JP2006321821A - Method for producing pigment - Google Patents

Method for producing pigment Download PDF

Info

Publication number
JP2006321821A
JP2006321821A JP2005140688A JP2005140688A JP2006321821A JP 2006321821 A JP2006321821 A JP 2006321821A JP 2005140688 A JP2005140688 A JP 2005140688A JP 2005140688 A JP2005140688 A JP 2005140688A JP 2006321821 A JP2006321821 A JP 2006321821A
Authority
JP
Japan
Prior art keywords
pigment
water
organic pigment
kneading
fixed disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005140688A
Other languages
Japanese (ja)
Inventor
Takami Mori
高見 森
Nobuyuki Segawa
信之 瀬川
Takuya Kotani
卓也 小谷
Hiroyuki Nakamura
博之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2005140688A priority Critical patent/JP2006321821A/en
Publication of JP2006321821A publication Critical patent/JP2006321821A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/402Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft using a rotor-stator system with intermeshing elements, e.g. teeth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/421Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix with screw and additionally other mixing elements on the same shaft, e.g. paddles, discs, bearings, rotor blades of the Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/52Screws with an outer diameter varying along the longitudinal axis, e.g. for obtaining different thread clearance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/575Screws provided with elements of a generally circular cross-section for shearing the melt, i.e. shear-ring elements

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems of restriction of a production scale, dispersion of quality every lot, mixing-in of foreign material because of open type, contamination, etc. of operation environment by occurrence of powder dust cited as subjects in conventional batch type kneaders, etc. <P>SOLUTION: The method for producing a pigment comprises kneading a mixture of an organic pigment with a water-soluble inorganic salt in an amount of ≥7 pts.wt. and ≤30 pts.wt. based on 1 pt.wt. organic pigment and a water-soluble organic liquid in an amount of ≥0.3 pt.wt. and ≤7 pts.wt. based on 1 pt.wt. organic pigment by a continuous kneading machine having crushing spaces formed at the gaps between circular stationary disks and rotary disks coaxial to the stationary disks and integrally rotating around the axis of a driving shaft. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発色用の粉体の粒子が微細でかつ均一な粒子径に整粒され、ビヒクルに対して分散性が極めて良好な顔料の製造方法に関するものである。さらに詳しくは、本発明は、グラビアインキ、オフセットインキ等の印刷インキまたは塗料等のビヒクル中に発色用の粉体の粒子が分散した場合、展色物に良好な光沢、高着色力を与え、更にはインクジェット用インキやカラーフィルター等のより微細な顔料粒子を求められる用途においても、優れた適性を与える顔料の製造方法に関する。   The present invention relates to a method for producing a pigment in which particles of color developing powder are finely sized to have a uniform particle size and extremely dispersible with respect to a vehicle. More specifically, in the present invention, when particles of coloring powder are dispersed in a printing ink such as gravure ink or offset ink or a vehicle such as paint, the developed product is given good gloss and high coloring power, Further, the present invention relates to a method for producing a pigment that gives excellent suitability even in applications requiring finer pigment particles such as inkjet inks and color filters.

有機顔料にはアゾ顔料のように合成時に適切な反応条件を選択することにより、微細で整粒された粒子を得ることができるものがある。また、塩素化銅フタロシアニン顔料のように合成時に生成する極めて微細で凝集した粒子を後工程で粒子成長、整粒させるものや、銅フタロシアニン顔料のように合成時に生成する粗大で不揃いな粒子を後工程で微細化し整粒させる、顔料化と呼ばれる処理を行うものもある。   Some organic pigments, such as azo pigments, can obtain finely sized particles by selecting appropriate reaction conditions during synthesis. In addition, very fine and agglomerated particles produced during synthesis such as chlorinated copper phthalocyanine pigments are grown and sized in the subsequent process, and coarse and irregular particles produced during synthesis such as copper phthalocyanine pigments are used later. Some perform processing called pigmentation, which is refined and sized in the process.

例えば、銅フタロシアニン顔料は色調が美しいこと、着色力が大きいこと、耐候性、耐熱性等の諸性能が良好であることから、色材工業の分野において多量に、しかも広範に使用されている。
通常、銅フタロシアニン顔料は、無水フタル酸もしくはその誘導体と尿素および銅源を、またはフタロジニトリルもしくはその誘導体および銅源を、モリブデン酸アンモニウムあるいは四塩化チタンなどの触媒の存在もしくは不存在下、アルキルベンゼン、トリクロルベンゼンあるいはニトロベンゼンなどの有機溶媒中で常圧または加圧下で反応させることにより製造される。
しかしながら、合成されたフタロシアニン分子はその合成溶媒中で次々に粒子成長を起こすことにより、その長径が10〜200μm程度の粗大で針状化した粒子でしか得られず、インキ・塗料・プラスチックス等の着色用顔料としてはその価値は非常に低く、粗製銅フタロシアニンと呼ばれる。従って、その粗製銅フタロシアニンは色彩上利用価値の高い粒子、すなわち0.01〜0.5μm程度まで微細化することが必要となる。
For example, copper phthalocyanine pigments are used in large quantities and widely in the field of color material industry because of their beautiful color tone, high tinting strength, and good performance such as weather resistance and heat resistance.
Usually, a copper phthalocyanine pigment is an alkylbenzene in the presence or absence of a catalyst such as ammonium molybdate or titanium tetrachloride, or phthalodinitrile or a derivative thereof and urea and a copper source, or phthalodinitrile or a derivative thereof and a copper source. , By reacting in an organic solvent such as trichlorobenzene or nitrobenzene at normal pressure or under pressure.
However, the synthesized phthalocyanine molecules can be obtained only in coarse and needle-like particles having a major axis of about 10 to 200 μm by causing particle growth one after another in the synthesis solvent, such as inks, paints, plastics, etc. As a coloring pigment, the value is very low and it is called crude copper phthalocyanine. Therefore, it is necessary to refine the crude copper phthalocyanine to particles having high utility value in color, that is, about 0.01 to 0.5 μm.

工業的に粗製銅フタロシアニンを微細化する方法としては、各種の公知事例があり、例えば、粗製銅フタロシアニンと塩化ナトリウムの混合物に少量のジエチレングリコール等の溶剤を加えて湿潤化したものをボールミルやアトライター、さらにはバッチ式ニーダー等で強く練り込み湿式磨砕する、いわゆるソルベントソルトミリング法がある(特許文献1参照)。この方法においては、得られた混練物から水洗により塩化ナトリウム、ジエチレングリコール等を除去し、乾燥して一次粒子の細かい銅フタロシアニン顔料を得るようになされている。   There are various known examples of methods for industrially refining crude copper phthalocyanine, such as ball mills and attritors obtained by adding a small amount of solvent such as diethylene glycol to a mixture of crude copper phthalocyanine and sodium chloride and then wetting it. In addition, there is a so-called solvent salt milling method in which a kneader is kneaded strongly with a batch kneader or the like and is wet ground (see Patent Document 1). In this method, sodium chloride, diethylene glycol and the like are removed from the obtained kneaded product by washing with water and dried to obtain a copper phthalocyanine pigment with fine primary particles.

しかし、従来のバッチ式ニーダー等では、バッチ式に由来する生産スケールの制約、品質のロット毎のバラツキ、開放型であるための異物混入や粉塵発生による作業環境の汚染等の問題があった。
また、有機顔料の微細化に対して多大なエネルギーを使用することや微細化レベルにも限界があった。さらに得られた銅フタロシアニン顔料をグラビアインキ、オフセットインキ等の印刷インキまたは塗料等のビヒクル中に分散して使用する場合においても展色物への光沢、着色力の向上は常に要求される課題であった。
However, conventional batch type kneaders have problems such as production scale limitations derived from the batch type, variation in quality for each lot, contamination of the work environment due to foreign matter contamination and dust generation due to the open type.
In addition, there is a limit to the use of enormous energy for the miniaturization of organic pigments and the level of miniaturization. Furthermore, even when the obtained copper phthalocyanine pigment is used dispersed in a vehicle such as gravure ink, offset ink or printing ink or paint, improvement of gloss and coloring power is always a required issue. there were.

特開平7−53889号公報Japanese Patent Laid-Open No. 7-53889

本発明は、かかる状況に鑑みなされたものであって、従来のバッチ式ニーダー等において課題として挙げられる生産スケールの制約、品質のロット毎のバラツキ、開放型であるための異物混入、粉塵発生による作業環境の汚染等を解決する顔料の製造方法を提供することを目的としている。 The present invention has been made in view of such a situation, and is due to restrictions on production scale, variations in quality for each lot, problems due to the open type, contamination by foreign matter, and generation of dust. It aims at providing the manufacturing method of the pigment which solves the pollution of a working environment, etc.

さらに、本発明は、従来のバッチ式ニーダー等に比較して少量のエネルギーで、より微細な粒子を得ることができ、グラビアインキ、オフセットインキ等の印刷インキまたは塗料等のビヒクル中に分散して使用した場合、展色物に良好な光沢と着色力の向上等を与え、更にはインクジェット用インキやカラーフィルター等のより微細な顔料粒子を求められる用途においても、優れた適性を与える顔料の製造方法を提供することを目的としている。つまり、本発明は従来のバッチ式ニーダー等では得られない微細顔料を、短時間で効率的に製造する方法を提供することを目的としている。   Furthermore, the present invention can obtain finer particles with a small amount of energy as compared with conventional batch kneaders, etc., and is dispersed in a vehicle such as gravure ink, offset ink or printing ink or paint. Produces pigments that, when used, give good extensibility and color strength to developed products, and give excellent suitability even in applications that require finer pigment particles such as inkjet inks and color filters. It aims to provide a method. That is, an object of the present invention is to provide a method for efficiently producing a fine pigment that cannot be obtained by a conventional batch kneader or the like in a short time.

