JP2006329452A - 二酸化炭素ヒートポンプ冷暖房システム - Google Patents

二酸化炭素ヒートポンプ冷暖房システム Download PDF

Info

Publication number
JP2006329452A
JP2006329452A JP2005149809A JP2005149809A JP2006329452A JP 2006329452 A JP2006329452 A JP 2006329452A JP 2005149809 A JP2005149809 A JP 2005149809A JP 2005149809 A JP2005149809 A JP 2005149809A JP 2006329452 A JP2006329452 A JP 2006329452A
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
refrigerant
heat
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005149809A
Other languages
English (en)
Other versions
JP4761832B2 (ja
Inventor
Ken Yasuda
田 研 安
Takeshi Yokoyama
山 武 横
Atsushi Tanaka
中 淳 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2005149809A priority Critical patent/JP4761832B2/ja
Publication of JP2006329452A publication Critical patent/JP2006329452A/ja
Application granted granted Critical
Publication of JP4761832B2 publication Critical patent/JP4761832B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Abstract

【課題】冷房、暖房、給湯の各運転を自在に切換が出来、冷房運転で十分な冷房能力を得ることが出来る二酸化炭素ヒートポンプ冷暖房システムの提供。
【解決手段】冷暖房負荷側に連通する冷温水ライン(Lw)と、温水を貯蔵する貯湯タンク(1)と、冷媒である二酸化炭素が循環する循環系統(50)とを備え、圧縮機(2)から吐出された超臨界状態の高圧冷媒と貯湯タンク(1)に連通するライン(Lt)を流れる水との間で熱交換を行う第1の熱交換器(3)と、冷媒と大気との間で熱交換を行う第2の熱交換器(4)と、冷媒と冷温水ライン(Lw)を流れる冷温水との間で熱交換を行う第3の熱交換器(5)と、第2の熱交換器(4)から第3の熱交換器(5)に向う冷媒と第3の熱交換器(5)で熱交換を行った後の冷媒との間で熱交換を行う第4の熱交換器(6)とを有し、第1のバイパスライン(Lb1)と、第2のバイパスライン(Lb2)とを有した構成。
【選択図】図1

