JP2006332405A - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP2006332405A
JP2006332405A JP2005155005A JP2005155005A JP2006332405A JP 2006332405 A JP2006332405 A JP 2006332405A JP 2005155005 A JP2005155005 A JP 2005155005A JP 2005155005 A JP2005155005 A JP 2005155005A JP 2006332405 A JP2006332405 A JP 2006332405A
Authority
JP
Japan
Prior art keywords
wiring member
insulating layer
wiring
semiconductor device
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005155005A
Other languages
Japanese (ja)
Inventor
Daiji Fukida
大司 柊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005155005A priority Critical patent/JP2006332405A/en
Publication of JP2006332405A publication Critical patent/JP2006332405A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device with a more stable configuration wherein increase in the resistance of hole connected parts for contact holes and via-holes is suppressed independently of the density of a hole pattern and variations in the resistance values are eliminated, and to provide a manufacturing method thereof. <P>SOLUTION: In the semiconductor device, holes 12 each are formed for reaching an optional connection region 10 under an insulation layer 11. A wiring member 13 is embedded to each hole 12 and extended on the insulation layer 11. A wiring member 14 is formed on the wiring member 13 together with upper parts of the holes 12. The wiring members 14 and 13 configure a wiring pattern 16 on the insulation layer 11. The wiring member 13 on the holes 12 is made of, e.g. W, and keeps a prescribed thickness on the insulation layer 11 so as to avoid the occurrence of recess. Thus, the upper part of the holes 12 has a structure wherein a recess is hardly caused. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、CMP(化学的機械的研磨)工程を経て構成される導電性プラグを伴う集積回路配線を有する半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device having an integrated circuit wiring with a conductive plug formed through a CMP (Chemical Mechanical Polishing) process, and a manufacturing method thereof.

半導体集積回路におけるコンタクトホールやビアホールに埋め込む配線として、W(タングステン)プラグが知られている。Wプラグは、CVD(化学気相成長)法を利用して形成され、高集積化に伴う高アスペクト比のホールの埋め込みに優れている。Wプラグは、平坦化処理時における反応性生物の酸化物が上層配線とのコンタクト部の抵抗上昇を招く懸念がある。従来の対策としては、上層配線のアルミニウム層形成前に逆スパッタ処理で除去する工程を付加する技術が開示されている(例えば、特許文献1参照)。
特開2001−77193号公報(3頁、図1)
A W (tungsten) plug is known as a wiring embedded in a contact hole or a via hole in a semiconductor integrated circuit. The W plug is formed using a CVD (Chemical Vapor Deposition) method and is excellent in filling a high aspect ratio hole due to high integration. In the W plug, there is a concern that an oxide of a reactive organism at the time of the flattening treatment may increase the resistance of the contact portion with the upper layer wiring. As a conventional countermeasure, a technique of adding a step of removing by reverse sputtering before forming an aluminum layer of an upper wiring is disclosed (for example, see Patent Document 1).
JP 2001-77193 A (page 3, FIG. 1)

Wプラグは、その平坦化処理にCMP工程が利用される。その際、Wプラグを要するホール(コンタクトホールまたはビアホール)の疎密に依存して、Wの埋め込みパターンが異なってくる。例えば、密パターン領域では、Wプラグ上部が平坦化面と同等のレベルになるが、疎パターン領域では、Wプラグ上部が平坦化面より低くなり、リセス(凹み)が発生する。   The CMP process is used for the flattening process of the W plug. At this time, depending on the density of holes (contact holes or via holes) that require W plugs, the W embedding pattern differs. For example, in the dense pattern region, the upper portion of the W plug is at the same level as the flattened surface, but in the sparse pattern region, the upper portion of the W plug is lower than the flattened surface and a recess (dent) occurs.

このようなWプラグのリセス部には、CMP工程によるスラリーや削り屑が残留する可能性がある。また、上述した反応性生物の酸化物が除去しきれないという恐れがある。このような状況により、Wプラグは、パターンの疎密によって上層配線とのコンタクト部の抵抗上昇、抵抗ばらつきを招く懸念が解消されない。   There is a possibility that slurry or shavings from the CMP process may remain in the recess portion of the W plug. Moreover, there is a fear that the above-mentioned reactive biological oxides cannot be completely removed. In such a situation, the W plug does not solve the concern that the resistance of the contact portion with the upper layer wiring increases and the resistance variation due to pattern density.

本発明は上記のような事情を考慮してなされたもので、コンタクトホールやビアホールのホール接続部に関し、パターンの疎密にかかわらず、抵抗の上昇を抑制し、抵抗ばらつきのないより安定した構成を有する半導体装置及びその製造方法を提供しようとするものである。   The present invention has been made in consideration of the above-described circumstances. With respect to the hole connection portion of the contact hole or via hole, a rise in resistance is suppressed regardless of the density of the pattern, and a more stable configuration with no resistance variation is provided. It is an object of the present invention to provide a semiconductor device having the same and a manufacturing method thereof.

