JP2004099793A - METHOD FOR MANUFACTURING beta-COPPER PHTHALOCYANINE PIGMENT - Google Patents

METHOD FOR MANUFACTURING beta-COPPER PHTHALOCYANINE PIGMENT Download PDF

Info

Publication number
JP2004099793A
JP2004099793A JP2002265351A JP2002265351A JP2004099793A JP 2004099793 A JP2004099793 A JP 2004099793A JP 2002265351 A JP2002265351 A JP 2002265351A JP 2002265351 A JP2002265351 A JP 2002265351A JP 2004099793 A JP2004099793 A JP 2004099793A
Authority
JP
Japan
Prior art keywords
copper phthalocyanine
crude copper
parts
pigment
phthalocyanine pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002265351A
Other languages
Japanese (ja)
Inventor
Masao Komada
駒田 政夫
Aiko Arai
荒井 愛子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2002265351A priority Critical patent/JP2004099793A/en
Publication of JP2004099793A publication Critical patent/JP2004099793A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a β-copper phthalocyanine pigment with excellent tinting power and clearness for a colored product such as printing ink, a paint and a colored molding. <P>SOLUTION: This method for manufacturing the β-phthalocyanine pigment is characterized in that an average diameter of a primary particle is 0.01-1.00μm and crude copper phthalocyanine with β-crystal of ≥85% by mass is subjected to pigmentation treatment. The crude copper phthalocyanine is obtained via a solid-phase method. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、β型銅フタロシアニン顔料の製造方法に関する。
【0002】
【従来の技術】
従来のβ型銅フタロシアニン顔料の製造方法としては、平均一次粒子径が数十〜数百μmのβ型結晶粗大粒子から成る粗製銅フタロシアニンを合成し、該粗製銅フタロシアニンを食塩等の磨砕助剤と共に有機溶剤の存在下で、ニーダー等の混練設備を使い機械的磨砕を行うソルベントソルトミリング法が知られている(例えば、非特許文献1参照。)。
また別法として、該粗製銅フタロシアニンをアトライター等により乾式磨砕し、得られた微細な粗製銅フタロシアニン(α型結晶とβ型結晶の混晶磨砕物)を有機溶剤中で加熱処理するソルベント法が知られている(例えば、特許文献1参照。)。
しかしながら、前記記載の製造方法により得られる顔料では、より高度の着色力や鮮明性を有する着色物が得られないという欠点があった。
【0003】
【非特許文献1】
色材協会、顔料技術研究会、日本顔料技術協会共著、「第41回顔料入門講座テキスト(1999)」(第207頁〜第208頁)。
【特許文献1】
特開平10−101955号公報(第2頁〜第5頁)。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、印刷インキ、塗料、着色成型品等の着色物の着色力、鮮明性をより優れたものとできるβ型銅フタロシアニン顔料の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
そこで本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、顔料化処理に用いる原料として、平均一次粒子径が数十〜数百μmのβ型結晶粗大粒子から成る粗製銅フタロシアニンに代えて、平均一次粒子径が0.01〜1.00μm、且つβ型結晶が質量換算で85%以上の粗製銅フタロシアニンを用いることにより、印刷インキ、塗料、着色成型品等の着色物の着色力と鮮明性により優れたβ型銅フタロシアニン顔料を製造できることを見出し、本発明を完成するに至った。
【0006】
即ち本発明は、平均一次粒子径が0.01〜1.00μm、且つβ型結晶が質量換算で85%以上の粗製銅フタロシアニンを顔料化処理することを特徴とするβ型銅フタロシアニン顔料の製造方法に関する。
【0007】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明に使用する粗製銅フタロシアニンは、平均一次粒子径が0.01〜1.00μm、且つβ型結晶が質量換算で85%以上の粗製銅フタロシアニン(以下、微細な粗製銅フタロシアニンと称す。)である。ここで微細な粗製銅フタロシアニンは、前記した範囲内で出来るだけ小さい平均一次粒子径であり、且つ前記した範囲内で出来るだけβ型結晶含有割合が高いものであることが好ましい。
【0008】
本発明における平均一次粒子径とは、透過型電子顕微鏡で視野内の粒子を撮影し、二次元画像上の、凝集体を構成する粗製銅フタロシアニン一次粒子の50個につき、その長い方の径(長径)を各々求め、それを平均した値である。この際、試料である前記粗製銅フタロシアニンは、これを溶媒に超音波分散させてから顕微鏡で撮影する。
【0009】
またβ型結晶の含有割合は、X線回折測定装置等による測定等の公知慣用の方法により定めることができる。β型結晶の含有割合(%)は、例えば、原料の粗製銅フタロシアニン及び銅フタロシアニン顔料のα型及びβ型結晶形を表す、CuKα線、波長0.1541nmによる粉末X線回折図のピークの高さをLα及びLβとした場合、Lα/Lβと含有率の検量線から求めることができる。α型結晶又はβ型結晶の100%結晶は、各々公知慣用の製造方法にて調製できる。尚、粉末X線回折図におけるLαは特異ブラッグ角2θが6.8゜±0.2°の、Lβは9.2゜±0.2°のピークの高さをとった。