Description

本発明は、二酸化炭素(以下、「CO2」と表示)を冷媒とするヒートポンプ冷暖房システムに関する。
CO2を冷媒とするヒートポンプサイクルと、フロン圧縮冷凍サイクルとでは、圧縮装置から吐出された冷媒を冷却する冷却装置(フロン圧縮冷凍サイクルにおける凝縮器)を出た段階で、フロン圧縮冷凍サイクルでは冷媒は高圧液相状態となるが、CO2を冷媒とするヒートポンプサイクルの場合は超臨界状態の流体となる点で相違する。
ここで、CO2を冷媒とするヒートポンプサイクルの場合は、冷却装置を出た冷媒の流体が、液体にならない場合(CO2が超臨界状態のままである場合)がある。その意味で、本明細書では、CO2を冷媒とするヒートポンプ冷凍サイクルにおいて、(フロン圧縮冷凍サイクルにおける凝縮器に相当する)当該冷却装置は、「凝縮器」とは言わずに「ガスクーラー」と記載している。
なお、膨脹弁で減圧した後のサイクルについては、フロン圧縮冷凍サイクルも、CO2を冷媒とするヒートポンプサイクルも同様である。
ここで、CO2を冷媒として用いる場合には、
(A) オゾン層破壊係数は新フロンとは変わらないが、地球温暖化係数が新フロンよりもCO2の方が小さい、
(B) ガスクーラーにおける温度がフロンよりも高いので、ガスクーラーを水冷にすれば、給湯機能(80℃程度の温水が得られる)が得られる、
という利点がある。
なお、冷媒としてフロンを用いた圧縮冷凍サイクルの場合、凝縮器を水冷にしても、ぬるま湯程度(50℃程度)の温水しか得られない。
図42に示す様な、CO2ヒートポンプを用いて、給湯と冷房を行う技術(給湯冷房装置)が提案されている(特許文献1参照)。その給湯冷房装置は、深夜電力を利用した給湯運転を行うと同時に、給湯運転時に蒸発器において発生する冷熱を利用して、家屋を輻射冷房するように構成されている。
冷房の方式は、蒸発器の冷熱で空気を直接冷却する直接膨張式か、又は、蒸発器の冷熱で冷水を作るチラー式(図42)が選択出来る。何れの方式の場合でも、被冷却部を家屋の外壁、又は屋根の中に隠蔽することにより居室内に冷風を吹き出さないようにして、就寝時に適した冷房が行える。
具体的には(図42を参照して)、上記給湯冷房装置は、冷媒を圧縮する圧縮機10と、圧縮機10の吐出冷媒の熱を湯水に放熱する放熱器20とを備えている。更に、上記給湯冷房装置は、冷媒を減圧する減圧弁30と、冷媒にブラインの熱を吸熱させるブライン熱交換器110、及び冷媒に大気の熱を吸収させる空気熱交換器40を有した冷媒回路Rとを備えている。加えて、上記給湯冷房装置は、ブライン熱交換器110のブライン通路110bと、冷房用循環ポンプ120と、吸熱器130を環状に接続してなるブライン回路Bとを備えている。
そして、前記圧縮機10及び冷房用循環ポンプ120を作動させて、ブライン熱交換器110を流通する低温の冷媒とブライン通路110bを流通するブラインとを熱交換させてブラインを冷却するヒートポンプは、吸熱器130を家屋の外壁又は内壁内に配置している。
然るに、上記技術は、被冷却部(吸熱器130)が、家屋の外壁や屋根の中に隠蔽されるので、居室内を直接冷却することが出来ず、間接的冷却となるため効率が悪い。又、被冷却部(吸熱器130)が冷房専用になっているため、暖房機としては使用出来ず、別の暖房機が必要となる。加えて、ガスクーラー(放熱器)20の放熱先が、貯湯タンク90に限られているので、給湯需要のないときには運転できず、冷房単独運転が出来ない。更に、肝心の夏場に常に給湯需要があるとは限らないので、冷房の使い勝手が悪くなる。
上記技術とは別に、CO2ヒートポンプを用いて、給湯と冷房、又は給湯と暖房を同時に行うシステムが提案されている(例えば、特許文献2参照)。
係るシステムでは、冷房は、蒸発器の冷熱で冷水を作り、その冷水を(チラー式の)配管によって空調ユニットに導いて行う。一方、暖房は(圧縮機からの超臨界状態の)吐出ガスのガスクーラーからの放熱を利用して水を加熱して、その温水を配管によって空調ユニットに導いて行うように構成されている。
このシステムは、空調ユニットとして床暖房装置を用いる場合、暖房運転時の空調ユニット敷設位置は、床だけでもよいが、冷房運転時には、床だけを冷却しても快適な冷房を行えず、他の位置にも空調ユニットを敷設する必要がある。
冷房単独運転の場合、ガスクーラーの放熱先は外気だけに限られているので、CO2冷媒の場合、臨界温度が31.1℃と比較的低いため、それよりも外気温が高い場合は、超臨界状態のCO2が冷却されないので、十分な冷房効果が得られない。このことを図15のモリエル線図(装置の構成は図示を省略)に基づいて詳しく説明する。
図43において、上記空調ユニットは点A(圧縮機の吸込口)からスタートするものとして、点Bに向って圧縮機内で断熱圧縮が行われ、点Bから点Cに向っては放熱器によって放熱が行われる。ここで、T1=35℃(外気が31.1℃の場合に、外気を用いて冷却した場合の冷媒温度)であり、外気よりも冷媒を低温にすることは出来ない。即ち、以降の減圧工程は点Cから点Dを辿ることとなる。
次の点Dから点Aでは、気液2相流のCO2の液相部分のみが蒸発する。点Dから点Aの(蒸発行程の)長さ、すなわちエンタルピの差が冷房能力(冷房出力)を示している。
点Bから点Cの放熱工程において、仮に、点Cが、点Eまで延長されれば、以降、点Eから点Fの減圧工程、を経て、膨張行程点Fから点Aが得られる。
然るに、このシステムではCO2の臨界温度31.1℃よりも低くはならないので、低い冷房能力に甘んじることとなる。
ここで、点Eは、レシーバタンク(液相の冷媒が減圧弁に確実に行くようにする)が機能を発揮する冷媒温度を示すポイントである。
しかるに、35℃程度までしか冷媒温度が低下しない(点C)のであれば、(液相の冷媒が減圧弁に確実に行くようにするという)レシーバタンクの機能は発揮されない。
夏場であれば、外気温度が31.1℃を超えることは多くなり、また、特許文献1に関して上述した様に、夏場には給湯需要は少なくなるので、給湯需要が無い状態で冷房運転を行う事が多くなる。従って、給湯需要の無く且つ外気温度が31.1℃を超える場合に十分な冷房能力が得られない特許文献2のシステムは、肝心の夏場に十分な冷房能力を発揮することが出来ない。
特開2003−185290号公報 特開2004−218921号公報
本発明は上述した従来技術の問題点に鑑みて提案されたものであり、CO2を冷媒とするヒートポンプサイクルであって、冷房運転、暖房運転、給湯運転を自在に切り換えることが出来て、給湯運転を伴わない冷房のみの運転が可能であって、しかも、外気温度が31.1℃を超える場合であっても給湯運転を伴わない冷房のみの運転で十分な冷房能力を得ることが出来る二酸化炭素ヒートポンプ冷暖房システムの提供を目的としている
本発明の二酸化炭素ヒートポンプ冷暖房システム(CO2ヒートポンプ冷暖房システム)は、冷暖房負荷側に連通する冷温水ライン(Lw)と、温水を貯蔵する貯湯タンク(1)と、冷媒である二酸化炭素が循環する循環系統(熱源ユニット50)とを備え、該循環系統(50)は、低圧気相冷媒を圧縮して超臨界状態の高圧冷媒として吐出する圧縮機(2)と、圧縮機(2)から吐出された超臨界状態の高圧冷媒と貯湯タンク(1)に連通するライン(Lt)を流れる水との間で熱交換を行う第1の熱交換器(水冷ガスクーラー3、冷却装置)と、冷媒と大気との間で熱交換を行う第2の熱交換器(空冷ガスクーラー4)と、冷媒と冷温水ライン(Lw)を流れる冷温水との間で熱交換を行う第3の熱交換器(冷房蒸発器5)と、第2の熱交換器(4)から第3の熱交換器(5)に向う冷媒と第3の熱交換器(5)で熱交換を行った後の冷媒との間で熱交換を行う第4の熱交換器(補助ガスクーラー6)とを有し、圧縮機(2)の吐出口(2o)と第1の熱交換器(3)とを連通し、第4の熱交換器(6)を経由して第2の熱交換器(4)と第3の熱交換器(5)とを連通し、第4の熱交換器(6)を経由して第3の熱交換器(5)と圧縮機(2)の吸込口(2i)とを連通する冷媒ライン(Lc)を有しており、前記冷温水ライン(Lw)は貯湯タンク(1)或いは第3の熱交換器(5)と選択的に連通する様に構成されていることを特徴としている(図8〜図12:請求項1)。
また、本発明の二酸化炭素ヒートポンプ冷暖房システム(CO2ヒートポンプ冷暖房システム)は、冷暖房負荷側に連通する冷温水ライン(Lw)と、温水を貯蔵する貯湯タンク(1)と、冷媒である二酸化炭素が循環する循環系統(熱源ユニット50)とを備え、該循環系統(50)は、低圧気相冷媒を圧縮して超臨界状態の高圧冷媒として吐出する圧縮機(2)と、圧縮機(2)から吐出された超臨界状態の高圧冷媒と貯湯タンク(1)に連通するライン(Lt)を流れる水との間で熱交換を行う第1の熱交換器(水冷ガスクーラー3、冷却装置)と、冷媒と大気との間で熱交換を行う第2の熱交換器(空冷ガスクーラー4)と、冷媒と冷温水ライン(Lw)を流れる冷温水との間で熱交換を行う第3の熱交換器(冷房蒸発器5)と、第2の熱交換器(4)から第3の熱交換器(5)に向う冷媒と冷温水ライン(Lw)を流れる冷温水との間で熱交換を行う第4の熱交換器(補助ガスクーラー6)とを有し、圧縮機(2)の吐出口(2o)と第1の熱交換器(3)とを連通し、第4の熱交換器(6)を経由して第2の熱交換器(4)と第3の熱交換器(5)とを連通し、第3の熱交換器(5)と圧縮機(2)の吸込口(2i)とを連通する冷媒ライン(Lc12)を有し、前記冷温水ライン(Lw)は貯湯タンク(1)或いは第3の熱交換器(5)と選択的に連通し且つ戻りライン(Lw7)は第4の熱交換器(6)を経由してから第3の熱交換器(5)に連通するように配置されていることを特徴としている(図31〜図35:請求項2)。
本発明において、圧縮機(2)の吐出口(2o)と第1の熱交換器(3)とを連通する冷媒ライン(Lc2)から分岐して第2の熱交換器(4)をバイパス(して第2の熱交換器4と第3の熱交換器5とを連通する冷媒ラインに合流)する第1のバイパスライン(Lb1)と、第2の熱交換器(4)と第3の熱交換器(5)とを連通する冷媒ライン(Lc6)から分岐して第4の熱交換器(6)をバイパス(して第2の熱交換器4と第3の熱交換器5とを連通する冷媒ラインLc9に合流)する第2のバイパスライン(Lb2)とを有することが好ましい(図1〜図6、図25〜図29:請求項3)
本発明において、前記循環系統(熱源ユニット50)は、バイパス弁(Vb2)が介装されて前記第1の熱交換器(水冷ガスクーラー3)をバイパスする第3のバイパスライン(Lb4)を有しているのが好ましい(図7:請求項4)。
また本発明において、前記循環系統(熱源ユニット50)は、バイパス弁(Vb3(図7)、Vb4(図30))が介装されて前記第3の熱交換器(冷房蒸発器5)及び第4の熱交換器(補助ガスクーラー6)(それに加えて、受液器8及び冷房膨張弁9)をバイパスする第4のバイパスライン(Lb5(図7)、Lb6(図30))とを有しているのが好ましい(図7、図30:請求項5)。
本発明において、第3の熱交換器(5)と第4の熱交換器(6)とを連通する冷媒ライン(Lc10)から分岐して第4の熱交換器(6)をバイパスし、第4の熱交換器(6)と圧縮機(2)の吸込口(2i)とを連通するライン(Lc11)と合流する第5のバイパスライン(Lb10)を設けることが好ましい(図13〜図18:請求項6)。
そして、第4のバイパスライン(Lb5)と第5のバイパスライン(Lb10)とを設ける様に構成しても良い(図19〜図24)。
そして、第4の熱交換器(補助ガスクーラー6)が第2の熱交換器(4)から第3の熱交換器(5)に向う冷媒と冷温水ライン(Lw)を流れる冷温水との間で熱交換を行う場合において(図31〜図35:請求項2)、第4の熱交換器(補助ガスクーラー6)に向う冷温水ライン(Lw7)から分岐して、第4の熱交換器(6)と第3の熱交換器(5)とを連通する冷温水ライン(戻りライン:Lw7)に合流する第6のバイパスライン(Lb11)を設けているのが好ましい(図36〜図41:請求項7)。
本発明の実施に際して、第2の熱交換器(空冷ガスクーラー4)よりも上流側(圧縮機2の吐出口2o側)の領域に開閉弁(電磁弁Vb1)及び第1の膨張弁(暖房膨張弁7)を介装し、該開閉弁(電磁弁Vb1)及び第1の膨張弁(暖房膨張弁7)は並列に配置されており、第3の熱交換器(冷房蒸発器5)よりも上流側(圧縮機2の吐出口側2o)の領域に設けられた受液器(8)及び第2の膨張弁(冷房膨張弁9)を介装しているのが好ましい。
また、前記第1のバイパスライン(Lb1)及び第2のバイパスライン(Lb2)には三方弁(Vc1,Vc2)が設けられており、該三方弁(Vc1,Vc2)を開閉制御することにより、冷媒(CO2)が前記第1のバイパスライン(Lb1)及び/又は第2のバイパスライン(Lb2)を流れるか否かが決定される様に構成されているのが好ましい。
本発明において、冷暖房負荷としては、冷温水が供給される輻射パネル(12,13)を採用することが出来る。但し、輻射パネル(12,13)以外の冷暖房機構を冷暖房負荷としても良い。
また、輻射パネル(12,13)へ供給する液体は、冷温水に代えて、不凍液等にすることも可能である。
また、後述する様に本発明においては、冷房単独運転、貯湯のみの運転、冷房及び貯湯運転、暖房及び貯湯運転を自在に切り換えることが出来るが、係る運転モードの切り換えは、例えばリモコンのような手許スイッチで行う様に構成することが出来る。
上述する構成を具備する本発明によれば、第4の熱交換器(補助ガスクーラー6)において、第2の熱交換器(空冷ガスクーラー4)から第3の熱交換器(冷房蒸発器5)に向う冷媒と第3の熱交換器(冷房蒸発器5)で熱交換を行った後の冷媒との間で熱交換を行う様に構成した場合(図1〜図24)には、冷房単独運転を行う際には(図2、図3、図9、図14、図20)(図15、図21は除く)、(例えば、貯湯用ポンプP1を停止することにより)貯湯タンク(1)に連通するライン(Lt)における水の流れを停止して、圧縮機(2)から吐出された高圧冷媒を第2の熱交換器(空冷ガスクーラー4)に供給して外気により冷却せしめ、第2の熱交換器(空冷ガスクーラー4)で冷却された冷媒を第4の熱交換器(補助ガスクーラー6)でさらに冷却した後に、第3の熱交換器(冷房蒸発器5)で冷水と熱交換させれば良い。
