES Next, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to a following example. In the examples, “parts” represents “parts by weight” and “%” represents “% by weight”.
[Example 1]
Sintered and dried salt ("Soft Salt S-50" manufactured by Ajinoken Co., Ltd., Mg content 0.03%, moisture content 0.11%) is rotated at high speed ("ACM-10A type" manufactured by Hosokawa Micron Corporation). ). When the particle size distribution of the crushed salt was measured using a Microtrac particle size analyzer (Nikkiso Co., Ltd.), the volume-based median particle size was 6.2 μm and the 95% particle size was 12.8 μm. Further, when the crushed salt was observed with a scanning electron microscope, it was found that the salt particles had a rough shape and a rough surface.
1200 parts of the pulverized salt obtained, 100 parts of quinophthalone pigment (CI Pigment Yellow 138, “Paliotol Yellow K0961HD” manufactured by BASF) and 120 parts of diethylene glycol were charged into a 1 gallon kneader (manufactured by Inoue Seisakusho Co., Ltd.). And kneading at 40 ° C. for 10 hours. During the kneading, a small amount of dough was sampled in 6 hours and 8 hours. Next, the dough kneaded for 10 hours is poured into warm water, stirred for 1 hour with a high speed mixer while being heated to about 80 ° C. to form a slurry, filtered, washed with water to remove salt and diethylene glycol, and then at 80 ° C. After drying all day and night, the mixture was pulverized to obtain 94 parts of a fine quinophthalone pigment. It was 113 m < 2 > / g when the specific surface area of the obtained refined | miniaturized quinophthalone pigment was measured according to JISZ8830-1990. Moreover, it observed with the electron microscope and calculated | required the dispersion range of an average particle diameter and a particle diameter. Samples kneaded for 6 hours and 8 hours were similarly post-treated, and the specific surface area and particle size were measured. The results are shown in Table 1.

[比較例1]
焼結乾燥した食塩(富田製薬株式会社製「鳴門の焼き塩」、Mg含有量0.10%、水分含有量0.15%)を実施例1と同様に高速回転ミルで粉砕し、体積基準のメディアン粒子径5.7μm、95%粒子径12.6μmの粉砕塩を得た。粉砕塩を走査型電子顕微鏡で観察したところ、角がとれ丸まった形状であった。
得られた粉砕塩を用い、実施例1と同様条件で6時間、8時間、10時間混練して、微細化キノフタロン顔料を得た。得られた微細化キノフタロン顔料の比表面積および粒子径の測定を行った。結果を表1に示す。
[Comparative Example 1]
Sintered and dried salt ("Naruto grilled salt" manufactured by Tomita Pharmaceutical Co., Ltd., Mg content: 0.10%, moisture content: 0.15%) was pulverized in a high-speed rotary mill in the same manner as in Example 1, and volume-based A ground salt having a median particle size of 5.7 μm and a 95% particle size of 12.6 μm was obtained. Observation of the crushed salt with a scanning electron microscope revealed a rounded shape.
Using the obtained pulverized salt, the mixture was kneaded for 6 hours, 8 hours, and 10 hours under the same conditions as in Example 1 to obtain a fine quinophthalone pigment. The specific surface area and particle diameter of the resulting fine quinophthalone pigment were measured. The results are shown in Table 1.

Figure 2006335920
表1の結果から、Mg含有量の少ない、表面が粗く、角ばった粒子の食塩を摩砕助剤として用いた場合(実施例1)は、混練の効率が良いことが判る。また、食塩の粒子径が同じであっても、Mgが多く、滑らかな表面で、丸まった粒子の食塩を摩砕助剤として用いた場合(比較例1)は、微細化キノフタロン顔料の製造が困難であった。
Figure 2006335920
From the results of Table 1, it can be seen that kneading efficiency is good when sodium chloride having a small Mg content, rough surface and angular particles is used as a grinding aid (Example 1). Moreover, even when the particle diameter of the salt is the same, when a salt of round particles with a large amount of Mg and a smooth surface is used as a grinding aid (Comparative Example 1), the production of a fine quinophthalone pigment is not possible. It was difficult.