【0010】
尚、この微細な粗製銅フタロシアニンはどの様な方法で製造されたものであっても良い。
【0011】
本発明に使用する微細な粗製銅フタロシアニンは、例えば、無水フタル酸及び/又はその誘導体、銅及び/又はその化合物、尿素及び/又はその誘導体を、触媒の存在下、磨砕助剤中又はその不存在下、有機溶剤中又はその不存在下において、150〜300℃で常圧又は加圧下で加熱反応させることで得ることができる。ここで得られた反応物は無機及び有機不純物を除去するために、アルカリ水溶液及び/又は酸性水溶液中に分散し、濾過・洗浄することが好ましい。尚、上記反応において、圧力の条件に制約はないが、熱分解の抑制による尿素及び/又はその誘導体の節約、副反応の抑制による品質向上の点で加圧下による反応が好ましい。
【0012】
前記無水フタル酸及び/又はその誘導体としては、例えば、フタル酸、無水フタル酸、フタルイミド、フタル酸ナトリウム等の塩類、フタルアミド酸及びその塩またはそのエステル、フタロニトリル等が挙げられ、また、これらの混合物であってもよい。更に、無水フタル酸及び/又はその誘導体には、クロル基、アルキル基、ベンジル基、フェニル基等の置換基があってもよい。
【0013】
前記銅及び/又はその化合物としては、例えば、金属銅、第一銅または第二銅のハロゲン化物、酸化銅、硫酸銅、硫化銅、水酸化銅等が挙げられる。銅及び/又はその化合物の使用量は、無水フタル酸及び/又はその誘導体1モルに対して0.2〜0.4モルであり、好ましくは0.25〜0.35モルである。
【0014】
前記尿素及び/又はその誘導体としては、例えば、尿素、ビューレット、アンモニア等が挙げられる。尿素及び/又はその誘導体の使用量は、無水フタル酸及び/又はその誘導体1モルに対して2.5〜4.5モルであり、好ましくは3〜4モルである。
【0015】
前記触媒としては、例えば、モリブデン酸アンモニウム、酸化モリブデン、リンモリブデン酸等のモリブデン化合物、四塩化チタン、チタン酸エステル等のチタン化合物、塩化ジルコニウム、炭酸ジルコニウム等のジルコニウム化合物、ホウ酸、酸化アンチモン等が挙げられる。
【0016】
前記磨砕助剤としては、例えば、塩化ナトリウム、硫酸ナトリウム、塩化カリウム、硫酸カリウム等のアルカリ金属塩、塩化マグネシウム、塩化カルシウム、塩化バリウム等のアルカリ土類金属塩等が挙げられ、これらは2種以上を混合して存在させることもできる。
【0017】
前記有機溶剤としては、合成に際して無水フタル酸等の原料に対して不活性なものであればよく、種々の文献で公知の種々の化合物を特に制限なく使用することができる。例えば、アルキルベンゼン、アルキルナフタレン、テトラリン等の芳香族炭化水素;アルキルシクロヘキサン、デカリン、アルキルデカリン等の脂環式炭化水素;デカン、ドデカン等の脂肪族炭化水素;ニトロベンゼン、O−ニトロトルエン等の芳香族ニトロ化合物;トリクロロベンゼン、クロルナフタレン等の芳香族ハロゲン化炭化水素;ジフェニルエーテル等のエーテル類、スルホラン、ジメチルスルホキシド、メチルスルホラン、ジメチルスルホラン、N−メチルスルホラン等の硫黄化合物、N−メチルピロリドン、ジメチルイミダゾリジノン等の複素環式化合物等が挙げられる。これらは2種以上の混合物であってもよい。
【0018】
前記反応器としては、例えば、ニーダー、バンバリーミキサー、ボールミル、振動ミル、押出機、キルン、回転乾燥機、グラスライニング製反応釜等が挙げられる。
【0019】
本発明に使用する微細な粗製銅フタロシアニンとしては、中でも有機溶剤の不存在下で反応を行う固相法によって得られるものが好ましい。
【0020】
本発明の製造方法における顔料化処理は、従来公知の粗製銅フタロシアニンの顔料化法と同じ方法である。ここで「顔料化」とは、粗製銅フタロシアニンを着色剤として使用可能な粒子径まで微細化することをいう。顔料化処理としては、具体的には以下の方法が挙げられる。
(1)ソルベントソルトミリング法
粗製銅フタロシアニンに食塩等の磨砕助剤と、β型への結晶転移を促進させる有機溶剤とを加えてニーダー等の磨砕装置で機械的に磨砕する方法。磨砕助剤としては、例えば、食塩、硫酸ナトリウム等の水溶性無機塩が用いられる。有機溶剤としては、例えば、エチレングリコール、ジエチレングリコール等の水溶性で粘性の高い液体が用いられる。同法は質量換算で粗製銅フタロシアニン100部当たり、磨砕助剤100〜1000部、有機溶剤50〜500部を用い、温度80〜200℃で1〜10時間の範囲で行うことができる。磨砕装置としては、例えば、ニーダー、バンバリーミキサー、ナウターミキサー、押し出し機の密閉系をなす装置が挙げられる。同法は、以下(2)、(3)の顔料化法に比べて最も着色力、鮮明性に優れたβ型銅フタロシアニン顔料が得られる。
(2)ソルベント法
粗製銅フタロシアニンをアトライター等で乾式磨砕した後に、有機溶剤等で加熱処理する方法。有機溶剤としては、例えば、アルコール系、ケトン系、エステル系、エーテル系有機溶剤が用いられる。これらの有機溶剤は、2種以上の混合物として用いることもでき、或いは、これらの有機溶剤は又はそれらの混合物と水との混合系を用いることもできる。同法は質量換算で粗製銅フタロシアニン100部当たり、有機溶剤1〜100部を用い、温度30〜200℃で0.5〜20時間の範囲で行うことができる。同法は、上記ソルベントソルトミリング法に比べて工程が簡略化されており、β型銅フタロシアニン顔料をより生産性高く製造する上で非常に有効な手段である。
(3)ビーズミル法
粗製銅フタロシアニンを含んだ水性分散体を磨砕助剤、有機溶剤の存在下又は不存在下でビーズミル等の分散装置にかけて機械的に磨砕する方法。分散装置としては、例えば、ボールミル、アトライター、ダイノーミル、ナノミル、ドライスミル等が挙げられる。同法は質量換算で粗製銅フタロシアニン100部当たり、水性媒体200〜2000部、磨砕助剤0〜200部を用い、温度20〜150℃で0.5〜24時間、或いはパス回数1〜10パスで行うことができる。
【0021】
本発明の製造方法において、顔料化処理としてソルベントソルトミリング法を採用すると、従来使用されている平均一次粒子径が数十〜数百μmのβ型結晶粗大粒子から成る粗製銅フタロシアニンを用いた場合と比べて、磨砕助剤の使用量が従来比で約1/2〜1/4と大幅に削減でき、磨砕時間も従来比で約1/2〜1/4と大幅に短縮でき、従来より高品質のβ型銅フタロシアニン顔料が生産性高く得られる。さらに、従来公知の条件で顔料化処理を行うと、従来では予想し得なかった着色力と鮮明性により優れたβ型銅フタロシアニン顔料が得られる。