本発明は、有機顔料と、該有機顔料に対し7重量倍以上30重量倍以下の水溶性無機塩と、該有機顔料に対し0.3重量倍以上7重量倍以下の水溶性有機液体との混合物を、環状の固定円盤と、駆動軸の軸心回りに一体回転する前記固定円盤と同心の回転円盤との間隙部分に形成された粉砕空間を有する連続混練機にて混練することを特徴とする顔料の製造方法である。   The present invention comprises an organic pigment, a water-soluble inorganic salt of 7 to 30 times by weight of the organic pigment, and a water-soluble organic liquid of from 0.3 to 7 times by weight of the organic pigment. The mixture is kneaded in a continuous kneader having a pulverization space formed in a gap portion between an annular fixed disk and the fixed disk that rotates integrally around the axis of the drive shaft and the concentric rotating disk. This is a method for producing a pigment.

かかる構成を採用したことにより、従来のバッチ式ニーダー等に比べ生産スケールの制約が少なく適時適量生産が可能であり、製品のロット毎の品質にバラツキが少ない。また密閉型になるため、粉塵の発生による作業環境の汚染、異物混入等の問題が解消される。さらに少量のエネルギーでより微細な粒子まで粉砕できることや、この製法から得られた有機顔料をグラビアインキ、オフセットインキ等の印刷インキまたは塗料等のビヒクル中に分散して使用した場合、顔料は、展色物に良好な光沢と着色力の向上等を与え、更にはインクジェット用インキやカラーフィルター等のより微細な顔料粒子を求められる用途においても、優れた適性を与えるものになる。また、従来のバッチ式ニーダー等では得られない微細顔料を、短時間で容易に製造することが可能となる。   By adopting such a configuration, the production scale is less restricted than a conventional batch kneader and the like, and timely and appropriate quantity production is possible, and there is little variation in the quality of each product lot. Moreover, since it becomes a sealed type, problems such as contamination of the work environment due to generation of dust and contamination of foreign matters are solved. In addition, when the pigment can be pulverized to finer particles with a small amount of energy, or when the organic pigment obtained from this production method is dispersed in a printing ink such as gravure ink or offset ink or a vehicle such as paint, the pigment is Good gloss and improvement in coloring power are imparted to a color product, and excellent aptitude is also obtained in applications requiring finer pigment particles such as inkjet inks and color filters. In addition, it is possible to easily produce a fine pigment that cannot be obtained by a conventional batch kneader or the like in a short time.

さらに、有機顔料に対し水溶性無機塩が7重量倍以上30重量倍未満、水溶性有機液体が0.3重量倍以上7重量倍未満としたことにより、水溶性無機塩が7重量倍未満の場合では微細化し難いという不都合が解消されるとともに、30重量倍以上の場合では微細化した顔料を得ることが可能となるが顔料の処理量が少なくなるため、生産性が低下して工業的には不利となるという不都合が解消される。つまり、有機顔料に対し、水溶性無機塩の使用量を従来より多い条件でソルベントソルトミリングすることで、より微細な有機顔料を製造するものである。また、水溶性有機液体が0.3重量倍未満の場合では混練組成物が硬くなり過ぎて安定運転し難くなるという不都合が解消されるとともに、7重量倍以上の場合では混練組成物が軟らかくなり過ぎて微細化レベルが低下するという不都合が解消される。   Further, the water-soluble inorganic salt is less than 7 times by weight because the water-soluble inorganic salt is 7 to 30 times by weight and the water-soluble organic liquid is from 0.3 to 7 times by weight with respect to the organic pigment. In some cases, the inconvenience of being difficult to miniaturize is solved, and in the case of 30 times by weight or more, it is possible to obtain a finer pigment, but since the amount of pigment processing decreases, the productivity is lowered and industrially reduced. The disadvantage of being disadvantageous is resolved. In other words, finer organic pigments are produced by solvent salt milling with respect to organic pigments under conditions where the amount of water-soluble inorganic salt used is higher than in the past. In addition, when the water-soluble organic liquid is less than 0.3 times by weight, the inconvenience that the kneaded composition becomes too hard and difficult to operate stably is solved, and when it is more than 7 times by weight, the kneaded composition becomes soft. The inconvenience that the fineness level is lowered after that is eliminated.

請求項2記載の発明は、請求項1に記載の発明において、混練温度を10〜150℃に制御することを特徴とするものである。かかる構成を採用したことにより、有機顔料粒子の磨砕と、水溶性有機溶剤との接触による有機顔料の粒子成長とがいずれも効果的に進行する。   The invention according to claim 2 is characterized in that, in the invention according to claim 1, the kneading temperature is controlled to 10 to 150 ° C. By adopting such a configuration, both the grinding of organic pigment particles and the growth of organic pigment particles by contact with a water-soluble organic solvent effectively proceed.

請求項1記載の発明によれば、設備コストおよび製造コストの低減化を確保した上で、作業環境の改善や製品への異物混入防止等に貢献することができるばかりか、得られた顔料をグラビアインキ、オフセットインキ等の印刷インキまたは塗料等のビヒクル中に分散して使用した場合、展色物に良好な光沢と着色力の性能向上等を図ることができる。さらに、水溶性無機塩の量を従来のバッチ式ニーダー等の条件より増やすことで、有機顔料を良好に、より微細化することができるとともに、生産性を向上させることができ、さらには顔料の連続的製造の安定操業に貢献することができる。
請求項2記載の発明によれば、有機顔料粒子の磨砕と、水溶性有機溶剤との接触による有機顔料の粒子成長との双方を効果的に進行させることができる。
According to the first aspect of the invention, it is possible not only to contribute to the improvement of the working environment and the prevention of foreign matter from being mixed into the product, while ensuring the reduction of the equipment cost and the manufacturing cost. When dispersed in a vehicle such as gravure ink, offset ink, or other printing ink or paint, it is possible to improve the gloss and coloring power of the developed product. Furthermore, by increasing the amount of the water-soluble inorganic salt from conditions such as a conventional batch kneader, the organic pigment can be made finer and finer, and the productivity can be improved. It can contribute to the stable operation of continuous production.
According to the second aspect of the present invention, both the grinding of the organic pigment particles and the particle growth of the organic pigment due to contact with the water-soluble organic solvent can be effectively advanced.

まず、図1を基に、本発明方法の実施に使用される連続混練機について説明する。図1は、本発明に係る連続混練機の一実施形態を示す側面視の断面図である。因みに、本発明において好適に使用される連続混練機としては、特公平2−92号公報等に記載されているものであり、例えば、浅田鉄工社製の連続混練機10(「ミラクルK.C.K.」)を好適なものとして挙げることができる。
図1に示すように、連続混練機10は、フイード部1、混練部2、排出部3および定量フィーダー部4とを備えた基本構成を有している。前記フイード部1は、水平方向に延びる筒状のケーシング11と、このケーシング11に同心、かつ、摺接状態で嵌挿されたスパイラルロッド12とを備えている。前記ケーシング11の上流側の上面には、定量フィーダー部4からの原料を受け入れる原料受入口111が開口されている。前記スパイラルロッド12は、その基端部(図1の右方)が図略の駆動モータの駆動軸121に同心で固定され、駆動モータの駆動で駆動軸121を介して軸心回りに回転するようになっている。かかるスパイラルロッド12の外周面には、所定方向に螺設されたスパイラルフィン122が設けられ、定量フィーダー部4から供給された原料は、このスパイラルフィン122の軸心回りの回転によって混練部2へ向けて圧送されるようになっている。
First, a continuous kneader used for carrying out the method of the present invention will be described with reference to FIG. FIG. 1 is a side sectional view showing an embodiment of a continuous kneader according to the present invention. Incidentally, the continuous kneader suitably used in the present invention is described in Japanese Patent Publication No. 2-92, etc., for example, a continuous kneader 10 ("Miracle K.C." .K. ") Can be mentioned as preferred.
As shown in FIG. 1, the continuous kneader 10 has a basic configuration including a feed unit 1, a kneading unit 2, a discharge unit 3, and a quantitative feeder unit 4. The feed portion 1 includes a cylindrical casing 11 that extends in the horizontal direction, and a spiral rod 12 that is concentrically fitted into the casing 11 and is fitted in a sliding contact state. On the upper surface of the casing 11 on the upstream side, a raw material receiving port 111 for receiving the raw material from the quantitative feeder section 4 is opened. The spiral rod 12 is concentrically fixed to a drive shaft 121 of a drive motor (not shown) at the base end (right side in FIG. 1), and rotates about the shaft center via the drive shaft 121 by driving the drive motor. It is like that. A spiral fin 122 screwed in a predetermined direction is provided on the outer peripheral surface of the spiral rod 12, and the raw material supplied from the metering feeder unit 4 is sent to the kneading unit 2 by rotation around the axis of the spiral fin 122. It is designed to be pumped towards.