本発明に係る半導体装置は、絶縁層と、前記絶縁層下の任意の接続領域に到達するホールと、前記ホールに埋め込まれると共に前記絶縁層上に延在する第1配線部材と、前記ホール上方を含んで前記第1配線部材上に形成され前記第1配線部材と共に前記絶縁層上の配線パターンを構成する第2配線部材と、を具備している。   The semiconductor device according to the present invention includes an insulating layer, a hole reaching an arbitrary connection region below the insulating layer, a first wiring member embedded in the hole and extending on the insulating layer, and the upper portion of the hole And a second wiring member formed on the first wiring member and forming a wiring pattern on the insulating layer together with the first wiring member.

上記本発明に係る半導体装置によれば、ホールに埋め込まれる第1配線部材は、絶縁層上に延在している。これにより、複数設けられるホール内の第1配線部材による埋め込み状態についてそれぞれ留意しなくてもよい。つまり、ホール上部の第1配線部材は、リセスができないよう絶縁層上に所定厚さ保持されている。第2配線部材は実質的な配線パターンを構成するが、第2配線部材下には第1配線部材が存在する形態となる。   According to the semiconductor device of the present invention, the first wiring member embedded in the hole extends on the insulating layer. Thereby, it is not necessary to pay attention to each of the embedded states of the first wiring members in the plurality of holes provided. That is, the first wiring member above the hole is held on the insulating layer at a predetermined thickness so that it cannot be recessed. The second wiring member constitutes a substantial wiring pattern, but the first wiring member is present under the second wiring member.

なお、上記本発明に係る半導体装置は、次のいずれかの特徴を有して半導体集積回路配線の高抵抗化防止、信頼性向上に寄与する。
前記第1配線部材は、前記絶縁層上では前記第2配線部材より厚さが小さく、前記第2配線部材と自己整合的に一体化したパターンを有することを特徴とする。
前記第1配線部材は、タングステンでなる埋め込み金属と、前記埋め込み金属と前記ホール内壁及び前記絶縁層の間に設けられたバリア膜を有することを特徴とする。
前記第2配線部材は、アルミニウムを主成分とする主配線金属と、前記主配線金属と前記第1配線部材の間に設けられたバリア膜と、前記主配線金属上の保護用金属膜とを有することを特徴とする。
The semiconductor device according to the present invention has any of the following features, and contributes to prevention of high resistance of the semiconductor integrated circuit wiring and improvement of reliability.
The first wiring member is smaller in thickness than the second wiring member on the insulating layer and has a pattern integrated with the second wiring member in a self-aligning manner.
The first wiring member includes a buried metal made of tungsten, and a barrier film provided between the buried metal, the inner wall of the hole, and the insulating layer.
The second wiring member includes a main wiring metal mainly composed of aluminum, a barrier film provided between the main wiring metal and the first wiring member, and a protective metal film on the main wiring metal. It is characterized by having.

本発明に係る半導体装置の製造方法は、半導体集積回路配線を構成する半導体装置の製造方法において、絶縁層を貫通し前記絶縁層下の任意の接続領域に到達するホールを形成する工程と、前記ホール内を埋め込みつつ前記絶縁層上に第1配線部材を形成する工程と、前記第1配線部材の上面を平坦化し、前記絶縁層上において前記第1配線部材を一様に残留させる工程と、前記第1配線部材上に第2配線部材を形成する工程と、前記第2配線部材上にマスクパターンを形成する工程と、前記マスクパターンに従って前記第2配線部材及び前記第1配線部材を異方性エッチングし配線パターンを形成する工程と、を含む。   A method of manufacturing a semiconductor device according to the present invention includes a step of forming a hole penetrating an insulating layer and reaching an arbitrary connection region under the insulating layer in the method of manufacturing a semiconductor device constituting a semiconductor integrated circuit wiring, Forming a first wiring member on the insulating layer while filling a hole; planarizing an upper surface of the first wiring member; and uniformly leaving the first wiring member on the insulating layer; Forming a second wiring member on the first wiring member; forming a mask pattern on the second wiring member; and isolating the second wiring member and the first wiring member according to the mask pattern. And etching to form a wiring pattern.

