JP2006331538A - 磁気記録媒体 - Google Patents

磁気記録媒体 Download PDF

Info

Publication number
JP2006331538A
JP2006331538A JP2005153666A JP2005153666A JP2006331538A JP 2006331538 A JP2006331538 A JP 2006331538A JP 2005153666 A JP2005153666 A JP 2005153666A JP 2005153666 A JP2005153666 A JP 2005153666A JP 2006331538 A JP2006331538 A JP 2006331538A
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetic layer
alloy
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005153666A
Other languages
English (en)
Inventor
Tatsuya Hinoue
竜也 檜上
Koji Sakamoto
浩二 阪本
Hiroyuki Suzuki
博之 鈴木
Takuya Kojima
琢也 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HGST Netherlands BV
Original Assignee
Hitachi Global Storage Technologies Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Storage Technologies Netherlands BV filed Critical Hitachi Global Storage Technologies Netherlands BV
Priority to JP2005153666A priority Critical patent/JP2006331538A/ja
Priority to US11/440,504 priority patent/US20060269793A1/en
Publication of JP2006331538A publication Critical patent/JP2006331538A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/676Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having magnetic layers separated by a nonmagnetic layer, e.g. antiferromagnetic layer, Cu layer or coupling layer
    • G11B5/678Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having magnetic layers separated by a nonmagnetic layer, e.g. antiferromagnetic layer, Cu layer or coupling layer having three or more magnetic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/672Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having different compositions in a plurality of magnetic layers, e.g. layer compositions having differing elemental components or differing proportions of elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7369Two or more non-magnetic underlayers, e.g. seed layers or barrier layers

Abstract

【課題】高い媒体S/Nを有し、オーバーライト特性に問題なく、ビットエラーレートに優れ、かつ熱揺らぎに対しても十分に安定な面内磁気記録媒体を提供する。
【解決手段】基板10と、基板の上部に形成された下地膜と、下地膜の上部に第1の磁性層14と第2の磁性層15と第3の磁性層16と非磁性中間層17と第4の磁性層18が積層された磁性膜と、磁性膜の上部に形成された保護膜19とを有し、
磁性膜の各磁性層はクロムを含有するコバルト基合金であり、第1の磁性層14は複数の磁性層の中で最も厚さが薄く、第2と第3と第4の磁性層はさらに白金と硼素を含有し、第2の磁性層のBrtは第3の磁性層のBrtより小さく、第3の磁性層のBrtは第4の磁性層のBrtより小さく、第4の磁性層のBrtが磁性膜全体のBrtに占める割合が40%から55%の範囲内とする。
【選択図】図1