前記定量フィーダー部4は、連続混練処理の対象となる原料(本発明においては、有機顔料、水溶性無機塩および水溶性有機液体の混合物でゾル状またはゲル状を呈したもの)をフイード部1へ供給するためのものであり、原料を収容する原料ホッパー41と、この原料ホッパー41の底部から切り出された原料をフイード部1へ向けて送り出すスパイラルフィーダ42と、このスパイラルフィーダ42の下流端を覆うように前記ケーシング11に原料受入口111の周縁部から立設された連絡筒体43とを備えて構成されている。   The quantitative feeder unit 4 feeds a raw material to be continuously kneaded (in the present invention, a mixture of an organic pigment, a water-soluble inorganic salt and a water-soluble organic liquid, which is in the form of a sol or a gel). A raw material hopper 41 for containing the raw material, a spiral feeder 42 for feeding the raw material cut out from the bottom of the raw material hopper 41 toward the feed portion 1, and a downstream end of the spiral feeder 42 The casing 11 is provided with a connecting cylinder 43 standing from the peripheral edge of the raw material receiving port 111 so as to cover the casing 11.

前記スパイラルフィーダ42は、原料ホッパー41の底部開口と連絡筒体43の上部開口との間に介設された介設筒体44内にスパイラルフィンが摺接した状態で装着され、基端側(図1の右方)が図略のフィードモータの駆動軸に同心で連結されている。したがって、フィードモータの駆動によるスパイラルフィーダ42の軸心回りに回転で、原料ホッパー41内の原料がスパイラルフィーダ42によって搬送され、介設筒体44および連絡筒体43を介してケーシング11内へ予め設定された搬送量で供給されるようになっている。   The spiral feeder 42 is mounted in a state in which a spiral fin is slidably contacted in an interposed cylinder 44 interposed between the bottom opening of the raw material hopper 41 and the upper opening of the connecting cylinder 43, and the proximal end side ( The right side in FIG. 1 is concentrically connected to a drive shaft of a feed motor (not shown). Therefore, the raw material in the raw material hopper 41 is conveyed by the spiral feeder 42 by rotating around the axis of the spiral feeder 42 driven by the feed motor, and is introduced into the casing 11 in advance via the interposed cylinder 44 and the connecting cylinder 43. It is designed to be supplied with a set conveyance amount.

前記混練部2は、複数の固定円盤21と、この固定円盤21間に挟持された状態で固定円盤21と交互に配設される環状の混練シリンダ22と、表裏面(図1における左右の面)が前記固定円盤21と対向した状態で前記混練シリンダ22に同心で嵌挿される回転円盤23とを備えて構成されている。前記複数の固定円盤21および混練シリンダ22には、図略のタイロッドが貫通され、このタイロッドの基端部がフイード部1のケーシング11に固定されることにより、固定円盤21および混練シリンダ22がフイード部1と一体化している。   The kneading section 2 includes a plurality of fixed disks 21, annular kneading cylinders 22 arranged alternately with the fixed disks 21 while being sandwiched between the fixed disks 21, front and back surfaces (the left and right surfaces in FIG. 1). ) Is provided with a rotating disk 23 concentrically inserted into the kneading cylinder 22 in a state of facing the fixed disk 21. A tie rod (not shown) is passed through the plurality of fixed disks 21 and kneading cylinders 22, and a base end portion of the tie rods is fixed to the casing 11 of the feed portion 1, whereby the fixed disks 21 and the kneading cylinders 22 are fed. It is integrated with part 1.

前記各回転円盤23は、スパイラルロッド12の先端面から同心で突設された図略のスプライン軸に外嵌されている。隣設された回転円盤23間には筒状の中間スクリュー24が介設され、これによってスプライン軸には回転円盤235とスクリュー24とが交互に装着された状態になっている。かかる回転円盤23は、外径寸法が固定円盤21の内径寸法より僅かに小さく設定されているとともに、中間スクリュー24は、外径寸法が回転円盤23の内径寸法より僅かに小さく設定され、これによって各回転円盤23および各中間スクリュー24は、前記スプライン軸に交互に外嵌された状態で、外周面が混練シリンダ22および固定円盤21の内周面に対して原料が通過し得る隙間を介してそれぞれ対向するようになされている。 Each of the rotating disks 23 is externally fitted on a spline shaft (not shown) that is concentrically provided from the distal end surface of the spiral rod 12. A cylindrical intermediate screw 24 is interposed between the adjacent rotating disks 23, so that the rotating disks 235 and the screws 24 are alternately mounted on the spline shaft. The rotating disk 23 has an outer diameter dimension set to be slightly smaller than the inner diameter dimension of the fixed disk 21, and the intermediate screw 24 has an outer diameter dimension set to be slightly smaller than the inner diameter dimension of the rotating disk 23. Each rotary disk 23 and each intermediate screw 24 are alternately fitted on the spline shaft, and the outer peripheral surface thereof passes through a gap through which the raw material can pass with respect to the inner peripheral surface of the kneading cylinder 22 and the fixed disk 21. They are designed to face each other.

かかる連続混練機10の構成によれば、原料ホッパー41に装填された原料は、スパイラルフィーダ42の駆動によって原料ホッパー41の底部から払い出され、介設筒体44および連絡筒体43を介してフイード部1のケーシング11内に導入される。ケーシング11内に導入された原料は、スパイラルロッド12の駆動回転によるスパイラルフィン122の回転によって順次下流側の混練部2へ向けて搬送される。   According to the configuration of the continuous kneader 10, the raw material loaded in the raw material hopper 41 is discharged from the bottom of the raw material hopper 41 by driving the spiral feeder 42, and is connected via the interposed cylinder 44 and the connecting cylinder 43. It is introduced into the casing 11 of the feed part 1. The raw material introduced into the casing 11 is sequentially conveyed toward the kneading unit 2 on the downstream side by the rotation of the spiral fins 122 by the driving rotation of the spiral rod 12.

そして、混練部2へ搬送された原料は、まず、軸心回りに回転している最上流側(図1の右方)の中間スクリュー24の外周面と、最上流側の駆動軸121の内周面との間を通過し、引き続き最上流側の固定円盤21の図1における左側面と、軸心回りに回転している最上流側の回転円盤23の右側面との間を通過し、これらの隙間の通過に際して当該原料に混練処理が施される。かかる原料に対する混練操作が固定円盤21、混練シリンダ22、回転円盤23および中間スクリュー24の設置分だけ複数段で繰り返され、これによって原料の複数種類の構成要素(本発明においては有機顔料、水溶性無機塩および水溶性有機液体)に対し混練処理が施される。混練処理の完了により得られた製品は、最下流側の回転円盤23の外周面と、同固定円盤21の内周面との隙間、すなわち排出部3から外部に排出される。   The raw material transported to the kneading unit 2 is first of all the outer peripheral surface of the intermediate screw 24 on the most upstream side (right side in FIG. 1) rotating around the axis and the drive shaft 121 on the most upstream side. 1 passes between the peripheral surface, and subsequently passes between the left side surface in FIG. 1 of the uppermost fixed disk 21 and the right side surface of the uppermost rotating disc 23 rotating around the axis, The raw material is kneaded when passing through these gaps. The kneading operation on the raw material is repeated in a plurality of stages for the amount of installation of the fixed disk 21, the kneading cylinder 22, the rotating disk 23, and the intermediate screw 24, whereby a plurality of components of the raw material (in the present invention, organic pigment, water-soluble A kneading process is performed on the inorganic salt and the water-soluble organic liquid). The product obtained by the completion of the kneading process is discharged to the outside through the gap between the outer peripheral surface of the rotating disk 23 on the most downstream side and the inner peripheral surface of the fixed disk 21, that is, the discharge unit 3.

図2は、図1に示す連続混練機に適用される固定円盤および回転円盤の一実施形態を示す正面図(図1の右方から見た図)または背面図(図1の左方から見た図)であり、(a)はキャビティー扇型固定円盤21a、(b)はキャビティー扇型回転円盤23b、(c)はキャビティー菊型固定円盤21c、(d)はキャビティー菊型回転円盤23d、(e)はキャビティー臼型固定円盤21e、(f)はキャビティー臼型回転円盤23fをそれぞれ示している。   2 is a front view (viewed from the right side of FIG. 1) or a rear view (viewed from the left side of FIG. 1) showing an embodiment of a fixed disk and a rotating disk applied to the continuous kneader shown in FIG. (A) is a cavity fan-shaped fixed disk 21a, (b) is a cavity fan-shaped rotating disk 23b, (c) is a cavity chrysanthemum-shaped fixed disk 21c, and (d) is a cavity chrysanthemum mold. The rotating disks 23d and (e) show the cavity mortar-shaped fixed disk 21e, and (f) shows the cavity mortar-shaped rotating disk 23f, respectively.

図2に示すように、固定円盤21には、同心で穿設された中間スクリュー24に遊嵌させるための遊嵌孔211が設けられているとともに、固定円盤21の表裏面(正面側および背面側)には、この遊嵌孔211から径方向に向けて凹設された周方向に等ピッチの複数の凹部(キャビティー(粉砕空間)212)が設けられている。一方、回転円盤23には、同心で穿設された図略のスプライン軸に密着状態で外嵌するための外嵌孔231が設けられているとともに、回転円盤23の表裏面には、前記固定円盤21のキャビティー212に対応するキャビティー(粉砕空間)232が凹設されている。回転円盤23のキャビティー232は、周縁部が開放状態になっている。   As shown in FIG. 2, the fixed disk 21 is provided with a loose fitting hole 211 for loosely fitting to the concentric intermediate screw 24, and the front and rear surfaces (front side and rear surface) of the fixed disk 21. A plurality of concave portions (cavities (crushing spaces) 212) having an equal pitch are provided in the circumferential direction that are recessed from the loose fitting holes 211 in the radial direction. On the other hand, the rotating disk 23 is provided with an outer fitting hole 231 for fitting in close contact with a spline shaft (not shown) formed concentrically, and on the front and rear surfaces of the rotating disk 23, A cavity (crushing space) 232 corresponding to the cavity 212 of the disk 21 is recessed. The cavity 232 of the rotating disk 23 is open at the periphery.