【0022】
同様にソルベント法では、従来使用されている平均一次粒子径が数十〜数百μmのβ型結晶粗大粒子から成る粗製銅フタロシアニンを用いた場合と比べて、乾式磨砕時間が従来の約1/2〜1/4で従来と同等以上の品質のβ型銅フタロシアニン顔料が得られる。
【0023】
ビーズミル法では、従来使用されている平均一次粒子径が数十〜数百μmのβ型結晶粗大粒子から成る粗製銅フタロシアニンを用いた場合には達成し得なかった上記ソルベントソルトミリング法と同等以上の品質のβ型銅フタロシアニン顔料が得られる。
【0024】
前記(1)〜(3)の方法で得られた銅フタロシアニン顔料は、濾過・洗浄を行い、ウェットケーキで、或いは更に乾燥してパウダーで、各種用途に使用することができる。必要ならば粉砕や分級を行ってもよい。
【0025】
本発明の製造方法において、各種着色用途毎により優れた分散性や、分散安定性、流動性等の諸適性とするために、必要に応じて表面処理を行うことが好ましい。
【0026】
上記表面処理を行う際の表面処理剤としては、界面活性剤、ロジン類、銅フタロシアニン誘導体、樹脂ワニス、金属塩等が挙げられる。例えば、銅フタロシアニン誘導体としては、銅フタロシアニンの4個のベンゼン核の1個以上に置換基を有し、置換基としてはスルホン酸基又はその金属塩、4級アンモニウム塩等が挙げられる。
【0027】
本発明の製造方法では、印刷インキ、例えば、平版印刷インキ等の調製に好適なβ型銅フタロシアニン顔料を得ることが可能である。
【0028】
【実施例】
次に本発明を実施例、比較例にて具体的に説明する。以下、断りのない限り、%は質量%、部は質量部を意味する。
【0029】
<合成例1>(微細な粗製銅フタロシアニンの合成)
10Lグラスライニング製オートクレーブ容器に、無水フタル酸1000部、尿素1800部、塩化第一銅180部、モリブデン酸アンモニウム5部、塩化マグネシウム1000部、塩化ナトリウム1000部を加え、170℃まで除々に加熱した後、170℃で4時間加熱攪拌を続け反応を終了させた。冷却後、反応物を取り出し、10倍量の2%NaOH水溶液、1%HCl水溶液、温水の順で洗浄、濾過を繰り返し、次いで乾燥し、粗製銅フタロシアニン780部を得た。上記で得られた粗製銅フタロシアニンは、前記した測定方法に従った測定から平均一次粒子径が0.05〜0.3μmで、β型結晶100%からなる微細な粗製銅フタロシアニンであった。尚、透過型電子顕微鏡としては、日本電子(株)製JEM−2010を、X線回折装置としては、(株)リガク製LINT1100を用いた(以下、同様。)。
【0030】
<実施例1> (ソルベントソルトミリング法顔料化−1)
2L双腕型ニーダーに、上記合成例1で得られた微細な粗製銅フタロシアニン225部、食塩675部、ジエチレングリコール140部を加え、90〜95℃で7時間加熱磨砕した。その間、内容物が均一な粘調性を保つように適宜ジエチレングリコールを加えた。得られた磨砕物を20倍の温水で洗浄、濾過、乾燥し、β型銅フタロシアニン顔料を得た。
【0031】
<実施例2> (ソルベントソルトミリング法顔料化−2)
上記合成例1で得られた微細な粗製銅フタロシアニン120部、食塩840部、ジエチレングリコール140部を用いる以外は実施例1と全く同様の操作を行って、β型銅フタロシアニン顔料を得た。
【0032】
<実施例3>(ソルベント法顔料化)
5Lアトライターに3/8インチスチールビーズ13Kgを充填し、上記合成例1で得られた微細な粗製銅フタロシアニン500部を加え、90℃で20分間乾式磨砕し、α型結晶60%及びβ型結晶40%から構成される、平均一次粒子径が0.001〜0.1μmの粗製銅フタロシアニンを得た。次に、500mlフラスコに上記粗製銅フタロシアニン30部、イソブタノール100部、水200部を加え89℃で4時間加熱処理した後、イソブタノールを留去し、濾過、洗浄、乾燥して、β型銅フタロシアニン顔料を得た。
【0033】
<比較合成例1> (粗製銅フタロシアニンの合成)
10Lグラスライニング製オートクレーブ容器に無水フタル酸1200部、尿素1565部、塩化第一銅200部、モリブデン酸アンモニウム5部、tert−アミルベンゼン(商品名、ハイゾールP、日本石油(株)製、アルキルベンゼン混合物)4Lを入れ200℃まで除々に加熱した後、2時間加熱攪拌し反応を終了させる。冷却後、反応物を取り出し、10倍量の2%NaOH水溶液、1%HCl水溶液、温水の順で洗浄、濾過を繰り返し、次いで乾燥し粗製銅フタロシアニン1065部を得た。上記で得られた粗製銅フタロシアニンは、平均一次粒子径が2〜100μmの粗大粒子で、β型結晶100%からなる粗製銅フタロシアニンであった。
【0034】
<比較例1>(ソルベントソルトミリング法顔料化)
上記比較合成例1で得られた粗製銅フタロシアニン120部、食塩840部、ジエチレングリコール140部を用いる以外は実施例1と全く同様の操作を行って、β型銅フタロシアニン顔料を得た。
【0035】
<比較例2>(ソルベント法顔料化)
上記比較合成例1で得られた粗製銅フタロシアニン500部を加え、90℃で60分間乾式磨砕する以外は実施例3と全く同様の操作を行って、β型銅フタロシアニン顔料を得た。
【0036】
実施例1〜3及び比較例1〜2で得られたβ型銅フタロシアニン顔料を用いて、以下の各試験方法で平版印刷インキを作製し、鮮明性と着色力の比較評価を行った。
【0037】
[試験例]
《平版印刷インキ展色試験》
この試験法はJIS K−5101−4 甲法(1985年)に準じて行った。
【0038】
(濃色インキ)
実施例1〜3及び比較例1〜2のβ型銅フタロシアニン顔料0.32部及び平版印刷インキ用樹脂ワニス1.68部(大日本インキ化学工業(株)製)をフーバーマーラー(東洋精機(株)製)を用いて150lbの荷重のもと100回転を3回繰り返して練肉を行い、平版印刷インキ(濃色インキ)を作成した。
【0039】
(淡色インキ)
上記で得られた濃色インキ0.10部と白インキ2.00部(大日本インキ化学工業(株)製〔白顔料30%〕)をフーバーマーラー(東洋精機(株)製)を用いて50lbの荷重のもと50回転を3回繰り返して練肉を行い、平版印刷インキ(淡色インキ)を作成した。
【0040】
得られた各濃色インキ、淡色インキを試験インキとし、濃色インキをプルーフバウ印刷機でアート紙に展色し、そのアート紙を測色分光器(GRETAG MACBETH社製 SPM50)を用いて着色力を測定した。鮮明性は上記アート紙を目視判定9段階〔1(鮮明性小)>>5(標準)>>9(鮮明性大)〕で判定した。着色力は各比較例の顔料を標準(100%)としてシアン濃度の比で表した。
【0041】
上記の実施例1〜3及び比較例1〜2の平版印刷インキの鮮明性、着色力に関する測定結果を表1に示す。
【0042】
【表1】
表1

