JP2006334739A - 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具 - Google Patents

耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具 Download PDF

Info

Publication number
JP2006334739A
JP2006334739A JP2005163796A JP2005163796A JP2006334739A JP 2006334739 A JP2006334739 A JP 2006334739A JP 2005163796 A JP2005163796 A JP 2005163796A JP 2005163796 A JP2005163796 A JP 2005163796A JP 2006334739 A JP2006334739 A JP 2006334739A
Authority
JP
Japan
Prior art keywords
layer
cutting
hard coating
speed
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005163796A
Other languages
English (en)
Inventor
Tsutomu Ogami
強 大上
Yusuke Tanaka
裕介 田中
Koichi Maeda
浩一 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005163796A priority Critical patent/JP2006334739A/ja
Publication of JP2006334739A publication Critical patent/JP2006334739A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Abstract

【課題】耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具を提供する。
【解決手段】 表面被覆切削工具が、超硬基体の表面に、あるいは、高速度工具鋼基体の表面に、(a)いずれも(Ti,Al,B)Nからなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、(b)上記上部層は、いずれも一層平均層厚がそれぞれ5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、上記薄層A、上記薄層Bは、特定な組成式を満足する(Ti,Al,B)N層、からなり、(c)上記下部層は、単一相構造を有し、特定な組成式を満足する(Ti,Al,B)N層、からなる硬質被覆層を蒸着形成してなる。
【選択図】図1

Description

この発明は、硬質被覆層がすぐれた熱伝導性を有し、さらに高温硬さおよび高温強度も具備し、したがって特に高熱発生を伴なうNi合金やCo合金、さらにTi合金などの耐熱合金の高速切削加工に用いた場合に、すぐれた耐摩耗性を発揮する、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面あるいは高速度工具鋼基体の表面に硬質被覆層を形成した表面被覆切削工具に関するものである。
一般に、表面被覆切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
また、表面被覆切削工具の一つとして、例えば、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、単一相構造を有し、かつ、
組成式:[Ti1-(X+Y) AlX ]N(ただし、原子比で、Xは0.50〜0.60、Yは0.01〜0.10を示す)、
を満足するTiとAlとB(ボロン)の複合窒化物[以下、(Ti,Al,B)Nで示す]層からなる硬質被覆層を2〜8μmの平均層厚で蒸着形成してなる表面被覆超硬工具が知られており、かかる従来の表面被覆超硬工具においては、硬質被覆層を構成する前記(Ti,Al,B)N層が、構成成分であるAlによって高温硬さ、同Tiによって高温強度、さらに同B成分によって熱伝導性を具備し、特に前記B成分により抜熱効果が発揮されることから、切削時に発熱を伴うNi合金やCo合金、さらにTi合金などの耐熱合金の切削加工に用いた場合にも、ある程度の耐摩耗性を示すことが知られている。
さらに、上記の表面被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、硬質被覆層である(Ti,Al,B)N層の組成に対応した組成を有するTi−Al−B合金がセットされたカソード電極(蒸発源)とアノード電極との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特許第2793696号明細書
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記従来の表面被覆超硬工具においては、これを上記の通り熱発生を伴うNi合金やCo合金、さらにTi合金などの耐熱合金の切削加工を通常の切削加工条件で行うのに用いる場合には、硬質被覆層である(Ti,Al,B)N層におけるB成分による抜熱効果(熱伝導性)が働き、耐摩耗性を発揮する。しかしながら、特に、前記耐熱合金の切削加工を、きわめて高い熱発生を伴なう高速切削加工条件で行うのに用いた場合には、前記(Ti,Al,B)N層の具備する熱伝導性(抜熱効果)では不十分となり、この結果切刃部に偏摩耗の原因となる熱塑性変形が発生し、摩耗進行が著しく促進するようになることから、比較的短時間で使用寿命に至るのが現状である。
そこで、本発明者等は、上述のような観点から、特に耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具を開発すべく、上記の従来被覆超硬工具の硬質被覆層を構成する(Ti,Al,B)N層に着目し、研究を行った結果、