[実施例2]
実施例1と同様の粉砕塩1000部、ε型銅フタロシアニン顔料(C.I.ピグメントブルー15:6,東洋インキ製造社製「リオノールブルーE」)100部、およびジエチレングリコール110部を1ガロンニーダー(株式会社井上製作所製)中に仕込み、60℃で10時間混練した。混練の途中、6時間、8時間で少量のドウをサンプリングした。次に、10時間混練したドウを温水に投入し、約80℃に加熱しながらハイスピードミキサーで1時間撹拌してスラリー状とし、濾過、水洗して食塩およびジエチレングリコールを除いた後、80℃で一昼夜乾燥後、粉砕して94部の微細化ε型銅フタロシアニン顔料を得た。得られた微細化ε型銅フタロシアニン顔料の比表面積は、120m2/gであった。また、電子顕微鏡で観察して、平均粒子径および粒子径のばらつき範囲を求めた。6時間、8時間混練したサンプルについても同様に後処理して、比表面積および粒子径の測定を行った。結果を表2に示す。
[Example 2]
1 gallon kneader contains 1000 parts of pulverized salt as in Example 1, 100 parts of ε-type copper phthalocyanine pigment (CI Pigment Blue 15: 6, “Lionol Blue E” manufactured by Toyo Ink Co., Ltd.), and 110 parts of diethylene glycol. (Made by Inoue Seisakusho Co., Ltd.) and kneaded at 60 ° C. for 10 hours. During the kneading, a small amount of dough was sampled in 6 hours and 8 hours. Next, the dough kneaded for 10 hours is poured into warm water, stirred with a high speed mixer for 1 hour while being heated to about 80 ° C. to form a slurry, filtered, washed with water to remove salt and diethylene glycol, and then at 80 ° C. After drying overnight, the mixture was pulverized to obtain 94 parts of a fine ε-type copper phthalocyanine pigment. The specific surface area of the obtained refined ε-type copper phthalocyanine pigment was 120 m 2 / g. Moreover, it observed with the electron microscope and calculated | required the dispersion range of an average particle diameter and a particle diameter. Samples kneaded for 6 hours and 8 hours were similarly post-treated, and the specific surface area and particle size were measured. The results are shown in Table 2.

[比較例2]
実施例1と同様の粉砕塩の代わりに、比較例1と同様の粉砕塩を用いる以外は、実施例2と同様にして、微細化ε型銅フタロシアニン顔料を得た。得られた微細化ε型銅フタロシアニン顔料の比表面積および粒子径の測定を行った。結果を表2に示す。
[Comparative Example 2]
A refined ε-type copper phthalocyanine pigment was obtained in the same manner as in Example 2, except that the same pulverized salt as in Comparative Example 1 was used instead of the pulverized salt as in Example 1. The specific surface area and particle diameter of the resulting refined ε-type copper phthalocyanine pigment were measured. The results are shown in Table 2.

Figure 2006335920
表2の結果から、ε型銅フタロシアニン顔料の微細化においても、Mg含有量の少ない、表面が粗く、角ばった粒子の食塩を摩砕助剤として用いた場合(実施例2)は、混練の効率が良いことが判る。また、食塩の粒子径が同じであっても、Mgが多く、滑らかな表面で、丸まった粒子の食塩を摩砕助剤として用いた場合(比較例2)は、微細化が困難であった。
Figure 2006335920
From the results in Table 2, also in the refinement of the ε-type copper phthalocyanine pigment, when the salt of the particles with a small Mg content, rough surface, and squares was used as a grinding aid (Example 2), It turns out that efficiency is good. Further, even when the particle diameter of the salt is the same, when the salt of the rounded particle is used as a grinding aid with a large amount of Mg and a smooth surface (Comparative Example 2), it is difficult to make fine particles. .