Figure 2004099793
【0043】
上記表1の結果から、微細な粗製銅フタロシアニンを顔料化処理して得た顔料を用いた最終平版印刷インキは、従来使用されている平均一次粒子径が数十〜数百μmのβ型結晶粗大粒子から成る粗製銅フタロシアニンを同様に顔料化処理して得た顔料を用いた最終平版印刷インキと比較した結果、着色力と鮮明性により優れていることが明らかである。さらに、同一着色力対比での単位時間当たりの顔料の生産性にも優れていることが明らかである。
従来は着色力が飽和した後でも、顔料化時間の経過に伴って、着色力が少しずつ上昇する傾向があるのに対して、本発明の製造方法においては、その傾向が見られず、実製造時での顔料化処理の時間制御がより容易となる。
【0044】
【発明の効果】
本発明の製造方法によれば、平均一次粒子径が0.01〜1.00μm、且つβ型結晶が質量換算で85%以上の粗製銅フタロシアニンを用いて顔料化処理することにより、従来法の粗製銅フタロシアニンでは得られなかった平版印刷インキ用途において着色力と鮮明性により優れたβ型銅フタロシアニン顔料を製造できるという格別顕著な効果を奏する。
【図面の簡単な説明】
【図1】実施例1〜2及び比較例1における、顔料化時間と平版印刷インキの着色力の関係を示した図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a β-type copper phthalocyanine pigment.
[0002]
[Prior art]
As a conventional method for producing a β-type copper phthalocyanine pigment, a crude copper phthalocyanine composed of β-type crystal coarse particles having an average primary particle diameter of several tens to several hundreds μm is synthesized, and the coarse copper phthalocyanine is subjected to grinding assistance such as salt. A solvent salt milling method in which mechanical grinding is performed using a kneading device such as a kneader in the presence of an organic solvent together with an agent is known (for example, see Non-Patent Document 1).
As another method, a solvent in which the crude copper phthalocyanine is dry-ground using an attritor or the like and the resulting fine crude copper phthalocyanine (a mixed crystal ground material of α-type crystals and β-type crystals) is heated in an organic solvent. A method is known (for example, refer to Patent Document 1).
However, the pigment obtained by the above-mentioned production method has a disadvantage that a colored material having higher coloring power and sharpness cannot be obtained.
[0003]
[Non-patent document 1]
Co-authored by The Coloring Material Association, the Pigment Technology Research Group, and the Japan Pigment Technology Association, “The 41st Introduction to Pigment Textbook (1999)” (pages 207 to 208).
[Patent Document 1]
JP-A No. 10-101955 (pages 2 to 5).
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a method for producing a β-type copper phthalocyanine pigment capable of improving the coloring power and clarity of coloring matters such as printing inks, paints, and colored molded products.
[0005]
[Means for Solving the Problems]
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, as a raw material used in the pigmentation treatment, crude copper phthalocyanine composed of β-type crystal coarse particles having an average primary particle diameter of several tens to several hundreds μm. Instead of using crude copper phthalocyanine having an average primary particle diameter of 0.01 to 1.00 μm and a β-type crystal having a mass conversion of 85% or more, printing inks, paints, colored molded products, etc. The present inventors have found that a β-type copper phthalocyanine pigment excellent in coloring power and sharpness can be produced, and have completed the present invention.
[0006]
That is, the present invention provides a process for producing a β-type copper phthalocyanine pigment characterized in that crude copper phthalocyanine having an average primary particle size of 0.01 to 1.00 μm and β-type crystals having a mass conversion of 85% or more is pigmented. About the method.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The crude copper phthalocyanine used in the present invention has an average primary particle diameter of 0.01 to 1.00 μm and a β-type crystal having a mass conversion of 85% or more by mass (hereinafter, referred to as a fine crude copper phthalocyanine). It is. Here, the fine crude copper phthalocyanine preferably has an average primary particle diameter as small as possible within the above-mentioned range, and has a β-crystal content as high as possible within the above-mentioned range.
[0008]
The average primary particle diameter in the present invention refers to the longer diameter (50 pieces of coarse copper phthalocyanine primary particles constituting the aggregate) on a two-dimensional image obtained by photographing particles in a visual field with a transmission electron microscope. (Major axis) were obtained, and the average value was obtained. At this time, the crude copper phthalocyanine as a sample is ultrasonically dispersed in a solvent and photographed with a microscope.
[0009]
The content ratio of the β-type crystal can be determined by a known and commonly used method such as measurement using an X-ray diffraction measuring device. The content ratio (%) of the β-type crystal is, for example, the peak height of the powder X-ray diffraction diagram at a CuKα ray and a wavelength of 0.1541 nm, which represents the crude copper phthalocyanine as a raw material and the α-type and β-type crystal forms of the copper phthalocyanine pigment. When Lα and Lβ are defined as Lα and Lβ, it can be obtained from a calibration curve of Lα / Lβ and the content. 100% crystals of α-form crystals or β-form crystals can be prepared by known and commonly used production methods, respectively. In the powder X-ray diffraction pattern, Lα was the peak height at which the specific Bragg angle 2θ was 6.8 ° ± 0.2 °, and Lβ was the peak height at 9.2 ° ± 0.2 °.
[0010]
The fine crude copper phthalocyanine may be produced by any method.
[0011]
The fine crude copper phthalocyanine used in the present invention is, for example, phthalic anhydride and / or a derivative thereof, copper and / or a compound thereof, urea and / or a derivative thereof, in the presence of a catalyst in a grinding aid or It can be obtained by performing a heat reaction at 150 to 300 ° C. under normal pressure or under pressure in the absence, in an organic solvent or in the absence thereof. In order to remove inorganic and organic impurities, the obtained reaction product is preferably dispersed in an aqueous alkaline solution and / or an aqueous acidic solution, and is preferably filtered and washed. In the above reaction, the pressure conditions are not limited, but the reaction under pressure is preferable from the viewpoint of saving urea and / or its derivative by suppressing thermal decomposition and improving quality by suppressing side reactions.
[0012]
Examples of the phthalic anhydride and / or derivatives thereof include phthalic acid, phthalic anhydride, phthalimide, salts such as sodium phthalate, phthalamide acid and salts or esters thereof, and phthalonitrile. It may be a mixture. Further, the phthalic anhydride and / or its derivative may have a substituent such as a chloro group, an alkyl group, a benzyl group or a phenyl group.
[0013]
Examples of the copper and / or its compound include metal copper, halides of copper (I) or copper (II), copper oxide, copper sulfate, copper sulfide, and copper hydroxide. The amount of copper and / or its compound used is 0.2 to 0.4 mol, preferably 0.25 to 0.35 mol, per 1 mol of phthalic anhydride and / or its derivative.
[0014]
Examples of the urea and / or derivatives thereof include urea, burette, and ammonia. The amount of urea and / or a derivative thereof to be used is 2.5 to 4.5 mol, preferably 3 to 4 mol, per 1 mol of phthalic anhydride and / or a derivative thereof.
[0015]
Examples of the catalyst include ammonium molybdate, molybdenum oxide, molybdenum compounds such as phosphomolybdic acid, titanium compounds such as titanium tetrachloride and titanate, zirconium compounds such as zirconium chloride and zirconium carbonate, boric acid, antimony oxide and the like. Is mentioned.
[0016]