(a)従来の硬質被覆層を構成する(Ti,Al,B)N層において、B成分の含有割合を多くすれば熱伝導性が向上するが、前記従来の(Ti,Al,B)N層における1〜10原子%程度のB含有割合では、耐熱合金の高速切削加工に要求される高い熱伝導性を確保することはできず、これらの要求に満足に対応させるためにはB含有割合を15〜30原子%にまで増加し、熱伝導性をより高める必要がある。一方、表面被覆切削工具の硬質被覆層は、少なくとも所定の高温強度を保持することが求められており、そのためには所定量のTiを含有させる必要があるが、所定量のTiを含有させ、同時にB含有割合を増加させれば、自ずと、硬質被覆層に含有されるAl成分の割合はきわめて低い状態となるのが避けられず、そして、Al含有割合が少なくなった結果として、硬質被覆層の高温硬さはきわめて低いものとなり耐摩耗性の劣化が生じること。

(b)上記(a)のB含有割合を15〜30原子%に高めて熱伝導性を向上させた(Ti,Al,B)N層(以下、薄層Aという)と、前記薄層Aに比してB含有割合は低いが、相対的にAl含有割合を高くし、所定の相対的に高い高温硬さを備えた(Ti,Al,B)N層(以下、薄層Bという)を、それぞれの一層平均層厚を5〜20nm(ナノメーター)の薄層とした状態で交互積層すると、この交互積層構造の(Ti,Al,B)N層は、高B含有の薄層Aのもつすぐれた熱伝導性と、相対的にAl含有割合が高い薄層Bのもつ所定の高温硬さ相兼ね備えるようになること。

ここで、薄層A、薄層Bの組成式は、次のとおりである。

薄層Aの組成式:[Ti1-(E+F)Al]N(但し、原子比で、Eは0.15〜0.35、Fは0.15〜0.30を示す)
薄層Bの組成式:[Ti1-(M+N)Al]N(但し、原子比で、Mは0.50〜0.60、Nは0.01〜0.10を示す)

(c)上記(b)の薄層Aと薄層Bの交互積層構造を有する(Ti,Al,B)N層は、耐熱合金の高速切削加工で要求される、すぐれた熱伝導性と所定の高温硬さを具備するものの、未だ十分満足な高温硬さを有するものでないので、これを硬質被覆層の上部層として設け、一方同下部層として、熱伝導性は不十分であるが、相対的にAl成分の含有割合が高く、すぐれた高温硬さを具備する上記の従来硬質被覆層に相当する組成を有する(Ti,Al,B)N層、すなわち、

組成式:[Ti1-(X+Y)Al]N(ただし、原子比で、Xは0.50〜0.60、Yは0.01〜0.10を示す)を満足する、単一相構造の(Ti,Al,B)N層、
を設けた構造にすると、この上部層と下部層からなる硬質被覆層は、すぐれた熱伝導性とともに、すぐれた高温硬さと高温強度を備えたものとなるので、この硬質被覆層を蒸着形成してなる被覆超硬工具は、上記の高熱発生を伴う耐熱合金の高速切削加工でも、チッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮すること。

以上(a)〜(c)に示される研究結果を得たのである。
この発明は、上記の研究結果に基づいてなされたものであって、

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、あるいは、高速度工具鋼基体の表面に、
(a)いずれもTiとAlとB(ボロン)の複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
(b)上記上部層は、いずれも一層平均層厚がそれぞれ5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(E+F)Al]N(ただし、原子比で、Eは0.15〜0.35、Fは0.15〜0.30を示す)を満足するTiとAlとBの複合窒化物層、
上記薄層Bは、
組成式:[Ti1-(M+N)Al]N(ただし、原子比で、Mは0.50〜0.60、Nは0.01〜0.10を示す)を満足するTiとAlとBの複合窒化物層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(X+Y)Al]N(ただし、原子比で、Xは0.50〜0.60、Yは0.01〜0.10を示す)を満足するTiとAlとBの複合窒化物層、
からなる硬質被覆層を蒸着形成してなる、耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具に特徴を有するものである。
つぎに、この発明の表面被覆切削工具の硬質被覆層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層を構成する硬質被覆層の組成式および平均層厚
硬質被覆層(Ti,Al,B)N層におけるAl成分には高温硬さを向上させ、一方同Ti成分には高温強度、さらに同B成分には熱伝導性を向上させる作用があり、下部層ではAl成分の含有割合を多くして、高い高温硬さを具備せしめるが、Alの含有割合を示すX値がTiとBとの合量に占める割合(原子比、以下同じ)で0.50未満では、相対的にTiの割合が多くなって、耐熱合金の高速切削加工に要求されるすぐれた高温硬さを確保することができず、摩耗進行が急激に促進するようになり、一方Alの割合を示す同X値が同0.60を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果チッピング(微少欠け)などが発生し易くなることから、X値を0.50〜0.60と定めた。
また、Bの割合を示すY値がTiとAlの合量に占める割合で、0.01未満では、所定の熱伝導性を確保することができず、一方同Y値が0.10を超えると、高温強度に明確な低下傾向が現れるようになることから、Y値を0.01〜0.10と定めた。
さらに、その平均層厚が2μm未満では、自身のもつすぐれた高温硬さを硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その平均層厚が6μmを越えると、チッピングが発生し易くなることから、その平均層厚を2〜6μmと定めた。
(b)上部層の薄層Aを構成する硬質被覆層の組成式
上部層の薄層Aの(Ti,Al,B)NにおけるB成分には、熱伝導性を向上させ、もって高熱発生を伴う耐熱合金の高速切削加工ですぐれた抜熱効果を発揮させ、熱塑性変形の発生を防止する作用があるが、その含有割合を示すF値がTiとAlの合量に占める割合で、0.15未満では、高速切削加工時に十分な抜熱効果を発揮することができず、一方同F値が0.30を越えると、高温強度が急激に低下し、これが上部層全体の高温強度低下の原因となり、チッピングが発生し易くなることから、F値を0.15〜0.30と定めた。
また、Alの割合を示すE値がTiとBの合量に占める割合で、0.15未満では、最低限の高温硬さを確保することができず、摩耗促進の原因となり、一方同E値が0.35を超えると、高温強度が低下し、チッピング発生の原因となることから、E値を0.15〜0.35と定めた。
(c)上部層の薄層Bを構成する硬質被覆層の組成式
薄層Bは、薄層Aと薄層Bの交互積層構造からなる上部層において、云わば、薄層Aに不足する特性(高温硬さ)を補うことを主たる目的とするものである。

すでに述べたように、上部層の薄層Aは、B成分の含有割合を高めその熱伝導性の向上を図ったものであるが、上部層には所定の高温強度も求められており、これを確保するためには薄層Aに所定量のTiを含有する必要がある。そうすると、薄層AにおけるAlの含有割合は、少なくならざるを得ず、その結果として、薄層Aは高温硬さが不十分となり、ひいては、耐摩耗性の低下につながる。

そこで、上部層の薄層Bにおいては、薄層Aに比してB成分の含有割合を相対的に低くするが、一方Al成分の含有割合を相対的に高く維持することで、相対的に高い高温硬さを具備せしめ、隣接する薄層Aの高温硬さ不足を補い、もって、前記薄層Aのもつすぐれた熱伝導性と、前記薄層Bのもつ所定の高温硬さを具備した上部層を形成する。
薄層Bの組成式におけるAlの含有割合を示すM値が0.50未満になると、Alの含有割合が少なくなり過ぎて、所定の高温硬さを確保することができず、この結果摩耗進行が促進するようになり、一方同M値が0.60を越えると、相対的にTi成分の含有割合が低下して、上部層の高温強度低下は避けられず、チッピング発生の原因となることから、M値を0.50〜0.60と定めた。