そして、固定円盤21および回転円盤23間の隙間に導入された原料は、前記スパイラルロッド12の駆動により押圧されることにより各キャビティー212,232内に順次入り込み、この状態で回転円盤23が軸心回りに回転することによって各キャビティー212,232間の界面を境にして各キャビティー212,232内の原料に対し剪断力が付与されるようになされている。すなわち、対向する固定円盤21と回転円盤23との各キャビティー212,232内の原料は、各キャビティー212,232の山部の稜線でスライスされて原料に剪断力と置換(剪断された原料が各キャビティー212,232から出されるとともに、新たな原料が各キャビティー212,232に入り込むこと)とが作用し、これによって原料が混練分散されるようになっている。   Then, the raw material introduced into the gap between the fixed disk 21 and the rotating disk 23 is sequentially pushed into the cavities 212 and 232 by being pressed by the drive of the spiral rod 12, and in this state the rotating disk 23 is pivoted. By rotating around the center, a shearing force is applied to the raw material in each of the cavities 212 and 232 at the interface between the cavities 212 and 232. That is, the raw materials in the cavities 212 and 232 of the fixed disk 21 and the rotating disk 23 facing each other are sliced at the ridges of the ridges of the cavities 212 and 232, and the raw materials are replaced with shearing force (sheared raw materials). Are released from the cavities 212 and 232, and new raw materials enter the cavities 212 and 232), whereby the raw materials are kneaded and dispersed.

かかる固定円盤21および回転円盤23を、キャビティー212,232の形状によって図2(a)および図2(b)に示すキャビティー扇型固定円盤21aおよびキャビティー扇型回転円盤23bと、図2(c)および図2(d)に示すキャビティー菊型固定円盤21cおよびキャビティー菊型回転円盤23dと、図2(e)および図2(f)に示すキャビティー臼型固定円盤21eおよびキャビティー臼型回転円盤23fとの複数種類に分けているのは、混練分散処理の進行に応じて原料に対する剪断力を大きくしていくためである。   The fixed disk 21 and the rotating disk 23 are formed into the cavity fan-shaped fixed disk 21a and the cavity fan-shaped rotating disk 23b shown in FIGS. 2 (a) and 2 (b) according to the shape of the cavities 212 and 232, and FIG. Cavity chrysanthemum type fixed disk 21c and cavity chrysanthemum type rotary disk 23d shown in (c) and FIG. 2 (d), cavity mortar type fixed disk 21e and mold shown in FIG. 2 (e) and FIG. 2 (f). The reason why it is divided into a plurality of types with the tee mortar type rotating disk 23f is to increase the shearing force on the raw material as the kneading and dispersing process proceeds.

すなわち、各キャビティー212,232の空隙率(固定円盤21および回転円盤23の表面の面積に対する各キャビティー212,232の面積の割合(%))は、扇型のキャビティー212,232、菊型のキャビティー212,232および臼型のキャビティー212,232の順に低くなっているが、空隙率が小さくなるに従って原料に対する剪断力が大きくなる。   That is, the porosity of each cavity 212, 232 (the ratio (%) of the area of each cavity 212, 232 to the surface area of the fixed disk 21 and the rotating disk 23) is the fan-shaped cavities 212, 232, chrysanthemum. The mold cavities 212 and 232 and the mortar mold cavities 212 and 232 decrease in this order, but the shearing force on the raw material increases as the porosity decreases.

そして、本実施形態においては、原料に対する混練分散処理の進行に伴い原料に対する剪断力を大きくしていくべく、上流側から下流側に向けてキャビティー212,232が扇型の固定円盤21および回転円盤23、キャビティー212,232が菊型の固定円盤21および回転円盤23、キャビティー212,232が臼型の固定円盤21および回転円盤23を順次配設するようにしている。
こうすることによって、原料にいきなり大きな剪断力が作用するのではなく、混練分散処理の進行に伴って原料に対する剪断力が順次増大していくため、原料に対して無理のない円滑な混練分散処理が施され、これによって原料の構成要素である有機顔料、水溶性無機塩および水溶性有機液体を互いに確実に混練分散させることができる。
In the present embodiment, the cavities 212 and 232 have the fan-shaped fixed disk 21 and the rotation from the upstream side toward the downstream side in order to increase the shearing force on the raw material as the kneading and dispersing process proceeds on the raw material. The disk 23, the cavities 212, 232 are arranged in a chrysanthemum-shaped fixed disk 21 and the rotating disk 23, and the cavities 212, 232 are arranged in the mortar-shaped fixed disk 21 and the rotating disk 23 in this order.
By doing so, a large shearing force does not act on the raw material suddenly, but as the kneading and dispersing process proceeds, the shearing force on the raw material gradually increases. Thus, the organic pigment, the water-soluble inorganic salt, and the water-soluble organic liquid, which are constituents of the raw material, can be reliably mixed and dispersed with each other.

また、かかる構成の連続混練機10によれば、原料の構成要素の一つである有機顔料が粗大粒子からなるものである場合、当該有機顔料が固定円盤21と回転円盤23との隙間(特に各キャビティー212,232)に導入されることにより、回転円盤23の回転による粗大粒子への剪断力の付与で当該有機顔料を微粉化することができる。   Further, according to the continuous kneader 10 having such a configuration, when the organic pigment that is one of the constituent elements of the raw material is composed of coarse particles, the organic pigment is separated from the gap between the fixed disk 21 and the rotating disk 23 (particularly, By being introduced into each of the cavities 212 and 232), the organic pigment can be pulverized by applying a shearing force to the coarse particles by the rotation of the rotating disk 23.

これに対し、有機顔料が微細粒子の凝集物からなる場合、当該凝集物が固定円盤21と回転円盤23との隙間(特に各キャビティー212,232)に導入されることにより、回転円盤23の回転によって当該凝集物を確実に解砕・整粒することができる。   On the other hand, when the organic pigment is composed of agglomerates of fine particles, the agglomerates are introduced into the gaps (in particular, the respective cavities 212 and 232) between the stationary disk 21 and the rotating disk 23, so The aggregate can be reliably crushed and sized by rotation.

以下、このような連続混練機10によって混練分散処理が施される顔料について詳細に説明する。本発明の顔料は、有機顔料と、水溶性無機塩と、水溶性有機液体との混合物を、環状の固定円盤21と、駆動軸121の軸心回りに一体回転する前記固定円盤21と同心の回転円盤23との間隙部分に形成された粉砕空間を有する連続混練機10にて混練することによって得られるものである。   Hereinafter, the pigment that is kneaded and dispersed by the continuous kneader 10 will be described in detail. The pigment of the present invention is concentric with the fixed disk 21 that rotates a mixture of an organic pigment, a water-soluble inorganic salt, and a water-soluble organic liquid around the axis of the annular fixed disk 21 and the drive shaft 121. It is obtained by kneading in a continuous kneader 10 having a pulverization space formed in a gap with the rotating disk 23.

本発明に用いられる有機顔料とは、アゾ顔料のように合成時に適切な反応条件を選択することにより微細で整粒された粒子を得ることができるもの、塩素化銅フタロシアニン顔料のように合成時に生成する極めて微細で凝集した粒子を後工程で粒子成長、整粒させるもの、銅フタロシアニン顔料のように合成時に生成する粗大で不揃いな粒子を後工程で微細化し整粒させるもの等を意味する。また、微細化と整粒が要求される顔料ならば特に構造的限定はせず、従来公知の顔料はいずれも使用することができる。例えばアゾ顔料、フタロシアニン顔料、キナクリドン顔料の他にイソインドリノン、イソインドリン、ペリレン、ペリノン、ジケトピロロピロール、チオインジゴ、ジオキサジン、キノフタロン、アントラキノン、インダンスロン等が使用できる。2種類以上の顔料を混合して微細化することも可能である。   The organic pigment used in the present invention is one that can obtain finely sized particles by selecting appropriate reaction conditions at the time of synthesis, such as an azo pigment, and at the time of synthesis, such as a chlorinated copper phthalocyanine pigment. It means that the very fine and agglomerated particles produced are grown and sized in the subsequent process, and the coarse and irregular particles produced during synthesis such as copper phthalocyanine pigment are refined and sized in the subsequent process. Further, the pigment is not particularly limited as long as it is a pigment that requires refinement and sizing, and any conventionally known pigment can be used. For example, in addition to azo pigments, phthalocyanine pigments, and quinacridone pigments, isoindolinone, isoindoline, perylene, perinone, diketopyrrolopyrrole, thioindigo, dioxazine, quinophthalone, anthraquinone, and indanthrone can be used. Two or more kinds of pigments can be mixed and refined.

本発明に用いられる水溶性無機塩は特に限定されないが、例えば、食塩(塩化ナトリウム)、塩化カリウム、硫酸ナトリウム、塩化亜鉛、塩化カルシウムまたはこれらの混合物等を挙げることができる。   The water-soluble inorganic salt used in the present invention is not particularly limited, and examples thereof include sodium chloride (sodium chloride), potassium chloride, sodium sulfate, zinc chloride, calcium chloride or a mixture thereof.