Description

本発明は高密度磁気記録を実現するための磁気記録媒体に係り、特に面内磁気記録方式の磁気ディスクに関する。
磁気ディスク装置に対する大容量化の要求が益々高まっている。これに対応するため、高感度な磁気ヘッドや、高S/Nで熱的に安定な磁気記録媒体の開発が求められている。媒体のS/Nを向上させるには、高密度で記録したときの再生出力を向上させる必要がある。一般に磁気記録媒体は、基板上に形成されたシード層と呼ばれる第1の下地層、クロムを主成分とする合金からなる体心立方構造の第2の下地層、磁性膜、及びカーボンを主成分とする保護膜から構成される。磁性膜には主にコバルトを主成分とする六方稠密構造をとる合金が用いられている。再生出力を向上させるには、磁性膜に(11.0)面、もしくは(10.0)面を基板面と略平行とした結晶配向をとらせて、磁化容易軸である六方稠密構造のc軸を膜面内方向に向けることが有効である。磁性膜の結晶配向はシード層によって制御できることが知られている。
熱的安定性と低ノイズ化を両立する技術として、特許文献1には、基板上に下地層を設け、この上に組成の異なる少なくとも2層からなる磁性層を互いに接して構成した積層磁性膜を非磁性層を介して多層に設けた磁気記録媒体が開示されている。特許文献2には、基板に積層された面内磁気記録媒体において、磁気記録層がAFC層、強磁性層、AFC層と強磁性層を分離する非強磁性スペーサ層からなり、AFC層は、第1の磁性層、第2の磁性層、第1と第2の磁性層間に存在し反強磁性結合する層からなり、同時にAFC層の反強磁性結合する層は第1と第2の磁性層間に反強磁性交換結合を提供する膜厚と組成を有し、AFC層と強磁性層との間に形成する非強磁性スペーサ層はAFC層と強磁性層間で交換結合がない膜厚と組成を有する磁気記録媒体が開示されている。磁気記録媒体の出力特性を高める技術として、特許文献3には、基板上に、非磁性下地膜、磁性膜、保護膜を順次形成した磁気記録媒体であって、非磁性下地膜がCrまたはCr合金からなり、磁性膜はCrを含むCo合金からなる複数の磁性層を有し、磁性層のCr含有率を下層側の磁性層から上層側の磁性層にかけて漸次低くする媒体が開示されている。
特開平7−134820号公報 米国特許出願公開第2002/98390号明細書 特許第3576372号公報
再生出力の向上と媒体ノイズの低減は、媒体S/Nを向上させる上で重要な課題である。媒体ノイズ低減や出力特性の向上には、上記文献にあるような技術を用いて磁性層を直接もしくは間接的に多層に形成する方法がある。しかし、1平方ミリメートル当たり160メガビット以上の面記録密度を実現するには、上記の方法を単純に組み合わせるだけでは不十分である。更なる媒体S/N向上のためには、複数の磁性層を積層するにあたって、積層する磁性層の層数や、直接積層する場合と非磁性層を介して間接的に積層する場合、各磁性層の組成等を最適化する必要がある。
本発明の目的は、高い媒体S/Nを有し、オーバーライト特性に問題なく、ビットエラーレートに優れ、かつ熱揺らぎに対しても十分に安定な面内磁気記録媒体を提供することである。
上記目的を達成するために、本発明の磁気記録媒体においては、基板と、該基板の上部に形成された下地膜と、該下地膜の上部に第1の磁性層と第2の磁性層と第3の磁性層と非磁性中間層と第4の磁性層が積層された磁性膜と、該磁性膜の上部に形成された保護膜とを有し、
前記磁性膜の各磁性層はクロムを含有するコバルト基合金であり、
前記第1の磁性層は前記複数の磁性層の中で最も厚さが薄く、
前記第2と第3と第4の磁性層はさらに白金と硼素を含有し、
前記第2の磁性層のBrtは前記第3の磁性層のBrtより小さく、
前記第3の磁性層のBrtは前記第4の磁性層のBrtより小さく、
前記第4の磁性層のBrtが前記磁性膜全体のBrtに占める割合が40%から55%の範囲内であることを特徴とする。
前記下地膜は第1の下地層と第2の下地層と第3の下地層を有し、
前記第1と第2の下地層は非晶質合金層であり、
前記第3の下地層はクロム-チタン-硼素合金層であり、
前記第1の磁性層はコバルト-クロム合金もしくはコバルト-クロム-白金合金であり、
前記第2の磁性層に含まれる硼素の含有量は前記第3の磁性層に含まれる硼素の含有量より少なく、
前記非磁性中間層はルテニウムを含有する。
前記下地膜は第1の下地層と第2の下地層と第3の下地層を有し、
前記第1と第2の下地層は非晶質合金層であり、
前記第3の下地層は硼素の含有量が1at.%以上6at.%以下のクロム-チタン-硼素合金層であり、
前記第1の磁性層はクロムの含有量が34at.%以下のコバルト-クロム合金もしくはコバルト-クロム-白金合金であり、
前記第2の磁性層に含まれる硼素の含有量は前記第3の磁性層に含まれる硼素の含有量より少なく、
前記第3の磁性層に含まれる硼素の含有量は8at.%以上であり、
前記非磁性中間層はルテニウムを含有するものであることが望ましい。
前記下地膜は第1の下地層と第2の下地層と第3の下地層を有し、
前記第1と第2の下地層は非晶質合金層であり、
前記第3の下地層は硼素の含有量が1at.%以上6at.%以下のクロム-チタン-硼素合金層であり、
前記第1の磁性層はクロムの含有量が34at.%以下のコバルト-クロム合金もしくはコバルト-クロム-白金合金であり、
前記第2の磁性層に含まれる硼素の含有量は前記第3の磁性層に含まれる硼素の含有量より少なく、さらにタンタルを含有し、
前記第3の磁性層に含まれる硼素の含有量は8at.%以上であり、
前記非磁性中間層はルテニウムを含有するものであることが望ましい。
前記第3と第4の磁性層の保磁力が160kA/m以上である。
前記第3と第4の磁性層は前記非磁性中間層により磁気的に分断されている。
前記磁性膜の全ての磁性層は同じ方向に磁化される。
上記目的を達成するために、本発明の磁気記録媒体においては、基板と、該基板の上部に形成された下地膜と、該下地膜の上部に第1の磁性層と第2の磁性層と第3の磁性層と非磁性中間層と第4の磁性層が積層された磁性膜と、該磁性膜の上部に形成された保護膜とを有し、
前記磁性膜の各磁性層はクロムを含有するコバルト基合金であり、
前記第2と第3と第4の磁性層はさらに白金と硼素を含有し、
前記第1の磁性層は前記下地膜の上部に直接形成され、
前記第2の磁性層は前記第1の磁性層の上部に直接形成され、
前記第3の磁性層は前記第2の磁性層の上部に直接形成され、
前記第4の磁性層は前記第3の磁性層の上部に前記非磁性中間層を介して形成され、
前記複数の磁性層の中で前記第1の磁性層の膜厚が最も小さく、前記第4の磁性層の膜厚が最も大きいことを特徴とする。
前記下地膜は第1の下地層と第2の下地層と第3の下地層を有し、
前記第1と第2の下地層は非晶質合金層であり、
前記第3の下地層はクロム-チタン-硼素合金層であり、
前記第1の磁性層はコバルト-クロム合金もしくはコバルト-クロム-白金合金であり、
前記第2の磁性層に含まれる硼素の含有量は前記第3の磁性層に含まれる硼素の含有量より少なく、
前記非磁性中間層はルテニウムを含有する。
前記下地膜は第1の下地層と第2の下地層と第3の下地層を有し、
前記第1と第2の下地層は非晶質合金層であり、
前記第3の下地層は硼素の含有量が1at.%以上6at.%以下のクロム-チタン-硼素合金層であり、
前記第1の磁性層はクロムの含有量が34at.%以下のコバルト-クロム合金もしくはコバルト-クロム-白金合金であり、
前記第2の磁性層に含まれる硼素の含有量は前記第3の磁性層に含まれる硼素の含有量より少なく、
前記第3の磁性層に含まれる硼素の含有量は8at.%以上であり、
前記非磁性中間層はルテニウムを含有するものであることが望ましい。
前記下地膜は第1の下地層と第2の下地層と第3の下地層を有し、
前記第1と第2の下地層は非晶質合金層であり、
前記第3の下地層は硼素の含有量が1at.%以上6at.%以下のクロム-チタン-硼素合金層であり、