また、Bの割合を示すN値がTiとAlの合量に占める割合で、0.01未満では、上部層全体の熱伝導性低下が避けられず、一方同N値が0.10を超えると、高温強度が低下し、チッピングが発生し易くなることから、N値を0.01〜0.10と定めた。
(d)上部層の薄層Aと薄層Bの一層平均層厚
上部層の薄層Aと薄層B、それぞれの一層平均層厚が5nm未満ではそれぞれの薄層を上記の組成のものとして明確に形成することが困難であり、この結果上部層に所望のすぐれた熱伝導性、さらに所定の高温硬さを確保することができなくなり、またそれぞれの一層平均層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温硬さ不足、薄層Bであれば熱伝導性不足が層内に局部的に現れるようになり、これが原因で摩耗が急速に進行するようになることから、それぞれの一層平均層厚は5〜20nmと定めた。

すなわち、薄層Bは、薄層Aの特性を補強するために設けられたものであるが、薄層A、薄層Bそれぞれの一層平均層厚が5〜20nmの範囲内であれば、薄層Aと薄層Bの交互積層構造からなる上部層は、すぐれた熱伝導性、所定の高温硬さおよびすぐれた高温強度を具備したあたかも一つの層であるかのように作用するが、薄層A、薄層Bそれぞれの一層平均層厚が20nmを越えると、薄層Aの高温硬さ不足、あるいは、薄層Bの熱伝導性不足が層内に局部的に現れるようになり、上部層が全体として一つの層としての良好な特性を呈することができなくなるため、薄層A、薄層Bそれぞれの一層平均層厚を5〜20nmと定めた。
薄層Aと薄層Bの一層平均層厚を5〜20nmの範囲内とした交互積層構造からなる上部層を下部層表面に形成することにより、優れた熱伝導性、高温硬さ、高温強度を兼ね備えた硬質被覆層が得られる。
(e)上部層の平均層厚
上部層全体の平均層厚が0.5μm未満では、自身のもつすぐれた熱伝導性、さらに所定の高温硬さを硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方上部層全体の平均層厚が1.5μmを越えると、チッピングが発生し易くなることから、その平均層厚を0.5〜1.5μmと定めた。
この発明の表面被覆切削工具は、硬質被覆層が(Ti,Al,B)N層からなるが、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによってすぐれた熱伝導性と所定の高温硬さを具備せしめ、同単一相構造の下部層がすぐれた高温硬さを有することから、特に高熱発生を伴なうNi合金やCo合金、さらにTi合金などの耐熱合金の高速切削加工でも、硬質被覆層がすぐれた抜熱効
果を発揮し、この結果切刃部に偏摩耗の原因となる熱塑性変形の発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。
つぎに、この発明の表面被覆切削工具を実施例により具体的に説明する。
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の超硬基体B−1〜B−6を形成した。

(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層A形成用Ti−Al−B合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層Bおよび下部層形成用Ti−Al−B合金を前記回転テーブルを挟んで対向配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつ前記薄層Bおよび下部層形成用Ti−Al−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−B合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつ前記薄層Bおよび下部層形成用Ti−Al−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3,4に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,B)N層を硬質被覆層の下部層として蒸着形成し、