本発明に用いられる水溶性有機溶剤としては、有機顔料と水溶性無機塩とが均一な固まりとなるように加えるもので、水と自由に混和するもの、または自由に混ざらないが工業的に水洗により除去できる溶解度をもつものであり、顔料粒子が成長するものであれば特に限定されないが、混練時に温度が上昇し、溶剤が蒸発し易い状態になるため、安全性の点から高沸点溶剤が好ましい。例えば、2−(メトキシメトキシ)エタノール、2−ブトキシエタノール、2−(イソペンチルオキシ)エタノール、2−(ヘキシルオキシ)エタノール、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、液体ポリエチレングリコール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、低分子量ポリプロピレングリコール、アニリン、ピリジン、テトラヒドロフラン、ジオキサン、メタノール、エタノール、イソプロパノール、n−プロパノール、イソブタノール、n−ブタノール、エチレングリコール、プロピレングリコール、プロピレンゴリコールモノメチルエーテルアセテート、酢酸エチル、酢酸イソプロピル、アセトン、メチルエチルケトン、ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン等を挙げることができる。また必要に応じて2種類以上の溶剤を混合して使用してもよい。   As the water-soluble organic solvent used in the present invention, an organic pigment and a water-soluble inorganic salt are added so as to form a uniform mass, and are mixed freely with water, or are not mixed freely but are industrially washed with water. It is not particularly limited as long as the pigment particles grow, but the temperature rises at the time of kneading, and the solvent easily evaporates. preferable. For example, 2- (methoxymethoxy) ethanol, 2-butoxyethanol, 2- (isopentyloxy) ethanol, 2- (hexyloxy) ethanol, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol , Triethylene glycol monomethyl ether, liquid polyethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, low molecular weight polypropylene glycol, aniline , Pyridine, tetrahydrofuran, dioxane, methanol, ethanol, isopropyl Nol, n-propanol, isobutanol, n-butanol, ethylene glycol, propylene glycol, propylene glycol glycol monomethyl ether acetate, ethyl acetate, isopropyl acetate, acetone, methyl ethyl ketone, dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, etc. Can do. Moreover, you may mix and use 2 or more types of solvents as needed.

本発明における混練組成物中の水溶性無機塩の量は、有機顔料に対し、水溶性無機塩が7重量倍以上30重量倍以下の範囲である。水溶性無機塩が7重量倍未満の場合では微細化し難く、30重量倍を超える場合では微細化した顔料を得ることが可能となるが顔料の処理量が少なくなるため、生産性が低下して工業的には不利となるからである。つまり、有機顔料に対し、水溶性無機塩の使用量を従来より多い条件でソルベントソルトミリングすることにより製造することが出来る。   The amount of the water-soluble inorganic salt in the kneaded composition in the present invention is in the range of 7 to 30 times by weight of the water-soluble inorganic salt with respect to the organic pigment. When the water-soluble inorganic salt is less than 7 times by weight, it is difficult to make it finer, and when it exceeds 30 times by weight, it becomes possible to obtain a finer pigment, but since the amount of pigment processing decreases, productivity decreases. This is industrially disadvantageous. In other words, it can be produced by subjecting the organic pigment to solvent salt milling under a condition where the amount of the water-soluble inorganic salt used is larger than that of the conventional one.

また、本発明における混練組成物中の水溶性有機液体の量は、有機顔料に対し、水溶性有機液体が0.3重量倍以上7重量倍以下の範囲であり、水溶性無機塩の量と混練組成物の硬さに応じて選択できる。水溶性有機液体が0.3重量倍未満の場合では混練組成物が硬くなり過ぎて安定運転し難く、7重量倍を超える場合では混練組成物が軟らかくなり過ぎて微細化レベルが低下する。   Further, the amount of the water-soluble organic liquid in the kneaded composition in the present invention is in the range of 0.3 to 7 times by weight of the water-soluble organic liquid with respect to the organic pigment, It can be selected according to the hardness of the kneaded composition. When the water-soluble organic liquid is less than 0.3 times by weight, the kneaded composition becomes too hard to be stably operated, and when it exceeds 7 times by weight, the kneaded composition becomes too soft and the fineness level is lowered.

本発明における連続混練機の運転条件については特に制限はないが、処理量や顔料の品質をコントロールするためには、混練組成物の配合比、混練温度、機械的エネルギー投入量(主軸(駆動軸121)回転数、原料の供給量、主軸動力負荷等)を調整することにより可能となる。なかでも混練温度は有機顔料粒子の磨砕と、水溶性有機溶剤との接触による有機顔料の粒子成長を、いずれも効果的に進行させるため、混練温度は、10〜150℃、特には40〜130℃であることが好ましい。温度を上げることにより、顔料粒子の成長速度を促進させることが可能となる。逆に温度を下げることにより、顔料粒子の成長を抑制してより微細化することが可能となる。また、150℃より高温では、粒子成長が大きく、混練を短時間とする必要があるが、整粒時間が短くなり品質上好ましくない。尚、混練開始後、必要に応じて加熱または冷却を行い、混練温度を機械ゾーン毎に変更し顔料粒子の成長を変化させることも可能である。   The operating conditions of the continuous kneader in the present invention are not particularly limited, but in order to control the throughput and the quality of the pigment, the mixing ratio of the kneaded composition, kneading temperature, mechanical energy input amount (main shaft (drive shaft 121) It is possible by adjusting the rotational speed, the amount of raw material supplied, the main shaft power load, and the like. Among them, the kneading temperature is 10 to 150 ° C., particularly 40 to 40 ° C. in order to effectively advance the organic pigment particle grinding and the organic pigment particle growth by contact with the water-soluble organic solvent. It is preferable that it is 130 degreeC. By increasing the temperature, it is possible to accelerate the growth rate of the pigment particles. On the other hand, by lowering the temperature, it is possible to suppress the growth of the pigment particles and further reduce the size. On the other hand, when the temperature is higher than 150 ° C., the particle growth is large and it is necessary to shorten the kneading time. It is also possible to change the growth of pigment particles by heating or cooling as necessary after the start of kneading and changing the kneading temperature for each machine zone.

混練後の有機顔料は常法により処理される。すなわち、混練組成物を水または鉱酸水溶液で処理し、濾過、水洗により水溶性無機塩および水溶性有機溶剤を除去し有機顔料を単離する。有機顔料はこのまま湿潤状態で使用することも、乾燥・粉砕により粉末状態で使用することも可能である。必要に応じて樹脂、界面活性剤、その他の添加剤を混練後に加えてもよい。   The organic pigment after kneading is treated by a conventional method. That is, the kneaded composition is treated with water or an aqueous mineral acid solution, and the organic pigment is isolated by removing the water-soluble inorganic salt and the water-soluble organic solvent by filtration and washing with water. The organic pigment can be used in a wet state as it is, or in a powder state by drying and grinding. If necessary, a resin, a surfactant and other additives may be added after kneading.

本発明による方法で製造された有機顔料の用途は特に限定されないが、一般に用いられる色材用途に加えて、高い光沢や着色力等を要求される用途にも使うことができる。例えばグラビアインキを作成する場合、使用するビヒクルは特に限定されるものではなく、補助剤や体質顔料を含んでいてもよい。一つの例として、グラビアインキ用ビヒクルとしては、ガムロジン、ウッドロジン、トール油ロジン、ライムロジン、ロジンエステル、マレイン酸樹脂、ポリアミド樹脂、ビニル樹脂、ニトロセルロース、酢酸セルロース、エチルセルロース、塩化ゴム、環化ゴム、エチレン−酢酸ビニル共重合樹脂、ウレタン樹脂、ポリエステル樹脂、アルキド樹脂、アクリル樹脂、ギルソナイト、ダンマル、セラックなどの樹脂混合物、または上記樹脂の混合物または上記の樹脂を水溶化した水溶性樹脂、またはエマルション樹脂と、炭化水素、アルコール、ケトン、エーテルアルコール、エーテル、エステル、水などの溶剤からなるものである場合が挙げられ、特にセルロース系で光沢がよく、鮮明な品質が得られる。なお、ビヒクルに有機顔料を混合または分散する場合、分散機としてディゾルバー、ハイスピードミキサー、ホモミキサー、ニーダー、フラッシャー、ロールミル、サンドミル、アトライター等を使用することにより良好な混合または分散を行うことができる。
以下、実施例および従来法による比較例を挙げて本発明を詳しく説明する。但し、本発明はこれらの実施例の範囲に限定されるものではない。なお、実施例中、「部」とは重量部を表し、「%」は重量%を表す。
The use of the organic pigment produced by the method according to the present invention is not particularly limited, but it can be used for applications requiring high gloss and coloring power in addition to commonly used color materials. For example, when a gravure ink is prepared, the vehicle to be used is not particularly limited, and may contain an auxiliary agent or extender pigment. As one example, gravure ink vehicles include gum rosin, wood rosin, tall oil rosin, lime rosin, rosin ester, maleic acid resin, polyamide resin, vinyl resin, nitrocellulose, cellulose acetate, ethyl cellulose, chlorinated rubber, cyclized rubber, Ethylene-vinyl acetate copolymer resin, urethane resin, polyester resin, alkyd resin, acrylic resin, gilsonite, dammar, shellac, etc., or a mixture of the above resins or a water-soluble resin obtained by water-solubilizing the above resins, or an emulsion resin And hydrocarbons, alcohols, ketones, ether alcohols, ethers, esters, water, and the like. Particularly, cellulose-based materials with high gloss and clear quality can be obtained. In addition, when mixing or dispersing an organic pigment in a vehicle, good mixing or dispersion can be performed by using a dissolver, a high speed mixer, a homomixer, a kneader, a flasher, a roll mill, a sand mill, an attritor, or the like as a dispersing machine. it can.
Hereinafter, the present invention will be described in detail with reference to examples and comparative examples according to conventional methods. However, the present invention is not limited to the scope of these examples. In the examples, “parts” represents parts by weight, and “%” represents% by weight.