前記第1の磁性層はクロムの含有量が34at.%以下のコバルト-クロム合金もしくはコバルト-クロム-白金合金であり、
前記第2の磁性層に含まれる硼素の含有量は前記第3の磁性層に含まれる硼素の含有量より少なく、さらにタンタルを含有し、
前記第3の磁性層に含まれる硼素の含有量は8at.%以上であり、
前記非磁性中間層はルテニウムを含有するものであることが望ましい。
前記第3と第4の磁性層の保磁力が160kA/m以上である。
前記第3と第4の磁性層は前記非磁性中間層により磁気的に分断されている。
前記磁性膜の全ての磁性層は同じ方向に磁化される。
本発明によれば、高い媒体S/Nを有し、オーバーライト特性に問題なく、ビットエラーレートに優れ、かつ熱揺らぎに対しても十分に安定な面内磁気記録媒体を提供することが可能となる。
まず、図2を参照して以下に説明する実施例による磁気記録媒体(磁気ディスク)を搭載する磁気ディスク装置の一例を示す。磁気ディスク装置10は、磁気ディスク1、磁気ディスク1を搭載し回転させるスピンドルモータ3、磁気ディスク1に対して記録あるいは再生を行う磁気ヘッド4、磁気ヘッド4を支持するサスペンション5、サスペンション5が取り付けられボイスコイル7を保持するキャリッジ6、ボイスコイル7の上下に配置された磁気回路8、磁気ヘッド4のアンロード時に磁気ヘッド4が退避するランプ機構9を具備する。ボイスコイル7に通電することにより、キャリッジ6が回転し、サスペンション5に支持されている磁気ヘッド4が磁気ディスク1の半径方向に移動する。
図3は、磁気ヘッド4の構造を示す模式的斜視図である。磁気ヘッド4は基体40上に形成された再生用の磁気抵抗効果型ヘッドと記録用の電磁誘導型ヘッドとを併せ持つ複合型ヘッドである。磁気抵抗効果型ヘッドは下部磁気シールド41と上部磁気シールド44の間に配置された磁気抵抗センサ42を有し、磁気抵抗センサ42の両端には信号取り出し用の電極43が配置されている。ここで再生トラック幅をTwr、2つのシールド層間の距離をGsと呼ぶ。電磁誘導型ヘッドは、絶縁分離層45の上に配置された下部磁極46と、下部磁極46とで閉磁気回路を構成する上部磁極48と、閉磁気回路と交差するように設けられたコイル47とを有する。ここで、書き込み幅をTww、書き込みギャップ長をGlと呼ぶ。尚、この図では、シールド層と磁気抵抗センサ間のギャップ層、記録磁極間のギャップ層は省略してある。
図1に本発明の実施例による磁気記録媒体(磁気ディスク)の断面構成を示す。磁気ディスク1は基板10に対して両面が同じ構成であるので、図1では片面のみ示している。磁気ディスク1は、基板10に下地膜(第1の下地層11、第2の下地層12、第3の下地層13)、磁性膜(第1の磁性層14、第2の磁性層15、第3の磁性層16、非磁性中間層17、第4の磁性層18)、保護膜19、潤滑膜20が順に堆積された膜構造をとる。基板10として、化学強化されたガラス基板、あるいはリンを含有したニッケル合金をアルミニウム合金にめっきした剛体基板を用いることが好ましい。これらの基板上に概ね円板の周方向に微細なテクスチャ加工を施すことが、磁気的な異方性を付与する上で好ましい。検証の結果、円板の半径方向に測定した表面粗さは間歇接触型の原子間力顕微鏡で5μm角の大きさを観察した結果、最大高さRmaxで2.68nmから4.2nm、平均表面粗さRaで0.23nmから0.44nmの基板を用いれば、磁気ヘッドの浮上信頼性が十分であることが確認できた。
基板10と第1の磁性層14の間に下地膜を形成することにより、磁性膜の結晶配向性を制御し、結晶粒径を微細化することが可能である。ここでは、基板と第1の磁性層との間にTi-Co-Ni合金からなる第1の下地層と、W-Co合金からなる第2の下地層と、Cr-Ti-B合金からなる体心立方構造をとる第3の下地層を設けた。磁性膜は4層の磁性層が積層された構成となっており、第1の磁性層14、第2の磁性層15、第3の磁性層16は連続的にスパッタして直接積層し、第4の磁性層18は第3の磁性層16の上部にRu等からなる非磁性中間層17を介して形成した。第3の磁性層16と第4の磁性層18の保磁力を160kA/m以上にすることにより、これらの磁性層は反強磁性結合することなく、非磁性中間層17により磁気的に分断される。媒体ノイズは記録を担う記録層の磁性粒子数の平方根に反比例することが知られており、第3の磁性層16と第4の磁性層18を磁気的に分断することにより、記録層が実質的に二層となり、それによって記録を担う磁性粒子数が実質的に2倍となるため、媒体ノイズを低減でき、S/Nが向上する。
第1の磁性層14としてCo-Cr合金、Co-Cr-Pt合金等のコバルト基合金を用いた。第1の磁性層14の膜厚はその上部に形成される第2の磁性層15以降の磁性層より薄くすることによって、磁性層の結晶粒径を微細化でき媒体ノイズを低減することができる。第2、第3、第4の磁性層15,16,18には、Co-Cr-Pt-B合金、Co-Cr-Pt-B-Ta合金、Co-Cr-Pt-B-Cu合金等、CrとPtとBを含有するCo基合金を用いた。磁性層の残留磁化Brと膜厚tの積Brtに関し、第2の磁性層15のBrtが第3の磁性層16のBrtより小さく、第3の磁性層16のBrtが第4の磁性層18のBrtより小さく、第4の磁性層18のBrtが媒体全体のBrtに占める割合が40%から55%の範囲内にすることによって、媒体の書き込み性能を向上することができる。磁気ヘッドにより書き込みが行われたときの各磁性層の磁化の方向は同じ方向である。
上記構成の磁性膜において、磁性層の結晶配向性を安定化させるために、第1の磁性層14に含まれるCrの濃度を34at.%以下とするのが好ましい。
第3の磁性層16に含まれるBの濃度に比べ第2の磁性層に含まれるBの濃度が低ければ、磁性層の結晶配向性を向上することができ、高媒体S/Nを実現する上でより好ましい。
第2の磁性層15以降の磁性層にPtを含有させることにより、媒体の保磁力を確保する。第2の磁性層15以降の磁性層にBを含ませることにより、磁性層の結晶粒径を微細化し媒体ノイズを減少させる。
第2の磁性層15にTaを含有させることにより、特にヘッド磁界の届きにくい基板10に近い側の磁性層の異方性磁界を低減でき、媒体の書き込み性能が向上する。
下地膜、磁性膜、保護膜は、ターゲットをスパッタすることによって基板上に形成することができる。物理蒸着法として直流スパッタの他に、高周波スパッタ、直流パルススパッタ等の方法も有効である。直流スパッタ法を用いる場合には、第2の磁性層以降のプロセスでバイアス電圧を印加することが、保磁力を増加させる点で好ましい。
上記構成の磁気ディスクを搭載した磁気ディスク装置においては、1平方ミリメートル当たり160メガビット以上の面記録密度を実現することが可能となる。
以下、各実施例の製法及び構成について詳細に説明する。
<実施例1>
表面を化学強化したアルミノシリケートガラス基板10をアルカリ洗浄し、乾燥させた後、第1の下地層11として厚さ15nmのTi-40at.%Co-10at.%Ni合金層、第2の下地層12として3nmのW-30at.%Co合金層を室温で形成した。続いてランプヒータによって基板10の温度を約360〜400℃になるように加熱した後、第3の下地層13として厚さ8nmのCr-10at.%Ti-3at.%B合金を形成した。更に厚さ1.2nmのCo-16at.%Cr-9at.%Pt合金からなる第1の磁性層14、Co-22at.%Cr-14at.%Pt-6at.%B-2at.%Ta合金からなる第2の磁性層15、Co-12at.%Cr-13at.%Pt-12at.%B合金からなる第3の磁性層16、厚さ0.8nmのRuからなる非磁性中間層17、Co-12at.%Cr-13at.%Pt-10at.%B合金からなる第4の磁性層18を順次形成後、保護膜として3nmのカーボンを主成分とする膜19を形成した。保護膜形成後、パーフルオロアルキルポリエーテルを主成分とする潤滑剤を塗布して厚さ1.8nmの潤滑膜20を形成した。