すなわち、(例えば、貯湯用ポンプP1を停止することにより)貯湯タンク(1)に連通するライン(Lt)における水の流れを停止することにより、高圧冷媒は第1の熱交換器(水冷ガスクーラー3)を、いわゆる「素通り」することとなり、第1の熱交換器(水冷ガスクーラー3)において高圧冷媒が保有する熱量が貯湯タンク(1)側に投入されることは無い。これにより、給湯需要が存在しないにも拘らず給湯運転が為されてしまう、という事態は防止できる。
そして、圧縮機(2)から吐出された高圧冷媒を第2の熱交換器(空冷ガスクーラー4)にて外気により冷却せしめ、第2の熱交換器(空冷ガスクーラー4)で冷却された冷媒を第4の熱交換器(補助ガスクーラー6)でさらに冷却した後に、第3の熱交換器(冷房蒸発器5)で冷水と熱交換しているので、外気温が31.1℃を超えており、冷媒が第2の熱交換器(空冷ガスクーラー4)では完全に液相になる程度まで冷却されなかった場合にも、第4の熱交換器(補助ガスクーラー6)で、第3の熱交換器(冷房蒸発器5)で熱交換を行った後の冷媒を用いてさらに冷却しているので、第4の熱交換器(補助ガスクーラー6)を出た段階で冷媒は液相状態となる。その結果、外気温が31.1℃を超えた場合であっても、給湯運転をすること無く、十分な冷房能力を得ることが出来るのである。
ここで、外気温度が比較的低い場合(例えば、30℃未満の場合)には、圧縮機(2)から吐出された高圧冷媒は、第2の熱交換器(空冷ガスクーラー4)にて外気により十分に冷却されるので、第4の熱交換器(補助ガスクーラー6)において、第3の熱交換器(冷房蒸発器5)で熱交換を行った後の冷媒を用いてさらに冷却する必要は無い(図15、図21)。
一方、本発明において、第4の熱交換器(補助ガスクーラー6)を、第2の熱交換器(空冷ガスクーラー4)から第3の熱交換器(冷房蒸発器5)に向う冷媒と冷温水ライン(Lw)を流れる冷温水との間で熱交換を行う様に構成すると共に、冷温水ライン(Lw)の戻りライン(Lw7)が第4の熱交換器(6)を経由してから第3の熱交換器(5)に連通(Lw8)するように構成すれば(図25〜図29、図31〜図35、図36〜図41)、冷房単独運転を行う際(図26、図32、図37)には(図38を除く)、(例えば、貯湯用ポンプP1を停止することにより)貯湯タンク(1)に連通するライン(Lt)における水の流れを停止して、圧縮機(2)から吐出された高圧冷媒を第2の熱交換器(空冷ガスクーラー4)に供給して外気により冷却せしめ、第2の熱交換器(空冷ガスクーラー4)で冷却された冷媒を第4の熱交換器(補助ガスクーラー6)でさらに冷却した後に、第3の熱交換器(冷房蒸発器5)で冷水と熱交換させれば良い。
上述した様に、(例えば、貯湯用ポンプP1を停止することにより)貯湯タンク(1)に連通するライン(Lt)における水の流れを停止すれば、第1の熱交換器(水冷ガスクーラー3)において高圧冷媒が保有する熱量が貯湯タンク(1)側に投入されることは無く、給湯需要が存在しないにも拘らず給湯運転が為されてしまう、という事態が防止できる。
そして、外気温が31.1℃を超えており、冷媒が第2の熱交換器(空冷ガスクーラー4)では完全に液相になる程度まで冷却されなかった場合にも、第4の熱交換器(補助ガスクーラー6)で、冷温水ライン(Lw)の戻りラインを流れる冷水を用いてさらに冷却しているので、第4の熱交換器(補助ガスクーラー6)を出た段階で冷媒は液相状態となり、十分な冷房能力を得ることが出来る。
ここで、外気温度が比較的低い場合(例えば、30℃未満の場合)には、圧縮機(2)から吐出された高圧冷媒は、第2の熱交換器(空冷ガスクーラー4)にて外気により十分に冷却されるので、第4の熱交換器(補助ガスクーラー6)において、冷温水ライン(Lw)の戻りラインを流れる冷水を用いて冷却する必要は無い(図38)。
第4の熱交換器(補助ガスクーラー6)において、第2の熱交換器(空冷ガスクーラー4)から第3の熱交換器(冷房蒸発器5)に向う冷媒と第3の熱交換器(冷房蒸発器5)で熱交換を行った後の冷媒との間で熱交換を行う様に構成した場合(図1〜図6、図8〜図12、図13〜図18、図19〜図24)においても、第4の熱交換器(補助ガスクーラー6)を、第2の熱交換器(空冷ガスクーラー4)から第3の熱交換器(冷房蒸発器5)に向う冷媒と冷温水ライン(Lw)を流れる冷温水との間で熱交換を行う様に構成すると共に、冷温水ライン(Lw)の戻りラインが第4の熱交換器(6)を経由してから第3の熱交換器(5)に連通するように構成した場合(図25〜図29、図31〜図35、図36〜図41)においても、貯湯のみの運転、冷房及び貯湯運転、暖房及び貯湯運転を同様に行うことが出来る。
貯湯のみの運転に際しては(図4、図10、図16、図22、図27、図33、図39)、(例えば、冷温水循環用のポンプP2を停止することにより)冷温水ライン(Lw)における冷温水の循環を停止する。冷温水ライン(Lw)の循環を停止すれば、第3の熱交換器(冷媒蒸発器5)及び第4の熱交換器(補助ガスクーラー6)において、冷媒は熱交換を行わないので、いわゆる「素通りした」状態となる。そして、冷温水が循環しないので、冷房負荷側に熱の授受は行われず、冷房運転、暖房運転の何れも行われない。
その様な状態において、第1の熱交換器(水冷ガスクーラー3)により、圧縮機(2)から吐出された超臨界状態の高圧冷媒(超臨界状態のCO2)が保有する熱量を、貯湯タンク(1)に連通するライン(Lt)を流れる水に投入すれば、高温の温水(約80℃)が貯湯タンク(1)に貯蔵されるのである。
第1の熱交換器(水冷ガスクーラー3)で冷却された冷媒は、第2の熱交換器(空冷ガスクーラー4)で外気と熱交換を行うことで蒸発し、その後、第3の熱交換器(冷媒蒸発器5)及び第4の熱交換器(補助ガスクーラー6)を、いわゆる「素通り」して圧縮機(2)の吸込口側(2i)に戻されるのである。
冷房及び貯湯運転を行う場合には(図5、図11、図17、図23、図28、図34、図40)、冷温水ライン(Lw)を第3の熱交換器(冷媒蒸発器5)側に連通せしめると共に、第1の熱交換器(水冷ガスクーラー3)を流過した冷媒を第3の熱交換器(冷媒蒸発器5)へ連通させる。
圧縮機(2)から吐出された高圧冷媒は、第1の熱交換器(水冷ガスクーラー3)で、その保有する熱量を、貯湯タンク(1)に連通するライン(Lt)を流れる水に投入し、以って、高温の温水(約80℃)を貯湯タンク(1)に貯蔵せしめる。
第1の熱交換器(水冷ガスクーラー3)で十分に冷却された冷媒は、冷房膨張弁(9)で低圧液相冷媒となって、第3の熱交換器(冷媒蒸発器5)で冷水から蒸発熱を奪って冷却するのである。
暖房及び貯湯運転を行う場合(図6、図12、図18、図24、図29、図35、図41)には、貯湯のみの運転(図4、図10、図16、図22、図27、図33、図39)の状態から、冷温水ライン(Lw)を貯湯タンク(1)側に連通せしめ、貯湯タンク(1)内に温水を冷温水ライン(Lw)で循環して暖房負荷側に供給すれば良い。
本発明のヒートポンプ冷暖房装置によれば、空冷ガスクーラー(3)で冷却した後に、補助ガスクーラー(6)で冷媒を冷やしているので、外気温が31.1℃以上であっても、十分に液相となる。従って、冷房の運転ニーズが最も高い高外気温時31.1℃以上において、給湯需要の有無にかかわらず、自由に冷房単独運転が出来る。
フロン系冷媒のヒートポンプで冷房を行う空調機は、室外機と室内機を接続する冷媒配管を、現地で接手等を用いて施工するが、CO2ヒートポンプの場合は冷媒配管圧力が非常に高いため、現地での冷媒配管施工は接手部からの漏洩の懸念があり、困難であると一般に言われてきた。しかし、本発明の実施形態によれば、CO2冷媒配管が、熱源ユニットの内部で完結しているため、CO2冷媒配管の現地施工を行わずに直ちに冷房することが出来る。
CO2冷媒配管を熱源ユニットの内部で完結させて冷房する方式としては、次の2通り(方式一)、(方式二)が考えられるが後述する理由により、本発明の実施形態の方式(一)の方が優れている。
(方式一)熱源ユニット内の冷媒蒸発器で生成した冷水を、輻射パネルに導いて、輻射をする。
(方式二)熱源ユニット内の冷媒蒸発器で生成した冷水を、対流式室内機に導いて、室内機から冷風を吹き出させる(通常のエアコンの方式)。
フロン系冷媒の冷房機の一般的な方式は、対流式室内機へ、冷水ではなくフロン冷媒を直接導く方式が採られているが、この理由は、冷媒単位流量当りの冷却能力が、冷水よりもフロン冷媒の方が大きいためである(蒸発潜熱が使えるため)。ところが、冷媒を直接室内機へ導くことが困難なCO2ヒートポンプの場合は、冷水に変換してから室内へ導かなくてはならず、上記二つの方式の何れかの方法を採らざるを得ない。この場合、上記(方式二)では、前述した単位流量当りの冷却能力の理由により、十分な冷房能力を得るためには、フロン系冷媒の対流式室内機よりも大きな室内機を用いなければならず、設置性と美観上の問題が生じる。一方、(方式一)の複写パネルは、天井や、壁、床等と一体化させることが出来る(貼付、或いは埋め込みを施す)ので、面積が大きくなっても、設置性や美観上の問題が生じることはなく、冷房能力を稼ぐことが出来る。
以下、添付図面を参照して、本発明の実施形態について説明する。
先ず、図1〜図6を参照して第1実施形態を説明する。
図1の全体の構成を示すブロック図において、当該二酸化炭素ヒートポンプ冷暖房システム(CO2ヒートポンプ冷暖房システム)は、大きなユニット単位としては、空調負荷側40と、循環系統(熱源ユニット:以下、循環系統を熱源ユニットとも言う)50と貯湯タンク1とで構成されている。
空調負荷側40は、例えば、住宅10の居室11の床に張られた床用輻射パネル12と、天井に張られた天井用輻射パネル13とを有している。床用輻射パネル12と、天井用輻射パネル13の後述する冷温水ラインLwの入口側には水温センサSt1、St2が介装されている。
ここで、輻射パネルは、温熱或いは冷熱を居室内に与えるために、天井及び床に設けられたパネルを示し、「輻射」の形態で温熱或いは冷熱を投入するので、「輻射パネル」と称する。
輻射パネルにすれば、次の様なメリットがある。
冷房の場合、冷水温度が多少高くても、冷房が可能である。具体的には、冷水温度が13℃程度でも冷房が可能である(通常は、冷水温度が7℃)。
パネルであるので、広い面積を同時に冷却或いは加熱できる。
熱源ユニット50は、圧縮機2と、第1の熱交換器(水冷ガスクーラー:以降、第1の熱交換器を水冷ガスクーラーと言う)3と、第2の熱交換器(空冷ガスクーラー:以降、第2の熱交換器を空冷ガスクーラーと言う)4と、第3の熱交換器(冷房蒸発器:以降、第3の熱交換器を冷房蒸発器と言う)5と、第4の熱交換器(補助ガスクーラー:以降、第4の熱交換器を補助ガスクーラーと言う)6と、これらのユニットを循環可能に接続し、内部を冷媒である二酸化炭素(CO2)が循環する冷媒ラインLcとによって構成されている。ここで、空冷ガスクーラー4は、空冷ガスクーラーとして機能する場合と、蒸発器として機能する場合とがある。
冷媒ラインLcは、以下の配管類によって構成されている。圧縮機2の出口2oと水冷ガスクーラー3とは冷媒配管Lc1で接続されている。水冷ガスクーラー3と空冷ガスクーラー4とは水冷ガスクーラー側から、冷媒配管Lc2、第1の三方弁Vc1、冷媒配管Lc3、第1の分岐点B1、冷媒配管Lc4、第2の分岐点B2、冷媒配管Lc5で連通している。
冷媒配管Lc4には膨張弁7が介装されている。又、第1及び第2の分岐点B1、B2間は、開閉弁Vb1を介装したバイパスLb3で連通されている。
空冷ガスクーラー4と冷媒蒸発器5とは、間に補助ガスクーラー6を経由して、空冷ガスクーラー4側から、冷媒配管Lc5、第3の分岐点B3、冷媒配管Lc6、第2の三方弁Vc2、冷媒配管Lc7、補助ガスクーラー6、冷媒配管Lc8、第4の分岐点B4、冷媒配管Lc9で連通されている。
前記第1の三方弁Vc1と第3の分岐点B3とは第1のバイパスLb1で、空冷ガスクーラー4を迂回するように接続されている。
又、第2の三方弁Vb2と第4の分岐点B4とは第2のバイパスLb2で、補助ガスクーラー6を迂回するように接続されている。
配管Lc9には、第4の分岐点B4から冷媒蒸発器5に向って、受液器(液相冷媒が膨張弁9へ確実に到達するように構成されたレシーバタンク)8と膨張弁9が介装されている。
冷媒蒸発器5と補助ガスクーラー6とは、配管Lc10で接続されている。補助ガスクーラー6と圧縮機2の入口2iとは、配管Lc11で接続している。
かくして、各ユニットは上記配管類Lc1〜Lc11によって循環可能に連通している。
熱源ユニット50の冷媒蒸発器5は、空調負荷側40の床用輻射パネル12および天井用輻射パネル13と冷温水ラインLwによって冷温水が循環可能なように連通しており、冷媒ラインLcを流過する冷媒(高圧のCO2)と熱交換を行うように構成されている。
冷温水ラインLwは、集合部Bwと床用輻射パネル12の図示しない流入口及び天井用輻射パネル13の図示しない流入口を接続する冷温水管Lw31、Lw32と、集合部Gwと床用輻射パネル12の図示しない排出口及び天井用輻射パネル13の図示しない排出口を接続する冷温水管Lw41、Lw42とを有している。前記集合部Gwには、冷温水ポンプP2を介装した冷温水管Lw5が接続され、以下、三方弁Vw1、冷温水管Lw6を経由して熱源ユニット50の冷媒蒸発器5に至り、冷媒蒸発器5で、循環系等Lcを循環する冷媒(CO2)と熱交換した後、冷温水管Lw1、三方弁Vw2、冷温水管Lw2を経由して集合部Bwに接続される。
冷温水管Lw31、Lw32には、夫々開閉弁V31、V32が介装されている。
貯湯タンク1は、熱源ユニット50の水冷ガスクーラー3と、復路温水管Lt1と貯湯用ポンプP1を介装した往路貯湯管Lt2とで構成される貯湯ラインLtによって水(又は湯)が循環可能に接続されている。
又、貯湯タンク1の底部には、開閉弁Vaを介装した上水(水道水)ラインLa1が接続され、貯湯タンク1の上部には、給湯ラインLa2が接続されている。
冷温水ラインLwと貯湯タンク1とは温水ラインLdによって温水が、冷温水ラインLwと貯湯タンク1とを循環可能なように接続されている。即ち、貯湯タンク1の第1の接続口1aと冷温水ラインLw側の三方弁Vw1が温水ラインLdの温水管Ld1によって、また、貯湯タンク1の第2の接続口1bと冷温水ラインLw側の三方弁Vw2が温水ラインLdの温水管Ld2によって接続されている。