粗製銅フタロシアニンBlue15(珠海東洋社製T−95クルードブルー)100部と塩化ナトリウム1000部、ジエチレングリコール150部をほぼ均一となるようにコンバートミキサー(浅田鉄工社製)にて5分間予備混合した。この混合物をスクリュー式定量フィーダー(定量フィーダー部4(図1))で連続混練機10(浅田鉄工社製の「ミラクルK.C.K.−42型」)に供給し、粗製顔料を磨砕して有機顔料を製造した。連続混練機10の条件は、フィード部スクリュー径120mmφ、固定円盤と回転円盤からなる混練部組数8組で、混練組成物の押出量22kg/時、主軸回転数50rpm、混練温度は100℃で運転した。ここで得られた混練組成物を70℃の1%硫酸水溶液10000部に取り出し、1時間保温攪拌後、濾過、水洗、乾燥したものは、BET法により比表面積90m/gであり、TEM(電子顕微鏡)で観察したところ、顔料粒子は全て微細に分散しており、粗大粒子は認められなかった。尚、そのTEM写真を画像解析して一次粒子の平均径を算出した結果、43nmであった。さらに、以下に示す比較例1の製法で得られた顔料に比較して、より微細化していた。また、顔料1kg当りの電力エネルギー投入量は3.1kwh/kgで比較例1の44%となった。加えて、顔料組成物10部、グラビアインキ用ワニス(ニトロセルロース樹脂12%、酢酸エチル33%、トルエン30%、イソプロピルアルコール15%、メタノール10%)90部および3mmガラスビーズ100部と混合し、ペイントコンディショナーで60分間分散して作製したグラビアインキをバーコーターでフィルムに展色して60°光沢値を測定したところ84%であった。 100 parts of crude copper phthalocyanine Blue 15 (T-95 Crude Blue manufactured by Zhuhai Toyo Co., Ltd.), 1000 parts of sodium chloride, and 150 parts of diethylene glycol were premixed for 5 minutes with a convert mixer (manufactured by Asada Tekko Co., Ltd.). This mixture is supplied to a continuous kneader 10 (“Miracle K.K.K.-42” manufactured by Asada Tekko Co., Ltd.) with a screw type quantitative feeder (quantitative feeder section 4 (FIG. 1)), and the crude pigment is ground. Thus, an organic pigment was produced. The conditions of the continuous kneading machine 10 are as follows: the feed part screw diameter is 120 mmφ, the number of kneading part sets is 8 consisting of a fixed disk and a rotating disk, the kneading composition is extruded at 22 kg / hour, the spindle speed is 50 rpm, and the kneading temperature is 100 ° C. Drove. The obtained kneaded composition was taken out to 10000 parts 1% aqueous solution of sulfuric acid 70 ° C., after 1 hour kept stirred, filtered, washed with water, dried ones are a specific surface area of 90m 2 / g by BET method, TEM ( When observed with an electron microscope, all pigment particles were finely dispersed, and no coarse particles were observed. In addition, as a result of calculating the average diameter of the primary particle by image-analyzing the TEM photograph, it was 43 nm. Furthermore, compared with the pigment obtained by the manufacturing method of the comparative example 1 shown below, it refined | miniaturized more. In addition, the input amount of electric power energy per 1 kg of pigment was 3.1 kwh / kg, which was 44% of that of Comparative Example 1. In addition, 10 parts of the pigment composition, 90 parts of gravure ink varnish (nitrocellulose resin 12%, ethyl acetate 33%, toluene 30%, isopropyl alcohol 15%, methanol 10%) and 3 parts of 3 mm glass beads, The gravure ink prepared by dispersing for 60 minutes with a paint conditioner was spread on a film with a bar coater and the 60 ° gloss value was measured to be 84%.

[比較例1]
粗製銅フタロシアニンBlue15(珠海東洋社製T−95クルードブルー)100部と塩化ナトリウム1000部、ジエチレングリコール150部を1000容量部の双腕型ニーダーに仕込み、100〜110℃で稠密な塊状(ドウ)に保持しながら5時間混練した。磨砕後70℃の1%硫酸水溶液10000部に取り出し、1時間保温攪拌後、濾過、水洗、乾燥し銅フタロシアニン顔料を得た。このものは、BET法により比表面積73m/gであり、また、実施例1と同様に測定したTEM写真の画像解析値は64nmであった。また、顔料1kg当りの電力エネルギー投入量は7.1kwh/kgであった。また、実施例1と同様に作製した展色物の光沢値は68%であった。
[Comparative Example 1]
100 parts of crude copper phthalocyanine Blue15 (T-95 Crude Blue, manufactured by Zhuhai Toyo Co., Ltd.), 1000 parts of sodium chloride, and 150 parts of diethylene glycol are charged into a 1000-capacity part double-arm kneader to form a dense lump at 100 to 110 ° C. While holding, the mixture was kneaded for 5 hours. After grinding, it was taken out to 10000 parts of a 1% aqueous sulfuric acid solution at 70 ° C., stirred for 1 hour with heat, filtered, washed with water and dried to obtain a copper phthalocyanine pigment. This had a specific surface area of 73 m 2 / g by the BET method, and the image analysis value of the TEM photograph measured in the same manner as in Example 1 was 64 nm. The amount of power energy input per 1 kg of pigment was 7.1 kwh / kg. Further, the gloss value of the developed color product produced in the same manner as in Example 1 was 68%.

粗製銅フタロシアニンBlue15(珠海東洋社製T−95クルードブルー)100部と塩化ナトリウム2000部、ジエチレングリコール230部をほぼ均一となるようにコンバートミキサー(浅田鉄工社製)にて5分間予備混合した。この混合物をスクリュー式定量フィーダー(定量フィーダー部4(図1))で連続混練機10(浅田鉄工社製の「ミラクルK.C.K.−42型」)に供給し、粗製顔料を磨砕して有機顔料を製造した。連続混練機10の条件は、フィード部スクリュー径120mmφ、固定円盤と回転円盤からなる混練部組数8組で、混練組成物の押出量23kg/時、主軸回転数50rpm、混練温度は60℃で運転した。ここで得られた混練組成物を70℃の1%硫酸水溶液20000部に取り出し、1時間保温攪拌後、濾過、水洗、乾燥したものは、BET法により比表面積107m/gであり、TEM(電子顕微鏡)で観察したところ、顔料粒子は全て微細に分散しており、粗大粒子は認められなかった。尚、そのTEM写真を画像解析して一次粒子の平均径を算出した結果、35nmであった。さらに、以下に示す比較例2の製法で得られた顔料に比較して、より微細化していた。また、顔料1kg当りの電力エネルギー投入量は6.5kwh/kgで比較例2の32%となった。加えて、実施例1と同様に作製した展色物の光沢値は87%であった。 100 parts of crude copper phthalocyanine Blue 15 (T-95 Crude Blue manufactured by Zhuhai Toyo Co., Ltd.), 2000 parts of sodium chloride, and 230 parts of diethylene glycol were premixed for 5 minutes with a convert mixer (manufactured by Asada Tekko Co., Ltd.). This mixture is supplied to a continuous kneader 10 (“Miracle K.K.K.-42” manufactured by Asada Tekko Co., Ltd.) with a screw type quantitative feeder (quantitative feeder section 4 (FIG. 1)), and the crude pigment is ground. Thus, an organic pigment was produced. The conditions of the continuous kneader 10 are as follows: the feed part screw diameter is 120 mmφ, the number of kneading part sets is 8 consisting of a fixed disk and a rotating disk, the extrusion rate of the kneaded composition is 23 kg / hour, the spindle speed is 50 rpm, and the kneading temperature is 60 ° C. Drove. The kneaded composition obtained here was taken out in 20000 parts of a 1% aqueous sulfuric acid solution at 70 ° C., heated and stirred for 1 hour, filtered, washed with water, and dried, which had a specific surface area of 107 m 2 / g by the BET method, When observed with an electron microscope, all pigment particles were finely dispersed, and no coarse particles were observed. In addition, as a result of calculating the average diameter of the primary particle by image-analyzing the TEM photograph, it was 35 nm. Furthermore, compared with the pigment obtained with the manufacturing method of the comparative example 2 shown below, it refined | miniaturized more. In addition, the input amount of electric power energy per 1 kg of pigment was 6.5 kwh / kg, which was 32% of Comparative Example 2. In addition, the gloss value of the developed color product produced in the same manner as in Example 1 was 87%.