(d)ついで装置内に導入する反応ガスとしての窒素ガスの流量を調整して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層A形成用Ti−Al−B合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記超硬基体の表面に所定層厚の薄層Aを形成し、前記薄層A形成後、アーク放電を停止し、代って前記薄層Bおよび下部層形成用Ti−Al−B合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し、再び前記薄層A形成用Ti−Al−B合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層Bおよび下部層形成用Ti−Al−B合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表3,4に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表5に示される目標組成に対応した成分組成をもったTi−Al−B合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−B合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−B合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,B)N層からなる硬質被覆層を蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。
つぎに、上記の各種の被覆超硬チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、
被削材:質量%で、Ni−19Cr−14Co−4.5Mo−2.5Ti−2Fe−0.7Mn−0.4Siの組成を有するNi合金の丸棒、
切削速度: 50m/min.、
切り込み: 0.5mm、
送り: 0.15mm/rev.、
切削時間: 5 分、
の条件(切削条件Aという)でのNi合金の乾式連続高速切削加工試験(通常の切削速度は30m/min.)、
被削材:質量%で、Co−23Cr−6Mo−2Ni−1Fe−0.6Si−0.4Cの組成を有するCo合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 55m/min.、
切り込み: 0.6mm、
送り: 0.2mm/rev.、
切削時間: 4 分、
の条件(切削条件Bという)でのCo合金の乾式断続高速切削加工試験(通常の切削速度は30m/min.)、
被削材:質量%で、Ti−6Al−4Vの組成を有するTi合金の丸棒、
切削速度: 60m/min.、
切り込み: 0.5mm、
送り: 0.15mm/rev.、
切削時間: 5 分、
の条件(切削条件Cという)でのTi合金の乾式連続高速切削加工試験(通常の切削速度は30m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Figure 2006334739
Figure 2006334739
Figure 2006334739
Figure 2006334739
Figure 2006334739
Figure 2006334739
(イ)原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。
(ロ)また、直径が8mm、13mm、および26mmの3種の寸法の高速度工具鋼(JIS・SKH55)素材から、機械加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもった高速度工具鋼(以下、HSSという)基体(エンドミル)E−1〜E−6をそれぞれ製造した。HSS基体(エンドミル)E−1〜E−2、E−3〜E−4、E−5〜E−6の寸法・形状は、それぞれ、前記超硬基体(エンドミル)C−1〜C−3、C−4〜C−6、C−7〜C−8のそれと同じである。
ついで、これらの超硬基体(エンドミル)C−1〜C−8及びHSS基体(エンドミル) E−1〜E−6の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,B)N層からなる下部層と、同じく層厚方向に沿って表8に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表8に示される全体目標層厚で蒸着形成することにより、本発明表面被覆切削工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8及び本発明表面被覆高速度工具鋼製エンドミル(以下、本発明被覆HSSエンドミルと云う)9〜14をそれぞれ製造した。
また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8及びHSS基体(エンドミル) E−1〜E−6の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表9に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより、従来表面被覆切削工具としての従来表面被覆超硬製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜8及び従来表面被覆高速度工具鋼製エンドミル(以下、従来被覆HSSエンドミルと云う)9〜14をそれぞれ製造した。

(a)つぎに、上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、

(a−1)本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Co−23Cr−6Mo−2Ni−1Fe−0.6Si−0.4Cの組成を有するCo合金の板材、
切削速度: 45m/min.、
溝深さ(切り込み): 2mm、
テーブル送り: 120mm/分、
の条件でのCo合金の乾式高速溝切削加工試験(通常の切削速度は 25m/min.)を行い、
(a−2)本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ti−6Al−4Vの組成を有するTi合金の板材、
切削速度: 50m/min.、
溝深さ(切り込み): 3mm、
テーブル送り: 160mm/分、
の条件でのTi合金の乾式高速溝切削加工試験(通常の切削速度は 30m/min.)を行い、
(a−3)本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ni−19Cr−18.5Fe−5.2Cd−3Mo−0.9Ti−0.5Al−0.3Si−0.2Mn−0.05Cu−0.04Cの組成を有するNi合金の板材、
切削速度: 45 m/min.、
溝深さ(切り込み):6 mm、
テーブル送り: 110mm/分、
の条件でのNi合金の乾式高速溝切削加工試験(通常の切削速度は 25m/min.)を行い、
上記(a−1)〜(a−3)のいずれの溝切削加工試験でも、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。