冷媒ラインLcでは、第1の熱交換器である水冷ガスクーラー3において、圧縮機2から吐出された超臨界状態の高圧冷媒(CO2)と、貯湯タンク1に連通するラインLtを流れる水との間で熱交換を行い、その後、第2の熱交換器である空冷ガスクーラー4において、冷媒(CO2)と大気との間で熱交換を行い、更に、第3の熱交換器である冷房蒸発器5において、冷媒と冷温水ラインLwを流れる冷温水との間で熱交換を行う。
冷房蒸発器5を出た冷媒は、第4の熱交換器である補助ガスクーラー6において、空冷ガスクーラー4から冷房蒸発器5に向う冷媒とで熱交換を行った後、圧縮機2に戻される。
冷温水ラインLwは貯湯タンク1或いは冷房蒸発器5と選択的に連通する様に構成されている。
図1の冷暖房装置では、上述の様に構成されており、開閉弁(電磁弁)Vb1或いは三方弁Vc1、Vc2を適宜切り換えて、且つ、貯湯タンク1や冷温水ラインLw、冷温水ラインLwに介装された冷温水循環ポンプP2や三方弁Vw1、Vw2、空調負荷として設けられた輻射パネル12,13と適宜組み合わせることにより、図2〜図5で示す様な、「冷房単独運転(図2及び図3)」、「貯湯(或いは給湯)のみの運転(図4)」、「冷房及び貯湯運転(図5)」、「暖房及び貯湯運転(図6)」を自在に切り換えることが出来る。
図1の場合、水温センサSt1、ST2の計測結果に基づいて、冷温水の供給を制御している。制御の具体的な内容については、従来公知の制御と同様である。
図2(作動状態を示した構成ブロック図)及び図3(モリエル線図)に基づいて、第1実施形態の冷房単独運転について説明する。なお、以降の全ての作動状態を示したブロック図において、流体が流れる回路は、太い実線で示し、三方弁において黒く塗り潰したポート側は閉塞しているものとする。
先ず、圧縮機2により高温高圧にされた冷媒は、冷媒配管Lc1を経由して水冷クーラ3に至る。貯湯ポンプP1が不作動であるので貯湯ラインLtでは温水(水)は循環せず、水冷クーラ3では放熱しないで、素通りする。その後、冷媒はバイパスLb3の開閉弁Vb1が全開状態であるので、冷媒配管Lc2からバイパスLb3を経由して、空冷ガスクーラー4に導入され、空気によって冷却され、中温高圧の冷媒と化す。空冷ガスクーラー4から出た冷媒は、冷媒配管Lc5、Lc6、三方弁Vc2、冷媒配管Lc7を経由して、補助ガスクーラー6に導入されて低温冷媒と熱交換されて液相となって、冷媒配管Lc9を経由して冷房蒸発器5に向う。途中、液相冷媒は受液器8に一端溜められた後、次の冷房膨張弁9で膨張させられ、冷房蒸発器5で冷水(冷媒)を冷却する。冷房蒸発器5を出た冷媒は、冷媒配管Lc10を経由した後、補助ガスクーラー6で空冷ガスクーラー4から冷房所蒸発器5に向う冷媒と熱交換した後、冷媒配管Lc10を経由して圧縮機2に戻る。
ここで、補助ガスクーラー6は、矢印Y1で示す冷媒を冷却するのが主目的であり、圧縮器2に戻る低圧気相冷媒を加熱するのが目的ではない。
水冷ガスクーラー3では高圧冷媒を冷却せず、空冷ガスクーラー4で冷却した後に、補助ガスクーラー6で冷媒を冷やしているので、外気温が31.1℃以上であっても、十分に液相となる。
すなわち、外気温が31.1℃以上あり、冷房蒸発器5では冷媒が外気+α℃(図3における温度T1℃:点「D」)までしか冷却できなくても、補助ガスクーラー6において、低圧気相冷媒と熱交換することにより、図3における点「E」で示す状態まで冷却される。
その結果、図3のモリエル線図において、点「F」と点「A」のエンタルピ差を大きくして、所望の冷房能力を得ることが出来る。
貯湯用ポンプP1を停止して、貯湯タンク1に連通する貯湯ラインLtにおける水の流れを停止することにより、高圧冷媒は水冷ガスクーラー3を、いわゆる「素通り」することとなり、水冷ガスクーラー3において高圧冷媒が保有する熱量が貯湯タンク1側に投入されることは無い。
これにより、給湯需要が存在しないにも拘らず給湯運転が為されてしまう、という事態は防止できる。
次に図4に基づいて、第1実施形態における、貯湯(或いは給湯)のみの運転について説明する。
図4に示す如く、貯湯(或いは給湯)のみの運転では、貯湯ポンプP1はON(作動)であり、三方弁Vc1は空冷ガスクーラー4側にのみ開放であり、三方弁Vc2については補助ガスクーラー6側に開放しても、補助ガスクーラー6をバイパスする側に開放しても、どちらでも可(どちらに開放されていても良い)である。
開閉弁Vb1は閉鎖し、空冷ガスクーラー4上流の膨張弁7は、膨張弁として、流量を調整しつつ、所定の開度で開いている。冷温水ラインLw循環用ポンプP2はOFF(不作動)である。
冷温水ラインLwに介装された三方弁Vw1、Vw2は、蒸発器5に連通する側が開放されていても、貯湯タンク1に連通する側が開放されていても、どちらでも可能である(どちらでも良い)。
圧縮機2から吐出された高圧冷媒は、冷媒配管Lc1から水冷ガスクーラー3に入り、高圧冷媒の保有する熱量は、水冷ガスクーラー3で貯湯ラインLtの水道水に投入される。すると、水道水が加熱されて、高温の温水(80℃程度の温水)として往路貯湯管Lt1を介して貯湯タンク1に溜められる。
水冷ガスクーラー3で放熱された冷媒は、冷媒配管Lc2、Lc4を経由して空冷ガスクーラー4に入り、空冷ガスクーラー4で外気から熱を貰い、低圧気相冷媒となる。ここで、空冷ガスクーラー4は蒸発器として作用している。
空冷ガスクーラー4で外気から熱を奪った低圧気相冷媒は、冷媒配管Lcの受液器8、冷房膨張弁9、蒸発器5、補助ガスクーラー6を素通り(熱交換や相変化を起こすこと無く通過すること)して、冷媒配管Lc11を経由して圧縮機2の吸い込み側に戻る。
ここで、冷媒は補助ガスクーラー6を通過する際に熱交換や相変化を起こすことは無いので、三方弁Vc2が補助ガスクーラー6側に開放しても、補助ガスクーラー6をバイパスする側(バイパスLb2)に開放しても、循環する冷媒の状態は相違無い。
冷温水ライン循環用ポンプP2は停止しているので、冷温水ラインLw内の冷温水は循環しない。従って、冷温水ラインLwに介装された三方弁Vw1、Vw2が、蒸発器5に連通する側が開放されていても、貯湯タンク1に連通する側が開放されていても、(冷温水が循環しないので)どちらでも構わない。
その結果、貯湯タンク1内には高温の温水(例えば、80℃程度)が貯蔵されるが、冷房及び暖房は行われないこととなる。
換言すれば、冷暖房を行わなくても高温の温水は得られる。
次に、図5に基づいて、第1実施形態における、冷房及び貯湯運転について説明する。
図5に示す如く、冷房及び貯湯運転では、三方弁Vc1は空冷ガスクーラー4をバイパスする側(バイパスLb1)へ開放し、三方弁Vc2は補助ガスクーラー8をバイパスする(バイパスLb2)側へ開放している。
貯湯ポンプP1及び冷温水循環用ポンプP2は、共にON(作動)であり、冷温水ラインLwに介装された三方弁Lw1、Lw2は、空調負荷側40から蒸発器5に連通する側に開放している。
貯湯ポンプP1がONなので、圧縮機2からの高圧冷媒は、その保有する熱量を水冷ガスクーラー3において貯湯ラインLtの水道水に投入される。水道水は加熱されて高温の温水となり、貯湯タンク1に貯蔵される。
水冷ガスクーラー3から出た液相冷媒は、バイパスLb1を経由した後、冷媒配管Lc6、バイパスLb2を経由し、冷媒配管Lc9の受液器8に導かれた後、冷房膨張弁9で膨張させられ、蒸発器5で冷温水ラインLwの冷水を冷却する。蒸発器5を出た冷媒は、冷媒配管Lc10及び補助ガスクーラー6を経由し、冷媒配管Lc11から圧縮機2に戻る。
尚、貯湯ラインLtを流れる水道水の温度が高いなどの理由により、水冷ガスクーラー3出口の冷媒が液相化出来なかった場合には、水冷ガスクーラー3を出た冷媒を、補助ガスクーラー6で一端冷却してから、受液器8に導入させればよい。その場合、三方弁Vc2は第2のバイパスLb2側のポートが閉塞している。
冷温水ラインLwに介装された三方弁Lw1、Lw2は、空調負荷側40から蒸発器5に連通する側に開放されているので、例温水ラインLwを流れる水は、蒸発器5において、低圧液相冷媒により蒸発熱を奪われて冷却される。
図5の場合は、水冷ガスクーラー3で冷媒であるCO2が十分に冷却されるので、外気温が31℃を超えていても、冷房能力に問題は生じない。
次に、図6に基づいて、第1実施形態における、暖房及び貯湯運転について説明する。
図4の貯湯運転に対して、冷温水循環用のポンプP2を駆動し、冷温水ラインLwの三方弁Vw1、Vw2を空調負荷側40から貯湯タンク1側に連通させることにより、貯湯タンク1内に貯蔵された温水を冷温水ラインLwで循環させている。
CO2冷媒の流れについては、図4に対して、空冷ガスクーラー4から蒸発器5に向う過程において、三方弁Vc2の補助ガスクーラー6に連通するポートが閉じているためバイパスLb2を経由する。
先ず、圧縮機2により高温高圧にされた冷媒は、冷媒配管Lc1から水冷ガスクーラー3に入り、水冷ガスクーラー3において、貯湯ラインLtの水道水と熱交換される。その際、冷媒は冷却されて低温高圧の液相冷媒となり、水道水は冷媒に加熱されてお湯となる。水冷ガスクーラー3から出た液相冷媒は、冷媒配管Lc4の暖房膨張弁7で膨張させられた後、更に空冷ガスクーラー4で外気によって加熱され、その後、冷媒配管Lc9の受液器8、膨張弁9、蒸発器5、冷媒配管Lc10、補助ガスクーラー6を素通りして冷媒配管Lc11から圧縮機2に戻る。
なお、水冷ガスクーラー3において加熱されたお湯は、貯湯タンク1に貯められるが、輻射パネル12,13側の2次温水は、温水加熱熱交換機において、貯湯タンク1内の温水で加熱されて、輻射暖房の熱源となる。
次に、図7を参照して第2実施形態について説明する。
図2、図4及び図6において、冷媒が水冷ガスクーラー3を素通り(図2)し、或いは、受液器8、冷房膨張弁9、蒸発器5を素通り(図4、図6)するに際しては、熱交換をする相手側の流体を循環させないことにより行っている。
これに対して、図7の第2実施形態では、水冷ガスクーラー3をバイパスする第3のバイパスラインLb4と、受液器8、冷房膨張弁9、蒸発器5、補助ガスクーラー6をバイパスする第4のバイパスラインLb5とを設け、水冷ガスクーラー3をバイパスするか否かは第3のバイパスラインLb4に介装したバイパス弁Vb2の開閉で決定し、受液器8、冷房膨張弁9、蒸発器5、補助ガスクーラー6をバイパスするか否かは第4のバイパスラインLb5に介装したバイパス弁Vb3の開閉で決定する。
すなわち、水冷ガスクーラー3をバイパスするならばバイパス弁Vb2を開き、
受液器8、冷房膨張弁9、蒸発器5、補助ガスクーラー6をバイパスするならばバイパス弁Vb3を開く。
係る第2実施形態(図7)における「冷房単独運転」、「貯湯のみの運転」、「冷房及び貯湯運転」、「暖房及び貯湯運転」の詳細については、上述した「冷媒が水冷ガスクーラーを素通り」する場合と、「受液器、冷房膨張弁、蒸発器を素通り」する場合を除き、図2〜図6で上述したのと同様である。
次に、図8〜図12を参照して第3実施形態を説明する。
図8〜図12の第3実施形態は、図8に全体構成を示すように、図1〜図6の第1実施形態に対して、第1及び第2のバイパスラインLb1、Lb2を廃止した実施形態である。
第1のバイパスラインLb1の廃止により、水冷クーラ3と第1の分岐点B1は冷媒配管Lc23によって接続される。また、第2のバイパスラインLb2の廃止により、水冷クーラ3と補助ガスクーラー6とは1本の冷媒配管Lc57で接続され、補助ガスクーラー6と冷房蒸発器5とは1本の冷媒配管Lc89で接続される。
それ以外の構成については第1実施形態と同様である。
図9に基づいて、冷房単独運転について説明する。
先ず、圧縮機2により高温高圧にされた冷媒は、冷媒配管Lc1を経由して水冷クーラ3に至る。貯湯ポンプP1が不作動であるので貯湯ラインLtでは温水(水)は循環せず、水冷クーラ3では放熱しないで、素通りする。その後、冷媒はバイパスLb3の開閉弁Vb1が全開状態であるので、冷媒配管Lc23からバイパスLb3を経由して、空冷ガスクーラー4に導入され、空気によって冷却され、中温高圧の冷媒と化す。空冷ガスクーラー4から出た冷媒は、冷媒配管Lc57を経由して、補助ガスクーラー6に導入されて低温冷媒と熱交換されて液相となって、冷媒配管Lc89を経由して冷房蒸発器5に向う。途中、液相冷媒は受液器8に一端溜められた後、次の冷房膨張弁9で膨張させられ、冷房蒸発器5で冷水(冷媒)を冷却する。冷房蒸発器5を出た冷媒は、冷媒配管Lc10を経由した後、補助ガスクーラー6で空冷ガスクーラー4から冷房所蒸発器5に向う冷媒と熱交換した後、冷媒配管Lc10を経由して圧縮機2に戻る。
冷房能力及び効率は、概ね第1実施形態と同じである。
次に図10に基づいて、第3実施形態における貯湯(或いは給湯)のみの運転について説明する。
図10に示す如く、貯湯(或いは給湯)のみの運転では、貯湯ポンプP1はON(作動)であり、開閉弁Vb1は閉鎖し、空冷ガスクーラー4上流の膨張弁7は、膨張弁として、流量を調整しつつ、所定の開度で開いている。
一方、冷温水ラインLw循環用ポンプP2はOFF(不作動)であって冷温水ラインLw内では例温水の流れはない。
圧縮機2から吐出された高圧冷媒は、冷媒配管Lc1から水冷ガスクーラー3に入り、高圧冷媒の保有する熱量は、水冷ガスクーラー3で貯湯ラインLtの水道水に投入される。すると、水道水が加熱されて、高温の温水(80℃程度の温水)として往路貯湯管Lt1を介して貯湯タンク1に溜められる。
水冷ガスクーラー3で放熱された冷媒は、冷媒配管Lc23、Lc4を経由して空冷ガスクーラー4に入り、空冷ガスクーラー4で外気から熱を貰い、低圧気相冷媒となる。ここで、空冷ガスクーラー4は蒸発器として作用している。
水冷ガスクーラーで外気から熱を奪った低圧気相冷媒は、冷媒配管Lc89の受液器8、冷房膨張弁9、蒸発器5、補助ガスクーラー6を素通り(熱交換や相変化を起こすこと無く通過すること)して、冷媒配管Lc11を経由して圧縮機2の吸い込み側に戻る。
前述したとおり、冷温水ライン循環用ポンプP2は停止しており、冷温水ラインLw内の冷温水は循環しない。その結果、貯湯タンク1内には高温の温水(例えば、80℃程度)が貯蔵されるが、冷房及び暖房は行われない。すなわち、冷暖房を行わなくても高温の温水は得られる。
次に、図11に基づいて、第3実施形態における、冷房及び貯湯運転について説明する。
図11に示す如く、貯湯ポンプP1及び冷温水循環用ポンプP2は、共にON(作動)であり、冷温水ラインLwに介装された三方弁Lw1、Lw2は、空調負荷側40から蒸発器5に連通する側に開放している。