上記本発明に係る半導体装置の製造方法によれば、ホール内を埋め込んだ絶縁層上の第1配線部材は、平坦化後も絶縁層上に一様に残留させる。これにより、第1配線部材による複数のホール内埋め込みにおいて、各ホール上部それぞれに関して第1配線部材の状態を留意する必要は無くなる。つまり、ホールパターンの疎密に関係なく、ホール上部にリセスができないよう、第1配線部材を絶縁層上に所定厚さ残すのである。その後、第2配線部材により、第1配線部材と共に前記絶縁層上の配線パターンを構成する。   According to the semiconductor device manufacturing method of the present invention, the first wiring member on the insulating layer embedded in the hole is uniformly left on the insulating layer even after planarization. This eliminates the need to pay attention to the state of the first wiring member with respect to the upper portion of each hole in filling the plurality of holes with the first wiring member. In other words, the first wiring member is left on the insulating layer with a predetermined thickness so that the upper portion of the hole cannot be recessed regardless of the density of the hole pattern. Thereafter, the second wiring member forms a wiring pattern on the insulating layer together with the first wiring member.

また、上記本発明に係る半導体装置の製造方法において、次のいずれかの特徴を有することによって、半導体集積回路配線の高抵抗化防止、信頼性向上に寄与する。
前記第1配線部材は、前記絶縁層上で前記第2配線部材より厚さが小さくなるように化学的機械的研磨によって平坦化されることを特徴とする。
前記第1配線部材は、前記絶縁層上、前記接続領域及び前記ホール内壁へのバリア膜の被覆を経てタングステンが成膜されることを特徴とする。
前記第1配線部材は、前記絶縁層上、前記接続領域及び前記ホール内壁へのバリア膜の被覆を経てタングステンが成膜され、前記絶縁層上における前記タングステンの膜厚を予め測定してから前記タングステン上面の平坦化のための化学的機械的研磨の時間を制御することを特徴とする。
前記第1配線部材の上面はタングステンであり、段階的に分けた複数回の化学的機械的研磨工程によって前記タングステンが前記絶縁層上に一様に残留するよう制御することを特徴とする。
前記第2配線部材は、前記第1配線部材上へのバリア膜の被覆を経てアルミニウムを主成分とする主配線金属が形成され、かつ前記主配線金属上に保護用金属膜が被覆されることを特徴とする。
Further, the semiconductor device manufacturing method according to the present invention contributes to the prevention of high resistance of the semiconductor integrated circuit wiring and the improvement of reliability by having any of the following characteristics.
The first wiring member is planarized by chemical mechanical polishing so that the first wiring member has a smaller thickness than the second wiring member on the insulating layer.
The first wiring member is characterized in that tungsten is formed on the insulating layer through a barrier film covering the connection region and the inner wall of the hole.
In the first wiring member, tungsten is formed on the insulating layer, and the connection region and the inner wall of the hole are covered with a barrier film, and the film thickness of the tungsten on the insulating layer is measured in advance. It is characterized by controlling the time of chemical mechanical polishing for planarizing the upper surface of tungsten.
The upper surface of the first wiring member is tungsten, and the tungsten is controlled to remain uniformly on the insulating layer by a plurality of stepwise chemical mechanical polishing processes.
In the second wiring member, a main wiring metal mainly composed of aluminum is formed through a barrier film coating on the first wiring member, and a protective metal film is coated on the main wiring metal. It is characterized by.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

図1、図2は、それぞれ本発明の第1実施形態に係る半導体装置の要部を示す断面図であり、半導体集積回路配線の一部である。各図共通で説明する。
絶縁層11は、例えば下層の接続領域10との層間絶縁膜である。絶縁層11下の任意の接続領域10に到達するホール12が形成されている。接続領域10は、不純物拡散領域または下層の配線部材であることが考えられる。
1 and 2 are cross-sectional views showing the main part of the semiconductor device according to the first embodiment of the present invention, which are part of the semiconductor integrated circuit wiring. Each figure is explained in common.
The insulating layer 11 is, for example, an interlayer insulating film with the lower connection region 10. A hole 12 reaching an arbitrary connection region 10 under the insulating layer 11 is formed. It is conceivable that the connection region 10 is an impurity diffusion region or a lower wiring member.

配線部材13は、ホール12に埋め込まれると共に、絶縁層11上に延在する。配線部材13は、例えばW(タングステン)等のプラグ金属を含む。ここでは、配線部材13は、Wでなる埋め込み金属132と、この埋め込み金属132とホール12内壁及び絶縁層11の間に設けられたバリア膜131を有する。バリア膜131は、TiN膜やTi/TiN積層膜、TaN膜を含む膜、等が考えられる。   The wiring member 13 is embedded in the hole 12 and extends on the insulating layer 11. The wiring member 13 includes a plug metal such as W (tungsten). Here, the wiring member 13 includes a buried metal 132 made of W, and a barrier film 131 provided between the buried metal 132 and the inner wall of the hole 12 and the insulating layer 11. The barrier film 131 may be a TiN film, a Ti / TiN laminated film, a film containing a TaN film, or the like.