[実施例3]
焼結乾燥した食塩(株式会社味食研製「ソフト塩S−50」、Mg含有量0.03%、水分含有量0.11%)を高速回転ミル(不二パウダル株式会社「ハンマーミル」)で粉砕した。マイクロトラック粒度分析計(日機装株式会社)を用いて、粉砕した食塩の粒度分布を測定したところ、体積基準のメディアン粒子径は17.5μm、95%粒子径は38.6μmであった。また、粉砕塩を走査型電子顕微鏡で観察したところ、角ばった形状で粗い表面の食塩粒子であった。
得られた粉砕塩1000部、粗製銅フタロシアニン顔料(C.I.ピグメントブルー15:3,珠海東洋製「T−95クルート゛ブルー」)100部、およびジエチレングリコール110部を1ガロンニーダー(株式会社井上製作所製)中に仕込み、60℃で10時間混練した。混練の途中、6時間、8時間で少量のドウをサンプリングした。次に、10時間混練したドウを温水に投入し、約80℃に加熱しながらハイスピードミキサーで1時間撹拌してスラリー状とし、濾過、水洗して食塩およびジエチレングリコールを除いた後、80℃で一昼夜乾燥後、粉砕して94部の微細化β型銅フタロシアニン顔料を得た。得られた微細化β型銅フタロシアニン顔料の比表面積は78m2/gであった。また、電子顕微鏡で観察して、平均粒子径および粒子径のばらつき範囲を求めた。6時間、8時間混練したサンプルについても同様に後処理して、比表面積および粒子径の測定を行った。結果を表3に示す。
[Example 3]
Sintered and dried salt ("Soft Salt S-50" manufactured by Ajinoken Co., Ltd., Mg content 0.03%, moisture content 0.11%) was rotated at high speed (Fuji Powder Co., Ltd. "Hammer Mill") Crushed with. When the particle size distribution of the crushed salt was measured using a Microtrac particle size analyzer (Nikkiso Co., Ltd.), the volume-based median particle size was 17.5 μm and the 95% particle size was 38.6 μm. Further, when the crushed salt was observed with a scanning electron microscope, it was found that the salt particles had a rough shape and a rough surface.
1000 parts of the obtained pulverized salt, 100 parts of crude copper phthalocyanine pigment (CI Pigment Blue 15: 3, “T-95 Clute Blue” manufactured by Zhuhai Toyo) and 110 parts of diethylene glycol were added to 1 gallon kneader (Inoue Manufacturing Co., Ltd.). Manufactured) and kneaded at 60 ° C. for 10 hours. During the kneading, a small amount of dough was sampled in 6 hours and 8 hours. Next, the dough kneaded for 10 hours is poured into warm water, stirred with a high speed mixer for 1 hour while being heated to about 80 ° C. to form a slurry, filtered, washed with water to remove salt and diethylene glycol, and then at 80 ° C. After drying for a whole day and night, it was pulverized to obtain 94 parts of a refined β-type copper phthalocyanine pigment. The specific surface area of the obtained refined β-type copper phthalocyanine pigment was 78 m 2 / g. Moreover, it observed with the electron microscope and calculated | required the dispersion range of an average particle diameter and a particle diameter. Samples kneaded for 6 hours and 8 hours were similarly post-treated, and the specific surface area and particle size were measured. The results are shown in Table 3.

[比較例3]
焼結乾燥した食塩(富田製薬株式会社製「鳴門の焼き塩」、Mg含有量0.10重量%、水分含有量0.15重量%)を高速回転ミルで粉砕し、体積基準のメディアン粒子径16.9μm、95%粒子径36.3μmの粉砕塩を得た。粉砕塩を走査型電子顕微鏡で観察したところ、角がとれ丸まった形状であった。
得られた粉砕塩を用い、実施例3と同様条件で6時間、8時間、10時間混練して、微細化β型銅フタロシアニン顔料を得た。得られた微細化β型銅フタロシアニン顔料の比表面積および粒子径の測定を行った。結果を表3に示す。
[Comparative Example 3]
Sintered and dried sodium chloride (Tomita Pharmaceutical Co., Ltd. “Naruto grilled salt”, Mg content 0.10 wt%, moisture content 0.15 wt%) was pulverized with a high-speed rotary mill, and the volume-based median particle size 16 A pulverized salt having a particle diameter of 36.3 μm was obtained. Observation of the crushed salt with a scanning electron microscope revealed a rounded shape.
Using the obtained pulverized salt, the mixture was kneaded for 6 hours, 8 hours, and 10 hours under the same conditions as in Example 3 to obtain a refined β-type copper phthalocyanine pigment. The specific surface area and particle diameter of the resulting refined β-type copper phthalocyanine pigment were measured. The results are shown in Table 3.