貯湯ポンプP1がONなので、圧縮機2からの高圧冷媒は、その保有する熱量を水冷ガスクーラー3において貯湯ラインLtの水道水に投入される。水道水は加熱されて高温の温水となり、貯湯タンク1に貯蔵される。
水冷ガスクーラー3から出た高圧液相冷媒は、バイパスLb3経由で空冷ガスクーラー4を素通りさせる。
空冷ガスクーラー4を素通りした高圧液相冷媒は冷媒配管Lc57を流れ、補助ガスクーラー6で蒸発器5を流過した冷媒から熱を受ける。その後、冷媒配管Lc89の受液器8に導かれた後、冷房膨張弁9で膨張させられ、減圧する。
減圧した低圧液相冷媒は、蒸発器5で気化する際の気化熱(蒸発熱)で冷温水ラインLwの冷水を冷却する。蒸発器5を出た気相冷媒は、冷媒配管Lc10及び補助ガスクーラー6を経由し、冷媒配管Lc11から圧縮機2に戻る。
冷温水ラインLwに介装された三方弁Lw1、Lw2は、空調負荷側40から蒸発器5に連通する側に開放されているので、例温水ラインLwを流れる水は、蒸発器5において、低圧液相冷媒により蒸発熱を奪われて冷却される。
図11の場合は、水冷ガスクーラー3で冷媒であるCO2が十分に冷却されるので、外気温が31℃を超えていても、冷房能力に問題は生じない。
次に、図12に基づいて、第1実施形態における、暖房及び貯湯運転について説明する。
図12の暖房及び貯湯運転では、図10の貯湯運転に対して、冷温水循環用のポンプP2を駆動し、冷温水ラインLwの三方弁Vw1、Vw2を空調負荷側40から貯湯タンク1側に連通させることにより、貯湯タンク1内に貯蔵された温水を冷温水ラインLwで循環させている。
先ず、圧縮機2により高温高圧にされた冷媒は、冷媒配管Lc1から水冷ガスクーラー3に入り、水冷ガスクーラー3において、貯湯ラインLtの水道水と熱交換される。その際、冷媒は冷却されて低温高圧の液相冷媒となり、水道水は冷媒に加熱されてお湯となる。水冷ガスクーラー3から出た液相冷媒は、冷媒配管Lc4の暖房膨張弁7で膨張させられた後、更に空冷ガスクーラー4で外気によって加熱され、その後、冷媒配管Lc9の受液器8、膨張弁9、蒸発器5、冷媒配管Lc10、補助ガスクーラー6を素通りして冷媒配管Lc11から圧縮機2に戻る。
なお、水冷ガスクーラー3において加熱されたお湯は、貯湯タンク1に貯められるが、輻射パネル12,13側の2次温水(冷温水ラインLwを流れる温水)は、貯湯タンク1内の温水で加熱されて、輻射暖房の熱源となる。
次に、図13〜図18を参照して第4実施形態を説明する。
図13〜図18の第4実施形態は、図13に全体構成を示すように、図8〜図12の第3実施形態に対して、冷媒配管における補助ガスクーラー6の前後で補助ガスクーラー6の前後を迂回するバイパスを設けた実施形態である。
図13において、冷媒配管Lc10に分岐点B11を設け、冷媒配管Lc11に三方弁Vc10を介装し、分岐点B11と三方弁Vc10を第5のバイパスラインLb10で接続している。即ち、補助ガスクーラー6は、第5のバイパスラインLb10で選択的に迂回できるように構成されている。
構成における以上の変更点を除いては、図8〜図12の第3実施形態と同様である。
図14は第4実施形態において、外気温が比較的高く(例えば、30℃以上)、第2の熱交換器4の出口温度が31.1℃以上である場合の冷房単独運転時の動作を示している。この場合、三方弁Vc10のバイパスLb10と接続される側のポートが閉じられる。
尚、当該条件の運転は前述の第3実施形態の冷房単独運転と同様であるので、以降の説明は省略する。
次に、図15を参照して、外気温が比較的低く(例えば、30℃未満)、第2の熱交換器4の出口温度が31.1℃未満である場合の冷房単独運転時の作動について説明する。
外気温度が比較的低い場合(例えば、30℃未満の場合)には、圧縮機2から吐出された高圧冷媒は、空冷ガスクーラー4にて外気により十分に冷却されるので、補助ガスクーラー6において、冷房蒸発器5で熱交換を行った後の冷媒を用いてさらに冷却する必要は無い。そこで、方弁Vc10の補充ガスクーラー6側のポートを閉じ、蒸発器5を出た冷媒を補助ガスクーラー6を経由することなく直接圧縮機2に戻す。空冷ガスクーラー4はこの場合冷却器として働いている。
図14の外気温が比較的高い場合に比べ、蒸発器5を出た冷媒は補助ガスクーラー6を経由しないため、冷媒循環系における管内抵抗が減少し、圧縮機2に投入するエネルギー(電力)の削減につながる。
次に、図16を参照して貯湯運転について説明する。
第4実施形態の貯湯運転では、三方弁Vc10は補助ガスクーラー6に連通するポートが閉じている。蒸発器5を出た冷媒は補助ガスクーラー6を経由することなく圧縮機2に戻される。
従って、第3実施形態に対して、同運転条件下における冷媒循環系の管内抵抗が減少し、圧縮機2に投入するエネルギー(電力)の削減につながる。それ以外は第3実施形態の作動と同じである。
次に、図17を参照して冷房及び貯湯運転について説明する。
第4実施形態の冷房及び貯湯運転では、三方弁Vc10は補助ガスクーラー6に連通するポートが閉じている。蒸発器5を出た冷媒は補助ガスクーラー6を経由することなく圧縮機2に戻される。
従って、第3実施形態に対して、同運転条件下における冷媒循環系の管内抵抗が減少し、圧縮機2に投入するエネルギー(電力)の削減につながる。それ以外は第3実施形態の作動と同じである。
次に、図18を参照して暖房及び貯湯運転について説明する。
第4実施形態の暖房及び貯湯運転では、三方弁Vc10は補助ガスクーラーに連通するポートが閉じている。蒸発器5を出た冷媒は補助ガスクーラー6を経由することなく圧縮機2に戻される。それ以外の冷媒の流れは第3実施形態の暖房及び貯湯運転(図12)と同じである。
従って、第3実施形態(図12)に対して、同運転条件における冷媒循環系の管内抵抗が減少し、圧縮機2に投入するエネルギー(電力)の削減につながる。それ以外は第3実施形態の作動と同じである。
次に、図19〜図24を参照して第5実施形態を説明する。
図19〜図24の第5実施形態は、図19に全体構成を示すように、図13〜図18の第4実施形態に対して、空冷ガスクーラー4と補助ガスクーラー6を接続する冷媒配管と補助ガスクーラー6と三方弁Vc10を接続する冷媒配管とをバイパスラインで接続した実施形態である。
図19において、空冷ガスクーラー4と補助ガスクーラー6を接続する冷媒配管Lc57には分岐点B7が設けられ、補助ガスクーラー6と三方弁Vc10を接続する冷媒配管Lc11には分岐点B8が設けられている。分岐点B7と分岐点B8とはバイパス弁Vb3を介装した第4のバイパスラインLb5で接続されている(この部分における構成は図7の第2実施形態と同じである)。
以上を除けば、図13から図18の第4実施形態と同様である。
図20は、第5実施形態における外気温が比較的高く(例えば、30℃以上)、第2の熱交換器4の出口温度が31.1℃以上である場合の冷房単独運転状態を示している。
図20と、図14とを比較しても明らかな通り、第5実施形態における外気温が比較的高く(例えば、30℃以上)、第2の熱交換器4の出口温度が31.1℃以上である場合の冷房単独運転状態は、第4実施形態における同様条件の場合の冷房単独運転と同じである。
図21は、第5実施形態における外気温が比較的低く(例えば、30℃未満)、第2の熱交換器4の出口温度が31.1℃未満である場合の冷房単独運転状態を示している。
図21と、図15とを比較しても明らかな通り、第5実施形態における外気温が比較的低く(例えば、30℃未満)、第2の熱交換器4の出口温度が31.1℃未満である場合の冷房単独運転状態は、第4実施形態における同様条件の場合の冷房単独運転(図15)と同じである。
次に、図22を参照して第5実施形態における貯湯運転について説明する。
第5実施形態の貯湯運転では、三方弁Vc10は第5のバイパスラインLb10に連通するポートが閉じ、バイパス弁Vb3は開いている。従って、空冷ガスクーラー4を出た冷媒は蒸発器5及び補助ガスクーラー6を経由することなく圧縮機2に戻される。
従って、図3の実施形態はもとより、第4実施形態に対しても、同運転条件下における冷媒循環系の管内抵抗が大幅に減少し、圧縮機2に投入するエネルギー(電力)の削減につながる。
図23は、第5実施形態における冷房及び貯湯運転を示した図である。三方弁Vc10は補助ガスクーラー6に連通するポートが閉塞し、バイパス弁Vb3も閉塞している。第5実施形態における冷房及び貯湯運転は、冷媒の流れが実質的には、図17に示した第4実施形態における冷房及び貯湯運転と同様である。
図24に基づいて第5実施形態の暖房及び貯湯運転を説明する。
第5実施形態の暖房及び貯湯運転では、三方弁Vc10はバイパスラインLb10に連通するポートが閉塞し、バイパス弁Vb3は開いている。その他のバルブ類の開閉状態及びポンプP1、P2の作動、非作動は、第4実施形態の暖房及び貯湯運転時(図18)と同じである。
空冷ガスクーラー4を出た冷媒は蒸発器5及び補助ガスクーラー6を経由することなく圧縮機2に戻される。
従って、第3実施形態はもとより、第4実施形態に対しても、同運転条件における冷媒循環系の管内抵抗が大幅に減少し、圧縮機2に投入するエネルギー(電力)の削減につながる。
次に、図25〜図29を参照して第6実施形態を説明する。
図25の第6実施形態は、図1の第1実施形態に対して、補助ガスクーラー6、蒸発器5について、冷媒の循環するラインLcと、冷温水ラインLwとの連通の関係を変えている。
すなわち、図25では、冷温水の戻りラインが補助ガスクーラー6に連通し、それから、蒸発器5に戻っている。そして、冷媒ラインLcは蒸発器5から圧縮機2の吸い込み側2iへ直接連通している。
すなわち、冷温水ラインLwは、戻り側の三方弁Vw1の後、冷温水管Lw7が補助ガスクーラー6に直接連通し、それから、冷温水管Lw8を経由して蒸発器5に戻っている。
一方、冷媒ラインLcは蒸発器5から出た後、配管Lc12によって圧縮機2の吸い込み側2iへ直接連通している。
その他については、図1の第1実施形態と同様である。
この第6実施形態においても、第1実施形態と同様に、「冷房単独運転(図26)」、「貯湯のみの運転(図27)」、「冷房及び貯湯運転(図28)」、「暖房及び貯湯運転(図29)」を自在に切り換えることが出来る。
次に、図26に基づいて、第6実施形態の冷房単独運転について説明する。
先ず、圧縮機2から吐出された高圧冷媒は、冷媒配管Lc1から水冷ガスクーラー3を素通りして、冷媒配管Lc3、バイパスLb3を経由して空冷ガスクーラー4に至り、空冷ガスクーラー4で冷却された後に、さらに、冷媒配管Lc5〜Lc7を経由して補助ガスクーラー6で冷温水ラインLw側の空調負荷から戻った冷温水と熱交換して冷却される。
補助ガスクーラー6には空調負荷から戻った冷水が流れているので、外気温が31℃を超えており、空冷ガスクーラー3で十分に高圧冷媒を冷却できなくても、補助クーラ6により、確実に冷却される。
補助ガスクーラー6を出た冷媒は、蒸発器5で、更に、冷温水を冷却し、その後、配管Lc12で圧縮機2に戻される。従って、十分なエンタルピ差及び冷房能力を確保出来るのである。
一方、補助ガスクーラー6及び蒸発器5で十分冷却された冷温水(冷水)は冷温水ラインLwの往路配管Lw1〜Lw31、Lw32によって空調負荷側40の輻射パネル12,13に供給され、冷房仕事に供される。
その他については、図2、図3(何れも第1実施形態)で示すのと同様である。
上述した様に、貯湯用ポンプP1を停止して、貯湯タンク1に連通する貯湯ラインLtにおける水の流れを停止すれば、水冷ガスクーラー3において高圧冷媒が保有する熱量が貯湯タンク1側に投入されることは無く、給湯需要が存在しないにも拘らず給湯運転が為されてしまう、という事態が防止できる。
そして、外気温が31.1℃を超えて、冷媒が空冷ガスクーラー4では完全に液相になる程度まで冷却されなかった場合にも、補助ガスクーラー6で、冷温水ラインLwの戻りラインを流れる冷水を用いてさらに冷却しているので、補助ガスクーラー6を出た段階で冷媒は液相状態となり、十分な冷房能力を得ることが出来る。
次に、図27に基づいて、第6実施形態における貯湯のみの運転について説明する。
先ず、圧縮機2から吐出された高圧冷媒が保有する熱量は、水冷ガスクーラー3で貯湯ラインLtの水道水に投入される。すると、水道水が加熱されて、高温の温水(80℃程度の温水)として往路貯湯管Lt1を介して貯湯タンク1に溜められる。
水冷ガスクーラー3で放熱された冷媒は、空冷ガスクーラー4で外気から熱を貰い、低圧気相冷媒となる。
空冷ガスクーラー4で外気から熱を奪った低圧気相冷媒は、受液器8、冷房膨張弁9、蒸発器5を素通り(熱交換や相変化を起こすこと無く通過すること)して、冷媒配管Lc12を介して圧縮機2の吸い込み側2iに戻る。
その他については、図4で示すのと同様である。
次に、図28に基づいて、第6実施形態における冷房及び貯湯運転を説明する。
先ず、圧縮機2からの高圧冷媒は、その保有する熱量を水冷ガスクーラー3において貯湯ラインLtの水道水に投入される。水道水は加熱されて高温の温水となり、貯湯タンク1に貯蔵される。
水冷ガスクーラー3から出た液相冷媒は、バイパスLb1を経由した後、更にバイパスLb2を経由して、冷媒配管Lc9の受液器8に導かれた後、冷房膨張弁9で膨張させられ、蒸発器5で冷温水ラインLwの冷水を冷却する。蒸発器5を出た冷媒は、冷媒配管Lc12を経由し、圧縮機2に戻る。
一方、冷温水は、補助ガスクーラー6は素通りし、蒸発器5に流入し、蒸発器5で十分冷却される。そして、蒸発器5で十分冷却された冷温水(冷水)は冷温水ラインLwの往路配管Lw1〜Lw31、Lw32によって空調負荷側40の輻射パネル12,13に供給され、冷房仕事に供される。
その他については、第1実施形態における図5で示すのと同様である。
次に、図29に基づいて、第6実施形態における暖房及び貯湯運転を説明する。
空冷ガスクーラー4で外気によって加熱された冷媒は、その後、冷媒配管Lc9の受液器8、膨張弁9、蒸発器5を素通りして冷媒配管Lc12を介して圧縮機2に戻る。
一方、水冷ガスクーラー3において加熱されたお湯は、貯湯タンク1に貯められるが、輻射パネル12,13側の2次温水は、温水加熱熱交換器において、貯湯タンク1内の温水で加熱されて、輻射暖房の熱源となる。
その他については、第1実施形態における図6で示すのと同様である。
次に、図30に基づいて、第7実施形態を説明する。