ホール12上方を含んで配線部材13上に配線部材14が形成されている。配線部材14は配線部材13と共に絶縁層11上の配線パターン16を構成している。配線部材14は、絶縁層11上の実質的な配線層を構成するものであり、その膜厚は絶縁層11上の配線部材13に比べて大きい。配線部材14は、バリア膜141の被覆上に主配線部材142が形成され、最上面は保護用金属膜(キャップ膜)143で被覆されている。バリア膜141は、TiN膜やTi/TiN積層膜等が考えられる。主配線部材142は、Alを主成分とし、CuやSiを含有させることが考えられる。保護用金属膜(キャップ膜)143は、例えばTiN膜やTi/TiN積層膜等が考えられ、反射防止、ストレスマイクレーション耐性を強化する膜として設けられている。   A wiring member 14 is formed on the wiring member 13 including above the hole 12. The wiring member 14 constitutes a wiring pattern 16 on the insulating layer 11 together with the wiring member 13. The wiring member 14 constitutes a substantial wiring layer on the insulating layer 11, and its film thickness is larger than that of the wiring member 13 on the insulating layer 11. In the wiring member 14, a main wiring member 142 is formed on the covering of the barrier film 141, and the uppermost surface is covered with a protective metal film (cap film) 143. The barrier film 141 may be a TiN film, a Ti / TiN laminated film, or the like. The main wiring member 142 may contain Al and Cu or Si. The protective metal film (cap film) 143 may be a TiN film or a Ti / TiN laminated film, for example, and is provided as a film that enhances antireflection and stress microphone resistance.

上記実施形態の構成によれば、ホール12内に埋め込まれる配線部材13としてのWは、絶縁層11上に延在する。配線部材13は、絶縁層11上では配線部材14より厚さが小さく、配線部材14と自己整合的に一体化したパターンを有する。ホール12が複数設けられたとしても、各ホール12内のWによる埋め込み状態についてそれぞれ留意しなくてもよい。つまり、ホール12上部のWは、リセスができないよう絶縁層11上に所定厚さ保持されている。従って、ホールパターンの疎密に関係なく、ホール12上部はリセスが極めてでき難い構造になり、リセス部に溜まる異物が原因の抵抗上昇、抵抗ばらつきはほとんどなくなる。配線部材14は、主配線部材142で配線パターン16の実質的な部分を構成する。配線部材14下には配線パターン16と自己整合的なパターンで配線部材13が薄く存在する形態となる。   According to the configuration of the above embodiment, W as the wiring member 13 embedded in the hole 12 extends on the insulating layer 11. The wiring member 13 is thinner than the wiring member 14 on the insulating layer 11 and has a pattern integrated with the wiring member 14 in a self-aligning manner. Even if a plurality of holes 12 are provided, it is not necessary to pay attention to the embedded state of W in each hole 12. That is, W at the top of the hole 12 is held on the insulating layer 11 to a predetermined thickness so that the recess cannot be made. Therefore, regardless of the density of the hole pattern, the upper portion of the hole 12 has a structure that is extremely difficult to be recessed, and resistance increase and resistance variation due to foreign matters accumulated in the recessed portion are almost eliminated. The wiring member 14 constitutes a substantial part of the wiring pattern 16 with the main wiring member 142. The wiring member 13 is thinly formed under the wiring member 14 in a self-aligning pattern with the wiring pattern 16.

図3〜図6は、それぞれ本発明の第2実施形態に係る半導体装置の製造方法を工程順に示す断面図である。疎パターン及び密パターンに関して図示している。第1実施形態と同様の箇所には図1と同じ符号を付して説明する。
図3に示すように、層間絶縁膜である絶縁層11に対し、フォトリソグラフィ工程を経てマスクパターン(図示せず)を形成し、このマスクパターンに従ってエッチングを施す。これにより、絶縁層11を貫通し、下層の接続領域10に到達する各ホール12を形成する。接続領域10は、不純物拡散領域または下層の配線部材であることが考えられる。例えば、接続領域10が不純物拡散領域の場合、ホール12はコンタクトホール、接続領域10が下層の配線部材の場合、ホール12はビアホールと呼ばれる。
3 to 6 are cross-sectional views showing a method of manufacturing a semiconductor device according to the second embodiment of the present invention in the order of steps. The sparse pattern and the dense pattern are illustrated. The same parts as those in the first embodiment will be described with the same reference numerals as those in FIG.
As shown in FIG. 3, a mask pattern (not shown) is formed on the insulating layer 11 which is an interlayer insulating film through a photolithography process, and etching is performed according to this mask pattern. Thereby, each hole 12 which penetrates the insulating layer 11 and reaches the lower connection region 10 is formed. It is conceivable that the connection region 10 is an impurity diffusion region or a lower wiring member. For example, when the connection region 10 is an impurity diffusion region, the hole 12 is called a contact hole, and when the connection region 10 is a lower wiring member, the hole 12 is called a via hole.