Figure 2006335920
表3の結果から、食塩の粉砕粒度を大きくしても、Mg含有量が少ない食塩を用いた場合には混練効率が良いことが判る。
Figure 2006335920
From the results of Table 3, it can be seen that even when the pulverized particle size of the salt is increased, the kneading efficiency is good when the salt with a low Mg content is used.

[実施例4]
実施例3と同様の粉砕塩750部、粗製ジオキサジンバイオレット顔料(住友化学製「スミトンファーストバイオレットRLベース」)100部、およびジエチレングリコール100部を、ほぼ均一となるようにコンバートミキサー(浅田鉄工社製)にて5分間予備混合した。この混合物をスクリュー式定量フィーダーで連続混練機(浅田鉄工社製「ミラクルK.C.K.−42型」)に定量供給し、混練した。連続混練機は、フィールド部スクリュー径120mmφ、混合部組数8、混合組成物押し出し量20kg/時、主軸回転数50rpm、摩砕温度100℃の条件で運転した。次に、混練したドウを温水に投入し、約80℃に加熱しながらハイスピードミキサーで1時間撹拌してスラリー状とし、濾過、水洗して食塩およびジエチレングリコールを除いた後、80℃で一昼夜乾燥して、微細化ジオキサジンバイオレット顔料を得た。得られた微細化ジオキサジンバイオレット顔料の比表面積および粒子径の測定を行った。結果を表4に示す。
[Example 4]
750 parts of the same pulverized salt as in Example 3, 100 parts of crude dioxazine violet pigment (“Sumiton First Violet RL Base” manufactured by Sumitomo Chemical Co., Ltd.) and 100 parts of diethylene glycol were converted so as to be almost uniform (Asada Iron Works). For 5 minutes. This mixture was quantitatively supplied to a continuous kneader (“Miracle K.K.K.-42” manufactured by Asada Tekko Co., Ltd.) with a screw type quantitative feeder and kneaded. The continuous kneader was operated under the conditions of a field part screw diameter of 120 mmφ, a mixing part number of 8, a mixture composition extrusion rate of 20 kg / hour, a spindle speed of 50 rpm, and a grinding temperature of 100 ° C. Next, the kneaded dough is poured into warm water and stirred at a high speed mixer for 1 hour while being heated to about 80 ° C. to form a slurry, filtered, washed with water to remove salt and diethylene glycol, and then dried at 80 ° C. overnight. Thus, a refined dioxazine violet pigment was obtained. The specific surface area and particle diameter of the resulting refined dioxazine violet pigment were measured. The results are shown in Table 4.

[比較例4]
実施例3と同様の粉砕塩の代わりに、比較例3と同様の粉砕塩を用いる以外は、実施例4と同様にして、微細化ジオキサジンバイオレット顔料を得た。得られた微細化ジオキサジンバイオレット顔料の比表面積および粒子径の測定を行った。結果を表4に示す。
[Comparative Example 4]
A refined dioxazine violet pigment was obtained in the same manner as in Example 4 except that the same pulverized salt as in Comparative Example 3 was used instead of the pulverized salt as in Example 3. The specific surface area and particle diameter of the resulting refined dioxazine violet pigment were measured. The results are shown in Table 4.

Figure 2006335920
表4の結果から、連続混練機(浅田鉄工社製「ミラクルK.C.K.−42型」)を用いた場合でも、Mg含有量の少ない食塩で効率良く混練できることが判る。
Figure 2006335920
From the results in Table 4, it can be seen that even when a continuous kneader (“Miracle K.K.K.-42 type” manufactured by Asada Tekko Co., Ltd.) is used, kneading can be efficiently carried out with a salt with a low Mg content.