上記多層膜の形成は枚葉式スパッタリング装置を用いて行った。このスパッタリング装置のベース真空度は1.0〜1.2×10-5Paとし、タクトは9秒とした。第1の下地層から第3の磁性層までは0.53〜0.93PaのArガス雰囲気中で成膜した。加熱はArに酸素を1%添加した混合ガス雰囲気中で行った。カーボン保護膜はArに窒素を10%添加した混合ガス雰囲気中で形成した。第3の下地層13、第2の磁性層15、第3の磁性層16および第4の磁性層18のスパッタ時に-200Vのバイアス電圧を基板10に印加した。第1の下地層11、第2の磁性層15、第3の磁性層16および第4の磁性層18の放電時間は4.5秒、第2の下地層12、第1の磁性層14および非磁性中間層17の放電時間は2.5秒、第3の下地層16の放電時間は4.0秒とした。作製した媒体のBrt(Br:磁性層の残留磁化、t:磁性層の膜厚)と残留保磁力HcrはFast Remanent Moment Magnetometer(FRMM)を用いて評価した。KV/kT(K:結晶磁気異方性定数、V:磁性結晶粒の体積、k:ボルツマン定数、T:絶対温度)は、振動試料型磁力計(VSM)を用い、室温における7.5秒から240秒までの残留保磁力の時間依存性を、Sharrockの式にフィッティングして求めた。発明者らの検討から、この手法により求めたKV/kTが概ね70以上であれば、熱揺らぎによる出力減衰を抑制でき、信頼性上問題はないという結果を得た。
電磁変換特性の評価は記録用の電磁誘導型磁気ヘッドと再生用のスピンバルブ型磁気ヘッドを併せ持つ複合型ヘッドと組み合わせてスピンスタンドで行った。図4に本実施例及び他の実施例で用いられるヘッドの特性を示す。ヘッドサンプルNo.1-6の各々の、最高線記録密度HF(kFC/mm)、記録電流Iw(mA)、センス電流Is(mA)、書込みトラック幅Tww(μm)、読出しトラック幅Twr(μm)、スキュー角Skew(deg.)、回転数(s-1)が示されている。本実施例の評価にはヘッドサンプルNo.1を用いた。中記録密度MF=HF/2で記録した時の出力と、高記録密度HFにおける媒体ノイズから信号対雑音比Smf/Nを求めた。低記録密度LF=HF/10で記録後、高記録密度HF信号を重ね書きしてLF信号の減衰比からオーバーライト特性O/Wを求めた。ビットエラーレート(BER)はランダムパターンで特定のトラックをほぼ1周記録した直後に読み出しを行った際の、総読み出しバイト数に対するエラーバイト数をカウントすることによって求めた。
本実施例(試験例101-104)の評価結果を図5に示す。第2の磁性層15、第3の磁性層16および第4の磁性層18の膜厚を変えた媒体のBrt(Tnm)、Hcr(kA/m)、KV/kT、O/W(dB)、Smf/N(dB)、BERの対数logBERが示されている。第2、第3、第4の磁性層の膜厚が減少するに従って、Brtが減少し、KV/kTが劣化した。第2、第3、第4の磁性層の膜厚が減少するに従って、O/Wは改善した。Smf/NとlogBERは膜厚には大きく依存しなかった。Smf/Nはすべて15dB以上の良好な値であった。logBERはすべて−6桁以下の極めて良好な値であった。以上より、第2、第3および第4の磁性層の膜厚を変化させることによって、Smf/NやlogBERを劣化させることなくKV/kTを調節できることがわかった。ただし、膜厚が厚くなるとO/W特性が劣化するため、O/W特性の劣化を許容範囲内に抑える必要がある。発明者らの検討では、O/Wが−25dB以下であれば低温での書き込み性能に問題はなかった。
<比較例1>
比較例1として、実施例1の第2の磁性層15を形成しない媒体を作製した。本比較例(試験例111〜114)の評価結果を図6に示す。電磁変換特性の評価には実施例1と同一のヘッドを用いた。実施例1の媒体に比べ、Smf/Nは0.4dB以上劣化し、logBERは1桁以上劣化した。これは、他の磁性層よりもCr濃度の高い第2の磁性層15を形成することが、媒体ノイズ低減のために有効であるためと考えられる。これより、実施例1の第2の磁性層15を形成することが媒体性能向上に必須であることがわかる。
<比較例2>
比較例2として、実施例1の第3の磁性層16を形成しない媒体を作製した。本比較例(試験例121〜124)の評価結果を図7に示す。電磁変換特性の評価には実施例1と同一のヘッドを用いた。実施例1の媒体に比べ、Smf/Nは約1dB劣化し、logBERは約1桁劣化した。本比較例2の媒体の磁化曲線をVSMで測定したところ、磁化曲線が階段状になっていた。第3の磁性層16が形成されない場合、第1の磁性層14と第2の磁性層15を積層した磁性層部分の保磁力が、非磁性中間層17によって分けられた第4の磁性層の保磁力より著しく低くなり、磁化曲線が階段状になったものである。記録に関わる2層の磁性層の保磁力が大きく異なることが、電磁変換特性に悪影響を及ぼし、Smf/NとlogBERが大きく劣化したものと考えられる。以上より、実施例1の第3の磁性層16を形成することが媒体性能向上に必須であることがわかる。
<比較例3>
比較例3として、実施例1の非磁性中間層17と第4の磁性層18を形成しない媒体を作製した。本比較例(試験例131〜134)の評価結果を図8に示す。電磁変換特性の評価には実施例1と同一のヘッドを用いた。実施例1の媒体に比べ、Smf/Nが約1dB劣化し、logBERが約1桁劣化した。非磁性中間層17と第4の磁性層18を形成しない場合、実質的に記録に関わる磁性層が1層のみになってしまうため、記録に関わる磁性粒子の数が減少し、ノイズが増加したものと考えられる。また、試験例No.134などのBrtの小さな媒体は、出力不足も性能劣化の原因と考えられる。以上より、実施例1の非磁性中間層17と第4の磁性層18が媒体性能向上に必須であることがわかる。
<比較例4>
比較例4として、実施例1の第2の磁性層15の替わりに0.6nmのRu中間層を形成した媒体を作製した。本比較例(試験例141〜144)の評価結果を図9に示す。電磁変換特性の評価には実施例1と同一のヘッドを用いた。実施例1の媒体に比べ、Smf/Nが0.1〜0.8dB劣化し、logBERが0.6〜1.1桁劣化した。実施例1の第2の磁性層15の替わりに0.6nmのRuを形成した場合、第1の磁性層14と第2の磁性層15は互いの磁化が反平行となる反強磁性結合を形成する。このような反強磁性結合を形成した場合、一般には媒体性能は向上すると言われている。しかし本比較例4の場合、Cr濃度の高い第2の磁性層15を形成しないことによるノイズの増加が媒体性能の劣化につながったものと考えられる。以上より、一般に媒体性能向上に有利とされる反強磁性結合を導入しても、磁性層の層数を4層から3層に減らしてしまうと逆に媒体性能は劣化してしまうことがわかる。
<比較例5>
比較例5として、実施例1の第1の磁性層14を形成しない媒体を作製した。本比較例はFRMMよる評価で測定エラーとなり磁気特性を評価できなかった。PtとBを含むCo合金からなる磁性層をCr-Ti-B合金下地層上に直接形成した場合、Co合金磁性層は下地層上にエピタキシャル成長せず、磁性層は面内配向しない。すなわち、第1の磁性層14が形成されないことで第2の磁性層15以降の磁性層において面内配向性が得られなかったため、磁気特性が評価できないほど媒体特性が劣化したのである。これより、面内磁気記録媒体に必要な面内配向性を得るには第1の磁性層14が必須であることがわかる。
以上の比較例1〜5の結果から、媒体性能向上のためには、磁性層が少なくとも4層必要であることがわかる。
<比較例6>