次に、ホール12内を埋め込みつつ絶縁層11上に配線部材13を形成する。配線部材13は、まず、スパッタ法を利用することにより、バリア膜131としてのTi/TiN積層膜を、絶縁層11上、接続領域10及びホール内壁へ被覆する。その他、バリア膜131として、TiN膜のみ、またはTaN膜を含む膜を用いることも考えられる。その後、熱CVD法を利用して、埋め込み金属132とするW(タングステン)を、ホール12内に埋め込みつつ、絶縁層11上に成膜する。   Next, the wiring member 13 is formed on the insulating layer 11 while filling the hole 12. The wiring member 13 first coats the connection region 10 and the inner wall of the hole with the Ti / TiN laminated film as the barrier film 131 on the insulating layer 11 by using a sputtering method. In addition, as the barrier film 131, it is possible to use only a TiN film or a film containing a TaN film. Thereafter, W (tungsten) serving as the buried metal 132 is formed on the insulating layer 11 while being buried in the hole 12 by using a thermal CVD method.

次に、図4に示すように、CMP(化学的機械的研磨)技術を用いて配線部材13の上面(埋め込み金属132)、すなわちWを平坦化し、絶縁層11上においてWを一様に残留させる。このCMP工程は、Wを平坦化することを目的とし、平坦化がなされたところでCMP工程を終了する。このとき、注意すべきは、ホール12を形成している絶縁層11表面よりWが窪むことがないようにする。   Next, as shown in FIG. 4, the upper surface (embedded metal 132) of the wiring member 13, that is, W is flattened using CMP (Chemical Mechanical Polishing) technique, and W remains uniformly on the insulating layer 11. Let This CMP process is intended to planarize W, and the CMP process is terminated when the planarization is performed. At this time, it should be noted that W is not recessed from the surface of the insulating layer 11 forming the hole 12.

すなわち、ホールパターンの疎密に関係なく、Wプラグ上にリセスが発生していないことが重要である。これらを踏まえて絶縁層11上のWは、Wプラグ上にリセスが発生しない程度の厚さをもって残留させる。Wを縁層11上に残留させる方法は、CMP処理時間を制御する。たとえばCMP処理を2回以上、段階的に分け、精度をより向上させるようにしてもよい。また、段階的なものも含めて、CMP処理前に絶縁層11上におけるWの膜厚を測定してからCMP処理時間を算出するようにしてもよい。現状Wプラグ上にリセスができる場合、20nm〜30nm程度であることから、Wの残膜は、30nm以上とすることが適当であると考える。ウェハ面内でCMP処理の研磨速度のばらつきを考慮しても絶縁層11上のWの残膜は、30nm前後〜40nm前後あれば十分と考える。   That is, it is important that no recess occurs on the W plug regardless of the density of the hole pattern. Based on these, W on the insulating layer 11 is left with a thickness that does not cause a recess on the W plug. The method of leaving W on the edge layer 11 controls the CMP processing time. For example, the CMP process may be divided into two or more steps to improve the accuracy. In addition, the CMP processing time may be calculated after measuring the film thickness of W on the insulating layer 11 before the CMP processing, including stepwise processing. When a recess can be formed on the current W plug, it is about 20 nm to 30 nm, so that the remaining film of W is considered to be appropriate to be 30 nm or more. Even if the polishing rate variation of the CMP process is considered in the wafer surface, it is considered that the remaining film of W on the insulating layer 11 is about 30 nm to about 40 nm.

次に、図5に示すように、配線部材13のW表面上に配線部材14を形成する。配線部材14は、下地のバリア膜141の被覆上に主配線部材142を形成し、最上層は保護用金属膜(キャップ膜)143で被覆する。下地のバリア膜141はスパッタ法によってTi/TiN積層膜が合計で数十nm形成される。その他、バリア膜131としてTiN膜のみを用いることも考えられる。バリア膜141被覆後、主配線部材142として、例えばCuを1%未満(例えば0.5%)含有させたAl−Cu合金をスパッタ法により数百nm(300nm以上)形成する。さらに、最上層の保護用金属膜(キャップ膜)143として、Ti/TiN積層膜を合計で数十nmスパッタ形成する。その他、保護用金属膜143は、TiN膜のみを用いることも考えられる。   Next, as shown in FIG. 5, the wiring member 14 is formed on the W surface of the wiring member 13. In the wiring member 14, the main wiring member 142 is formed on the underlying barrier film 141 and the uppermost layer is covered with a protective metal film (cap film) 143. As the underlying barrier film 141, a total of several tens of nm of Ti / TiN laminated films are formed by sputtering. In addition, it is conceivable to use only a TiN film as the barrier film 131. After covering the barrier film 141, as the main wiring member 142, for example, an Al—Cu alloy containing less than 1% (for example, 0.5%) of Cu is formed by sputtering to a few hundred nm (300 nm or more). Further, as the uppermost protective metal film (cap film) 143, a Ti / TiN laminated film is formed by sputtering in a total of several tens of nm. In addition, it is conceivable that only the TiN film is used as the protective metal film 143.