[実施例5]
実施例1と同様の粉砕塩1500部、ジケトピロロピロール顔料(C.I.ピグメントレッド254,チバスペシャリティーケミカルズ社製「イルガフォアレッドB−CF」)100部、およびジエチレングリコール1000部を、連続混練機(株式会社井上製作所製「15Lトリミックス」)中に仕込み、40℃で20時間混練した。混練の途中、5時間、10時間、15時間で少量の混練中の混合物をサンプリングした。次に、20時間混練した混合物を温水に投入し、約80℃に加熱しながらハイスピードミキサーで1時間撹拌してスラリー状とし、濾過、水洗して食塩およびジエチレングリコールを除いた後、80℃で一昼夜乾燥後、粉砕して94部の微細化ジケトピロロピロール顔料を得た。得られた微細化ジケトピロロピロール顔料の比表面積は125m2/gであった。5時間、10時間、15時間混練したサンプルについても同様に後処理して、比表面積および粒子径の測定を行った。結果を表5に示す。
[Example 5]
Continuously 1500 parts of the same crushed salt as in Example 1, 100 parts of diketopyrrolopyrrole pigment (CI Pigment Red 254, “Irgafore Red B-CF” manufactured by Ciba Specialty Chemicals), and 1000 parts of diethylene glycol. The mixture was placed in a kneader (“15 L Trimix” manufactured by Inoue Seisakusho Co., Ltd.) and kneaded at 40 ° C. for 20 hours. During the kneading, a small amount of the kneaded mixture was sampled for 5 hours, 10 hours, and 15 hours. Next, the mixture kneaded for 20 hours is poured into warm water, stirred for 1 hour with a high-speed mixer while being heated to about 80 ° C., filtered, washed with water to remove salt and diethylene glycol, and then at 80 ° C. After drying for a whole day and night, it was pulverized to obtain 94 parts of fine diketopyrrolopyrrole pigment. The specific surface area of the obtained fine diketopyrrolopyrrole pigment was 125 m 2 / g. Samples kneaded for 5 hours, 10 hours, and 15 hours were post-treated in the same manner, and the specific surface area and particle diameter were measured. The results are shown in Table 5.

[比較例5]
実施例1と同様の粉砕塩の代わりに、比較例1と同様の粉砕塩を用いる以外は、実施例5と同様にして、微細化ジケトピロロピロール顔料を得た。得られた微細化ジケトピロロピロール顔料の比表面積および粒子径の測定を行った。結果を表5に示す。
[Comparative Example 5]
A refined diketopyrrolopyrrole pigment was obtained in the same manner as in Example 5 except that the same pulverized salt as in Comparative Example 1 was used instead of the pulverized salt as in Example 1. The specific surface area and particle diameter of the resulting refined diketopyrrolopyrrole pigment were measured. The results are shown in Table 5.

Figure 2006335920
表5の結果から、連続混練機(株式会社井上製作所製「15Lトリミックス」)においても、Mg含有量の少ない食塩で効率良く混練できることが判る。
Figure 2006335920
From the results shown in Table 5, it can be seen that even in a continuous kneader (“15 L Trimix” manufactured by Inoue Seisakusho Co., Ltd.), it can be efficiently kneaded with salt having a low Mg content.

Claims (4)

粗製有機顔料と摩砕助剤と水溶性有機溶剤との混合物を混練するソルベントソルトミリング法による微細有機顔料の製造方法において、摩砕助剤として、体積基準のメディアン粒子径(D50)が1〜50μm、95%粒子径(D95)が80μm以下であり、Mg含有量が0.002〜0.08重量%である食塩を使用することを特徴とする微細有機顔料の製造方法。   In a method for producing a fine organic pigment by a solvent salt milling method in which a mixture of a crude organic pigment, a grinding aid and a water-soluble organic solvent is kneaded, the volume-based median particle diameter (D50) is 1 to The manufacturing method of the fine organic pigment characterized by using the salt which is 50 micrometers, 95% particle diameter (D95) is 80 micrometers or less, and Mg content is 0.002-0.08 weight%. 食塩の水分含有量が0.5重量%以下である請求項1記載の微細有機顔料の製造方法。   The method for producing a fine organic pigment according to claim 1, wherein the water content of the salt is 0.5% by weight or less. 食塩中のMg含有量が0.005〜0.05重量%である請求項1または2記載の微細有機顔料の製造方法。   The method for producing a fine organic pigment according to claim 1 or 2, wherein the Mg content in the salt is 0.005 to 0.05 wt%. 有機顔料が、フタロシアニン系、アゾ系、キノフタロン系、キナクリドン系、イソインドリン系、イソインドリノン系、ベンズイミダゾロン系、ジケトピロロピロール系、ペリレン系、ペリノン系、ジオキサジン系、ジアントラキノン系、アントラキノン系、ベンズイミダゾロン系、金属錯体系から選ばれる少なくとも1種の有機顔料である請求項1ないし3いずれか記載の微細有機顔料の製造方法。   Organic pigments are phthalocyanine, azo, quinophthalone, quinacridone, isoindoline, isoindolinone, benzimidazolone, diketopyrrolopyrrole, perylene, perinone, dioxazine, dianthraquinone, anthraquinone The method for producing a fine organic pigment according to any one of claims 1 to 3, wherein the organic pigment is at least one organic pigment selected from a benzimidazolone series, a benzimidazolone series, and a metal complex series.
JP2005163584A 2005-06-03 2005-06-03 Manufacturing method of fine organic pigment Pending JP2006335920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005163584A JP2006335920A (en) 2005-06-03 2005-06-03 Manufacturing method of fine organic pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005163584A JP2006335920A (en) 2005-06-03 2005-06-03 Manufacturing method of fine organic pigment