比較例6として、実施例1の非磁性中間層17を形成しない媒体を作製した。本比較例(試験例151〜154)の評価結果を図10に示す。電磁変換特性の評価には実施例1と同一のヘッドを用いた。実施例1の媒体に比べKV/kTが約40大きくなったものの、Smf/Nは約4dB劣化し、logBERは約2.5桁劣化した。第3の磁性層16と第4の磁性層18の間に非磁性中間層17を形成することによって記録層を2層に分けると、記録に関わる磁性粒子の数が約2倍になるため、媒体ノイズを大きく低減できる。すなわち、実施例1の非磁性中間層17を形成しないと、媒体ノイズが大きく増加することになる。これより、第3の磁性層16と第4の磁性層18の間に非磁性中間層17を形成することが、媒体性能向上に必須であることがわかる。
<実施例2>
実施例1と同様にして第1の下地層11から非磁性中間層17まで形成後、第4の磁性層18として以下の合金層を形成した。
Co-8at.%Cr-13at.%Pt-12at.%B、
Co-10at.%Cr-13at.%Pt-12at.%B、
Co-12at.%Cr-13at.%Pt-10at.%B、
Co-12at.%Cr-13at.%Pt-12at.%B、
Co-12at.%Cr-13at.%Pt-14at.%B、
Co-14at.%Cr-13at.%Pt-12at.%B。
その上に実施例1と同様にして保護膜19と潤滑膜20を形成した。本実施例(試験例201〜206)の評価結果を図11に示す。電磁変換特性の評価には図4のヘッドNo.2を用いた。図中の各磁性層のBrtは設計値である。全ての試験例において70以上の良好なKV/kT、−25dB以下の良好なO/W、15dB以上の良好なSmf/Nおよび−6桁以下の極めて良好なlogBERが得られた。特に試験例202、203のようなCrとBの合計濃度が22at.%、すなわちCoとPtの合計濃度が78at.%の合金を用いたとき、最も良好なSmf/NとlogBERが得られた。
<実施例3>
実施例1と同様にして第1の下地層11から第2の磁性層15まで形成後、第3の磁性層16として以下の合金層を形成した。
Co-8at.%Cr-13at.%Pt-12at.%B、
Co-10at.%Cr-13at.%Pt-12at.%B、
Co-12at.%Cr-13at.%Pt-10at.%B、
Co-12at.%Cr-13at.%Pt-12at.%B、
Co-12at.%Cr-13at.%Pt-14at.%B、
Co-14at.%Cr-13at.%Pt-12at.%B。
その上に実施例1と同様にして非磁性中間層17、第4の磁性層18、保護膜19および潤滑膜20を形成した。本実施例(試験例301〜306)の評価結果を図12に示す。電磁変換特性の評価には図4のヘッドNo.2を用いた。図中の各磁性層のBrtは設計値である。試験例301を除く全ての試験例において70以上の良好なKV/kT、−25dB以下の良好なO/W、15dB以上の良好なSmf/Nおよび−6桁以下の極めて良好なlogBERが得られた。特に試験例304のCo-12at.%Cr-13at.%Pt-12at.%Bを用いた場合、最も良好なSmf/NとlogBERが得られた。
<実施例4>
実施例1と同様にして第1の下地層11から第1の磁性層14まで形成後、第2の磁性層15として以下の合金層を形成した。
Co-20at.%Cr-14at.%Pt-6at.%B-2at.%Ta、
Co-22at.%Cr-14at.%Pt-4at.%B-2at.%Ta、
Co-22at.%Cr-14at.%Pt-6at.%B-2at.%Ta、
Co-22at.%Cr-14at.%Pt-6at.%B、
Co-24at.%Cr-14at.%Pt-6at.%B。
その上に実施例1と同様にして第3の磁性層16、非磁性中間層17、第4の磁性層18、保護膜19および潤滑膜20を形成した。本実施例(試験例401〜405)の評価結果を図13に示す。電磁変換特性の評価には図4のヘッドNo.3を用いた。図中の各磁性層のBrtは設計値である。全ての試験例において70以上の良好なKV/kT、−25dB以下の良好なO/W、15dB以上の良好なSmf/Nおよび−6桁以下の極めて良好なlogBERが得られた。試験例404のCo-22at.%Cr-14at.%Pt-6at.%Bを用いた媒体のSmf/NとlogBERが他の試験例に比べ若干悪くなった。Co-22at.%Cr-14at.%Pt-6at.%B合金は本試験例中の第2の磁性層15としては最も飽和磁化の大きい材料であることから、第2の磁性層15の材料としては飽和磁化の小さな材料の方が好ましいことが示唆される。試験例404以外の試験例はすべて第2の磁性層15のBrtが第3の磁性層のBrtより小さいことから、第2の磁性層のBrtを第3の磁性層のBrtよりも小さくすることが媒体性能向上につながると考えられる。
<実施例5>
実施例1と同様にして第1の下地層11から非磁性中間層17まで形成後、第4の磁性層18として以下の合金層を形成した。
Co-12at.%Cr-13at.%Pt-10at.%B、
Co-12at.%Cr-13at.%Pt-12at.%B、
Co-12at.%Cr-14at.%Pt-8at.%B、
Co-14at.%Cr-14at.%Pt-8at.%B、
Co-12at.%Cr-12at.%Pt-10at.%B-2at.%Cu、
Co-11at.%Cr-12at.%Pt-14at.%B-4at.%Cu。
その上に実施例1と同様にして保護膜19と潤滑膜20を形成した。本実施例(試験例501〜506)の評価結果を図14に示す。電磁変換特性の評価には図4のヘッドNo.4を用いた。図中の各磁性層のBrtは設計値である。全ての試験例において70以上の良好なKV/kT、−25dB以下の良好なO/Wが得られた。B濃度が8at.%で他の媒体より低い試験例503、504のSmf/Nが、B濃度が10at.%以上の媒体に比べ若干低くなった。これより、第4の磁性層のB濃度は10at.%以上が好ましいことがわかる。
<実施例6>
実施例1と同様にして第1の下地層11から第3の下地層13まで形成後、第1の磁性層14として0.6〜2.0nmの以下の合金層を形成した。
Co-16at.%Cr-9at.%Pt、
Co-14at.%Cr、
Co-16at.%Cr、
Co-20at.%Cr、
Co-27at.%Cr、
Co-14at.%Cr-2at.%B、
Co-14at.%Cr-4at.%B、
Co-24at.%Cr-4at.%B、
Co-28at.%Cr-4at.%B。
その上に実施例1と同様にして第2の磁性層14、第3の磁性層15、非磁性中間層17、第4の磁性層18、保護膜19と潤滑膜20を形成した。図15にBERの第1の磁性層14の膜厚依存性に関するグラフを示す。電磁変換特性の評価には図4のヘッドNo.5を用いた。膜厚が0.8nm以下において各材料ともBERが劣化しているが、これは第1の磁性層14が薄くなることによって、第2の磁性層15以降の結晶配向性が劣化したためと考えられる。BERが最良となる膜厚は材料によって異なり、Cr濃度が高く磁化の小さな材料ほど最良のBERをとる膜厚が厚くなった。第1の磁性層14のBrtの値が第1の磁性層14の最適点に関係していることが示唆される。Bを含む第1の磁性層14はBを含まない第1の磁性層14に比べてBERは同等以下となった。第1の磁性層14にBを含むことによって、その上に形成される第2の磁性層15以降の結晶配向性が劣化することが原因と考えられる。第1の磁性層14の各合金において最もBERが良好であった膜厚における各媒体特性を図16に示す(試験例601〜609)。
<実施例7>
実施例1と同様にして第1の下地層11から第3の下地層13まで形成後、第1の磁性層として0.8〜4.0nmの以下の合金層を形成した。
Co-16at.%Cr-9at.%Pt、
Co-16at.%Cr-12at.%Pt、
Co-19at.%Cr-8at.%Pt、
Co-27at.%Cr、
Co-34at.%Cr、
Co-46at.%Cr、
Co-14at.%Cr-4at.%Ta、
Co-18at.%Cr-4at.%Ta、
Co-30at.%Cr-4at.%Ta、