図26、図28、図29において、冷媒が水冷ガスクーラー3を素通り(図26)せしめ、或いは、受液器8、冷房膨張弁9、蒸発器5を素通り(図27、図28)せしめるためには、図7で示す様に、開閉弁(バイパス弁)Vb2を介装した第3のバイパスラインLb4を設けても良い。その様な第3のバイパスラインLb4を設けた構成が、図30で示す第7実施形態の変形例である。
図30では、水冷ガスクーラー3をバイパスする第3のバイパスラインLb4と、バイパス弁Vb4を介装し、受液器8、冷房膨張弁9、蒸発器5、補助ガスクーラー6をバイパスする第4のバイパスラインLb6とを設け、水冷ガスクーラー3をバイパスするか否かはバイパス弁Vb2の開閉で決定し、受液器8、冷房膨張9弁、蒸発器5、補助ガスクーラー6をバイパスするか否かはバイパス弁Vb4の開閉で決定する。
すなわち、水冷ガスクーラー3をバイパスするならばバイパス弁Vb2を開き、
受液器8、冷房膨張9弁、蒸発器5、補助ガスクーラー6をバイパスするならばバイパス弁Vb4を開く。
係る第7実施形態(図30)における「冷房単独運転」、「貯湯のみの運転」、「冷房及び貯湯運転」、「暖房及び貯湯運転」の詳細については、上述した「冷媒が水冷ガスクーラーを素通り」する場合と、「受液器、冷房膨張弁、蒸発器を素通り」する場合を除き、図9〜図12で上述したのと同様である。
次に、図31〜図35を参照して第8実施形態を説明する。
図31〜図35の第8実施形態は、図31に全体構成を示すように、図25〜図29の第6実施形態に対して、第1及び第2のバイパスラインLb1、Lb2を廃止した実施形態である。
第1のバイパスラインLb1の廃止により、水冷クーラー3と第1の分岐点B1は冷媒配管Lc23によって接続される。また、第2のバイパスラインLb2の廃止により、水冷クーラー3と補助ガスクーラー6とは1本の冷媒配管Lc57で接続され、補助ガスクーラー6と冷房蒸発器5とは1本の冷媒配管Lc89で接続される。
それ以外の構成については第6実施形態と同様である。
図32に基づいて、冷房単独運転について説明する。この時、貯湯ポンプP1は停止中で、冷温水ラインの循環ポンプP2は作動している。
先ず、圧縮機2から吐出された高圧冷媒は、冷媒配管Lc1から水冷ガスクーラー3を素通りして、冷媒配管Lc23、バイパスLb3を経由して空冷ガスクーラー4に至り、空冷ガスクーラー4で外気で冷却された後に、冷媒配管Lc57を経由して補助ガスクーラー6で冷温水ラインLw側の空調負荷から戻った冷温水と熱交換して更に冷却される。
補助ガスクーラー6には空調負荷から戻った冷水が流れているので、外気温が31℃を超えており、空冷ガスクーラー3で十分に高圧冷媒を冷却できなくても、補助クーラ6により、確実に冷却される。
補助ガスクーラー6を出た冷媒は、冷媒配管Lc89を経由して蒸発器5で、更に、冷温水を冷却し、その後、配管Lc12で圧縮機2に戻される。従って、十分なエンタルピ差及び冷房能力を確保出来るのである。
一方、補助ガスクーラー6及び蒸発器5で十分冷却された冷温水(冷水)は冷温水ラインLwの往路配管Lw1〜Lw31、Lw32によって空調負荷側40の輻射パネル12,13に供給され、冷房仕事に供される。
その他については、図2、図3(何れも第1実施形態)で示すのと同様である。
第1実施形態の冷房単独運転で記述した様に、貯湯用ポンプP1を停止して、貯湯タンク1に連通する貯湯ラインLtにおける水の流れを停止しており、水冷ガスクーラー3において高圧冷媒が保有する熱量が貯湯タンク1側に投入されることは無く、給湯需要が存在しないにも拘らず給湯運転が為されてしまう、という事態が防止できる。
そして、外気温が31.1℃を超えて、冷媒が空冷ガスクーラー4では完全に液相になる程度まで冷却されなかった場合にも、補助ガスクーラー6で、冷温水ラインLwの戻りラインを流れる冷水を用いてさらに冷却しているので、補助ガスクーラー6を出た段階で冷媒は液相状態となり、十分な冷房能力を得ることが出来る。
次に、図33に基づいて、第8実施形態における貯湯のみの運5について説明する。貯湯のみの運転では、貯湯ポンプP1は作動して、循環ポンプ(冷温水ポンプ)P2は不作動である。
先ず、圧縮機2から吐出された高圧冷媒が保有する熱量は、水冷ガスクーラー3で貯湯ラインLtの水道水に投入される。すると、水道水が加熱されて、高温の温水(80℃程度の温水)として往路貯湯管Lt1を介して貯湯タンク1に溜められる。
水冷ガスクーラー3で放熱された冷媒は、空冷ガスクーラー4で外気から熱を貰い、低圧気相冷媒となる。
空冷ガスクーラー4で外気から熱を奪った低圧気相冷媒は、受液器8、冷房膨張弁9、蒸発器5を素通り(熱交換や相変化を起こすこと無く通過すること)して、冷媒配管Lc12を介して圧縮機2の吸い込み側2iに戻る。
次に、図34に基づいて第8実施形態における冷房及び貯湯運転を説明する。この場合、貯湯ポンプP1、循環ポンプ(冷温水ポンプ)P2とも、作動している。
先ず、圧縮機2からの高圧冷媒は、その保有する熱量を水冷ガスクーラー3において貯湯ラインLtの水道水に投入される。水道水は加熱されて高温の温水となり、貯湯タンク1に貯蔵される。
水冷ガスクーラー3から出た液相冷媒は、冷媒配管Lc23、Lc4を経由して空冷ガスクーラー4を素通りして、補助ガスクーラー6に至る。
冷媒は補助ガスクーラー6で冷温水ラインLw7の冷水に冷熱を与え、その後、冷媒配冷媒配管Lc89の受液器8に導かれた後、冷房膨張弁9で膨張させられ、蒸発器5で再度冷温水ラインLw8の冷水を冷却する。蒸発器5を出た冷媒は、冷媒配管Lc12を経由し、圧縮機2に戻る。
一方、蒸発器5で十分冷やされた冷温水は、冷温水ラインLwの往路配管Lw1〜Lw31、Lw32によって空調負荷側40の輻射パネル12,13に供給され、冷房仕事に供される。
次に、図35に基づいて、第8実施形態における暖房及び貯湯運転を説明する。
空冷ガスクーラー4で外気によって加熱された冷媒は、その後、冷媒配管Lc57、補助ガスクーラー6、冷媒配管Lc89の受液器8、膨張弁9、蒸発器5を素通りして冷媒配管Lc12を介して圧縮機2に戻る。
一方、水冷ガスクーラー3において加熱されたお湯は、貯湯タンク1に貯められるが、輻射パネル12,13側の2次温水は、温水加熱熱交換器において、貯湯タンク1内の温水で加熱されて、輻射暖房の熱源となる。
その他については、第6実施形態における図29で示すのと同様である。
次に、図36〜図41を参照して、第9実施形態を説明する。
図36〜図41の第9実施形態は、図31から図35の第8実施形態に対して、冷温水ラインLwに補助ガスクーラー6を迂回するバイパスラインを設けた実施形態である。
図36において、冷温水ラインLwの戻り配管である冷温水配管Lw7に分岐点B12を設け、冷温水配管Lw8に分岐点13を設けている。分岐点B12、B13はバイパス弁Vwbを介装したバイパスラインLwbで接続されている。それ以外の構成は、第8実施形態と同様である。
図37は、第9実施形態において外気温が比較的高く(例えば、30℃以上)、第2の熱交換器4の出口温度が31.1℃以上である場合の冷房単独運転を示している。この時、バイパスラインLwbのバイパス弁Vwbは閉塞しており、実質的には、図32の第8実施形態の冷房単独運転と同様である。
図38に基づいて、第9実施形態において外気温が比較的低く(例えば、30℃未満)、第2の熱交換器4の出口温度が31.1℃未満である場合の冷房単独運転を説明する。この時、バイパスラインLwbのバイパス弁Vwbは開いている。
冷媒ラインLcの冷媒の流れそのものは、外気温が比較的高く(例えば、30℃以上)、第2の熱交換器4の出口温度が31.1℃以上である場合(図37)と同じであるが、圧縮機2から吐出された高圧冷媒は、空冷ガスクーラー4にて外気により十分に冷却されるので、補助ガスクーラー6において、冷温水ラインLwの戻りラインを流れる冷水を用いて冷却する必要は無い。そこで、第9実施形態では冷温水が補助ガスクーラー6を流れないようにしている。
即ち、冷温水は、戻りの冷温水配管Lw7からバイパスラインLwb経由で、直接蒸発器5に入り、蒸発器5で冷媒と熱の授受を行っている。冷房の能力は、外気温が比較的高く(例えば、30℃以上)、第2の熱交換器4の出口温度が31.1℃以上である場合(図37)に比べて下回るが、流路抵抗が減り、運転コストは低減出来る。
第9実施形態における貯湯のみの運転(図39)は、実質的には、第8実施形態の貯湯のみの運転(図33)と同様である。
図40に基づいて、第9実施形態における冷房及び貯湯運転を説明する。この時、バイパスラインLwbのバイパス弁Vwbは開いている。貯湯ポンプP1も、循環ポンプ(冷温水ポンプ)P2も作動している。
冷媒ラインLcの冷媒の流れそのものは、外気温が比較的高く(例えば、30℃以上)、第2の熱交換器4の出口温度が31.1℃以上である場合(図37)と同じであるが、冷温水(冷水)は抵抗が大きくなる補助ガスクーラー6を流れない。
即ち、冷温水は、戻りの冷温水配管Lw7からバイパスラインLwb経由で、直接蒸発器5に入り、蒸発器5で冷媒と熱の授受を行っている。冷房の能力は、外気温が比較的高く(例えば、30℃以上)、第2の熱交換器4の出口温度が31.1℃以上である場合(図37)に比べて下回るが、流路抵抗が減り、運転コストは低減出来る。
図41に示す第9実施形態の暖房及び貯湯運転は、第8実施形態の貯湯暖房及び貯湯運転(図35)と実質的に同様である。即ち、冷温水ラインLwの三方弁Vw1、Vw2は第8実施形態、第9実施形態共に熱源機50側のポートが閉塞しており熱源機50側には冷温水は流れない。また、第9実施形態の暖房及び貯湯運転の場合のバイパス弁Vwbは開・閉の何れでも良い。
本発明のヒートポンプ冷暖房装置によれば、空冷ガスクーラー3で冷却した後に、補助ガスクーラー6で冷媒を冷やしているので、外気温が31.1℃以上であっても、十分に液相となる。従って、冷房の運転ニーズが最も高い高外気温時31.1℃以上において、給湯需要の有無にかかわらず、自由に冷房単独運転が出来る。
フロン系冷媒のヒートポンプで冷房を行う空調機は、室外機と室内機を接続する冷媒配管を、現地で接手等を用いて施工するが、CO2ヒートポンプの場合は冷媒配管圧力が非常に高いため、現地での冷媒配管施工は接手部からの漏洩の懸念があり、困難であると一般に言われてきた。しかし、本発明の実施形態によれば、CO2冷媒配管が、熱源ユニットの内部で完結しているため、CO2冷媒配管の現地施工を行わずに直ちに冷房することが出来る。
本実施形態で使用する複写パネルは、天井や、壁、床等と一体化させることが出来る(貼付、或いは埋め込みを施す)ので、面積が大きくなっても、設置性や美観上の問題が生じることはなく、且つ冷房能力を稼ぐことが出来る。
図示の実施形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではない旨を付記する。
本発明の第1実施形態の構成を示したブロック図。 第1実施形態において冷房単独運転状態を示した作動図。 第1実施形態の冷房サイクルを説明するモリエル線図。 第1実施形態において貯湯(或いは給湯)のみの運転状態を示した作動図。 第1実施形態において冷房及び貯湯運転状態を示した作動図。 第1実施形態において暖房及び貯湯運転状態を示した作動図。 第2実施形態の構成を示したブロック図。 第3実施形態の構成を示したブロック図。 第3実施形態において冷房単独運転状態を示した作動図。 第3実施形態において貯湯(或いは給湯)のみの運転状態を示した作動図。 第3実施形態において冷房及び貯湯運転状態を示した作動図。 第3実施形態において暖房及び貯湯運転状態を示した作動図。 第4実施形態の構成を示したブロック図。 第4実施形態において第2の熱交換器出口の温度が高い場合の冷房単独運転状態を示した作動図。 第4実施形態において第2の熱交換器出口の温度が低い場合の冷房単独運転状態を示した作動図。 第4実施形態において貯湯(或いは給湯)のみの運転状態を示した作動図。 第4実施形態において冷房及び貯湯運転状態を示した作動図。 第4実施形態において暖房及び貯湯運転状態を示した作動図。 第5実施形態の構成を示したブロック図。 第5実施形態において第2の熱交換器出口の温度が高い場合の冷房単独運転状態を示した作動図。 第5実施形態において第2の熱交換器出口の温度が低い場合の冷房単独運転状態を示した作動図。 第5実施形態において貯湯(或いは給湯)のみの運転状態を示した作動図。 第5実施形態において冷房及び貯湯運転状態を示した作動図。 第5実施形態において暖房及び貯湯運転状態を示した作動図。 第6実施形態の構成を示したブロック図。 第6実施形態において冷房単独運転状態を示した作動図。 第6実施形態において貯湯(或いは給湯)のみの運転状態を示した作動図。 第6実施形態において冷房及び貯湯運転状態を示した作動図。 第6実施形態において暖房及び貯湯運転状態を示した作動図。 第7実施形態の構成を示したブロック図。 第8実施形態の構成を示したブロック図。 第8実施形態において冷房単独運転状態を示した作動図。 第8実施形態において貯湯(或いは給湯)のみの運転状態を示した作動図。 第8実施形態において冷房及び貯湯運転状態を示した作動図。 第8実施形態において暖房及び貯湯運転状態を示した作動図。 第9実施形態の構成を示したブロック図。 第9実施形態において第2の熱交換器出口の温度が高い場合の冷房単独運転状態を示した作動図。 第9実施形態において第2の熱交換器出口の温度が低い場合の冷房単独運転状態を示した作動図。 第9実施形態において貯湯(或いは給湯)のみの運転状態を示した作動図。 第9実施形態において冷房及び貯湯運転状態を示した作動図。 第9実施形態において暖房及び貯湯運転状態を示した作動図。 従来技術の給湯冷房装置の構成を示したブロック図。 従来技術の冷房装置での冷房サイクルを説明するモリエル線図。
符号の説明
1・・・貯湯槽
2・・・圧縮機
3・・・第1の熱交換器/水冷ガスクーラー
4・・・第2の熱交換器/空冷熱交換器
5・・・第3の熱交換器/冷房蒸発器
6・・・第4の熱交換器/補助ガスクーラー
7、9・・・膨張弁
8・・・受液器
40・・・空調負荷
50・・・循環系統/熱源ユニット
Lc・・・冷媒ライン
Ld・・・温水ライン
Lt・・・貯湯ライン
Lw・・・冷温水ライン
P1・・・貯湯ポンプ
P2・・・循環ポンプ
Vb1・・・開閉弁
Vc1、Vc2・・・三方弁
Vw1、Vw2・・・三方弁