(b)つぎに、本発明被覆HSSエンドミル9〜14および従来被覆HSSエンドミル9〜14のうち、

(b−1)本発明被覆HSSエンドミル9、10および従来被覆HSSエンドミル9、10については、

被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Co−23Cr−6Mo−2Ni−1Fe−0.6Si−0.4Cの組成を有するCo合金の板材、
切削速度: 25m/min.、
溝深さ(切り込み): 4mm、
テーブル送り: 80mm/分、
の条件でのCo合金の乾式高速溝切削加工試験(通常の切削速度は 15m/min.)を行い、
(b−2)本発明被覆HSSエンドミル11、12および従来被覆HSSエンドミル11、12については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ti−6Al−4Vの組成を有するTi合金の板材、
切削速度: 35m/min.、
溝深さ(切り込み): 6mm、
テーブル送り: 100mm/分、
の条件でのTi合金の乾式高速溝切削加工試験(通常の切削速度は 20m/min.)を行い、
(b−3)本発明被覆HSSエンドミル13、14および従来被覆HSSエンドミル13、14については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ni−19Cr−18.5Fe−5.2Cd−3Mo−0.9Ti−0.5Al−0.3Si−0.2Mn−0.05Cu−0.04Cの組成を有するNi合金の板材、
切削速度: 25m/min.、
溝深さ(切り込み):12mm、
テーブル送り: 80mm/分、
の条件でのNi合金の乾式高速溝切削加工試験(通常の切削速度は 15m/min.)を行い、
上記(b−1)〜(b−3)のいずれの溝切削加工試験でも、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。
上記(a−1)〜(a−3)、(b−1)〜(b−3)の測定結果を表8,9にそれぞれ示した。
Figure 2006334739
Figure 2006334739

Figure 2006334739

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ 4mm×13mm(超硬基体D−1〜D−3)、 8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。

また、上記の実施例2で用いた高速度工具鋼(JIS・SKH55)素材を用い、研削加工にて、溝形成部の直径×長さがそれぞれ 4mm×25mm(HSS基体F−1、F−2)、 8mm×45mm(HSS基体F−3、F−4)、および16mm×90mm(HSS基体F−5、F−6)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもった高速度工具鋼製のHSS基体(ドリル)F−1〜F−6をそれぞれ製造した。
ついで、これらの超硬基体(ドリル)D−1〜D−8及びHSS基体(ドリル)F−1〜F−6の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表10に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,B)N層からなる下部層と、同じく層厚方向に沿って表10に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表10に示される全体目標層厚で蒸着形成することにより、本発明表面被覆切削工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8及び本発明表面被覆HSSドリル(以下、本発明被覆HSSドリルと云う)9〜14をそれぞれ製造した。
また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8及びHSS基体(ドリル)F−1〜F−6の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表11に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより、従来表面被覆切削工具としての従来表面被覆超硬製ドリル(以下、従来被覆超硬ドリルと云う)1〜8及び従来表面被覆HSSドリル(以下、従来被覆HSSドリルと云う)9〜14をそれぞれ製造した。
(c)つぎに、上記本発明被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8のうち、
(c−1)本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ti−3Al−2.5Vの組成を有するTi合金の板材、
切削速度: 50m/min.、
送り: 0.1mm/rev、
穴深さ: 8 mm、
の条件でのTi合金の湿式高速穴あけ切削加工試験(通常の切削速度は25m/min.)を行い、
(c−2)本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ni−19Cr−14Co−4.5Mo−2.5Ti−2Fe−0.7Mn−0.4Siの組成を有するNi合金の板材、
切削速度: 40 m/min.、
送り: 0.12mm/rev、
穴深さ: 15 mm、
の条件でのNi合金の湿式高速穴あけ切削加工試験(通常の切削速度は25m/min.)を行い、
(c−3)本発明被覆超硬ドリル7,8および従来被覆超硬ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Co−20Cr−15W−10Ni−1.5Mn−1Si−1Fe−0.12Cの組成を有するCo合金の板材、
切削速度: 40 m/min.、
送り: 0.2mm/rev、
穴深さ: 30 mm、
の条件でのCo合金の湿式高速穴あけ切削加工試験(通常の切削速度は30m/min.)を行い、