次に、図6に示すように、フォトリソグラフィ工程を経て破線で示すようなマスクパターン15を形成する。マスクパターン15は、レジストパターンのみならず、酸化シリコン膜等のハードマスクの構成を含むようにしてもよい。そして、Cl系(またはCF系)のエッチングガスを用いた異方性のドライエッチング技術により、マスクパターン15に従って、配線部材14及び配線部材13を除去する。これにより、配線部材14と自己整合的に一体化した配線部材13を有する配線パターン16が形成される。   Next, as shown in FIG. 6, a mask pattern 15 as shown by a broken line is formed through a photolithography process. The mask pattern 15 may include not only a resist pattern but also a hard mask structure such as a silicon oxide film. Then, the wiring member 14 and the wiring member 13 are removed according to the mask pattern 15 by an anisotropic dry etching technique using a Cl-based (or CF-based) etching gas. Thereby, the wiring pattern 16 having the wiring member 13 integrated with the wiring member 14 in a self-aligning manner is formed.

上記実施形態の方法によれば、ホール12内を埋め込んだ絶縁層11上の配線部材13のWは、平坦化後も絶縁層11上に一様に残留させる。これにより、複数設けられたホール12内のWによる埋め込み状態についてそれぞれ留意する必要はない。つまり、ホール12上部にリセスができないよう配線部材13としてのWを絶縁層11上に所定厚さ残したままにする。その後、配線部材14が形成され、配線部材13,14は自己整合的に一体化した配線パターン16を形成する。これにより、ホールパターンの疎密に関係なく、ホール12上部にリセスが極めてでき難い構造になり、リセス部に溜まる異物が原因の抵抗上昇、抵抗ばらつきはほとんどなくなる。   According to the method of the above embodiment, W of the wiring member 13 on the insulating layer 11 embedded in the hole 12 remains uniformly on the insulating layer 11 even after planarization. Thereby, it is not necessary to pay attention to the embedded state of W in the plurality of holes 12. That is, a predetermined thickness of W as the wiring member 13 is left on the insulating layer 11 so that the upper portion of the hole 12 cannot be recessed. Thereafter, the wiring member 14 is formed, and the wiring members 13 and 14 form a wiring pattern 16 integrated in a self-aligning manner. As a result, regardless of the density of the hole pattern, the recess is extremely difficult to be formed in the upper portion of the hole 12, and resistance increase and resistance variation due to the foreign matter accumulated in the recess portion are almost eliminated.

なお、上記実施形態の方法では、ホール12の寸法が配線パターン16の寸法(幅)と略同じ形態を示した。これに限らず、ホール12の寸法より配線パターン16の寸法(幅)が大きい構成を採用しても上記同様の効果が得られる。   In the method of the above embodiment, the dimension of the hole 12 is substantially the same as the dimension (width) of the wiring pattern 16. The present invention is not limited to this, and the same effect as described above can be obtained even if a configuration in which the size (width) of the wiring pattern 16 is larger than the size of the hole 12 is adopted.

以上説明したように本発明によれば、ホールに埋め込まれる第1配線部材は、絶縁層上に延在している。より好ましくは、ホール上部の第1配線部材は、リセスができないよう絶縁層上に所定厚さ保持されている。これにより、複数設けられたホール内の第1配線部材による埋め込み状態について、ホールパターンの疎密に関係なくリセス発生の懸念が解消される。第2配線部材は実質的な配線パターンを構成するが、第2配線部材下には第1配線部材が上記配線パターンと自己整合的なパターンで存在する形態となる。この結果、コンタクトホールやビアホールのホール接続部に関し、パターンの疎密にかかわらず、抵抗の上昇を抑制し、抵抗ばらつきのないより安定した構成を有する半導体装置及びその製造方法を提供することができる。   As described above, according to the present invention, the first wiring member embedded in the hole extends on the insulating layer. More preferably, the first wiring member above the hole is held on the insulating layer at a predetermined thickness so that the recess cannot be made. This eliminates the concern about the occurrence of recesses in the embedded state by the first wiring members in the plurality of holes regardless of the density of the hole pattern. Although the second wiring member constitutes a substantial wiring pattern, the first wiring member exists in a self-aligning pattern with the wiring pattern below the second wiring member. As a result, it is possible to provide a semiconductor device having a more stable configuration that suppresses an increase in resistance and has no resistance variation regardless of pattern density, and a method for manufacturing the same, with respect to contact hole and via hole connection portions.