Claims (7)

  1. 冷暖房負荷側に連通する冷温水ラインと、温水を貯蔵する貯湯タンクと、冷媒である二酸化炭素が循環する循環系統とを備え、該循環系統は、低圧気相冷媒を圧縮して超臨界状態の高圧冷媒として吐出する圧縮機と、圧縮機から吐出された超臨界状態の高圧冷媒と貯湯タンクに連通するラインを流れる水との間で熱交換を行う第1の熱交換器と、冷媒と大気との間で熱交換を行う第2の熱交換器と、冷媒と冷温水ラインを流れる冷温水との間で熱交換を行う第3の熱交換器と、第2の熱交換器から第3の熱交換器に向う冷媒と第3の熱交換器で熱交換を行った後の冷媒との間で熱交換を行う第4の熱交換器とを有し、圧縮機の吐出口と第1の熱交換器とを連通し、第4の熱交換器を経由して第2の熱交換器と第3の熱交換器とを連通し、第4の熱交換器を経由して第3の熱交換器と圧縮機の吸込口とを連通する冷媒ラインを有しており、前記冷温水ラインは貯湯タンク或いは第3の熱交換器と選択的に連通する様に構成されていることを特徴とする二酸化炭素ヒートポンプ冷暖房システム。
  2. 冷暖房負荷側に連通する冷温水ラインと、温水を貯蔵する貯湯タンクと、冷媒である二酸化炭素が循環する循環系統とを備え、該循環系統は、低圧気相冷媒を圧縮して超臨界状態の高圧冷媒として吐出する圧縮機と、圧縮機から吐出された超臨界状態の高圧冷媒と貯湯タンクに連通するラインを流れる水との間で熱交換を行う第1の熱交換器と、冷媒と大気との間で熱交換を行う第2の熱交換器と、冷媒と冷温水ラインを流れる冷温水との間で熱交換を行う第3の熱交換器と、第2の熱交換器から第3の熱交換器に向う冷媒と冷温水ラインを流れる冷温水との間で熱交換を行う第4の熱交換器とを有し、圧縮機の吐出口と第1の熱交換器とを連通し、第4の熱交換器を経由して第2の熱交換器と第3の熱交換器とを連通し、第3の熱交換器と圧縮機の吸込口とを連通する冷媒ラインを有し、前記冷温水ラインは貯湯タンク或いは第3の熱交換器と選択的に連通し且つ戻りラインは第4の熱交換器を経由してから第3の熱交換器に連通するように配置されていることを特徴とする二酸化炭素ヒートポンプ冷暖房システム。
  3. 圧縮機の吐出口と第1の熱交換器とを連通する冷媒ラインから分岐して第2の熱交換器をバイパスする第1のバイパスラインと、第2の熱交換器と第3の熱交換器とを連通する冷媒ラインから分岐して第4の熱交換器をバイパスする第2のバイパスラインとを有する請求項1、2の何れかの二酸化炭素ヒートポンプ冷暖房システム。
  4. 前記循環系統は、バイパス弁が介送されて前記第1の熱交換器をバイパスする第3のバイパスラインを有している請求項1〜3の何れか1項の二酸化炭素ヒートポンプ冷暖房システム。
  5. 前記循環系統は、バイパス弁が介送されて前記第3の熱交換器及び第4の熱交換器をバイパスする第4のバイパスラインとを有している請求項1〜4の何れか1項の二酸化炭素ヒートポンプ冷暖房システム。
  6. 第3の熱交換器と第4の熱交換器とを連通する冷媒ラインから分岐して第4の熱交換器をバイパスし、第4の熱交換器と圧縮機の吸込口とを連通するラインと合流する第5のバイパスラインを設ける請求項1の二酸化炭素ヒートポンプ冷暖房システム。
  7. 第4の熱交換器に向う冷温水ラインから分岐して、第4の熱交換器と第3の熱交換器とを連通する冷温水ラインに合流する第6のバイパスラインを設けている請求項2の二酸化炭素ヒートポンプ冷暖房システム。
JP2005149809A 2005-05-23 2005-05-23 二酸化炭素ヒートポンプ冷暖房システム Expired - Fee Related JP4761832B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005149809A JP4761832B2 (ja) 2005-05-23 2005-05-23 二酸化炭素ヒートポンプ冷暖房システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005149809A JP4761832B2 (ja) 2005-05-23 2005-05-23 二酸化炭素ヒートポンプ冷暖房システム