「比較例2」
粗製銅フタロシアニンBlue15(珠海東洋社製T−95クルードブルー)100部と塩化ナトリウム2000部、ジエチレングリコール230部を1000容量部の双腕型ニーダーに仕込み、65〜75℃で稠密な塊状(ドウ)に保持しながら7時間混練した。磨砕後70℃の1%硫酸水溶液20000部に取り出し、1時間保温攪拌後、濾過、水洗、乾燥し銅フタロシアニン顔料を得た。このものは、BET法により比表面積88m/gであり、また、実施例1と同様に測定したTEM写真の画像解析値は45nmであった。また、顔料1kg当りの電力エネルギー投入量は20.2kwh/kgであった。また、実施例1と同様に作製した展色物の光沢値は83%であった。
“Comparative Example 2”
100 parts of crude copper phthalocyanine Blue 15 (T-95 Crude Blue manufactured by Zhuhai Toyo Co., Ltd.), 2000 parts of sodium chloride, and 230 parts of diethylene glycol were charged into a 1000-capacity part double-arm kneader to form a dense lump at 65 to 75 ° C. While holding, the mixture was kneaded for 7 hours. After grinding, it was taken out in 20000 parts of a 1% aqueous sulfuric acid solution at 70 ° C., stirred for 1 hour with heat, filtered, washed with water and dried to obtain a copper phthalocyanine pigment. This had a specific surface area of 88 m 2 / g by BET method, and the image analysis value of a TEM photograph measured in the same manner as in Example 1 was 45 nm. The amount of power energy input per 1 kg of pigment was 20.2 kwh / kg. Further, the gloss value of the color developed product prepared in the same manner as in Example 1 was 83%.

「比較例3」
粗製銅フタロシアニンBlue15(珠海東洋社製T−95クルードブルー)100部と塩化ナトリウム400部、ジエチレングリコール70部をほぼ均一となるようにコンバートミキサー(浅田鉄工社製)にて5分間予備混合した。この混合物をスクリュー式定量フィーダー(定量フィーダー部4(図1))で連続混練機10(浅田鉄工社製の「ミラクルK.C.K.−42型」)に供給し、粗製顔料を磨砕して有機顔料を製造した。連続混練機10の条件は、フィード部スクリュー径120mmφ、固定円盤と回転円盤からなる混練部組数8組で、混練組成物の押出量20kg/時、主軸回転数50rpm、混練温度は60℃で運転した。ここで得られた混練組成物を70℃の1%硫酸水溶液20000部に取り出し、1時間保温攪拌後、濾過、水洗、乾燥したものは、BET法により比表面積78m/gであり、TEM(電子顕微鏡)で観察したところ、顔料粒子は全て微細に分散しており、粗大粒子は認められなかった。尚、そのTEM写真を画像解析して一次粒子の平均径を算出した結果、52nmであった。また、顔料1kg当りの電力エネルギー投入量は1.2kwh/kgであった。加えて、実施例1と同様に作製した展色物の光沢値は73%であった。
“Comparative Example 3”
100 parts of crude copper phthalocyanine Blue 15 (T-95 Crude Blue manufactured by Zhuhai Toyo Co., Ltd.), 400 parts of sodium chloride, and 70 parts of diethylene glycol were premixed for 5 minutes with a convert mixer (manufactured by Asada Tekko Co., Ltd.). This mixture is supplied to a continuous kneader 10 (“Miracle K.K.K.-42” manufactured by Asada Tekko Co., Ltd.) with a screw type quantitative feeder (quantitative feeder section 4 (FIG. 1)), and the crude pigment is ground. Thus, an organic pigment was produced. The conditions of the continuous kneader 10 are as follows: the feed part screw diameter is 120 mmφ, the number of kneading part sets is 8 consisting of a fixed disk and a rotating disk, the extrusion rate of the kneaded composition is 20 kg / hour, the spindle speed is 50 rpm, and the kneading temperature is 60 ° C. Drove. The kneaded composition obtained here was taken out into 20000 parts of a 1% aqueous sulfuric acid solution at 70 ° C., heated and stirred for 1 hour, filtered, washed with water, and dried, which had a specific surface area of 78 m 2 / g by the BET method, When observed with an electron microscope, all pigment particles were finely dispersed, and no coarse particles were observed. In addition, as a result of calculating the average diameter of the primary particle by image-analyzing the TEM photograph, it was 52 nm. The amount of power energy input per 1 kg of pigment was 1.2 kwh / kg. In addition, the gloss value of the color developed product produced in the same manner as in Example 1 was 73%.

粗製ジオキサジンバイオレットViolet23(住友化学社製スミトンファーストバイオレットRLベース)顔料100部と塩化ナトリウム2000部、ジエチレングリコール210部を実施例1と同じ連続混練機10にて混練組成物の押出量20kg/時、主軸回転数50rpm、混練温度90℃で運転し、有機顔料を得た。得られた混練物中の顔料分を実施例1と同ように精製、濾過、乾燥したものを評価した結果、比表面積101m/gであり、TEM観察したところ、顔料粒子は全て微細に分散しており、粗大粒子は認められなかった。尚、そのTEM写真を画像解析して一次粒子の平均径を算出した結果、37nmであった。さらに、以下に示す比較例4の製法で得られた顔料に比較して、より微細化していた。また、顔料1kg当りの電力エネルギー投入量は6.3kwh/kgで比較例4の32%となった。加えて、実施例1と同様に作製した展色物の光沢値は87%であった。 Crude dioxazine violet Violet 23 (Sumitomo Chemical Co., Ltd., Sumitone First Violet RL base) 100 parts of pigment, 2000 parts of sodium chloride, and 210 parts of diethylene glycol were mixed in the same continuous kneader 10 as in Example 1 and the extrusion rate of the kneaded composition was 20 kg / hour. The organic pigment was obtained by operating at a spindle speed of 50 rpm and a kneading temperature of 90 ° C. The pigment content in the obtained kneaded product was purified, filtered and dried in the same manner as in Example 1. As a result, the specific surface area was 101 m 2 / g, and TEM observation showed that all pigment particles were finely dispersed. Coarse particles were not observed. In addition, as a result of calculating the average diameter of the primary particle by image-analyzing the TEM photograph, it was 37 nm. Furthermore, compared with the pigment obtained with the manufacturing method of the comparative example 4 shown below, it refined | miniaturized more. Further, the input amount of electric power energy per 1 kg of pigment was 6.3 kwh / kg, which was 32% of that of Comparative Example 4. In addition, the gloss value of the color developed product produced in the same manner as in Example 1 was 87%.

「比較例4」
粗製ジオキサジンバイオレットViolet23(住友化学社製スミトンファーストバイオレットRLベース)顔料100部と塩化ナトリウム2000部、ジエチレングリコール100部を1000容量部の双腕型ニーダーに仕込み、90〜95℃で稠密な塊状(ドウ)に保持しながら7時間混練した。磨砕後70℃の1%硫酸水溶液20000部に取り出し、1時間保持攪拌後、濾過、水洗、乾燥しジオキサジンバイオレット顔料を得た。このものは、BET法により比表面積87m/gであり、また、実施例1と同様に測定したTEM写真の画像解析値は41nmであった。また、顔料1kg当りの電力エネルギー投入量は19.8kwh/kgであった。また、実施例1と同様に作製した展色物の光沢値は82%であった。
各例における製造条件と得られた顔料の性能を表1に示した。
“Comparative Example 4”
Crude dioxazine violet Violet 23 (Sumiton First Violet RL base manufactured by Sumitomo Chemical Co., Ltd.) 100 parts of pigment, 2000 parts of sodium chloride, and 100 parts of diethylene glycol were charged into a 1000-volume part double-arm kneader and dense lump at 90-95 ° C ( The mixture was kneaded for 7 hours while maintaining the dough). After grinding, it was taken out in 20000 parts of a 1% aqueous sulfuric acid solution at 70 ° C., held and stirred for 1 hour, filtered, washed with water and dried to obtain a dioxazine violet pigment. This had a specific surface area of 87 m 2 / g by the BET method, and the image analysis value of a TEM photograph measured in the same manner as in Example 1 was 41 nm. The amount of power energy input per kg of pigment was 19.8 kwh / kg. Further, the gloss value of the color developed product produced in the same manner as in Example 1 was 82%.
The production conditions in each example and the performance of the obtained pigment are shown in Table 1.

Figure 2006321821
Figure 2006321821

本発明に係る連続混練機の一実施形態を示す側面視の断面図である。It is sectional drawing of the side view which shows one Embodiment of the continuous kneading machine which concerns on this invention. 図1に示す連続混練機に適用される固定円盤および回転円盤の一実施形態を示す正面図または背面図であり、(a)はキャビティー扇型固定円盤、(b)はキャビティー扇型回転円盤、(c)はキャビティー菊型固定円盤、(d)はキャビティー菊型回転円盤、(e)はキャビティー臼型固定円盤、(f)はキャビティー臼型回転円盤をそれぞれ示している。FIG. 2 is a front view or a rear view showing one embodiment of a fixed disk and a rotating disk applied to the continuous kneader shown in FIG. 1, (a) is a cavity fan type fixed disk, and (b) is a cavity fan type rotation. (C) is a cavity chrysanthemum fixed disk, (d) is a cavity chrysanthemum rotary disk, (e) is a cavity mortar fixed disk, and (f) is a cavity mortar rotary disk. .