なお、本発明は、上述した実施形態及び方法に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々の変更、応用を実施することが可能である。   The present invention is not limited to the above-described embodiments and methods, and various modifications and applications can be implemented without departing from the spirit of the present invention.

第1実施形態に係る半導体装置の要部を示す第1断面図。1 is a first cross-sectional view showing a main part of a semiconductor device according to a first embodiment. 第1実施形態に係る半導体装置の要部を示す第2断面図。FIG. 3 is a second cross-sectional view showing the main part of the semiconductor device according to the first embodiment. 第2実施形態に係る半導体装置の製造方法を工程順に示す第1断面図。The 1st sectional view showing the manufacturing method of the semiconductor device concerning a 2nd embodiment in order of a process. 図3に続く第2断面図。The 2nd sectional view following Drawing 3. 図4に続く第3断面図。FIG. 5 is a third sectional view following FIG. 4. 図5に続く第4断面図。FIG. 6 is a fourth cross-sectional view following FIG. 5.

符号の説明Explanation of symbols

10…接続領域、11…絶縁層、12…ホール、13,14…配線部材、131,141…バリア膜、132…埋め込み金属、142…主配線部材、143…保護用金属膜(キャップ膜)、15…マスクパターン、16…配線パターン。   DESCRIPTION OF SYMBOLS 10 ... Connection area | region, 11 ... Insulating layer, 12 ... Hole, 13, 14 ... Wiring member, 131, 141 ... Barrier film, 132 ... Embedded metal, 142 ... Main wiring member, 143 ... Protective metal film (cap film), 15 ... mask pattern, 16 ... wiring pattern.

Claims (10)

絶縁層と、
前記絶縁層下の任意の接続領域に到達するホールと、
前記ホールに埋め込まれると共に前記絶縁層上に延在する第1配線部材と、
前記ホール上方を含んで前記第1配線部材上に形成され前記第1配線部材と共に前記絶縁層上の配線パターンを構成する第2配線部材と、
を具備した半導体装置。
An insulating layer;
Holes reaching any connection region under the insulating layer;
A first wiring member embedded in the hole and extending on the insulating layer;
A second wiring member formed on the first wiring member including above the hole and constituting a wiring pattern on the insulating layer together with the first wiring member;
A semiconductor device comprising:
前記第1配線部材は、前記絶縁層上では前記第2配線部材より厚さが小さく、前記第2配線部材と自己整合的に一体化したパターンを有する請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the first wiring member has a pattern smaller in thickness than the second wiring member on the insulating layer and integrated with the second wiring member in a self-aligning manner. 前記第1配線部材は、タングステンでなる埋め込み金属と、前記埋め込み金属と前記ホール内壁及び前記絶縁層の間に設けられたバリア膜を有する請求項1または2に記載の半導体装置。 The semiconductor device according to claim 1, wherein the first wiring member includes a buried metal made of tungsten, and a barrier film provided between the buried metal, the inner wall of the hole, and the insulating layer. 前記第2配線部材は、アルミニウムを主成分とする主配線金属と、前記主配線金属と前記第1配線部材の間に設けられたバリア膜と、前記主配線金属上の保護用金属膜とを有する請求項1〜3いずれか一つに記載の半導体装置。 The second wiring member includes a main wiring metal mainly composed of aluminum, a barrier film provided between the main wiring metal and the first wiring member, and a protective metal film on the main wiring metal. The semiconductor device as described in any one of Claims 1-3. 半導体集積回路配線を構成する半導体装置の製造方法において、
絶縁層を貫通し前記絶縁層下の任意の接続領域に到達するホールを形成する工程と、
前記ホール内を埋め込みつつ前記絶縁層上に第1配線部材を形成する工程と、
前記第1配線部材の上面を平坦化し、前記絶縁層上において前記第1配線部材を一様に残留させる工程と、
前記第1配線部材上に第2配線部材を形成する工程と、
前記第2配線部材上にマスクパターンを形成する工程と、
前記マスクパターンに従って前記第2配線部材及び前記第1配線部材を異方性エッチングし配線パターンを形成する工程と、
を含む半導体装置の製造方法。
In a manufacturing method of a semiconductor device constituting a semiconductor integrated circuit wiring,
Forming a hole that penetrates the insulating layer and reaches an arbitrary connection region under the insulating layer;
Forming a first wiring member on the insulating layer while filling the hole;
Flattening an upper surface of the first wiring member, and uniformly leaving the first wiring member on the insulating layer;
Forming a second wiring member on the first wiring member;
Forming a mask pattern on the second wiring member;
Forming the wiring pattern by anisotropically etching the second wiring member and the first wiring member according to the mask pattern;
A method of manufacturing a semiconductor device including:
前記第1配線部材は、前記絶縁層上で前記第2配線部材より厚さが小さくなるように化学的機械的研磨によって平坦化される請求項5に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 5, wherein the first wiring member is planarized by chemical mechanical polishing so that the thickness of the first wiring member is smaller than that of the second wiring member on the insulating layer. 前記第1配線部材は、前記絶縁層上、前記接続領域及び前記ホール内壁へのバリア膜の被覆を経てタングステンが成膜される請求項5または6に記載の半導体装置の製造方法。 7. The method of manufacturing a semiconductor device according to claim 5, wherein the first wiring member is formed with tungsten on the insulating layer through a barrier film covering the connection region and the inner wall of the hole. 前記第1配線部材は、前記絶縁層上、前記接続領域及び前記ホール内壁へのバリア膜の被覆を経てタングステンが成膜され、前記絶縁層上における前記タングステンの膜厚測定を経て前記タングステン上面平坦化のための化学的機械的研磨処理時間を制御する請求項5または6に記載の半導体装置の製造方法。 In the first wiring member, tungsten is formed on the insulating layer through a barrier film covering the connection region and the inner wall of the hole, and the tungsten upper surface is flattened by measuring the thickness of the tungsten on the insulating layer. The method for manufacturing a semiconductor device according to claim 5, wherein a chemical mechanical polishing processing time for the conversion is controlled. 前記第1配線部材の上面はタングステンであり、段階的に分けた複数回の化学的機械的研磨工程によって前記タングステンが前記絶縁層上に一様に残留するよう制御する請求項5または6に記載の半導体装置の製造方法。 7. The upper surface of the first wiring member is tungsten, and the tungsten is controlled to remain uniformly on the insulating layer by a plurality of stepwise chemical mechanical polishing processes. Semiconductor device manufacturing method. 前記第2配線部材は、前記第1配線部材上へのバリア膜の被覆を経てアルミニウムを主成分とする主配線金属が形成され、かつ前記主配線金属上に保護用金属膜が被覆される請求項5〜9いずれか一つに記載の半導体装置の製造方法。 In the second wiring member, a main wiring metal mainly composed of aluminum is formed through a barrier film coating on the first wiring member, and a protective metal film is coated on the main wiring metal. Item 10. A method for manufacturing a semiconductor device according to any one of Items 5 to 9.
JP2005155005A 2005-05-27 2005-05-27 Semiconductor device and manufacturing method thereof Withdrawn JP2006332405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005155005A JP2006332405A (en) 2005-05-27 2005-05-27 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005155005A JP2006332405A (en) 2005-05-27 2005-05-27 Semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006332405A true JP2006332405A (en) 2006-12-07