Co-25at.%Cr-2at.%Ta。
その上に第2の磁性層15としてCo-22at.%Cr-14at.%Pt-4at.%B-2at.%Ta合金層を形成し、実施例1と同様にして第3の磁性層16、非磁性中間層17、第4の磁性層18、保護膜19と潤滑膜20を形成した。図17にBERの第1の磁性層14の膜厚依存性に関するグラフを示す。電磁変換特性の評価には図4のヘッドNo.6を用いた。Co-46at.%CrとCo-30at.%Cr-4at.%Taを用いた媒体は、Brtが大きく劣化し、X線回折にCoの00.2ピークが現れた。CrやTaが多量に含まれることによってCoの結晶性が乱れ、磁性層の結晶配向性が大きく劣化したものである。Taを含む第1の磁性層14はCo-Cr合金やCo-Cr-Pt合金に比べBERが劣化した。Taが含まれることが磁性層の結晶配向性の劣化を引き起こしたものと考えられる。Co-Cr合金とCo-CrPt合金に関しては、実施例6の場合と同様に、Cr濃度が高く磁化の小さな材料ほど最良のBERをとる膜厚が厚くなった。Cr濃度が19at.%以下の材料では、膜厚2.2nm以上でBERが大きく劣化する傾向を示したが、Cr濃度が27at.%以上の材料では膜厚4nm付近までBERの大きな劣化はなかった。生産安定性を考えた場合、膜厚に対するBERの変動が小さいCr濃度が高い材料を使うことが好ましい。第1の磁性層14の各合金において最もBERが良好であった膜厚における各媒体特性を図18に示す(試験例701〜710)。
<実施例8>
実施例1と同様にして第1の下地層11から第3の下地層13まで形成後、第1の磁性層14として1.5nmのCo-16at.%Cr-9at.%Pt合金層、第2の磁性層15としてCo-22at.%Cr-14at.%Pt-4at.%B-2at.%Ta合金層を形成し、第3の磁性層16として以下の合金層を形成した。
Co-10at.%Cr-13at.%Pt-14at.%B、
Co-12at.%Cr-13at.%Pt-12at.%B、
Co-14at.%Cr-13at.%Pt-10at.%B、
Co-16at.%Cr-12at.%Pt-8at.%B、
Co-10at.%Cr-14at.%Pt-10at.%B-2at.%Ta、
Co-14at.%Cr-14at.%Pt-8at.%B-2at.%Ta、
Co-12at.%Cr-12at.%Pt-10at.%B-2at.%Cu、
Co-11at.%Cr-12at.%Pt-14at.%B-4at.%Cu。
その上に実施例1と同様にして非磁性中間層17、第4の磁性層18、保護膜19と潤滑膜20を形成した。本実施例(試験例801〜824)の評価結果を図19に示す。電磁変換特性の評価には図4のヘッドNo.6を用いた。図中の各磁性層のBrtは設計値である。第3の磁性層16にTaが含まれる試験例813〜818、および第3の磁性層16のB濃度が8at.%と低い試験例810〜812のSmf/Nが他の試験例に比べ0.2dBから最大約1dB劣化し、BERが0.2桁から最大約1桁劣化した。磁性層にTaが含まれると融点が下がり、結晶粒径が肥大化する傾向があるため、ノイズが増加したものと考えられる。また、磁性層にTaが含まれると結晶磁気異方性が大きく減少する。そのため、媒体の保磁力を維持するために第3の磁性層16の膜厚を厚くする必要があった。このこともノイズ増加につながったものと考えられる。また、B濃度が下がると磁性層の結晶粒径が肥大化するため、試験例810〜812も同様にノイズが増加したものと考えられる。一方、第3の磁性層16にCuを4at.%含んだ試験例822〜824のBERとSmf/Nが他の媒体より全般に改善する傾向を示した。Cuは磁性層中に添加されるとCrの偏析を促進し、結晶磁気異方性を向上する効果がある。試験例822〜824のようにB濃度が14at.%と高い場合、Co-Cr-Pt-B合金を用いた場合では膜厚を厚くしなければ保磁力の維持が難しい。しかし、Cuを含んだ場合、結晶磁気異方性が向上するため、膜厚を厚くすることなく保磁力を維持することができ、高B化によるノイズの低減効果が得られたものと考えられる。また、本実施例では、媒体全体のBrtに対する各磁性層のBrtの比率を変化させているが、本実施例における比率の範囲内では電磁変換特性に大きな差は現れなかった。
<実施例9>
実施例1と同様にして第1の下地層11、第2の下地層12を形成して基板加熱を行った後、第3の下地層13として8.0nmの以下の合金層を形成した。
Cr-10at.%Ti、
Cr-10at.%Ti-1at.%B、
Cr-10at.%Ti-2at.%B、
Cr-10at.%Ti-3at.%B、
Cr-10at.%Ti-4at.%B、
Cr-10at.%Ti-5at.%B、
Cr-10at.%Ti-6at.%B、
Cr-10at.%Ti-7at.%B。
その上に第1の磁性層14として1.5nmのCo-16at.%Cr-9at.%Pt合金層、第2の磁性層15として7.7nmのCo-22at.%Cr-14at.%Pt-4at.%B-2at.%Ta合金層を形成した。その上に第1の実施例と同様に6.1nmの第3の磁性層16、非磁性中間層17、8.1nmの第4の磁性層18、保護膜19と潤滑膜20を形成した。本実施例(試験例901〜908)の評価結果を図20に示す。電磁変換特性の評価には図4のヘッドNo.6を用いた。第3の下地層13のB濃度が2〜4at.%において、Smf/NとBERが最も良好となった。B濃度が低い場合、第3の下地層13の結晶粒径が大きくなり、その結果磁性層の結晶粒径も肥大化してノイズが増加するためSmf/NとBERが劣化する。B濃度が高い場合、第3の下地層13の結晶粒径は微細化するが結晶性が劣化し、その結果磁性層の結晶配向性が劣化するためSmf/NとBERが劣化する。以上のように、第3の下地層13の結晶粒径と結晶性のバランスから、B濃度が2〜4at.%が最良となった。
以上の説明のとおり、本発明の実施例によれば、高い媒体S/Nを有し、オーバーライト特性に問題なく、ビットエラーレートに優れ、かつ熱揺らぎに対しても十分に安定な面内磁気記録媒体を提供することが可能となる。更に高感度な磁気ヘッドと組み合わせることにより、1平方ミリメートル当たり160メガビット以上の面記録密度を実現することが可能な信頼性の高い磁気記憶装置を提供することが可能となる。
本発明の実施例による磁気ディスクの構成を示す断面図である。 本発明の磁気ディスクが搭載される磁気ディスク装置の構成を示す平面図である。 磁気ヘッドの構成を示す模式的斜視図である。 磁気ディスクの電磁変換特性の測定に用いた磁気ヘッドの特性を示す図である。 実施例1による磁気ディスクの電磁変換特性を示す図である。 比較例1の電磁変換特性を示す図である。 比較例2の電磁変換特性を示す図である。 比較例3の電磁変換特性を示す図である。 比較例4の電磁変換特性を示す図である。 比較例6の電磁変換特性を示す図である。 実施例2による磁気ディスクの電磁変換特性を示す図である。 実施例3による磁気ディスクの電磁変換特性を示す図である。 実施例4による磁気ディスクの電磁変換特性を示す図である。 実施例5による磁気ディスクの電磁変換特性を示す図である。 実施例6による磁気ディスクの第1の磁性層の膜厚依存性を示す図である。 実施例6による磁気ディスクの電磁変換特性を示す図である。 実施例7による磁気ディスクの第1の磁性層の膜厚依存性を示す図である。 実施例7による磁気ディスクの電磁変換特性を示す図である。 実施例8による磁気ディスクの電磁変換特性を示す図である。 実施例9による磁気ディスクの電磁変換特性を示す図である。
符号の説明
1…磁気ディスク、
10…基板、
11…第1の下地層、
12…第2の下地層、
13…第3の下地層、
14…第1の磁性層、
15…第2の磁性層、
16…第3の磁性層、
17…非磁性中間層、
18…第4の磁性層、
19…保護膜、
20…潤滑膜。