Publications (1)

Publication Number Publication Date
JP2006335920A true JP2006335920A (en) 2006-12-14

Family

ID=37556753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005163584A Pending JP2006335920A (en) 2005-06-03 2005-06-03 Manufacturing method of fine organic pigment

Country Status (1)

Country Link
JP (1) JP2006335920A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050588A (en) * 2006-07-25 2008-03-06 Dainichiseika Color & Chem Mfg Co Ltd Manufacturing method for fine pigment and pigment coloring agent
JP2008303123A (en) * 2007-06-11 2008-12-18 Ako Kasei Co Ltd Method for maintaining crystal form of sodium chloride
JP2009084522A (en) * 2007-10-03 2009-04-23 Dic Corp Bipyrrolinone compound and bipyrrolinone pigment
JP2010215839A (en) * 2009-03-18 2010-09-30 Fujifilm Corp Method for producing ground azo pigment, azo pigment dispersion and aqueous ink for inkjet recording
JP2013203868A (en) * 2012-03-28 2013-10-07 Toyo Ink Sc Holdings Co Ltd ε-TYPE PHTHALOCYANINE PIGMENT COMPOSITION AND METHOD FOR PRODUCING THE SAME
JP2017106009A (en) * 2015-12-07 2017-06-15 花王株式会社 Method for producing organic pigment
CN108795101A (en) * 2017-06-02 2018-11-13 银川百泓新材料科技有限公司 A kind of kneading method prepares the preparation process and permanent violet of permanent violet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169524A (en) * 1974-11-04 1976-06-16 Hercules Inc
JPH06228454A (en) * 1991-03-07 1994-08-16 Toyo Ink Mfg Co Ltd Production of beta-type dioxazine pigment
JP2002121420A (en) * 2000-08-07 2002-04-23 Dainippon Ink & Chem Inc Copper phthalocyanine pigment and method for producing the same
JP2002131986A (en) * 2000-10-24 2002-05-09 Dainippon Ink & Chem Inc Electrostatic charge image developing toner
JP2003114324A (en) * 2001-10-05 2003-04-18 Dainippon Ink & Chem Inc Blue pigment composition for color filter and color filter using the same
JP2003227921A (en) * 2003-01-24 2003-08-15 Toray Ind Inc Coloring composition for color filter, color filter using the same, and liquid crystal display
JP2004502855A (en) * 2000-07-07 2004-01-29 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Pigment copper phthalocyanine solid solution and transparent dispersion containing the same
JP2004070342A (en) * 2002-07-24 2004-03-04 Dainippon Printing Co Ltd Green pigment for color filter, green pigment dispersion, photosensitive coloring composition, color filter, and liquid crystal panel
JP2004292785A (en) * 2003-02-14 2004-10-21 Dainippon Ink & Chem Inc Yellow pigment composition for color filter, and color filter containing the same in colored pixel part