Examples of the grinding aid include alkali metal salts such as sodium chloride, sodium sulfate, potassium chloride, and potassium sulfate; and alkaline earth metal salts such as magnesium chloride, calcium chloride, and barium chloride. More than one species may be present in admixture.
[0017]
The organic solvent is not particularly limited as long as it is inert to a raw material such as phthalic anhydride during the synthesis, and various compounds known in various documents can be used without any particular limitation. For example, aromatic hydrocarbons such as alkylbenzene, alkylnaphthalene and tetralin; alicyclic hydrocarbons such as alkylcyclohexane, decalin and alkyldecalin; aliphatic hydrocarbons such as decane and dodecane; aromatic nitro such as nitrobenzene and O-nitrotoluene Compounds; aromatic halogenated hydrocarbons such as trichlorobenzene and chloronaphthalene; ethers such as diphenyl ether; sulfur compounds such as sulfolane, dimethyl sulfoxide, methyl sulfolane, dimethyl sulfolane, and N-methyl sulfolane; N-methylpyrrolidone and dimethyl imidazolidy And heterocyclic compounds such as nonone. These may be a mixture of two or more.
[0018]
Examples of the reactor include a kneader, a Banbury mixer, a ball mill, a vibration mill, an extruder, a kiln, a rotary dryer, and a glass-lined reactor.
[0019]
As the fine crude copper phthalocyanine used in the present invention, those obtained by a solid phase method in which the reaction is carried out in the absence of an organic solvent are preferable.
[0020]
The pigmentation treatment in the production method of the present invention is the same as the conventionally known pigmentation method for crude copper phthalocyanine. Here, “pigmenting” refers to reducing the crude copper phthalocyanine to a particle size that can be used as a colorant. Specific examples of the pigmentation treatment include the following methods.
(1) Solvent salt milling method A method in which a grinding aid such as salt and an organic solvent that promotes crystal transition to β-form are added to crude copper phthalocyanine and mechanically ground with a grinding device such as a kneader. As the grinding aid, for example, a water-soluble inorganic salt such as salt or sodium sulfate is used. As the organic solvent, for example, a water-soluble and highly viscous liquid such as ethylene glycol and diethylene glycol is used. This method can be carried out at a temperature of 80 to 200 ° C. for 1 to 10 hours using 100 to 1000 parts of a grinding aid and 50 to 500 parts of an organic solvent per 100 parts of crude copper phthalocyanine in terms of mass. Examples of the grinding device include a device forming a closed system of a kneader, a Banbury mixer, a Nauta mixer, and an extruder. According to this method, a β-type copper phthalocyanine pigment having the most excellent coloring power and sharpness can be obtained as compared with the following pigmentation methods (2) and (3).
(2) Solvent method A method in which crude copper phthalocyanine is dry-ground with an attritor or the like, and then heat-treated with an organic solvent or the like. As the organic solvent, for example, an alcohol-based, ketone-based, ester-based, or ether-based organic solvent is used. These organic solvents can be used as a mixture of two or more kinds, or a mixed system of these organic solvents or a mixture thereof and water can be used. This method can be carried out at a temperature of 30 to 200 ° C. for 0.5 to 20 hours using 1 to 100 parts of an organic solvent per 100 parts of crude copper phthalocyanine in terms of mass. This method has a simplified process as compared with the solvent salt milling method, and is a very effective means for producing a β-type copper phthalocyanine pigment with higher productivity.
(3) Bead mill method A method in which an aqueous dispersion containing crude copper phthalocyanine is mechanically ground using a dispersing device such as a bead mill in the presence or absence of a grinding aid and an organic solvent. Examples of the dispersing device include a ball mill, an attritor, a dyno mill, a nanomill, and a dry mill. The method uses 200 to 2000 parts of an aqueous medium and 0 to 200 parts of a grinding aid per 100 parts of crude copper phthalocyanine in terms of mass, and is used at a temperature of 20 to 150 ° C. for 0.5 to 24 hours, or a pass number of 1 to 10 Can be done with a pass.
[0021]
In the production method of the present invention, when a solvent salt milling method is employed as a pigmentation treatment, a case where crude copper phthalocyanine composed of β-type crystal coarse particles having a conventionally used average primary particle diameter of several tens to several hundreds μm is used. In comparison with the conventional method, the amount of the grinding aid can be greatly reduced to about 1/2 to 1/4, and the grinding time can be significantly reduced to about 1/2 to 1/4 compared to the conventional method. A higher-quality β-type copper phthalocyanine pigment than before can be obtained with high productivity. Further, when a pigmentation treatment is performed under conventionally known conditions, a β-type copper phthalocyanine pigment excellent in coloring power and sharpness, which could not be expected in the past, can be obtained.
[0022]
Similarly, in the solvent method, the dry milling time is about one time smaller than the conventional method using crude copper phthalocyanine composed of β-type crystal coarse particles having an average primary particle diameter of several tens to several hundreds μm. With a ratio of 2〜 to 1 /, a β-type copper phthalocyanine pigment having a quality equal to or higher than that of the conventional art can be obtained.
[0023]
In the bead mill method, the average primary particle diameter conventionally used is equal to or higher than the solvent salt milling method which cannot be achieved when using crude copper phthalocyanine composed of β-type crystal coarse particles of several tens to several hundreds μm. A β-type copper phthalocyanine pigment having the following quality is obtained.
[0024]
The copper phthalocyanine pigment obtained by the methods (1) to (3) can be used for various purposes by filtering and washing, and drying with a wet cake or further drying with a powder. If necessary, grinding and classification may be performed.
[0025]
In the production method of the present invention, it is preferable to carry out a surface treatment as necessary in order to obtain more excellent dispersibility, dispersion stability, fluidity, etc. for each of various coloring applications.
[0026]
Examples of the surface treatment agent for performing the surface treatment include a surfactant, a rosin, a copper phthalocyanine derivative, a resin varnish, and a metal salt. For example, the copper phthalocyanine derivative has a substituent on at least one of the four benzene nuclei of copper phthalocyanine, and examples of the substituent include a sulfonic acid group or a metal salt thereof, and a quaternary ammonium salt.
[0027]
According to the production method of the present invention, it is possible to obtain a β-type copper phthalocyanine pigment suitable for preparing a printing ink, for example, a lithographic printing ink.
[0028]
【Example】
Next, the present invention will be specifically described with reference to Examples and Comparative Examples. Hereinafter, unless otherwise specified,% means% by mass and part means part by mass.
[0029]
<Synthesis Example 1> (Synthesis of fine crude copper phthalocyanine)