Claims (14)

  1. 基板と、該基板の上部に形成された下地膜と、該下地膜の上部に第1の磁性層と第2の磁性層と第3の磁性層と非磁性中間層と第4の磁性層が積層された磁性膜と、該磁性膜の上部に形成された保護膜とを有し、
    前記磁性膜の各磁性層はクロムを含有するコバルト基合金であり、
    前記第1の磁性層は前記複数の磁性層の中で最も厚さが薄く、
    前記第2と第3と第4の磁性層はさらに白金と硼素を含有し、
    前記第2の磁性層のBrtは前記第3の磁性層のBrtより小さく、
    前記第3の磁性層のBrtは前記第4の磁性層のBrtより小さく、
    前記第4の磁性層のBrtが前記磁性膜全体のBrtに占める割合が40%から55%の範囲内であることを特徴とする磁気記録媒体。
  2. 前記下地膜は第1の下地層と第2の下地層と第3の下地層を有し、
    前記第1と第2の下地層は非晶質合金層であり、
    前記第3の下地層はクロム-チタン-硼素合金層であり、
    前記第1の磁性層はコバルト-クロム合金もしくはコバルト-クロム-白金合金であり、
    前記第2の磁性層に含まれる硼素の含有量は前記第3の磁性層に含まれる硼素の含有量より少なく、
    前記非磁性中間層はルテニウムを含有することを特徴とする請求項1記載の磁気記録媒体。
  3. 前記下地膜は第1の下地層と第2の下地層と第3の下地層を有し、
    前記第1と第2の下地層は非晶質合金層であり、
    前記第3の下地層は硼素の含有量が1at.%以上6at.%以下のクロム-チタン-硼素合金層であり、
    前記第1の磁性層はクロムの含有量が34at.%以下のコバルト-クロム合金もしくはコバルト-クロム-白金合金であり、
    前記第2の磁性層に含まれる硼素の含有量は前記第3の磁性層に含まれる硼素の含有量より少なく、
    前記第3の磁性層に含まれる硼素の含有量は8at.%以上であり、
    前記非磁性中間層はルテニウムを含有することを特徴とする請求項1記載の磁気記録媒体。
  4. 前記下地膜は第1の下地層と第2の下地層と第3の下地層を有し、
    前記第1と第2の下地層は非晶質合金層であり、
    前記第3の下地層は硼素の含有量が1at.%以上6at.%以下のクロム-チタン-硼素合金層であり、
    前記第1の磁性層はクロムの含有量が34at.%以下のコバルト-クロム合金もしくはコバルト-クロム-白金合金であり、
    前記第2の磁性層に含まれる硼素の含有量は前記第3の磁性層に含まれる硼素の含有量より少なく、さらにタンタルを含有し、
    前記第3の磁性層に含まれる硼素の含有量は8at.%以上であり、
    前記非磁性中間層はルテニウムを含有することを特徴とする請求項1記載の磁気記録媒体。
  5. 前記第3と第4の磁性層の保磁力が160kA/m以上であることを特徴とする請求項1記載の磁気記録媒体。
  6. 前記第3と第4の磁性層は前記非磁性中間層により磁気的に分断されていることを特徴とする請求項1記載の磁気記録媒体。
  7. 前記磁性膜の全ての磁性層は同じ方向に磁化されることを特徴とする請求項1記載の磁気記録媒体。
  8. 基板と、該基板の上部に形成された下地膜と、該下地膜の上部に第1の磁性層と第2の磁性層と第3の磁性層と非磁性中間層と第4の磁性層が積層された磁性膜と、該磁性膜の上部に形成された保護膜とを有し、
    前記磁性膜の各磁性層はクロムを含有するコバルト基合金であり、
    前記第2と第3と第4の磁性層はさらに白金と硼素を含有し、
    前記第1の磁性層は前記下地膜の上部に直接形成され、
    前記第2の磁性層は前記第1の磁性層の上部に直接形成され、
    前記第3の磁性層は前記第2の磁性層の上部に直接形成され、
    前記第4の磁性層は前記第3の磁性層の上部に前記非磁性中間層を介して形成され、
    前記複数の磁性層の中で前記第1の磁性層の膜厚が最も小さく、前記第4の磁性層の膜厚が最も大きいことを特徴とする磁気記録媒体。
  9. 前記下地膜は第1の下地層と第2の下地層と第3の下地層を有し、
    前記第1と第2の下地層は非晶質合金層であり、
    前記第3の下地層はクロム-チタン-硼素合金層であり、
    前記第1の磁性層はコバルト-クロム合金もしくはコバルト-クロム-白金合金であり、
    前記第2の磁性層に含まれる硼素の含有量は前記第3の磁性層に含まれる硼素の含有量より少なく、
    前記非磁性中間層はルテニウムを含有することを特徴とする請求項8記載の磁気記録媒体。
  10. 前記下地膜は第1の下地層と第2の下地層と第3の下地層を有し、
    前記第1と第2の下地層は非晶質合金層であり、
    前記第3の下地層は硼素の含有量が1at.%以上6at.%以下のクロム-チタン-硼素合金層であり、
    前記第1の磁性層はクロムの含有量が34at.%以下のコバルト-クロム合金もしくはコバルト-クロム-白金合金であり、
    前記第2の磁性層に含まれる硼素の含有量は前記第3の磁性層に含まれる硼素の含有量より少なく、
    前記第3の磁性層に含まれる硼素の含有量は8at.%以上であり、
    前記非磁性中間層はルテニウムを含有することを特徴とする請求項8記載の磁気記録媒体。
  11. 前記下地膜は第1の下地層と第2の下地層と第3の下地層を有し、
    前記第1と第2の下地層は非晶質合金層であり、
    前記第3の下地層は硼素の含有量が1at.%以上6at.%以下のクロム-チタン-硼素合金層であり、
    前記第1の磁性層はクロムの含有量が34at.%以下のコバルト-クロム合金もしくはコバルト-クロム-白金合金であり、
    前記第2の磁性層に含まれる硼素の含有量は前記第3の磁性層に含まれる硼素の含有量より少なく、さらにタンタルを含有し、
    前記第3の磁性層に含まれる硼素の含有量は8at.%以上であり、
    前記非磁性中間層はルテニウムを含有することを特徴とする請求項8記載の磁気記録媒体。
  12. 前記第3と第4の磁性層の保磁力が160kA/m以上であることを特徴とする請求項8記載の磁気記録媒体。
  13. 前記第3と第4の磁性層は前記非磁性中間層により磁気的に分断されていることを特徴とする請求項8記載の磁気記録媒体。
  14. 前記磁性膜の全ての磁性層は同じ方向に磁化されることを特徴とする請求項8記載の磁気記録媒体。
JP2005153666A 2005-05-26 2005-05-26 磁気記録媒体 Pending JP2006331538A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005153666A JP2006331538A (ja) 2005-05-26 2005-05-26 磁気記録媒体
US11/440,504 US20060269793A1 (en) 2005-05-26 2006-05-24 Magnetic recording medium for longitudinal recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005153666A JP2006331538A (ja) 2005-05-26 2005-05-26 磁気記録媒体