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169524A (en) * 1974-11-04 1976-06-16 Hercules Inc
JPH06228454A (en) * 1991-03-07 1994-08-16 Toyo Ink Mfg Co Ltd Production of beta-type dioxazine pigment
JP2004502855A (en) * 2000-07-07 2004-01-29 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Pigment copper phthalocyanine solid solution and transparent dispersion containing the same
JP2002121420A (en) * 2000-08-07 2002-04-23 Dainippon Ink & Chem Inc Copper phthalocyanine pigment and method for producing the same
JP2002131986A (en) * 2000-10-24 2002-05-09 Dainippon Ink & Chem Inc Electrostatic charge image developing toner
JP2003114324A (en) * 2001-10-05 2003-04-18 Dainippon Ink & Chem Inc Blue pigment composition for color filter and color filter using the same
JP2004070342A (en) * 2002-07-24 2004-03-04 Dainippon Printing Co Ltd Green pigment for color filter, green pigment dispersion, photosensitive coloring composition, color filter, and liquid crystal panel
JP2003227921A (en) * 2003-01-24 2003-08-15 Toray Ind Inc Coloring composition for color filter, color filter using the same, and liquid crystal display
JP2004292785A (en) * 2003-02-14 2004-10-21 Dainippon Ink & Chem Inc Yellow pigment composition for color filter, and color filter containing the same in colored pixel part

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050588A (en) * 2006-07-25 2008-03-06 Dainichiseika Color & Chem Mfg Co Ltd Manufacturing method for fine pigment and pigment coloring agent
JP2008303123A (en) * 2007-06-11 2008-12-18 Ako Kasei Co Ltd Method for maintaining crystal form of sodium chloride
JP2009084522A (en) * 2007-10-03 2009-04-23 Dic Corp Bipyrrolinone compound and bipyrrolinone pigment
JP2010215839A (en) * 2009-03-18 2010-09-30 Fujifilm Corp Method for producing ground azo pigment, azo pigment dispersion and aqueous ink for inkjet recording
JP2013203868A (en) * 2012-03-28 2013-10-07 Toyo Ink Sc Holdings Co Ltd ε-TYPE PHTHALOCYANINE PIGMENT COMPOSITION AND METHOD FOR PRODUCING THE SAME
JP2017106009A (en) * 2015-12-07 2017-06-15 花王株式会社 Method for producing organic pigment
CN108795101A (en) * 2017-06-02 2018-11-13 银川百泓新材料科技有限公司 A kind of kneading method prepares the preparation process and permanent violet of permanent violet

Similar Documents

Publication Publication Date Title
JP2006335920A (en) Manufacturing method of fine organic pigment
JP3139396B2 (en) Manufacturing method of printing ink
JP2007009096A (en) Pigment composition and pigment dispersion using the same
KR100459355B1 (en) Process for the Production of Ink Concentrates
JP2008074987A (en) Pigment additive, pigment composition and pigment dispersion
JP2006321821A (en) Method for producing pigment
JP6424695B2 (en) Solid solutions of azomethine metal complexes
US6860934B2 (en) Process for the production of β type copper phthalocyanine pigment
JP2006077062A (en) Method for producing pigment
JP2007238852A (en) Method for producing fine organic pigment
JP2004244563A (en) Method for producing organic pigment
JP5534325B2 (en) Method for producing copper phthalocyanine pigment composition and method for producing printing ink
JP2008274062A (en) alpha-COPPER PHTHALOCYANINE PIGMENT, METHOD FOR PRODUCING THE SAME AND COLORED COMPOSITION PRODUCED BY USING THE SAME
JP2007297483A (en) Method for pulverizing pigment, coloring composition by using fine pigment obtained by the method
TWI806782B (en) Manufacturing method of ε-type copper phthalocyanine pigment composition
JP2006096927A (en) Quinacridone pigment composition for gravure ink, method for producing the same and gravure ink comprising the pigment composition
JP3882358B2 (en) Pigment composition and aqueous pigment dispersion using the same
JP2004277434A (en) Method for producing organic pigment
JP2002121413A (en) Method of producing cerulean pigment
JP2005008806A (en) Method for producing beta-form copper phthalocyanine pigment
EP0878518B1 (en) Production process of phthalocyanine concentrates for paints
JP2005029787A (en) Process for production of beta-type copper phthalocyanine pigment
JP4400024B2 (en) Method for producing organic pigment
KR100497113B1 (en) Process for preparing a stable copper phthalocyanine pigment
JPS5836024B2 (en) Easily dispersible solid pigment composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Effective date: 20100708

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

A02 Decision of refusal

Effective date: 20120110

Free format text: JAPANESE INTERMEDIATE CODE: A02