上記(c−1)〜(c−3)のいずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表10、11にそれぞれ示した。
(d)つぎに、上記本発明被覆HSSドリル9〜14および従来被覆HSSドリル9〜14のうち、
(d−1)本発明被覆HSSドリル9、10および従来被覆HSSドリル9、10については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ti−3Al−2.5Vの組成を有するTi合金の板材、
切削速度: 30 m/min.、
送り: 0.1mm/rev、
穴深さ: 15 mm、
の条件でのTi合金の湿式高速穴あけ切削加工試験(通常の切削速度は15m/min.)を行い、
(d−2)本発明被覆HSSドリル11、12および従来被覆HSSドリル11、12については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Ni−19Cr−14Co−4.5Mo−2.5Ti−2Fe−0.7Mn−0.4Siの組成を有するNi合金の板材、
切削速度: 25 m/min.、
送り: 0.14mm/rev、
穴深さ: 30 mm、
の条件でのNi合金の湿式高速穴あけ切削加工試験(通常の切削速度は15m/min.)を行い、
(d−3)本発明被覆HSSドリル13、14および従来被覆HSSドリル13、14については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法、並びに質量%で、Co−20Cr−15W−10Ni−1.5Mn−1Si−1Fe−0.12Cの組成を有するCo合金の板材、
切削速度: 25 m/min.、
送り: 0.23mm/rev、
穴深さ: 50 mm、
の条件でのNi合金の湿式高速穴あけ切削加工試験(通常の切削速度は18m/min.)を行い、
上記(d−1)〜(d−3)のいずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。
上記(c−1)〜(c−3)、(d−1)〜(d−3)の測定結果を表10、11にそれぞれ示した。
Figure 2006334739
Figure 2006334739
この結果得られた本発明表面被覆切削工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、本発明被覆HSSエンドミル9〜14、本発明被覆超硬ドリル1〜8および本発明被覆HSSドリル9〜14の(Ti,Al,B)Nからなる硬質被覆層を構成する上部層の薄層Aおよび薄層B、さらに同下部層の組成、並びに従来被覆工具としての従来被覆超硬チップ1〜16、従来被覆超硬エンドミル1〜8、従来被覆HSSエンドミル9〜14、従来被覆超硬ドリル1〜8および従来被覆HSSドリル9〜14の(Ti,Al,B)Nからなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。

また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
表3〜11に示される結果から、本発明表面被覆切削工具は、いずれも硬質被覆層が、一層平均層厚がそれぞれ5〜20nmの薄層Aと薄層Bの交互積層構造を有する上部層(0.5〜1.5μmの平均層厚を有す)と、単一相構造の下部層(2〜6μmの平均層厚を有す)からなり、前記上部層がすぐれた熱伝導性と所定の高温硬さを備え、また、前記下部層がすぐれた高温硬さを備えているので、高熱発生を伴なうNi合金やCo合金、さらにTi合金などの耐熱合金の高速切削加工でも、前記硬質被覆層が前記上部層によってすぐれた抜熱効果を発揮し、切刃部に偏摩耗の原因となる熱塑性変形の発生なく、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が単一相構造の(Ti,Al,B)N層からなる従来表面被覆切削工具は、特に硬質被覆層の熱伝導性不足が原因で切刃部に熱塑性変形が発生し、これによって摩耗形態が偏摩耗形態をとるようになることから、摩耗の進行が速くなり、比較的短時間で使用寿命に至ることが明らかである。

上述のように、この発明の表面被覆切削工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特にNi合金やCo合金、さらにTi合金などの耐熱合金の高熱発生を伴なう高速切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
本発明表面被覆切削工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。 通常のアークイオンプレーティング装置の概略説明図である。