1000 parts of phthalic anhydride, 1800 parts of urea, 180 parts of cuprous chloride, 5 parts of ammonium molybdate, 1000 parts of magnesium chloride, and 1000 parts of sodium chloride were added to a 10 L glass-lined autoclave vessel, and the mixture was gradually heated to 170 ° C. Thereafter, the mixture was heated and stirred at 170 ° C. for 4 hours to terminate the reaction. After cooling, the reaction product was taken out, washed and filtered repeatedly in the order of a 10-fold amount of a 2% aqueous NaOH solution, a 1% aqueous HCl solution, and hot water, and then dried to obtain 780 parts of crude copper phthalocyanine. The crude copper phthalocyanine obtained above was a fine crude copper phthalocyanine having an average primary particle diameter of 0.05 to 0.3 μm and 100% β-type crystals, as determined by the measurement method described above. In addition, JEM-2010 manufactured by JEOL Ltd. was used as a transmission electron microscope, and LINT1100 manufactured by Rigaku Corporation was used as an X-ray diffractometer (the same applies hereinafter).
[0030]
<Example 1> (Solvent salt milling pigmentation-1)
To a 2 L double-arm kneader were added 225 parts of the fine crude copper phthalocyanine obtained in Synthesis Example 1, 675 parts of sodium chloride, and 140 parts of diethylene glycol, and the mixture was heated and ground at 90 to 95 ° C. for 7 hours. During that time, diethylene glycol was added as appropriate so that the contents maintained uniform viscosity. The obtained ground material was washed with 20-fold warm water, filtered, and dried to obtain a β-type copper phthalocyanine pigment.
[0031]
<Example 2> (Solvent salt milling pigmentation-2)
A β-type copper phthalocyanine pigment was obtained in exactly the same manner as in Example 1, except that 120 parts of the fine crude copper phthalocyanine obtained in Synthesis Example 1 above, 840 parts of salt, and 140 parts of diethylene glycol were used.
[0032]
<Example 3> (Solvent method pigmentation)
A 5 L attritor was filled with 13 kg of 3/8 inch steel beads, 500 parts of the fine crude copper phthalocyanine obtained in Synthesis Example 1 was added, and the mixture was dry-milled at 90 ° C. for 20 minutes to obtain α-type crystals 60% and β. Crude copper phthalocyanine composed of 40% of the type crystals and having an average primary particle diameter of 0.001 to 0.1 μm was obtained. Next, 30 parts of the above crude copper phthalocyanine, 100 parts of isobutanol and 200 parts of water were added to a 500 ml flask, and the mixture was heated at 89 ° C. for 4 hours. Then, isobutanol was distilled off, followed by filtration, washing and drying to obtain β-form. A copper phthalocyanine pigment was obtained.
[0033]
<Comparative Synthesis Example 1> (Synthesis of crude copper phthalocyanine)
In a 10 L glass-lined autoclave container, 1200 parts of phthalic anhydride, 1565 parts of urea, 200 parts of cuprous chloride, 5 parts of ammonium molybdate, tert-amylbenzene (trade name, Hisol P, Nippon Oil Co., Ltd., alkylbenzene mixture) ) Add 4L, gradually heat to 200 ° C, heat and stir for 2 hours to complete the reaction. After cooling, the reaction product was taken out, washed and filtered repeatedly in the order of a 10-fold amount of a 2% aqueous NaOH solution, a 1% aqueous HCl solution, and hot water, and then dried to obtain 1065 parts of crude copper phthalocyanine. The crude copper phthalocyanine obtained above was a coarse particle having an average primary particle diameter of 2 to 100 μm and composed of 100% β-type crystals.
[0034]
<Comparative Example 1> (solvent salt milling pigmentation)
Except that 120 parts of the crude copper phthalocyanine, 840 parts of salt and 140 parts of diethylene glycol obtained in Comparative Synthesis Example 1 were used, the same operation as in Example 1 was performed to obtain a β-type copper phthalocyanine pigment.
[0035]
<Comparative Example 2> (Solvent method pigmentation)
The same procedure as in Example 3 was carried out except that 500 parts of the crude copper phthalocyanine obtained in Comparative Synthesis Example 1 was added and dry-milled at 90 ° C. for 60 minutes to obtain a β-type copper phthalocyanine pigment.
[0036]
Using the β-type copper phthalocyanine pigments obtained in Examples 1 to 3 and Comparative Examples 1 and 2, lithographic printing inks were prepared by the following test methods, and clarity and coloring power were evaluated.
[0037]
[Test example]
<< Lithographic printing ink color test >>
This test method was performed in accordance with JIS K-5101-4 A method (1985).
[0038]
(Dark color ink)
0.32 parts of the β-type copper phthalocyanine pigment of Examples 1 to 3 and Comparative Examples 1 and 2 and 1.68 parts of a resin varnish for lithographic printing ink (manufactured by Dainippon Ink and Chemicals, Inc.) were used with Hoover Mahler (Toyo Seiki Co., Ltd.) The mixture was kneaded by repeating 100 rotations three times under a load of 150 lb with a load of 150 lb to prepare a lithographic printing ink (dark ink).
[0039]
(Light color ink)
Using 0.10 part of the dark ink and 2.00 parts of the white ink (30% white pigment manufactured by Dainippon Ink and Chemicals, Inc.) obtained above using a Hoover Mahler (manufactured by Toyo Seiki Co., Ltd.). The milling was performed by repeating 50 rotations three times under a load of 50 lb to prepare a lithographic printing ink (light-colored ink).
[0040]
Each of the obtained dark ink and light ink is used as a test ink, the dark ink is spread on an art paper with a proof bow printing machine, and the art paper is colored using a colorimetric spectrometer (GREPM MACBETH SPM50). The force was measured. The sharpness was determined on the above art paper in 9 stages of visual judgment [1 (small sharpness) >> 5 (standard) >> 9 (large sharpness)]. The tinting strength was represented by the ratio of cyan concentration using the pigment of each comparative example as a standard (100%).
[0041]
Table 1 shows the measurement results of the lithographic printing inks of Examples 1 to 3 and Comparative Examples 1 and 2 regarding clarity and coloring power.
[0042]
[Table 1]
Table 1
Figure 2004099793
[0043]
From the results in Table 1 above, the final lithographic printing ink using a pigment obtained by subjecting fine crude copper phthalocyanine to a pigmentation treatment is a β-type crystal having a conventionally used average primary particle diameter of several tens to several hundreds μm. As compared with a final lithographic printing ink using a pigment obtained by similarly subjecting a crude copper phthalocyanine composed of coarse particles to a pigmentation treatment, it is clear that the coloring power and the sharpness are superior. Further, it is clear that the productivity of the pigment per unit time at the same coloring power is excellent.
Conventionally, even after the coloring power is saturated, the coloring power tends to gradually increase with the elapse of the pigmentation time, whereas in the production method of the present invention, such a tendency is not observed. The time control of the pigmentation treatment at the time of production becomes easier.
[0044]
【The invention's effect】
According to the production method of the present invention, a pigmentation treatment is performed using crude copper phthalocyanine having an average primary particle diameter of 0.01 to 1.00 μm and a β-type crystal having a mass conversion of 85% or more in terms of mass. This has a particularly remarkable effect that a β-type copper phthalocyanine pigment excellent in tinting strength and sharpness can be produced in lithographic printing ink applications which cannot be obtained with crude copper phthalocyanine.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the pigmentation time and the coloring power of a lithographic printing ink in Examples 1 and 2 and Comparative Example 1.