Publications (1)

Publication Number Publication Date
JP2006331538A true JP2006331538A (ja) 2006-12-07

Family

ID=37463782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005153666A Pending JP2006331538A (ja) 2005-05-26 2005-05-26 磁気記録媒体

Country Status (2)

Country Link
US (1) US20060269793A1 (ja)
JP (1) JP2006331538A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294106A (ja) * 2005-04-08 2006-10-26 Hitachi Global Storage Technologies Netherlands Bv 磁気記録媒体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5605733A (en) * 1992-01-22 1997-02-25 Hitachi, Ltd. Magnetic recording medium, method for its production, and system for its use
US5432012A (en) * 1992-06-30 1995-07-11 Hmt Technology Corporation Thin-film medium with compositional gradient
US5851643A (en) * 1993-11-11 1998-12-22 Hitachi, Ltd. Magnetic recording media and magnetic recording read-back system which uses such media
US6773834B2 (en) * 1999-10-08 2004-08-10 Hitachi Global Storage Technologies Netherlands B.V. Laminated magnetic recording media with antiferromagnetically coupled layer as one of the individual magnetic layers in the laminate
US6623874B2 (en) * 2000-10-06 2003-09-23 Hitachi, Ltd. Magnetic recording medium and magnetic recording apparatus
JP3884932B2 (ja) * 2001-09-07 2007-02-21 株式会社日立グローバルストレージテクノロジーズ 磁気記録媒体及び磁気記憶装置
SG96659A1 (en) * 2001-11-08 2003-06-16 Inst Data Storage Laminated antiferromagnetically coupled media for data storage
US6899959B2 (en) * 2002-02-12 2005-05-31 Komag, Inc. Magnetic media with improved exchange coupling
US6811890B1 (en) * 2002-04-08 2004-11-02 Maxtor Corporation Intermediate layer for antiferromagnetically exchange coupled media
JP2004355716A (ja) * 2003-05-29 2004-12-16 Hitachi Global Storage Technologies Netherlands Bv 磁気記録媒体
JP2007004907A (ja) * 2005-06-24 2007-01-11 Hitachi Global Storage Technologies Netherlands Bv 磁気記録媒体

Also Published As

Publication number Publication date
US20060269793A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP4126276B2 (ja) 反強磁性結合された垂直磁気記録媒体
US9093100B2 (en) Magnetic recording medium including tailored exchange coupling layer and manufacturing method of the same
US8771849B2 (en) Perpendicular magnetic recording medium and magnetic recording/reproducing apparatus using the same
JP2008176858A (ja) 垂直磁気記録媒体、及びそれを用いたハードディスクドライブ
JP2009238299A (ja) 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
US9734857B2 (en) Stack including a magnetic zero layer
JP4746778B2 (ja) 磁気記録媒体及びそれを用いた磁気記憶装置
CN104240728A (zh) 磁记录介质
US20090258253A1 (en) Magnetic recording medium for high density recording and magnetic storage device using same
CN108573715B (zh) 辅助磁记录介质和磁存储装置
JP2005251375A (ja) 垂直磁気記録媒体、および、その製造方法
JP4624838B2 (ja) 垂直磁気記録媒体、その製造方法、および磁気記憶装置
JP2004110941A (ja) 磁気記録媒体および磁気記憶装置
US8404368B2 (en) Multi-layer stack adjacent to granular layer
JP4348971B2 (ja) 垂直磁気記録媒体の製造方法及び垂直磁気記録媒体
JP3588039B2 (ja) 磁気記録媒体および磁気記録再生装置
US20060228588A1 (en) Magnetic recording medium
JP2006085751A (ja) 磁気記録媒体および磁気記憶装置
JP2006331538A (ja) 磁気記録媒体
JP4626861B2 (ja) 垂直磁気記録媒体
JP2007102833A (ja) 垂直磁気記録媒体
US20060019125A1 (en) Magnetic recording medium and production method thereof as well as magnetic disc device
JP2001243618A (ja) 磁気記録媒体、その製造方法、スパッタリングターゲット、および磁気記録再生装置
JP5542372B2 (ja) 垂直磁気記録媒体
JP2007080380A (ja) 磁気記録媒体