Claims (1)

  1. 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、あるいは、高速度工具鋼基体の表面に、
    (a)いずれもTiとAlとB(ボロン)の複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
    (b)上記上部層は、いずれも一層平均層厚がそれぞれ5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、
    上記薄層Aは、
    組成式:[Ti1-(M+N)Al]N(ただし、原子比で、Mは0.15〜0.35、Nは0.15〜0.30を示す)を満足するTiとAlとBの複合窒化物層、
    上記薄層Bは、
    組成式:[Ti1-(X+Y)Al]N(ただし、原子比で、Xは0.50〜0.60、Yは0.01〜0.10を示す)を満足するTiとAlとBの複合窒化物層、からなり、
    (c)上記下部層は、単一相構造を有し、
    組成式:[Ti1-(X+Y)Al]N(ただし、原子比で、Xは0.50〜0.60、Yは0.01〜0.10を示す)を満足するTiとAlとBの複合窒化物層、
    からなる硬質被覆層を蒸着形成してなる、耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具。
JP2005163796A 2005-06-03 2005-06-03 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具 Withdrawn JP2006334739A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005163796A JP2006334739A (ja) 2005-06-03 2005-06-03 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005163796A JP2006334739A (ja) 2005-06-03 2005-06-03 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具

Publications (1)

Publication Number Publication Date
JP2006334739A true JP2006334739A (ja) 2006-12-14

Family

ID=37555707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005163796A Withdrawn JP2006334739A (ja) 2005-06-03 2005-06-03 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具

Country Status (1)

Country Link
JP (1) JP2006334739A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224717A (ja) * 2010-04-20 2011-11-10 Mitsubishi Materials Corp 表面被覆切削工具
JP7124267B1 (ja) * 2021-06-30 2022-08-24 住友電工ハードメタル株式会社 切削工具
EP4052822A4 (en) * 2019-10-29 2023-05-10 Mitsubishi Materials Corporation COATED SURFACE CUTTING TOOL
US20230405686A1 (en) * 2022-06-15 2023-12-21 Sumitomo Electric Hardmetal Corp. Cutting tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224717A (ja) * 2010-04-20 2011-11-10 Mitsubishi Materials Corp 表面被覆切削工具
EP4052822A4 (en) * 2019-10-29 2023-05-10 Mitsubishi Materials Corporation COATED SURFACE CUTTING TOOL
JP7124267B1 (ja) * 2021-06-30 2022-08-24 住友電工ハードメタル株式会社 切削工具
WO2023276067A1 (ja) * 2021-06-30 2023-01-05 住友電工ハードメタル株式会社 切削工具
US11802333B2 (en) 2021-06-30 2023-10-31 Sumitomo Electric Hardmetal Corp. Cutting tool
US20230405686A1 (en) * 2022-06-15 2023-12-21 Sumitomo Electric Hardmetal Corp. Cutting tool
US11938548B2 (en) * 2022-06-15 2024-03-26 Sumitomo Electric Hardmetal Corp. Cutting tool

Similar Documents

Publication Publication Date Title
JP4702520B2 (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2009061520A (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4697661B2 (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4706915B2 (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP3928481B2 (ja) 高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP5041222B2 (ja) 表面被覆切削工具
JP4702538B2 (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP2007105841A (ja) 高反応性被削材の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4687965B2 (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP2006334739A (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP5196122B2 (ja) 表面被覆切削工具
JP4697662B2 (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4756445B2 (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具
JP4771198B2 (ja) 高反応性被削材の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具
JP4697660B2 (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4771199B2 (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具
JP4697659B2 (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4720996B2 (ja) 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP3978723B2 (ja) 高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP4706921B2 (ja) 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2007105843A (ja) 高反応性被削材の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4645818B2 (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP5099495B2 (ja) 表面被覆切削工具
JP5077743B2 (ja) 硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP2006334738A (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805