Claims (2)

平均一次粒子径が0.01〜1.00μm、且つβ型結晶が質量換算で85%以上の粗製銅フタロシアニンを顔料化処理することを特徴とするβ型銅フタロシアニン顔料の製造方法。A method for producing a β-type copper phthalocyanine pigment, wherein a crude copper phthalocyanine having an average primary particle diameter of 0.01 to 1.00 μm and β-type crystals having a mass conversion of 85% or more is pigmented. 粗製銅フタロシアニンが固相法によって得られる粗製銅フタロシアニンである請求項1記載の製造方法。The method according to claim 1, wherein the crude copper phthalocyanine is a crude copper phthalocyanine obtained by a solid phase method.
JP2002265351A 2002-09-11 2002-09-11 METHOD FOR MANUFACTURING beta-COPPER PHTHALOCYANINE PIGMENT Pending JP2004099793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002265351A JP2004099793A (en) 2002-09-11 2002-09-11 METHOD FOR MANUFACTURING beta-COPPER PHTHALOCYANINE PIGMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002265351A JP2004099793A (en) 2002-09-11 2002-09-11 METHOD FOR MANUFACTURING beta-COPPER PHTHALOCYANINE PIGMENT

Publications (1)

Publication Number Publication Date
JP2004099793A true JP2004099793A (en) 2004-04-02