Family

ID=37553767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005155005A Withdrawn JP2006332405A (en) 2005-05-27 2005-05-27 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006332405A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159651A (en) * 2006-12-21 2008-07-10 Elpida Memory Inc Multilayer wiring, laminated aluminum wiring, semiconductor device, and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159651A (en) * 2006-12-21 2008-07-10 Elpida Memory Inc Multilayer wiring, laminated aluminum wiring, semiconductor device, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US11011421B2 (en) Semiconductor device having voids and method of forming same
JP4347637B2 (en) Method of forming metal wiring for semiconductor device using buffer layer on trench side wall and device manufactured thereby
TWI497591B (en) Structure and method for manufacturing interconnect structures having self-aligned dielectric caps
US7838415B2 (en) Method of fabricating dual damascene structure
US10276500B2 (en) Enhancing barrier in air gap technology
JP2006019480A (en) Method for manufacturing semiconductor apparatus
JP2005142262A (en) Semiconductor device and manufacturing method therefor
JP2007035996A (en) Semiconductor device and manufacturing method thereof
JP4231055B2 (en) Semiconductor device and manufacturing method thereof
US10453794B2 (en) Interconnect structure for semiconductor devices
JP5047504B2 (en) Method for manufacturing dual damascene wiring of semiconductor device using via capping protective film
JP2006332405A (en) Semiconductor device and manufacturing method thereof
JP2008258431A (en) Semiconductor device and its manufacturing method
JP2006228977A (en) Semiconductor device and manufacturing method thereof
JP4472286B2 (en) Method for forming metal wiring of semiconductor device using modified dual damascene process
JP2010165760A (en) Semiconductor device and method for manufacturing the semiconductor device
JP2007103824A (en) Semiconductor device
JP5221979B2 (en) Manufacturing method of semiconductor device
JP2010010449A (en) Method of manufacturing semiconductor device
JP2004172337A (en) Semiconductor device and its manufacturing method
JP2012253121A (en) Method of manufacturing semiconductor device
JP2009105300A (en) Semiconductor device and method of manufacturing the same
JP2008041783A (en) Manufacturing method of semiconductor device
JP2008010532A (en) Manufacturing method of semiconductor device
JP2007142475A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805