符号の説明Explanation of symbols

10 連続混練機 1 フイード部
11 ケーシング 111 原料受入口
12 スパイラルロッド 121 駆動軸
122 スパイラルフィン 2 混練部
21 固定円盤
21a キャビティー扇型固定円盤
21c キャビティー菊型固定円盤
21e キャビティー臼型固定円盤
211 遊嵌孔 212 キャビティー(粉砕空間)
22 混練シリンダ 23 回転円盤
23b キャビティー扇型回転円盤
23d キャビティー菊型回転円盤
23f キャビティー臼型回転円盤
231 外嵌孔 232 キャビティー(粉砕空間)
3 排出部 4 定量フィーダー部
41 原料ホッパー 42 スパイラルフィーダ
43 連絡筒体 44 介設筒体
DESCRIPTION OF SYMBOLS 10 Continuous kneading machine 1 Feed part 11 Casing 111 Raw material receiving port 12 Spiral rod 121 Drive shaft 122 Spiral fin 2 Kneading part 21 Fixed disk 21a Cavity fan type fixed disk 21c Cavity chrysanthemum type fixed disk 21e Cavity mortar type fixed disk 211 Free fitting hole 212 Cavity (grinding space)
22 Kneading cylinder 23 Rotating disk 23b Cavity fan type rotating disk 23d Cavity chrysanthemum type rotating disk 23f Cavity mortar type rotating disk 231 External fitting hole 232 Cavity (grinding space)
DESCRIPTION OF SYMBOLS 3 Discharge part 4 Fixed_quantity | feed_rate feeder part 41 Raw material hopper 42 Spiral feeder 43 Connection cylinder 44 Interposition cylinder

Claims (2)

有機顔料と、該有機顔料に対し7重量倍以上30重量倍以下の水溶性無機塩と、該有機顔料に対し0.3重量倍以上7重量倍以下の水溶性有機液体との混合物を、環状の固定円盤と、駆動軸の軸心回りに一体回転する前記固定円盤と同心の回転円盤との間隙部分に形成された粉砕空間を有する連続混練機にて混練することを特徴とする顔料の製造方法。 A mixture of an organic pigment, a water-soluble inorganic salt of 7 to 30 times by weight with respect to the organic pigment, and a water-soluble organic liquid of 0.3 to 7 times by weight with respect to the organic pigment And a continuous kneader having a pulverization space formed in a gap portion between the fixed disk and the fixed disk rotating integrally around the axis of the drive shaft and a concentric rotating disk. Method. 混練温度を10〜150℃に制御する請求項1に記載の顔料の製造方法。 The method for producing a pigment according to claim 1, wherein the kneading temperature is controlled to 10 to 150 ° C.
JP2005140688A 2005-04-22 2005-05-13 Method for producing pigment Pending JP2006321821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005140688A JP2006321821A (en) 2005-04-22 2005-05-13 Method for producing pigment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005124621 2005-04-22
JP2005140688A JP2006321821A (en) 2005-04-22 2005-05-13 Method for producing pigment

Publications (1)

Publication Number Publication Date
JP2006321821A true JP2006321821A (en) 2006-11-30

Family

ID=37541730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005140688A Pending JP2006321821A (en) 2005-04-22 2005-05-13 Method for producing pigment

Country Status (1)

Country Link
JP (1) JP2006321821A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106807A (en) * 2005-10-11 2007-04-26 Dainichiseika Color & Chem Mfg Co Ltd Method for producing finely pulverized pigment
JP2008285532A (en) * 2007-05-16 2008-11-27 Toyo Ink Mfg Co Ltd Fine polyhalogenated phthalocyanine pigment, method for producing the same and colored composition produced by using the same
JP2009084522A (en) * 2007-10-03 2009-04-23 Dic Corp Bipyrrolinone compound and bipyrrolinone pigment
JP2009144126A (en) * 2007-12-18 2009-07-02 Fujifilm Corp Processed pigment, production method of processed pigment, pigment dispersion composition, colored photosensitive composition, color filter, and production method of color filter
JP2010536544A (en) * 2007-08-17 2010-12-02 ビューラー アーゲー Agitator mill
WO2017102808A1 (en) * 2015-12-16 2017-06-22 Covestro Deutschland Ag Device and method for dispersing solids, liquids and gases in an extruder
CN111037774A (en) * 2019-12-06 2020-04-21 联塑科技发展(武汉)有限公司 Mixing control method for preplasticizing plastic powder

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148868A (en) * 1976-06-04 1977-12-10 Moriyama Seisakushiyo Kk Continuous kneading machine
JPH0531344A (en) * 1991-07-29 1993-02-09 B H Kogyo Kk Continuous kneader
JPH09272812A (en) * 1996-04-08 1997-10-21 Toyo Ink Mfg Co Ltd Pigment composition, its production and colorant composition
JPH105563A (en) * 1996-06-25 1998-01-13 Aimetsukusu Kk Wet fine grain dispersing and crushing machine
JP2002121420A (en) * 2000-08-07 2002-04-23 Dainippon Ink & Chem Inc Copper phthalocyanine pigment and method for producing the same
JP2003183535A (en) * 2001-12-25 2003-07-03 Dainippon Ink & Chem Inc Method for producing yellowish green pigment composition and color filter using green pigment composition obtained thereby
JP2004027038A (en) * 2002-06-26 2004-01-29 Dainippon Ink & Chem Inc Pigment composition and its manufacturing method
JP2004059771A (en) * 2002-07-30 2004-02-26 Dainippon Ink & Chem Inc Method for producing pigment composition
JP2004099793A (en) * 2002-09-11 2004-04-02 Dainippon Ink & Chem Inc METHOD FOR MANUFACTURING beta-COPPER PHTHALOCYANINE PIGMENT

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148868A (en) * 1976-06-04 1977-12-10 Moriyama Seisakushiyo Kk Continuous kneading machine
JPH0531344A (en) * 1991-07-29 1993-02-09 B H Kogyo Kk Continuous kneader
JPH09272812A (en) * 1996-04-08 1997-10-21 Toyo Ink Mfg Co Ltd Pigment composition, its production and colorant composition
JPH105563A (en) * 1996-06-25 1998-01-13 Aimetsukusu Kk Wet fine grain dispersing and crushing machine
JP2002121420A (en) * 2000-08-07 2002-04-23 Dainippon Ink & Chem Inc Copper phthalocyanine pigment and method for producing the same
JP2003183535A (en) * 2001-12-25 2003-07-03 Dainippon Ink & Chem Inc Method for producing yellowish green pigment composition and color filter using green pigment composition obtained thereby
JP2004027038A (en) * 2002-06-26 2004-01-29 Dainippon Ink & Chem Inc Pigment composition and its manufacturing method
JP2004059771A (en) * 2002-07-30 2004-02-26 Dainippon Ink & Chem Inc Method for producing pigment composition
JP2004099793A (en) * 2002-09-11 2004-04-02 Dainippon Ink & Chem Inc METHOD FOR MANUFACTURING beta-COPPER PHTHALOCYANINE PIGMENT

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106807A (en) * 2005-10-11 2007-04-26 Dainichiseika Color & Chem Mfg Co Ltd Method for producing finely pulverized pigment
JP2008285532A (en) * 2007-05-16 2008-11-27 Toyo Ink Mfg Co Ltd Fine polyhalogenated phthalocyanine pigment, method for producing the same and colored composition produced by using the same
JP2010536544A (en) * 2007-08-17 2010-12-02 ビューラー アーゲー Agitator mill
JP2009084522A (en) * 2007-10-03 2009-04-23 Dic Corp Bipyrrolinone compound and bipyrrolinone pigment
JP2009144126A (en) * 2007-12-18 2009-07-02 Fujifilm Corp Processed pigment, production method of processed pigment, pigment dispersion composition, colored photosensitive composition, color filter, and production method of color filter
WO2017102808A1 (en) * 2015-12-16 2017-06-22 Covestro Deutschland Ag Device and method for dispersing solids, liquids and gases in an extruder
US11045977B2 (en) 2015-12-16 2021-06-29 Covestro Deutschland Ag Device and method for dispersing solids, liquids and gases in an extruder
CN111037774A (en) * 2019-12-06 2020-04-21 联塑科技发展(武汉)有限公司 Mixing control method for preplasticizing plastic powder

Similar Documents

Publication Publication Date Title
JP2006299138A (en) Manufacturing method of pigment composition
JP4535207B2 (en) Pigment composition for printing ink, method for producing the same, and method for producing printing ink
JP2006321821A (en) Method for producing pigment
CN1746228B (en) Manufacture of pigment
JPH09183916A (en) Production of liquid pigment preparation
JP3802165B2 (en) Method for producing ink concentrate
JPH0541674B2 (en)
JP2007002114A (en) MANUFACTURING METHOD OF epsilon-TYPE PHTHALOCYANINE PIGMENT
JP2006335920A (en) Manufacturing method of fine organic pigment
KR100502594B1 (en) Pigments
JP5205715B2 (en) ε-type copper phthalocyanine pigment, method for producing the same, and coloring composition using the same
JP2006306996A (en) Production method of pigment composition
US20070289501A1 (en) Highly Concentrated Flowable Pigment Composition And Process For Its Manufacture
JP2008274062A (en) alpha-COPPER PHTHALOCYANINE PIGMENT, METHOD FOR PRODUCING THE SAME AND COLORED COMPOSITION PRODUCED BY USING THE SAME
JP2007100008A (en) METHOD FOR PREPARING epsilon-PHTHALOCYANINE PIGMENT
JP2521618B2 (en) Granular easily dispersible pigment, method for producing the same, and method for producing printing ink using the same
JP2003041173A (en) Method for producing printing ink and printing ink
KR20060051083A (en) Method for manufacturing cosmetics
JP4378917B2 (en) Method for producing pigment composition, pigment dispersion using pigment composition produced by the method, and resin composition for coloring
JPH0826242B2 (en) Method for producing β-type copper phthalocyanine pigment
JP5534325B2 (en) Method for producing copper phthalocyanine pigment composition and method for producing printing ink
EP0878518B1 (en) Production process of phthalocyanine concentrates for paints
JP2012062482A (en) METHOD OF MANUFACTURING ε-TYPE PHTHALOCYANINE PIGMENT
JP2008094872A (en) epsi-TYPE COPPER-PHTHALOCYANINE PIGMENT
JPH0735490B2 (en) Easy dispersible pigment composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906