Family

ID=32264517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265351A Pending JP2004099793A (en) 2002-09-11 2002-09-11 METHOD FOR MANUFACTURING beta-COPPER PHTHALOCYANINE PIGMENT

Country Status (1)

Country Link
JP (1) JP2004099793A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321821A (en) * 2005-04-22 2006-11-30 Toyo Ink Mfg Co Ltd Method for producing pigment
JP2007297483A (en) * 2006-04-28 2007-11-15 Toyo Ink Mfg Co Ltd Method for pulverizing pigment, coloring composition by using fine pigment obtained by the method
JP2008013656A (en) * 2006-07-05 2008-01-24 Ako Kasei Co Ltd Salt suitable for solvent salt milling
JP2011137058A (en) * 2009-12-25 2011-07-14 Kao Corp Method for producing aqueous dispersion for inkjet recording
JP2017106009A (en) * 2015-12-07 2017-06-15 花王株式会社 Method for producing organic pigment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321821A (en) * 2005-04-22 2006-11-30 Toyo Ink Mfg Co Ltd Method for producing pigment
JP2007297483A (en) * 2006-04-28 2007-11-15 Toyo Ink Mfg Co Ltd Method for pulverizing pigment, coloring composition by using fine pigment obtained by the method
JP2008013656A (en) * 2006-07-05 2008-01-24 Ako Kasei Co Ltd Salt suitable for solvent salt milling
JP4668858B2 (en) * 2006-07-05 2011-04-13 赤穂化成株式会社 Salt suitable for solvent salt milling
JP2011137058A (en) * 2009-12-25 2011-07-14 Kao Corp Method for producing aqueous dispersion for inkjet recording
JP2017106009A (en) * 2015-12-07 2017-06-15 花王株式会社 Method for producing organic pigment

Similar Documents

Publication Publication Date Title
JP6978531B2 (en) Chlorinated copper phthalocyanine pigment
JP5167602B2 (en) Polyhalogenated zinc phthalocyanine, photosensitive composition and color filter
JP2004099793A (en) METHOD FOR MANUFACTURING beta-COPPER PHTHALOCYANINE PIGMENT
JP5481873B2 (en) β-type phthalocyanine pigment and coloring composition using the same
JP3575318B2 (en) Production method of blue-blue pigment
JPH09188828A (en) Continuous production of beta-form copper phthalocyanine pigment
JP2001172519A (en) Production method for organic pigment applying supercritical field
JP3399149B2 (en) Method for producing phthalocyanine pigment
JP2002121413A (en) Method of producing cerulean pigment
JPS63207858A (en) Production of copper phthalocyanine pigment
JP4185312B2 (en) Easily dispersible copper phthalocyanine pigment composition, method for producing the same, and method for producing a colored composition
JP4687185B2 (en) Dioxazine violet crude pigment composition and method for producing dioxazine violet pigment composition using the same
JP5481872B2 (en) ε-type phthalocyanine pigment and coloring composition using the same
JP2001181529A (en) Production method for copper phthalocyanine semicrude and production method for copper phthalocyanine crude
JP2002003739A (en) Method for producing navy indigo blue pigment composition
JP2002088269A (en) Method for producing organic pigment
JP2001181525A (en) Copper phthalocyanine semicrude and copper phthalocyanine crude
JP2000086920A (en) Production of non-substituted copper phthalocyanine composition
JPH11241032A (en) Pigment composition and preparation thereof
JPH1160982A (en) Production of beta-type copper phthalocyanine pigment
JP2001261998A (en) Method for producing copper phthalocyanine pigment
JP2001181530A (en) Production method for copper phthalocyanine pigment composition
JP2003020417A (en) Colored composition and method for producing the same
JPS63248862A (en) Production of copper phthalocyanine pigment
JP2000290522A (en) Purification of crude pigment and preparation of pigment suitable for low-viscosity use

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20050705

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A621 Written request for application examination

Effective date: 20050909

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602