Publications (2)

Publication Number Publication Date
JP2006329452A true JP2006329452A (ja) 2006-12-07
JP4761832B2 JP4761832B2 (ja) 2011-08-31

Family

ID=37551326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005149809A Expired - Fee Related JP4761832B2 (ja) 2005-05-23 2005-05-23 二酸化炭素ヒートポンプ冷暖房システム

Country Status (1)

Country Link
JP (1) JP4761832B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9316141B2 (en) 2013-02-15 2016-04-19 Enis Pilavdzic Engine energy management system
TWI662238B (zh) * 2011-06-24 2019-06-11 日商化學漿股份有限公司 熱交換系統

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588935A (ja) * 1981-07-09 1983-01-19 Daikin Ind Ltd ヒ−トポンプ式給湯装置
JPS59229149A (ja) * 1984-05-18 1984-12-22 松下冷機株式会社 冷暖房装置
JPH04268173A (ja) * 1991-02-21 1992-09-24 Tomoe Shokai:Kk 冷暖房給湯装置
JPH05332623A (ja) * 1992-06-01 1993-12-14 Hino Motors Ltd 自動車のクーラユニット
JPH09145105A (ja) * 1995-11-21 1997-06-06 Daikin Ind Ltd 蓄熱式空気調和装置
JPH10267494A (ja) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp 冷却装置
JP2000205686A (ja) * 1999-01-20 2000-07-28 Fujitsu General Ltd 空気調和機の冷凍サイクル
JP2001066007A (ja) * 1999-08-26 2001-03-16 Hitachi Ltd 空気調和機
JP2002286317A (ja) * 2001-03-27 2002-10-03 Kubota Corp 蒸気圧縮式ヒートポンプ
JP2003185290A (ja) * 2001-12-21 2003-07-03 Denso Corp 給湯冷房装置
JP2003314927A (ja) * 2002-04-18 2003-11-06 Matsushita Electric Ind Co Ltd 熱交換器およびその熱交換器を用いた冷凍サイクル装置
JP2004003825A (ja) * 2002-03-28 2004-01-08 Mitsubishi Electric Corp ヒートポンプシステム、ヒートポンプ式給湯機
JP2004218921A (ja) * 2003-01-14 2004-08-05 Matsushita Electric Ind Co Ltd ヒートポンプ式給湯機
JP2004309093A (ja) * 2003-02-19 2004-11-04 Denso Corp 冷機能兼用ヒートポンプ式給湯装置
JP2005098554A (ja) * 2003-09-22 2005-04-14 Denso Corp ヒートポンプサイクル
JP2005106360A (ja) * 2003-09-30 2005-04-21 Sanyo Electric Co Ltd 冷媒回路及びヒートポンプ給湯機

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588935A (ja) * 1981-07-09 1983-01-19 Daikin Ind Ltd ヒ−トポンプ式給湯装置
JPS59229149A (ja) * 1984-05-18 1984-12-22 松下冷機株式会社 冷暖房装置
JPH04268173A (ja) * 1991-02-21 1992-09-24 Tomoe Shokai:Kk 冷暖房給湯装置
JPH05332623A (ja) * 1992-06-01 1993-12-14 Hino Motors Ltd 自動車のクーラユニット
JPH09145105A (ja) * 1995-11-21 1997-06-06 Daikin Ind Ltd 蓄熱式空気調和装置
JPH10267494A (ja) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp 冷却装置
JP2000205686A (ja) * 1999-01-20 2000-07-28 Fujitsu General Ltd 空気調和機の冷凍サイクル
JP2001066007A (ja) * 1999-08-26 2001-03-16 Hitachi Ltd 空気調和機
JP2002286317A (ja) * 2001-03-27 2002-10-03 Kubota Corp 蒸気圧縮式ヒートポンプ
JP2003185290A (ja) * 2001-12-21 2003-07-03 Denso Corp 給湯冷房装置
JP2004003825A (ja) * 2002-03-28 2004-01-08 Mitsubishi Electric Corp ヒートポンプシステム、ヒートポンプ式給湯機
JP2003314927A (ja) * 2002-04-18 2003-11-06 Matsushita Electric Ind Co Ltd 熱交換器およびその熱交換器を用いた冷凍サイクル装置
JP2004218921A (ja) * 2003-01-14 2004-08-05 Matsushita Electric Ind Co Ltd ヒートポンプ式給湯機
JP2004309093A (ja) * 2003-02-19 2004-11-04 Denso Corp 冷機能兼用ヒートポンプ式給湯装置
JP2005098554A (ja) * 2003-09-22 2005-04-14 Denso Corp ヒートポンプサイクル
JP2005106360A (ja) * 2003-09-30 2005-04-21 Sanyo Electric Co Ltd 冷媒回路及びヒートポンプ給湯機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI662238B (zh) * 2011-06-24 2019-06-11 日商化學漿股份有限公司 熱交換系統
US9316141B2 (en) 2013-02-15 2016-04-19 Enis Pilavdzic Engine energy management system

Also Published As

Publication number Publication date
JP4761832B2 (ja) 2011-08-31

Similar Documents

Publication Publication Date Title
JP5188571B2 (ja) 空気調和装置
US9593872B2 (en) Heat pump
JP5279919B2 (ja) 空気調和装置
JP5730335B2 (ja) 空気調和装置
JP5752148B2 (ja) 空気調和装置
JP5236080B2 (ja) 空気調和装置
WO2011030430A1 (ja) 空気調和装置
CN103080668B (zh) 空气调节装置
JP5511838B2 (ja) 空気調和装置
US9638430B2 (en) Air-conditioning apparatus
JP5395950B2 (ja) 空気調和装置および空調給湯システム
JP6000373B2 (ja) 空気調和装置
JP5335131B2 (ja) 空調給湯システム
JP5312606B2 (ja) 空気調和装置
WO2011099067A1 (ja) 冷凍サイクル装置
CN104813112A (zh) 空调装置
JP5752135B2 (ja) 空気調和装置
JP5312681B2 (ja) 空気調和装置
WO2011099056A1 (ja) 空気調和装置
JP4761832B2 (ja) 二酸化炭素ヒートポンプ冷暖房システム
WO2011052050A1 (ja) 空気調和装置
WO2011030420A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4761832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees