JP2006328950A - Heat insulation work execution method - Google Patents

Heat insulation work execution method Download PDF

Info

Publication number
JP2006328950A
JP2006328950A JP2006216246A JP2006216246A JP2006328950A JP 2006328950 A JP2006328950 A JP 2006328950A JP 2006216246 A JP2006216246 A JP 2006216246A JP 2006216246 A JP2006216246 A JP 2006216246A JP 2006328950 A JP2006328950 A JP 2006328950A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
vacuum
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006216246A
Other languages
Japanese (ja)
Other versions
JP4615489B2 (en
Inventor
Munetaka Yamada
宗登 山田
Kazuto Uekado
一登 上門
Akira Nakano
明 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006216246A priority Critical patent/JP4615489B2/en
Publication of JP2006328950A publication Critical patent/JP2006328950A/en
Application granted granted Critical
Publication of JP4615489B2 publication Critical patent/JP4615489B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Landscapes

  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat insulation work execution method not requiring much time and labor. <P>SOLUTION: The heat insulation work execution method comprising the step of installing, on a structural face material, a vacuum heat insulation material made by covering, from the top and bottom sides, a plurality of plate-shaped core materials arranged two-dimensionally without overlapping each other with two flexible sheathing sheets comprising a laminate film to individually seal in vacuum the core materials in independently closed spaces comprises the steps of placing one face of the vacuum heat insulation material 14 opposite to the face of the structural face material 12a onto which the vacuum heat insulation material 14 is to be installed and driving a nail 19 or a bolt to the weld section of the vacuum heat insulation material 14 where the top and bottom sheathing sheets are welded and bonded to each other to fix the vacuum heat insulation material 14 to the structural face material 12a. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、真空断熱材を構造用面材に取り付ける断熱施工方法に関する。   The present invention relates to a heat insulating construction method for attaching a vacuum heat insulating material to a structural face material.

近年、地球環境保護の観点より、家電製品や産業機器と並び住宅等の建物の省エネルギー化も取り組むべき重要な課題となっている。そのため、様々な断熱材の適用や各種断熱施工法が提案されている(例えば、特許文献1参照)。   In recent years, from the viewpoint of protecting the global environment, energy saving in buildings such as houses has become an important issue as well as home appliances and industrial equipment. Therefore, application of various heat insulating materials and various heat insulating construction methods have been proposed (for example, see Patent Document 1).

図28は、特許文献1により開示されている従来の建物1の概略断面図である。図28に示すように、特許文献1における従来の建物1は、断熱材として熱伝導率が0.020W/m・K以下である硬質ポリウレタンフォーム2が外壁仕上材3及び屋根材4の内側部分に設けられていることにより、断熱性を確保している。   FIG. 28 is a schematic cross-sectional view of a conventional building 1 disclosed in Patent Document 1. As shown in FIG. As shown in FIG. 28, in the conventional building 1 in Patent Document 1, the hard polyurethane foam 2 having a thermal conductivity of 0.020 W / m · K or less as the heat insulating material is the inner part of the outer wall finishing material 3 and the roofing material 4. The heat insulation is ensured by being provided in.

硬質ポリウレタンフォーム2は、断熱性能が優れるため、薄くして施工することができる。そのため、施工する際、長い釘やビスを必要とせず、一般に多用される五寸釘等の施工釘を使用することができる。   Since the rigid polyurethane foam 2 is excellent in heat insulation performance, it can be made thin. Therefore, long nails and screws are not required for construction, and construction nails such as five-dimensional nails that are commonly used can be used.

図29は、従来の断熱施工工程を説明するための図である。従来の断熱施工工程では、図29の従来の建物1の外壁部1aの斜視断面図に示すように、コンクリート基礎5の上の土台柱6に木軸7を組み、木軸7に構造用面材8を貼り、その上に複数の木下地9aを垂直方向に並行に組む。そして、各木下地9aの間に硬質ポリウレタンフォーム2を配置し、硬質ポリウレタンフォーム2の上に合板10を貼り、合板10の上に複数の木下地9bを垂直方向に並行に組み、木下地9bに外壁仕上材3を固定する。
特開2003−278290号公報
FIG. 29 is a diagram for explaining a conventional heat insulation construction process. In the conventional heat insulation construction process, as shown in the perspective sectional view of the outer wall 1a of the conventional building 1 in FIG. 29, the wooden shaft 7 is assembled on the foundation pillar 6 on the concrete foundation 5, and the structural surface is mounted on the wooden shaft 7. A material 8 is pasted, and a plurality of wood bases 9a are assembled in parallel in the vertical direction. Then, the rigid polyurethane foam 2 is disposed between the respective tree bases 9a, the plywood 10 is pasted on the hard polyurethane foam 2, and a plurality of tree bases 9b are assembled on the plywood 10 in parallel in the vertical direction. The outer wall finishing material 3 is fixed to.
JP 2003-278290 A

しかしながら、従来の建物1の構成では、硬質ポリウレタンフォーム2をカットして複数の木下地9aそれぞれの間に詰める工程を要し、施工に手間がかかる。   However, in the structure of the conventional building 1, the process which cuts the rigid polyurethane foam 2 and stuffs between each of the several tree bases 9a is required, and construction takes time.

本発明は、上記課題を考慮し、手間をかけずに建物を施工するための断熱施工方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a heat insulation construction method for constructing a building without taking time and effort.

上記課題を解決し上記目的を達成するために、本発明の断熱施工方法は、重なることなく2次元状に配列された板状の複数の芯材を、ラミネートフィルムからなるフレキシブルな二枚の外被材で上下から覆って、各前記芯材が独立した空間に個別に真空封止された真空断熱材を、構造用面材に取り付ける断熱施工方法であって、前記構造用面材における前記真空断熱材を取り付ける側の面に前記真空断熱材の一方の面を対向させて、前記真空断熱材側から前記真空断熱材における上下の前記外被材同士が熱で溶けて結合している熱溶着部に釘又はビスを打ち込むことにより、前記真空断熱材を前記構造用面材に固定する断熱施工方法である。   In order to solve the above-mentioned problems and achieve the above-mentioned object, the heat insulation construction method of the present invention comprises a plurality of plate-like core materials arranged in a two-dimensional manner without overlapping, and two flexible outer sheets made of a laminate film. A heat insulating construction method of attaching a vacuum heat insulating material covered from above and below with a workpiece and individually vacuum-sealing each core material in an independent space to the structural surface material, wherein the vacuum in the structural surface material Heat welding where one surface of the vacuum heat insulating material is opposed to the surface on the side where the heat insulating material is attached, and the upper and lower outer jacket materials in the vacuum heat insulating material are melted and bonded together from the vacuum heat insulating material side. This is a heat insulation construction method for fixing the vacuum heat insulating material to the structural face material by driving a nail or a screw into the part.

本発明によれば、構造用面材における真空断熱材を取り付ける側の面に、重なることなく2次元状に配列された板状の複数の芯材が独立した空間に個別に真空封止された真空断熱材の一方の面を対向させて、前記真空断熱材に釘又はビスを打ち込むことで断熱施工が完了し、発泡断熱材をカットし詰める工程や発泡断熱材の上に木下地を組む工程をなくすことができる。そのため、全体として木下地の使用量を削減することができる。また、建物に対する真空断熱材の被覆率が大きくなるので建物の断熱性が高まる。また、釘又はビスは、真空断熱材側から真空断熱材における上下の外被材同士が熱で溶けて結合している熱溶着部に打ち込まれるので、真空断熱材の芯材への釘又はビスの突き刺しが起こらない。仮に、釘又はビスがいずれかの芯材を突き刺したとしても、他の芯材の真空度が悪化することはなく全体としての断熱性能は確保される。また、構造用面材に、芯材が一つの真空断熱材を複数設ける場合と較べて、構造用面材に真空断熱材を設ける作業の回数が少なくなると共に、構造用面材に真空断熱材を設けるたびに複数の芯材の間隔や複数の芯材の位置関係を調節する必要がなくなるので、断熱施工が容易である。   According to the present invention, a plurality of plate-like core members arranged in a two-dimensional manner without overlapping are individually vacuum-sealed in an independent space on the surface of the structural face material to which the vacuum heat insulating material is attached. The heat insulation construction is completed by placing one surface of the vacuum insulation material facing each other and driving nails or screws into the vacuum insulation material, and the process of cutting and filling the foam insulation material or the process of building a wood base on the foam insulation material Can be eliminated. Therefore, the amount of tree ground used can be reduced as a whole. Moreover, since the coverage of the vacuum heat insulating material with respect to a building becomes large, the heat insulation of a building increases. In addition, since the nail or screw is driven from the vacuum heat insulating material side into the heat-welded portion where the upper and lower jacket materials of the vacuum heat insulating material are melted and bonded together, the nail or screw is attached to the core of the vacuum heat insulating material. No piercing occurs. Even if a nail or a screw pierces one of the core members, the degree of vacuum of the other core members is not deteriorated, and the heat insulation performance as a whole is ensured. In addition, the number of operations for providing the vacuum heat insulating material on the structural face material is reduced compared to the case where a plurality of vacuum heat insulating materials having a single core material are provided on the structural face material, and the vacuum heat insulating material is provided on the structural face material. Since there is no need to adjust the interval between the plurality of core members and the positional relationship between the plurality of core members each time, the heat insulation work is easy.

また、別の本発明の断熱施工方法は、重なることなく2次元状に配列された板状の複数の芯材を、ラミネートフィルムからなるフレキシブルな二枚の外被材で上下から覆って、各前記芯材が独立した空間に個別に真空封止された真空断熱材を、構造用面材に取り付ける断熱施工方法であって、前記構造用面材における前記真空断熱材を取り付ける側の面に前記真空断熱材の一方の面を対向させ、さらに複数の木下地を前記真空断熱材と対向するように配置し、前記真空断熱材側から前記木下地を介して前記真空断熱材における上下の前記外被材同士が熱で溶けて結合している熱溶着部に釘又はビスを打ち込むことにより、前記真空断熱材を間に挟んで前記木下地と前記構造用面材とを固定する断熱施工方法である。   Further, another heat insulation construction method of the present invention covers a plurality of plate-like core materials arranged two-dimensionally without overlapping with two flexible jacket materials made of a laminate film, A heat insulating construction method for attaching a vacuum heat insulating material individually vacuum-sealed in a space where the core material is independent to a structural face material, the surface of the structural face material on the side where the vacuum heat insulating material is attached One surface of the vacuum heat insulating material is made to face, and a plurality of wood bases are arranged to face the vacuum heat insulating material, and the outer sides of the vacuum heat insulating material above and below the vacuum heat insulating material through the wood base from the vacuum heat insulating material side. In the heat insulation construction method of fixing the wood substrate and the structural face material with the vacuum heat insulating material sandwiched between them by driving a nail or a screw into the heat welded part where the workpieces are melted by heat and bonded. is there.

本発明によれば、構造用面材における真空断熱材を取り付ける側の面に、重なることなく2次元状に配列された板状の複数の芯材が独立した空間に個別に真空封止された真空断熱材の一方の面を対向させ、さらに複数の木下地を前記真空断熱材と対向するように配置し、前記木下地を介して前記真空断熱材に釘又はビスを打ち込むことで断熱施工が完了し、発泡断熱材をカットし詰める工程や発泡断熱材の上に木下地を組む工程をなくすことができる。そのため、全体として木下地の使用量を削減することができる。また、木下地を真空断熱材と対向するように配置されることにより、また、建物に対する真空断熱材の被覆率が大きくなるので建物の断熱性が高まる。また、釘又はビスは、真空断熱材側から木下地を介して真空断熱材における上下の外被材同士が熱で溶けて結合している熱溶着部に打ち込まれるので、真空断熱材の芯材への釘又はビスの突き刺しが起こらない。仮に、釘又はビスがいずれかの芯材を突き刺したとしても、他の芯材の真空度が悪化することはなく全体としての断熱性能は確保される。また、木下地に仕上材を固定することができる。また、構造用面材に、芯材が一つの真空断熱材を複数設ける場合と較べて、構造用面材に真空断熱材を設ける作業の回数が少なくなると共に、構造用面材に真空断熱材を設けるたびに複数の芯材の間隔や複数の芯材の位置関係を調節する必要がなくなるので、断熱施工が容易である。   According to the present invention, a plurality of plate-like core members arranged in a two-dimensional manner without overlapping are individually vacuum-sealed in an independent space on the surface of the structural face material to which the vacuum heat insulating material is attached. One side of the vacuum heat insulating material is made to face, and a plurality of wood bases are arranged to face the vacuum heat insulating material, and heat insulation work is performed by driving nails or screws into the vacuum heat insulating material through the wood base. When completed, the process of cutting and filling the foam insulation and the process of assembling the wood substrate on the foam insulation can be eliminated. Therefore, the amount of tree ground used can be reduced as a whole. Moreover, since the covering ratio of the vacuum heat insulating material to the building is increased by arranging the wood base so as to face the vacuum heat insulating material, the heat insulating property of the building is enhanced. Moreover, since the nail or the screw is driven from the vacuum heat insulating material side into the heat-welded portion where the upper and lower outer jacket materials of the vacuum heat insulating material are melted and bonded together through the wood substrate, the core material of the vacuum heat insulating material There is no piercing of nails or screws. Even if a nail or a screw pierces one of the core members, the degree of vacuum of the other core members is not deteriorated, and the heat insulation performance as a whole is ensured. In addition, the finishing material can be fixed to the wood substrate. In addition, the number of operations for providing the vacuum heat insulating material on the structural face material is reduced compared to the case where a plurality of vacuum heat insulating materials having a single core material are provided on the structural face material, and the vacuum heat insulating material is provided on the structural face material. Since there is no need to adjust the interval between the plurality of core members and the positional relationship between the plurality of core members each time, the heat insulation work is easy.

このとき、真空断熱材の複数の前記芯材の大きさ又は形状が異なるようにしてもよい。真空断熱材は、芯材の区切れでフレキシブルに折り曲げることができるので、芯材の大きさ又は形状を異ならせることにより、折り曲げに関する自由度を調整することができる。   At this time, you may make it the magnitude | size or shape of the said several core material of a vacuum heat insulating material differ. Since the vacuum heat insulating material can be bent flexibly by dividing the core material, the degree of freedom regarding the bending can be adjusted by changing the size or shape of the core material.

前記真空断熱材は、前記外被材の各前記芯材を挟まない部位の上側部と下側部とは前記芯材の際まで結合していることが好ましい。この場合、外被材の各芯材を挟まない部位の上側部と下側部とが前記芯材の際まで結合しているので、真空断熱材の外周部の芯材のないヒレ部(非芯材部)の幅と隣接する芯材と芯材の間の非芯材部の幅を狭めることができ、真空断熱材表面に占める芯材部の面積比率が大きくなり、断熱効果を高めることができる。   In the vacuum heat insulating material, it is preferable that an upper portion and a lower portion of a portion of the jacket material that does not sandwich the core material are bonded to the core material. In this case, since the upper part and the lower part of the part of the jacket material that does not sandwich the core material are joined up to the core material, the fin part without the core material on the outer peripheral part of the vacuum heat insulating material (non- The width of the core material part) and the width of the non-core material part between the adjacent core material and the core material can be reduced, the area ratio of the core material part occupying the surface of the vacuum heat insulating material is increased, and the heat insulation effect is enhanced. Can do.

前記構造用面材の一方の面と対向する前記真空断熱材の一方の面は、前記外被材が前記芯材と対向する部分と対向しない部分とで凹凸ができておらず表面が平滑で、前記真空断熱材の他方の面は、前記外被材が前記芯材と対向する部分と対向しない部分とで凹凸ができているものでもよい。この場合、真空断熱材における構造用面材と対向する面が平滑であるので、接着剤などで真空断熱材を構造用面材に固定しやすく、また接着強度を高めることができる。また、真空断熱材における構造用面材と対向する面とは反対側の面は、外被材が芯材と対向する部分と対向しない部分とで凹凸ができているので、現場施工時において、構造用面材に真空断熱材側から釘やビスを打つ時に、凹凸を基に芯材がある部分の上から打たないように注意することができる。   One surface of the vacuum heat insulating material facing one surface of the structural surface material is smooth with no surface irregularities formed between a portion where the jacket material faces the core material and a portion which does not face the core material. The other surface of the vacuum heat insulating material may be uneven with a portion where the jacket material faces the core material and a portion which does not face the core material. In this case, since the surface of the vacuum heat insulating material facing the structural surface material is smooth, the vacuum heat insulating material can be easily fixed to the structural surface material with an adhesive or the like, and the adhesive strength can be increased. In addition, since the surface opposite to the surface facing the structural face material in the vacuum heat insulating material is uneven with the portion where the outer cover material faces the core material and the portion not facing, When nailing or screwing a structural face material from the vacuum heat insulating material side, care can be taken not to hit the top of the part where the core material is present based on the unevenness.

複数の前記真空断熱材は積層された状態で前記構造用面材と一体化していてもよい。この場合、複数の前記真空断熱材は、前記芯材が重ならないように積層されていることが好ましい。この構成で真空断熱材の大きさや数を調整すると、構造用面材全面に芯材を位置させることができるので、断熱効果を向上させることができる。   The plurality of vacuum heat insulating materials may be integrated with the structural face material in a stacked state. In this case, it is preferable that the plurality of vacuum heat insulating materials are laminated so that the core material does not overlap. When the size and number of the vacuum heat insulating materials are adjusted in this configuration, the core material can be positioned on the entire surface of the structural surface material, so that the heat insulating effect can be improved.

更にこの時、積層されている複数の前記真空断熱材のうち積層方向の端に位置する前記真空断熱材は、前記真空断熱材同士が対向する面とは反対側の面が、前記外被材が前記芯材と対向する部分と対向しない部分とで凹凸ができておらず表面が平滑であるものでもよく、この場合、積層されている複数の真空断熱材における構造用面材と対向する面が平滑であるので、接着剤などで真空断熱材を構造用面材に固定しやすく、また接着強度を高めることができる。また、積層されている複数の真空断熱材における反構造用面材側の面が平滑であるので、取り扱いが容易である。   Further, at this time, among the plurality of laminated vacuum heat insulating materials, the vacuum heat insulating material located at the end in the stacking direction has a surface opposite to the surface where the vacuum heat insulating materials face each other, and the jacket material. The surface facing the core material and the portion not facing the surface may be smooth and the surface may be smooth. In this case, the surface facing the structural face material in the plurality of laminated vacuum heat insulating materials Since it is smooth, it is easy to fix the vacuum heat insulating material to the structural face material with an adhesive or the like, and the adhesive strength can be increased. Moreover, since the surface at the side of the anti-structural face material in the plurality of laminated vacuum heat insulating materials is smooth, handling is easy.

更にこの時、積層されている複数の前記真空断熱材は、前記真空断熱材同士が対向する面が、前記外被材が前記芯材と対向する部分と対向しない部分とで凹凸ができていてもよく、この場合、対向する凹凸がうまく係合するようにすれば、真空断熱材を設けている空間における真空断熱材の占める割合を高めて、断熱効果を向上させることができる。   Further, at this time, the plurality of laminated vacuum heat insulating materials have unevenness between the surface where the vacuum heat insulating materials face each other and the portion where the outer cover material faces the core material and the portion which does not face the core material. In this case, if the opposing concavities and convexities engage well, the proportion of the vacuum heat insulating material in the space in which the vacuum heat insulating material is provided can be increased and the heat insulating effect can be improved.

前記真空断熱材は、前記芯材を上下から覆って真空に封じるための外被材を有し、前記外被材は、前記芯材の一方の面側に位置する、金属蒸着層を含む第1ラミネートフィルムと、前記芯材の他方の面側に位置する、金属箔層を含む第2ラミネートフィルムとで構成されていることが好ましい。金属箔層と金属蒸着層との熱容量が異なるので、真空断熱材の適用時に起きる二枚のラミネートフィルムの接着面を通じて発生する熱漏洩(真空断熱材の高温面から低温面への熱の移動)を抑制することができる。特に芯材が複数個存在する場合、二枚のラミネートフィルムの接着面が占める割合が大きく、熱漏洩の影響を防止する効果は大きくなる。   The vacuum heat insulating material has a jacket material for covering the core material from above and below and sealing it in a vacuum, and the jacket material includes a metal vapor deposition layer located on one surface side of the core material. It is preferable to be comprised by 1 laminate film and the 2nd laminate film containing the metal foil layer located in the other surface side of the said core material. Since the heat capacity of the metal foil layer is different from that of the metal deposition layer, heat leakage that occurs through the adhesive surface of the two laminate films that occurs when applying vacuum insulation (transfer of heat from the high temperature surface to the low temperature surface of the vacuum insulation material) Can be suppressed. In particular, when a plurality of core materials are present, the ratio of the adhesive surfaces of the two laminate films is large, and the effect of preventing the influence of heat leakage is increased.

前記第1ラミネートフィルムは、前記金属蒸着層の、前記芯材から遠い方の面の上に設けられたポリアクリル酸系樹脂層を含むことが好ましい。ポリアクリル酸系樹脂層はそれ自身が高いガスバリア性を有するので、金属蒸着層の上にポリアクリル酸系樹脂層を設けると、それぞれを単層で使用した場合のガスバリア性から予測される以上にガスバリア性が向上する。なぜなら、金属蒸着単層では、ラミネート時や屈曲を生じる部位への建築用部材への使用時などにクラックが生じやすいが、ポリアクリル酸系樹脂で金属蒸着層を保護することによって金属蒸着層に生じるクラックを防止できるからである。したがって、本構成により真空断熱材の断熱性能を長期にわたって維持することができる。   The first laminate film preferably includes a polyacrylic acid resin layer provided on a surface of the metal vapor deposition layer far from the core material. Since the polyacrylic resin layer itself has a high gas barrier property, providing a polyacrylic acid resin layer on the metal vapor deposition layer is more than expected from the gas barrier properties when each is used as a single layer. Gas barrier properties are improved. This is because, in a metal vapor deposition single layer, cracks are likely to occur when laminating or when it is used as a construction member in a part where bending occurs, but the metal vapor deposition layer is protected by protecting the metal vapor deposition layer with a polyacrylic resin. It is because the crack which arises can be prevented. Therefore, the heat insulation performance of the vacuum heat insulating material can be maintained over a long period by this configuration.

前記真空断熱材は、前記芯材を上下から覆って真空に封じるための外被材を有し、前記外被材は、前記芯材の一方の面側に位置する、第1金属蒸着層を含む第1ラミネートフィルムと、前記芯材の他方の面側に位置する、第2金属蒸着層を含む第2ラミネートフィルムとで構成されており、前記第1ラミネートフィルムは、前記第1金属蒸着層の、前記芯材から遠い方の面の上に設けられたポリアクリル酸系樹脂層を含み、前記第2ラミネートフィルムは、前記第2金属蒸着層の、前記芯材から遠い方の面の上に設けられたポリアクリル酸系樹脂層を含むことが好ましい。この構成では、外被材の両面が熱容量の小さい金属蒸着層であるので、接着面を通じて発生する熱漏洩を大きく抑制することが可能となる。更に、外被材がガスバリア性の高いポリアクリル酸系樹脂層が設けられた金属蒸着層で構成されるラミネートフィルムを有するので、断熱材の断熱性能を長期にわたって維持することができる。   The vacuum heat insulating material has a jacket material for covering the core material from above and below and sealing it in a vacuum, and the jacket material is located on one surface side of the core material, and has a first metal vapor deposition layer. A first laminated film including the second laminated film including a second metal vapor-deposited layer located on the other surface side of the core material, and the first laminate film is formed of the first metal vapor-deposited layer. A polyacrylic acid resin layer provided on the surface far from the core material, and the second laminate film is formed on the surface of the second metal vapor deposition layer far from the core material. It is preferable that the polyacrylic acid-based resin layer provided on is included. In this configuration, since both surfaces of the jacket material are metal vapor-deposited layers having a small heat capacity, it is possible to greatly suppress heat leakage that occurs through the adhesive surface. Furthermore, since the jacket material has a laminate film composed of a metal vapor deposition layer provided with a polyacrylic acid resin layer having a high gas barrier property, the heat insulating performance of the heat insulating material can be maintained over a long period of time.

前記真空断熱材及び前記構造用面材は、厚み方向に貫通孔を有しており、互いの前記貫通孔が重なる状態で、前記真空断熱材と前記構造用面材とが一体化していてもよい。この場合は、換気扇等の建物内外を貫通させる必要がある設備を設置することができる。   The vacuum heat insulating material and the structural surface material have through holes in the thickness direction, and the vacuum heat insulating material and the structural surface material are integrated in a state where the through holes overlap each other. Good. In this case, a facility such as a ventilation fan that needs to penetrate inside and outside the building can be installed.

更に、前記真空断熱材の外面に設けられた防水シートを備えることが好ましい。このような構成により、外部の水分が真空断熱材内部へ浸入することを防ぎ、芯材の内圧増加による断熱性能の悪化を抑制することができる。   Furthermore, it is preferable to provide a waterproof sheet provided on the outer surface of the vacuum heat insulating material. With such a configuration, external moisture can be prevented from entering the inside of the vacuum heat insulating material, and deterioration of the heat insulating performance due to an increase in the internal pressure of the core material can be suppressed.

更に、前記構造用面材の外面に設けられた防湿気密シートを備えることが好ましい。このような構成により、特に冬場において、建物内の湿気を多く含んだ高い温度の空気が、真空断熱材の外側の冷たい壁に触れて結露が発生することを防ぐ。   Furthermore, it is preferable to provide a moisture-proof and airtight sheet provided on the outer surface of the structural face material. With such a configuration, especially in winter, high-temperature air containing a lot of moisture in the building prevents contact with the cold wall outside the vacuum heat insulating material to cause dew condensation.

また、断熱施工する建物に対して、建物が施工される地域の気候条件や建物内における各部屋の用途等に応じて、厚みの異なる複数の真空断熱材を使用して断熱施工しても良く、その場合は、建物の各部位における熱損失係数を最適化することが可能となる。   In addition, depending on the climatic conditions of the area where the building is constructed and the usage of each room in the building, the building to be insulated may be insulated using a plurality of vacuum insulation materials with different thicknesses. In that case, the heat loss coefficient in each part of the building can be optimized.

また、断熱施工する建物に対して、建物が施工される地域の気候条件や建物内における各部屋の用途等に応じて、芯材の面積率の異なる複数の真空断熱材を使用して断熱施工しても良く、その場合は、真空断熱材による断熱効果を最適化することが可能となる。   In addition, for buildings to be heat-insulated, heat insulation is performed by using multiple vacuum heat insulating materials with different core area ratios according to the climatic conditions of the area where the building is to be constructed and the usage of each room in the building. In that case, it is possible to optimize the heat insulating effect of the vacuum heat insulating material.

また、本発明の断熱施工方法で用いられる真空断熱材は、芯材複数個が真空に封じられた、シート状の真空断熱材であって、ロール状に巻かれた状態で保持されているものでも良い。これにより、真空断熱材を所望のサイズに切断しても、切断したことによる破袋(真空度の悪化)の影響を切断した箇所以外の部位へ及ばないようにして、真空断熱材を、廃棄する部分を少なくして切り出すことができる。   Moreover, the vacuum heat insulating material used in the heat insulation construction method of the present invention is a sheet-like vacuum heat insulating material in which a plurality of core materials are sealed in a vacuum, and is held in a rolled state. But it ’s okay. As a result, even if the vacuum insulation material is cut to a desired size, the effect of the broken bag (deterioration of the degree of vacuum) due to the cutting is not affected by the cut portion, and the vacuum insulation material is discarded. It is possible to cut out with less parts.

また、本発明の断熱施工方法で用いられる真空断熱材は、多孔体である芯材が真空に封じられた、平面状の真空断熱材であって、表面に粘着層が設けられ、前記粘着層の上に剥離紙が設けられている。これにより、作業者は、剥離紙を剥離するだけで、所定の大きさの真空断熱材を、所望する部位に容易に取り付けることができる。   Further, the vacuum heat insulating material used in the heat insulating construction method of the present invention is a flat vacuum heat insulating material in which a porous core material is sealed in a vacuum, and an adhesive layer is provided on the surface, and the adhesive layer A release paper is provided on the top. As a result, the operator can easily attach the vacuum heat insulating material of a predetermined size to a desired site simply by peeling the release paper.

更に、本発明の断熱施工方法で用いられる真空断熱材は、多孔体である芯材複数個が真空に封じられた、平面状の真空断熱材であって、所定の間隔でマークが設けられている。マークを利用すると、大きさが容易に分かるので、建物の施工現場において、作業者は、所望する大きさの真空断熱材を容易に切り出すことができる。また、本発明の断熱施工方法で用いられる真空断熱材は、所望のサイズに切断されても、切断されたことによる破袋(真空度の悪化)の影響を切断された箇所以外の部位へ及ばさない。   Furthermore, the vacuum heat insulating material used in the heat insulation construction method of the present invention is a flat vacuum heat insulating material in which a plurality of core materials that are porous bodies are sealed in a vacuum, and is provided with marks at predetermined intervals. Yes. Since the size can be easily understood by using the mark, the operator can easily cut out the vacuum heat insulating material having a desired size at the construction site of the building. Moreover, even if the vacuum heat insulating material used with the heat insulation construction method of the present invention is cut to a desired size, the effect of bag breakage (deterioration of vacuum) due to being cut extends to parts other than the cut part. No.

本発明によれば、構造用面材における真空断熱材を取り付ける側の面に、重なることなく2次元状に配列された板状の複数の芯材が独立した空間に個別に真空封止された真空断熱材の一方の面を対向させて、前記真空断熱材に釘又はビスを打ち込むことで断熱施工が完了し、発泡断熱材をカットし詰める工程や発泡断熱材の上に木下地を組む工程をなくすことができる。そのため、全体として木下地の使用量を削減することができ、手間をかけずに建物を施工するための断熱施工方法を提供することができる。また、建物に対する真空断熱材の被覆率が大きくなるので建物の断熱性が高まる。また、釘又はビスは、真空断熱材側から真空断熱材における上下の外被材同士が熱で溶けて結合している熱溶着部に打ち込まれるので、真空断熱材の芯材への釘又はビスの突き刺しが起こらない。仮に、釘又はビスがいずれかの芯材を突き刺したとしても、他の芯材の真空度が悪化することはなく全体としての断熱性能は確保される。   According to the present invention, a plurality of plate-like core members arranged in a two-dimensional manner without overlapping are individually vacuum-sealed in an independent space on the surface of the structural face material to which the vacuum heat insulating material is attached. The heat insulation construction is completed by placing one surface of the vacuum insulation material facing each other and driving nails or screws into the vacuum insulation material, and the process of cutting and filling the foam insulation material or the process of building a wood base on the foam insulation material Can be eliminated. Therefore, the amount of wood substrate used can be reduced as a whole, and a heat insulation construction method for constructing a building without trouble can be provided. Moreover, since the coverage of the vacuum heat insulating material with respect to a building becomes large, the heat insulation of a building increases. In addition, since the nail or screw is driven from the vacuum heat insulating material side into the heat-welded portion where the upper and lower jacket materials of the vacuum heat insulating material are melted and bonded together, the nail or screw is attached to the core of the vacuum heat insulating material. No piercing occurs. Even if a nail or a screw pierces one of the core members, the degree of vacuum of the other core members is not deteriorated, and the heat insulation performance as a whole is ensured.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。その際、背景技術で説明した物と同一の構成物については同一の符号を付し、詳細な説明は省略する。同様に、複数の実施の形態のうちの後の実施の形態では、先の実施の形態で説明した物と同一の構成物については同一の符号を付し、詳細な説明は省略する。なお、以下に示す実施の形態によって本発明が限定されるものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. In this case, the same components as those described in the background art are denoted by the same reference numerals, and detailed description thereof is omitted. Similarly, in the later embodiments of the plurality of embodiments, the same components as those described in the previous embodiments are denoted by the same reference numerals, and detailed description thereof is omitted. In addition, this invention is not limited by embodiment shown below.

(実施の形態1)
図1は実施の形態1における建物11の概略断面図、図2は建物11の外壁部11aの斜視断面図、図3は建物11の外壁部11aの断面図、図4は建物11に用いられている建築用部材12の外観図、図5は図4の建築用部材12を構成する真空断熱材14のA−A’線における断面図である。
(Embodiment 1)
1 is a schematic sectional view of a building 11 according to the first embodiment, FIG. 2 is a perspective sectional view of an outer wall portion 11a of the building 11, FIG. 3 is a sectional view of the outer wall portion 11a of the building 11, and FIG. FIG. 5 is a cross-sectional view taken along the line AA ′ of the vacuum heat insulating material 14 constituting the building member 12 of FIG. 4.

図1に示すように、実施の形態1における建物11は、建築用部材12が外壁仕上材3及び屋根材4の内側部分と床仕上材13の外側部分とに設けられていることにより、断熱性を確保している。   As shown in FIG. 1, the building 11 in Embodiment 1 is insulated by providing the building members 12 on the outer wall finishing material 3 and the inner part of the roofing material 4 and the outer part of the floor finishing material 13. The sex is secured.

実施の形態1における断熱施工工程では、図2に示すように、コンクリート基礎5の上の土台柱6に木軸7を組み、木軸7に建築用部材12を貼り、その上に複数の木下地9bを垂直方向に並行に組み、木下地9bに外壁仕上材3を固定する。   In the heat insulation construction process in the first embodiment, as shown in FIG. 2, a wooden shaft 7 is assembled on a base pillar 6 on a concrete foundation 5, a building member 12 is pasted on the wooden shaft 7, and a plurality of tree bottoms are formed thereon. The ground 9b is assembled in parallel in the vertical direction, and the outer wall finishing material 3 is fixed to the wood base 9b.

建築用部材12は、図3に示すように、本体部である板状の構造用面材12aと板状の真空断熱材14とが一体化されている建築用の部材である。構造用面材12aの一方の面と真空断熱材14の一方の面部とが接着剤により接着されることにより、構造用面材12aと真空断熱材14とは一体化されている。図3に示すように、真空断熱材14が木下地9bと対向するように、建築用部材12は木軸7に貼られる。図4に示すように、真空断熱材14の面の大きさは、構造用面材12aの面の大きさよりやや小さい。図3に示すように、真空断熱材14の上(建築用部材12と木下地9bとの間)には防水シート15が配置され、構造用面材12aの上(建築用部材12と木軸7との間)には防湿気密シート16が配置されている。   As shown in FIG. 3, the building member 12 is a building member in which a plate-like structural surface material 12 a that is a main body and a plate-like vacuum heat insulating material 14 are integrated. The structural surface material 12a and the vacuum heat insulating material 14 are integrated by bonding one surface of the structural surface material 12a and the one surface portion of the vacuum heat insulating material 14 with an adhesive. As shown in FIG. 3, the building member 12 is attached to the wooden shaft 7 so that the vacuum heat insulating material 14 faces the wood substrate 9 b. As shown in FIG. 4, the size of the surface of the vacuum heat insulating material 14 is slightly smaller than the size of the surface of the structural surface material 12a. As shown in FIG. 3, a waterproof sheet 15 is disposed on the vacuum heat insulating material 14 (between the building member 12 and the wood substrate 9b), and above the structural surface material 12a (the building member 12 and the wooden shaft). 7) is provided with a moisture-proof and airtight sheet 16.

真空断熱材14は、図4に示すように、真空断熱材14の面の大きさよりやや小さい面を有する一枚の芯材17を備える。真空断熱材14は、図5に示すように、一枚の芯材17をガスバリア性を有する外被材18で被覆し、真空封止することで得られる。   As shown in FIG. 4, the vacuum heat insulating material 14 includes a single core material 17 having a surface slightly smaller than the size of the surface of the vacuum heat insulating material 14. As shown in FIG. 5, the vacuum heat insulating material 14 is obtained by covering a single core material 17 with a jacket material 18 having a gas barrier property and vacuum-sealing it.

芯材17の材料は、空隙率が高いもの、好ましくは空隙率が80%以上、より好ましくは空隙率が90%以上のものが適しており、工業的に利用することができるものとして、粉体や、発泡体や、繊維体等があり、その使用用途や必要特性に応じていずれかの材料が使用される。   As the material of the core material 17, a material having a high porosity, preferably a porosity of 80% or more, more preferably a porosity of 90% or more is suitable and can be used industrially. There are a body, a foam, a fiber body, etc., and any material is used according to the intended use and required characteristics.

粉体としては、無機系、有機系、及びこれらの混合物があり、工業的には乾式シリカ、湿式シリカ、パーライト等を主成分とするものを利用することができる。   Examples of the powder include inorganic, organic, and mixtures thereof. Industrially, powders mainly composed of dry silica, wet silica, pearlite, and the like can be used.

発泡体としては、ウレタンフォーム、スチレンフォーム、フェノールフォーム等の連続気泡体を利用することができる。   As the foam, open-cell bodies such as urethane foam, styrene foam, and phenol foam can be used.

繊維体としては、無機系、有機系、及びこれらの混合物があるが、断熱性能の観点から無機系の繊維を使用することが好ましい。無機系の繊維としては、グラスウール、グラスファイバー、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、ロックウール等がある。   Examples of the fiber body include inorganic, organic, and mixtures thereof, but it is preferable to use inorganic fibers from the viewpoint of heat insulation performance. Examples of inorganic fibers include glass wool, glass fiber, alumina fiber, silica alumina fiber, silica fiber, and rock wool.

真空断熱材14を構成する外被材18は、少なくともガスバリア層及び熱溶着層を有するものであり、ガスバリア層に対して、傷つきや、摩擦、折り曲げ、突き刺し等によるピンホール発生を防ぐ必要がある場合、更に保護層が設けられたラミネートフィルムとする。   The jacket material 18 that constitutes the vacuum heat insulating material 14 has at least a gas barrier layer and a heat-welded layer, and it is necessary to prevent the gas barrier layer from being pinched due to scratches, friction, bending, piercing, or the like. In this case, the laminate film is further provided with a protective layer.

真空断熱材14の熱伝導率は、平均温度24℃において、0.005W/m・Kであり、汎用的な断熱材である硬質ウレタンフォームの5倍程度の断熱性能を有する。   The heat conductivity of the vacuum heat insulating material 14 is 0.005 W / m · K at an average temperature of 24 ° C., and has a heat insulating performance about five times that of a rigid urethane foam that is a general heat insulating material.

以上説明したように、実施の形態1における建物11は、構造用面材12aと真空断熱材14とが一体化された建築用部材12を木軸7に単に貼り付けることで断熱施工が完了する。これにより、従来のように発泡断熱材をカットして木下地9a間に詰める工程をなくすことができる。また、全体として木下地の使用量を削減することができる。更に、断熱性能に優れた真空断熱材14が使用されているので、建物11の断熱性は高く、省エネルギー化が実現されている。   As described above, in the building 11 according to the first embodiment, the heat insulating construction is completed by simply sticking the building member 12 in which the structural surface material 12a and the vacuum heat insulating material 14 are integrated to the wooden shaft 7. . Thereby, the process of cutting a foam heat insulating material and packing between the wooden bases 9a like the past can be eliminated. Moreover, the amount of wood substrate used can be reduced as a whole. Furthermore, since the vacuum heat insulating material 14 excellent in heat insulating performance is used, the heat insulating property of the building 11 is high, and energy saving is realized.

また、実施の形態1では、図2から図4に示すように、木軸7と木下地9bとの間に、面の大きさが真空断熱材14の面の大きさよりやや小さい一枚の芯材17を有する真空断熱材14を備える建築用部材12が配置される。これにより、建物11に対する真空断熱材14の被覆率が大きくなり建物11の断熱性が高まる。   In the first embodiment, as shown in FIGS. 2 to 4, a single core having a surface slightly smaller than the surface of the vacuum heat insulating material 14 between the wooden shaft 7 and the tree ground 9 b. A building member 12 including a vacuum heat insulating material 14 having a material 17 is arranged. Thereby, the coverage of the vacuum heat insulating material 14 with respect to the building 11 becomes large, and the heat insulation of the building 11 increases.

また、実施の形態1では、図3に示すように、真空断熱材14の上に防水シート15が配置されているので、外部の水分が真空断熱材14の内部へ浸入することが防止され、芯材17の内圧増加による断熱性能の悪化を抑制することができる。   Moreover, in Embodiment 1, as shown in FIG. 3, since the waterproof sheet 15 is arrange | positioned on the vacuum heat insulating material 14, it is prevented that an external water | moisture content permeates into the inside of the vacuum heat insulating material 14, The deterioration of the heat insulation performance due to the increase in the internal pressure of the core material 17 can be suppressed.

また、実施の形態1では、図3に示すように、建築用部材12の構造用面材12aの上、すなわち構造用面材12aと木軸7との間に防湿気密シート16が配置されている。これにより、建物11の内部の湿気を多く含んだ高い温度の空気が構造用面材12aと真空断熱材14との境界面で結露する、という現象が発生することを防止することができる。   Moreover, in Embodiment 1, as shown in FIG. 3, the moisture-proof airtight sheet | seat 16 is arrange | positioned on the structural surface material 12a of the structural member 12, ie, between the structural surface material 12a and the wooden shaft 7. As shown in FIG. Yes. Thereby, it is possible to prevent a phenomenon in which high-temperature air containing a lot of moisture inside the building 11 is condensed on the boundary surface between the structural surface material 12 a and the vacuum heat insulating material 14.

また、床下にヒータが設けられている場合、建築用部材12は、ヒータからの放熱効率を向上させるために、ヒータより外側に設けられることが好ましい。   Moreover, when the heater is provided under the floor, it is preferable that the building member 12 is provided outside the heater in order to improve the heat radiation efficiency from the heater.

(実施の形態2)
図6は実施の形態2における建築用部材12の外観図、図7は建築用部材12の上に木下地9bを組んだ状態を示す図である。
(Embodiment 2)
FIG. 6 is an external view of the building member 12 according to the second embodiment, and FIG. 7 is a view showing a state in which the wood substrate 9b is assembled on the building member 12. FIG.

図6に示すように、実施の形態2における建物11に使用する建築用部材12は、構造用面材12aと複数枚の真空断熱材14とが一体化されている建築用の部材である。更に言うと、構造用面材12aと、構造用面材12aの面の大きさより小さい大きさの面を有する複数枚の真空断熱材14とは、構造用面材12aの上に、複数枚の真空断熱材14が互いに重なることなく2次元に配置された状態で一体化されている。   As shown in FIG. 6, the building member 12 used for the building 11 in the second embodiment is a building member in which a structural surface material 12 a and a plurality of vacuum heat insulating materials 14 are integrated. More specifically, the structural face material 12a and the plurality of vacuum heat insulating materials 14 having a size smaller than the size of the surface of the structural face material 12a are formed on the structural face material 12a. The vacuum heat insulating materials 14 are integrated in a two-dimensional arrangement without overlapping each other.

建築用部材12と木下地9bとは、図7に示すように、真空断熱材14の芯材17を避けるように釘19が打ち込まれることで固定されている。釘19の代わりにビスで固定することも可能である。なお、図7には示されていないが、実施の形態1と同様に、真空断熱材14の上に防水シート15を配置させ、構造用面材12aの上(建築用部材12と木軸7との間)に防湿気密シート16を配置させることが好ましい。この時、真空断熱材14の芯材17を避けることができるよう芯材の位置が分かるようにすることが望ましい。   As shown in FIG. 7, the building member 12 and the wood substrate 9 b are fixed by driving nails 19 so as to avoid the core material 17 of the vacuum heat insulating material 14. It is also possible to fix with a screw instead of the nail 19. Although not shown in FIG. 7, as in the first embodiment, a waterproof sheet 15 is arranged on the vacuum heat insulating material 14, and the structural surface material 12a (the building member 12 and the wooden shaft 7). It is preferable to arrange the moisture-proof and airtight sheet 16 between the two. At this time, it is desirable that the position of the core material is known so that the core material 17 of the vacuum heat insulating material 14 can be avoided.

以上説明したように、構造用面材12aと複数枚の真空断熱材14とが一体化した建築用部材12を建物11に用いると、建物11の施工において、いずれかの真空断熱材14の芯材17の上に釘19が打たれても、それ以外の真空断熱材14の真空度は悪化せず、建築用部材12の全体としての断熱性能の悪化を抑制することができる。   As described above, when the building member 12 in which the structural surface material 12a and the plurality of vacuum heat insulating materials 14 are integrated is used for the building 11, the core of any of the vacuum heat insulating materials 14 in the construction of the building 11 is used. Even if the nail 19 is struck on the material 17, the vacuum degree of the other vacuum heat insulating material 14 does not deteriorate, and the deterioration of the heat insulating performance of the building member 12 as a whole can be suppressed.

(実施の形態3)
図8は実施の形態3における建築用部材12の外観図、図9は図8の建築用部材12を構成する真空断熱材20のB−B’線における断面図、図10は建築用部材12の上に木下地9bを組んだ状態を示す図である。
(Embodiment 3)
8 is an external view of the building member 12 according to the third embodiment, FIG. 9 is a cross-sectional view taken along line BB ′ of the vacuum heat insulating material 20 constituting the building member 12 of FIG. 8, and FIG. It is a figure which shows the state which assembled the tree base 9b on the top.

図8に示すように、実施の形態3における建物11に使用する建築用部材12は、構造用面材12aと真空断熱材20とが一体化されている建築用の部材である。   As shown in FIG. 8, the building member 12 used in the building 11 in the third embodiment is a building member in which the structural surface material 12 a and the vacuum heat insulating material 20 are integrated.

真空断熱材20は、重なることなく2次元状に配置された状態の複数個の同一の大きさの芯材17を、二枚の外被材18により上下から覆い真空封止することで得られる。真空断熱材20において、上下の外被材18の間に芯材17が存在しないために大気圧で上下の外被材18が密着できる部分のほとんど全て外被材18の熱溶着部21となっており、各芯材17を個別に真空封止している。熱溶着部21は、外被材18の上側部と下側部とが熱により溶けて結合している部位であって、各芯材17を独立した空間に存在させる。ここで、「全て」と表現せずに「ほとんど全て」と表現したのは、二枚の外被材18の大きさ、形の微妙なズレや、外被材18と熱溶着装置との大きさ、形のズレによって、真空断熱材20の外周の縁の先端ぎりぎりまで、熱溶着できなかったり、わざと先端ぎりぎりまで、熱溶着しないことがあるからであり、また、熱溶着装置における真空断熱材20を加熱加圧する部分の芯材の形状に対する追随性(柔軟性)によっては、芯材の際のぎりぎりまで、熱溶着できないことがあるからである。   The vacuum heat insulating material 20 is obtained by covering a plurality of core members 17 of the same size in a two-dimensional arrangement without overlapping from above and below with two jacket members 18 and vacuum-sealing them. . In the vacuum heat insulating material 20, since the core material 17 does not exist between the upper and lower jacket materials 18, almost all the portions where the upper and lower jacket materials 18 can be in close contact with each other at atmospheric pressure become the heat-welded portions 21 of the jacket material 18. Each core member 17 is individually vacuum sealed. The heat welding part 21 is a part where the upper part and the lower part of the jacket material 18 are melted and joined by heat, and each core member 17 is present in an independent space. Here, “almost all” is not expressed as “all”, but the size and shape of the two outer cover materials 18 are slightly different from each other, and the size of the outer cover material 18 and the heat welding apparatus is different. This is because, depending on the shape deviation, heat welding may not be possible until the edge of the outer peripheral edge of the vacuum heat insulating material 20 or it may not be purposely heat-welded, and the vacuum heat insulating material in the heat welding apparatus. This is because, depending on the followability (flexibility) to the shape of the core material at the portion where 20 is heated and pressed, heat welding may not be possible until the last minute of the core material.

図9に示すように、真空断熱材20の外被材18はラミネート構造を有しており、芯材17側から順に熱溶着層22、ガスバリア層(金属箔層23、金属蒸着層24、及びポリアクリル酸系樹脂層25)、保護層26が位置するように構成されている。   As shown in FIG. 9, the jacket material 18 of the vacuum heat insulating material 20 has a laminate structure, and in order from the core material 17 side, a heat welding layer 22, a gas barrier layer (a metal foil layer 23, a metal vapor deposition layer 24, and The polyacrylic acid resin layer 25) and the protective layer 26 are arranged.

熱溶着層22は、加熱及び加圧されることで外被材18の内部を真空封止するものである。熱溶着層22として、低密度ポリエチレンフィルム、鎖状低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルム等、及びこれらの混合物を使用することができる。   The heat welding layer 22 is for vacuum-sealing the inside of the jacket material 18 by being heated and pressurized. As the heat welding layer 22, a low density polyethylene film, a chain low density polyethylene film, a high density polyethylene film, a polypropylene film, a polyacrylonitrile film, or a mixture thereof can be used.

ガスバリア層は、外被材18の外表面を通じての芯材17への空気の侵入を防ぐものであり、実施の形態3では、芯材17の一方の面側に設けられた金属箔層23と、芯材17の他方の面側に設けられた金属蒸着層24及びポリアクリル酸系樹脂層25とが、ガスバリア層である。ポリアクリル酸系樹脂層25は、金属蒸着層24の上に設けられている。   The gas barrier layer prevents air from entering the core material 17 through the outer surface of the jacket material 18. In the third embodiment, the gas barrier layer includes a metal foil layer 23 provided on one surface side of the core material 17 and The metal vapor deposition layer 24 and the polyacrylic acid resin layer 25 provided on the other surface side of the core material 17 are gas barrier layers. The polyacrylic acid resin layer 25 is provided on the metal vapor deposition layer 24.

保護層26は、外被材18の外表面における埃や塵等による傷つきや、摩擦、折り曲げ、更には釘等の棒状部材の突き刺し等によるガスバリア層におけるピンホールの発生を防ぐものである。保護層26として、ナイロンフィルムやポリエチレンテレフタラートフィルム等を使用することができる。   The protective layer 26 prevents the outer surface of the jacket material 18 from being damaged by dust, dust, etc., friction, bending, and pinholes in the gas barrier layer due to sticking of a bar-like member such as a nail. As the protective layer 26, a nylon film, a polyethylene terephthalate film, or the like can be used.

真空断熱材20の熱伝導率は、平均温度24℃において、0.005W/m・Kであり、汎用的な断熱材である硬質ウレタンフォームの5倍程度の断熱性能を有する。   The heat conductivity of the vacuum heat insulating material 20 is 0.005 W / m · K at an average temperature of 24 ° C., and has a heat insulating performance about five times that of a rigid urethane foam that is a general heat insulating material.

建築用部材12と木下地9bとは、図10に示すように、真空断熱材20の芯材17を避けるように釘19が打ち込まれることで固定されている。つまり、釘19は熱溶着部21に打ち込まれ、それにより、木下地9bは建築用部材12に固定される。木下地9bは、釘19の代わりにビスで固定することも可能である。なお、図10には示されていないが、実施の形態1と同様に、真空断熱材20の上に防水シート15を配置させ、構造用面材12aの上(建築用部材12と木軸7との間)に防湿気密シート16を配置させることが好ましい。   As shown in FIG. 10, the building member 12 and the wood substrate 9 b are fixed by driving nails 19 so as to avoid the core material 17 of the vacuum heat insulating material 20. That is, the nail 19 is driven into the heat-welded portion 21, whereby the wood substrate 9 b is fixed to the building member 12. The wood substrate 9b can be fixed with screws instead of the nails 19. Although not shown in FIG. 10, as in the first embodiment, the waterproof sheet 15 is disposed on the vacuum heat insulating material 20, and the structural surface material 12a (the building member 12 and the wooden shaft 7). It is preferable to arrange the moisture-proof and airtight sheet 16 between the two.

以上説明したように、実施の形態3では、複数個の芯材17それぞれが独立した空間に存在した状態で真空封止されている真空断熱材20と、構造用面材12aとが一体化された建築用部材12が建物11に用いられる。そのため、建物11の施工において、真空断熱材20のいずれかの芯材17の上に釘やビスが打たれても、他の芯材17における真空度は悪化せず、真空断熱材20全体としての断熱性能の悪化を抑制することができる。   As described above, in the third embodiment, the vacuum heat insulating material 20 that is vacuum-sealed in a state where each of the plurality of core members 17 exists in an independent space and the structural face material 12a are integrated. The building member 12 is used for the building 11. Therefore, in the construction of the building 11, even if nails or screws are struck on any of the cores 17 of the vacuum heat insulating material 20, the degree of vacuum in the other core materials 17 does not deteriorate, and the vacuum heat insulating material 20 as a whole. The deterioration of the heat insulation performance can be suppressed.

また、実施の形態3では、真空断熱材20の外被材18の一方の面が金属蒸着層24を有するラミネートフィルムであり、他方の面が金属箔層23を有するラミネートフィルムであり、金属箔層23と金属蒸着層24との熱容量が異なる。そのため、真空断熱材20の使用時に起きる二枚のラミネートフィルムの接着面を通じて発生する熱漏洩を抑制することができる。実施の形態3では、真空断熱材20が複数個の芯材17を有するので、二枚のラミネートフィルムの接着面が占める割合が大きく、金属箔層23と金属蒸着層24との熱容量が異なることにより、熱漏洩の影響を防止する効果は大きくなる。   In the third embodiment, one surface of the jacket material 18 of the vacuum heat insulating material 20 is a laminate film having the metal vapor-deposited layer 24, and the other surface is a laminate film having the metal foil layer 23. The heat capacities of the layer 23 and the metal vapor deposition layer 24 are different. Therefore, the heat leak which generate | occur | produces through the bonding surface of the two laminated films which arises at the time of use of the vacuum heat insulating material 20 can be suppressed. In Embodiment 3, since the vacuum heat insulating material 20 has a plurality of core members 17, the proportion occupied by the adhesive surface of the two laminated films is large, and the heat capacities of the metal foil layer 23 and the metal vapor deposition layer 24 are different. Thus, the effect of preventing the influence of heat leakage is increased.

また、実施の形態3では、外被材18の金属蒸着層24の上にポリアクリル酸系樹脂層25が設けられており、金属蒸着層24単層の場合と比較してガスバリア性が向上し、真空断熱材20の断熱性能を長期にわたって維持することができる。   Further, in the third embodiment, the polyacrylic acid resin layer 25 is provided on the metal vapor deposition layer 24 of the jacket material 18, and the gas barrier property is improved as compared with the case of the metal vapor deposition layer 24 single layer. The heat insulating performance of the vacuum heat insulating material 20 can be maintained over a long period of time.

また、実施の形態3では、真空断熱材20の外被材18の芯材17を挟まない部分の全てが熱溶着されている(参照:熱溶着部21)。そのため、図11(A)に示すような、外被材18の芯材17を挟まない部分の一部21xが熱溶着されていない場合の真空断熱材20xの端部のヒレ部(非芯材部)の幅21bxに比べて、図8に示す真空断熱材20の端部のヒレ部(非芯材部)の幅21bを狭めることができる。これにより、真空断熱材20表面における芯材17の占める面積が大きくなるので、真空断熱材20表面の有効断熱面積の比率が大きくなり、断熱効果を高めることができる。   Moreover, in Embodiment 3, all the parts which do not pinch | interpose the core material 17 of the jacket material 18 of the vacuum heat insulating material 20 are heat-welded (reference: heat-welding part 21). Therefore, as shown in FIG. 11 (A), the fin portion (non-core material) at the end of the vacuum heat insulating material 20x when the part 21x of the jacket material 18 that does not sandwich the core material 17 is not thermally welded. 8), the width 21b of the fin portion (non-core material portion) at the end of the vacuum heat insulating material 20 shown in FIG. 8 can be narrowed. Thereby, since the area which the core material 17 accounts in the vacuum heat insulating material 20 surface becomes large, the ratio of the effective heat insulation area of the vacuum heat insulating material 20 surface becomes large, and the heat insulation effect can be improved.

上記の内容を更に説明するために、図11(B)を示す。図11(B)は、図11(A)と比較するための図であって、図11(B)を示すヒレ部(非芯材部)の幅21bを、図11(A)を示すヒレ部(非芯材部)の幅21bxに比べて狭めることができることを説明するための図である。図11(B)に示すように、外被材18の芯材17を挟まない部分の全てが熱溶着されており(参照:熱溶着部21)、図11(A)に示す、熱溶着されていない部分21xが存在しない場合、その部分21xが存在しないことにより、図11(B)を示すヒレ部(非芯材部)の幅21bを、図11(A)を示すヒレ部(非芯材部)の幅21bxに比べて狭めることができる。これにより、図11(A)に示す真空断熱材20xと比較して、真空断熱材20y表面における芯材17の占める面積が大きくなる。そのため、真空断熱材20y表面の有効断熱面積の比率が大きくなり、断熱効果を高めることができる。   FIG. 11B is shown to further explain the above contents. 11B is a view for comparison with FIG. 11A, in which the width 21b of the fin portion (non-core material portion) shown in FIG. 11B is set as the fin shown in FIG. It is a figure for demonstrating that it can narrow compared with the width | variety 21bx of a part (non-core material part). As shown in FIG. 11 (B), all the portions of the jacket material 18 that do not sandwich the core material 17 are heat-welded (see: heat-welded portion 21), and heat-welded as shown in FIG. 11 (A). When the non-existing portion 21x does not exist, the width 21b of the fin portion (non-core material portion) shown in FIG. 11B is changed to the fin portion (non-core shown in FIG. It can be narrower than the width 21bx of the material part. Thereby, compared with the vacuum heat insulating material 20x shown in FIG. 11A, the area occupied by the core material 17 on the surface of the vacuum heat insulating material 20y is increased. Therefore, the ratio of the effective heat insulation area of the vacuum heat insulating material 20y surface becomes large, and the heat insulation effect can be improved.

また、実施の形態3では、図8に示すように、複数個の芯材17の大きさは同一である。しかしながら、図12に示すように、複数個の芯材17の大きさは異なっていてもよい。例えば、後に釘19が打ち込まれる可能性がある領域の芯材17の大きさをその領域以外のそれよりも小さくする。これにより、釘19が打ち込まれる可能性がある領域のいずれかの芯材17に実際に釘19が打ち込まれても、その芯材17の面積は小さいので、真空状態を喪失した部分の面積は、複数個の芯材17の大きさが同一である場合よりも小さくなる。言い換えると、真空状態が保たれている芯材17の面積が大きくなる。その結果、真空断熱材20全体としての断熱性を高い状態で維持することができる。   In the third embodiment, as shown in FIG. 8, the plurality of core members 17 have the same size. However, as shown in FIG. 12, the size of the plurality of core members 17 may be different. For example, the size of the core material 17 in a region where the nail 19 may be driven later is made smaller than that in other regions. As a result, even if the nail 19 is actually driven into any of the core members 17 in the region where the nail 19 may be driven, the area of the core member 17 is small. The plurality of core members 17 are smaller than the same size. In other words, the area of the core material 17 in which the vacuum state is maintained increases. As a result, the heat insulation as the whole vacuum heat insulating material 20 can be maintained in a high state.

また、建築用部材12は、芯材17の区切れ(熱溶着部21)で折り曲げることが可能であるので、芯材17の面積を小さくしておくと、折り曲げの自由度が向上する。また、折り曲げる必要がある部位の芯材17の面積を小さくしておくとともに、折り曲げる必要がない部位の芯材17の面積を大きくしておくと、建築用部材12は、特定の部位でのみ折り曲げることが可能となる。   Moreover, since the building member 12 can be bent at the boundary of the core material 17 (heat-welded portion 21), if the area of the core material 17 is reduced, the degree of freedom of bending is improved. In addition, when the area of the core material 17 in a portion that needs to be bent is reduced and the area of the core material 17 in a portion that does not need to be bent is increased, the building member 12 is bent only at a specific portion. It becomes possible.

また、複数個の芯材17の形状及び厚みは、異なっていてもよい。
更に、図13に示すように、建築用部材12は、構造用面材12aの上に、真空断熱材20aと真空断熱材20bとが積層されて一体化されたものであってもよい。その際、真空断熱材20a及び真空断熱材20bは、芯材17が重ならないように、積層されることが好ましい。芯材17の大きさ及び数の一方又は双方を調整することにより、一枚の真空断熱材20を用いたときの熱溶着部21の部分にも芯材17が位置するように、真空断熱材20aと真空断熱材20bとを積層した状態で構造用面材12aと一体化させることができる。その結果、断熱効果が向上する。なお、真空断熱材20は、3枚以上積層した状態で構造用面材12aと一体化していてもよい。
Moreover, the shape and thickness of the some core material 17 may differ.
Furthermore, as shown in FIG. 13, the building member 12 may be formed by stacking and integrating the vacuum heat insulating material 20a and the vacuum heat insulating material 20b on the structural surface material 12a. At that time, the vacuum heat insulating material 20a and the vacuum heat insulating material 20b are preferably stacked so that the core material 17 does not overlap. By adjusting one or both of the size and number of the core material 17, the vacuum heat insulating material is arranged so that the core material 17 is also located in the portion of the heat welded portion 21 when one vacuum heat insulating material 20 is used. 20a and the vacuum heat insulating material 20b can be integrated with the structural face material 12a in a stacked state. As a result, the heat insulation effect is improved. The vacuum heat insulating material 20 may be integrated with the structural face material 12a in a state where three or more are laminated.

(実施の形態4)
図14は実施の形態4における建築用部材12の外観図、図15は図14の建築用部材12を構成する真空断熱材27のC−C’線における断面図である。
(Embodiment 4)
FIG. 14 is an external view of the building member 12 according to Embodiment 4, and FIG. 15 is a cross-sectional view taken along the line CC ′ of the vacuum heat insulating material 27 constituting the building member 12 of FIG.

図14に示すように、実施の形態4における建物11に使用する建築用部材12は、構造用面材12aと真空断熱材27とが一体化されている建築用の部材である。   As shown in FIG. 14, the building member 12 used in the building 11 in the fourth embodiment is a building member in which the structural surface material 12 a and the vacuum heat insulating material 27 are integrated.

真空断熱材27は、複数個の芯材17を一個の外被材18により覆い真空封止することで得られる。真空断熱材27において、芯材17が存在しない部分は全て外被材18の熱溶着部21となっており、各芯材17は個別に真空封止されている。熱溶着部21は、各芯材17を独立した空間に存在させる。   The vacuum heat insulating material 27 is obtained by covering a plurality of core materials 17 with a single jacket material 18 and vacuum-sealing them. In the vacuum heat insulating material 27, all portions where the core material 17 does not exist are the heat-welded portions 21 of the jacket material 18, and each core material 17 is individually vacuum-sealed. The heat welding part 21 makes each core material 17 exist in the independent space.

図15に示すように、真空断熱材27の外被材18はラミネート構造を有しており、芯材17側から順に熱溶着層22、ガスバリア層(金属蒸着層24及びポリアクリル酸系樹脂層25)、保護層26が位置するように構成されている。実施の形態4の真空断熱材27は、実施の形態3の真空断熱材20とガスバリア層の構成以外は同一である。   As shown in FIG. 15, the jacket 18 of the vacuum heat insulating material 27 has a laminate structure, and the heat welding layer 22, the gas barrier layer (the metal vapor deposition layer 24 and the polyacrylic acid resin layer) are sequentially formed from the core material 17 side. 25) and the protective layer 26 is located. The vacuum heat insulating material 27 of the fourth embodiment is the same as the vacuum heat insulating material 20 of the third embodiment except for the configuration of the gas barrier layer.

ガスバリア層は、外被材18の外表面を通じての芯材17への空気の侵入を防ぐものであり、実施の形態4では、外被材18の両面の金属蒸着層24及びポリアクリル酸系樹脂層25がガスバリア層である。ポリアクリル酸系樹脂層25は、金属蒸着層24の上に設けられている。   The gas barrier layer prevents air from entering the core material 17 through the outer surface of the jacket material 18. In the fourth embodiment, the metal vapor deposition layers 24 and the polyacrylic acid resin on both surfaces of the jacket material 18 are used. Layer 25 is a gas barrier layer. The polyacrylic acid resin layer 25 is provided on the metal vapor deposition layer 24.

真空断熱材27の熱伝導率は、平均温度24℃において、0.005W/m・Kであり、汎用的な断熱材である硬質ウレタンフォームの5倍程度の断熱性能を有する。   The heat conductivity of the vacuum heat insulating material 27 is 0.005 W / m · K at an average temperature of 24 ° C., and has a heat insulating performance about five times that of a rigid urethane foam that is a general heat insulating material.

以上説明したように、実施の形態4では、複数個の芯材17それぞれが独立した空間に存在し真空封止されている真空断熱材27と、構造用面材12aとが一体化された建築用部材12が建物11に用いられる。真空断熱材27の外被材18の両面が熱容量の小さい金属蒸着層24であるので、接着面を通じて発生する熱漏洩を抑制する効果が高く、真空断熱材27の断熱効果を高めることができる。   As described above, in the fourth embodiment, the vacuum heat insulating material 27 in which each of the plurality of core members 17 exists in an independent space and is vacuum-sealed, and the structural surface material 12a are integrated. The member 12 is used for the building 11. Since both surfaces of the jacket material 18 of the vacuum heat insulating material 27 are the metal vapor deposition layers 24 having a small heat capacity, the effect of suppressing heat leakage generated through the bonding surface is high, and the heat insulating effect of the vacuum heat insulating material 27 can be enhanced.

(実施の形態5)
図16は実施の形態5における建築用部材12の外観図、図17は図16の建築用部材12を構成する硬質ポリウレタンフォーム28のD−D’線における断面図である。
(Embodiment 5)
16 is an external view of the building member 12 according to Embodiment 5, and FIG. 17 is a cross-sectional view taken along the line DD ′ of the rigid polyurethane foam 28 constituting the building member 12 of FIG.

図16に示すように、実施の形態5における建物11に使用する建築用部材12は、構造用面材12aと硬質ポリウレタンフォーム28とが一体化されている建築用の部材である。   As shown in FIG. 16, the building member 12 used in the building 11 in the fifth embodiment is a building member in which the structural surface material 12 a and the rigid polyurethane foam 28 are integrated.

硬質ポリウレタンフォーム28は、図17に示すように、実施の形態4における真空断熱材27を内包するようにウレタン分子を発泡させることにより生成される。なお、硬質ポリウレタンフォーム28は、実施の形態1から実施の形態3のいずれの真空断熱材を内包していてもよい。   As shown in FIG. 17, the rigid polyurethane foam 28 is produced by foaming urethane molecules so as to enclose the vacuum heat insulating material 27 in the fourth embodiment. Note that the rigid polyurethane foam 28 may include any of the vacuum heat insulating materials of the first to third embodiments.

以上説明したように、実施の形態5では、構造用面材12aと、実施の形態4で説明した真空断熱材27等の真空断熱材を内包する硬質ポリウレタンフォーム28とが一体化された建築用部材12が建物11に用いられる。真空断熱材は露出しないので、施工現場における異物や、取り扱い不良による真空断熱材の破袋を抑制することができる。   As described above, in the fifth embodiment, the structural surface material 12a and the rigid polyurethane foam 28 containing the vacuum heat insulating material such as the vacuum heat insulating material 27 described in the fourth embodiment are integrated. The member 12 is used for the building 11. Since the vacuum heat insulating material is not exposed, foreign matter at the construction site and breakage of the vacuum heat insulating material due to poor handling can be suppressed.

また、硬質ポリウレタンフォーム28の使用により断熱性能は一層高まり、建物11の断熱性を更に向上させることができる。   Further, the use of the rigid polyurethane foam 28 further increases the heat insulation performance, and the heat insulation of the building 11 can be further improved.

更に、硬質ポリウレタンフォーム28の使用により、建築用部材12の構造的強度が向上し、搬送性や取り扱いの作業性が良くなり、平面性が出る。   Further, the use of the rigid polyurethane foam 28 improves the structural strength of the building member 12, improves the transportability and handling workability, and provides flatness.

硬質ポリウレタンフォーム28は、発泡系断熱材の一例である。   The rigid polyurethane foam 28 is an example of a foam heat insulating material.

(実施の形態6)
図18は実施の形態6における建築用部材12の外観図である。
図18に示すように、実施の形態6における建物11に使用する建築用部材12は、厚み方向に貫通孔29が設けられている構造用面材12aと、同じく厚み方向に貫通孔29が設けられている真空断熱材30とが、それぞれの貫通孔29が重なるように一体化されている。
(Embodiment 6)
FIG. 18 is an external view of the building member 12 according to the sixth embodiment.
As shown in FIG. 18, the building member 12 used in the building 11 according to the sixth embodiment is provided with the structural surface material 12a in which the through holes 29 are provided in the thickness direction, and the through holes 29 in the same thickness direction. The vacuum heat insulating material 30 is integrated so that the respective through holes 29 overlap.

なお、真空断熱材30の構成は、貫通孔29を除くと先に説明した実施の形態の真空断熱材と同一である。先に説明した実施の形態の真空断熱材は、真空断熱材20又は真空断熱材27であってもよいし、真空断熱材14であってもよい。   In addition, the structure of the vacuum heat insulating material 30 is the same as the vacuum heat insulating material of embodiment described previously except the through-hole 29. FIG. The vacuum heat insulating material of the embodiment described above may be the vacuum heat insulating material 20 or the vacuum heat insulating material 27, or the vacuum heat insulating material 14.

以上説明したように、実施の形態6では、貫通孔29が設けられている建築用部材12が建物11に用いられるので、建物11の内側と外側とを貫通させる必要がある換気扇等の設備を、断熱性を劣化させることなく設置することができる。   As described above, in the sixth embodiment, since the building member 12 provided with the through hole 29 is used for the building 11, a facility such as a ventilation fan that needs to penetrate the inside and the outside of the building 11 is provided. It can be installed without degrading the heat insulation.

(実施の形態7)
図19は実施の形態7における建物11の概略断面図である。
図19に示すように、実施の形態7における建物11は、先に説明した実施の形態と同様の構成であり、壁31及び屋根32の内側部分と、床材33の下側部分とに、真空断熱材14と構造用面材12aとが一体化した構成の、図4に示す建築用部材12A、12B、12Cが配設されている。
(Embodiment 7)
FIG. 19 is a schematic cross-sectional view of the building 11 in the seventh embodiment.
As shown in FIG. 19, the building 11 according to the seventh embodiment has the same configuration as that of the above-described embodiment, and includes an inner portion of the wall 31 and the roof 32, and a lower portion of the flooring 33. Construction members 12A, 12B, and 12C shown in FIG. 4 having a configuration in which the vacuum heat insulating material 14 and the structural face material 12a are integrated are disposed.

真空断熱材14の厚みは、所定の断熱効果が得られるように決定される。
例えば、建物11が寒冷地域に位置すれば真空断熱材14の厚みは大きくなる。また、建物11の部位によって配設される真空断熱材14の厚みが異なることがある。実施の形態7では、建築用部材12Aの真空断熱材14は厚み5mmであり、建築用部材12Bの真空断熱材14は厚み7mmであり、建築用部材12Cの真空断熱材14は厚み3mmである。
The thickness of the vacuum heat insulating material 14 is determined so as to obtain a predetermined heat insulating effect.
For example, if the building 11 is located in a cold region, the thickness of the vacuum heat insulating material 14 increases. Moreover, the thickness of the vacuum heat insulating material 14 arrange | positioned by the site | part of the building 11 may differ. In Embodiment 7, the vacuum heat insulating material 14 of the building member 12A has a thickness of 5 mm, the vacuum heat insulating material 14 of the building member 12B has a thickness of 7 mm, and the vacuum heat insulating material 14 of the building member 12C has a thickness of 3 mm. .

以上説明したように、実施の形態7では、真空断熱材14の厚みによって建物11の断熱度を設計している。そのため、建物11が施工される地域の気候条件や建物11内における各部屋の用途等に応じて、建物11の各部位における熱損失係数を最適化することが可能となる。その結果、居住者にとって快適な建物11を建築することができる。   As described above, in the seventh embodiment, the heat insulation degree of the building 11 is designed based on the thickness of the vacuum heat insulating material 14. Therefore, it becomes possible to optimize the heat loss coefficient in each part of the building 11 according to the climatic conditions of the area where the building 11 is constructed, the use of each room in the building 11, and the like. As a result, a building 11 that is comfortable for residents can be constructed.

なお、建築用部材12A、12B、12Cは、真空断熱材20,真空断熱材27,又は真空断熱材30と構造用面材12aとが一体化した建築用部材であてもよい。   The building members 12A, 12B, and 12C may be building members in which the vacuum heat insulating material 20, the vacuum heat insulating material 27, or the vacuum heat insulating material 30 and the structural surface material 12a are integrated.

(実施の形態8)
図20は実施の形態8における建物11の概略断面図、図21から図23はその建物11に用いられている真空断熱材の平面図である。
(Embodiment 8)
FIG. 20 is a schematic cross-sectional view of the building 11 in the eighth embodiment, and FIGS. 21 to 23 are plan views of the vacuum heat insulating material used in the building 11.

図20に示すように、実施の形態8における建物11は、先に説明した実施の形態と同様の構成であり、壁31及び屋根32の内側部分と、床材33の下側部分とに、複数個の芯材17で構成された真空断熱材20と構造用面材12aとが一体化した構成の、図8に示す建築用部材12D、12E、12Fが配設されている。   As shown in FIG. 20, the building 11 according to the eighth embodiment has the same configuration as that of the above-described embodiment, and includes an inner portion of the wall 31 and the roof 32, and a lower portion of the flooring 33. Construction members 12D, 12E, and 12F shown in FIG. 8 having a structure in which the vacuum heat insulating material 20 composed of a plurality of core members 17 and the structural face material 12a are integrated are provided.

真空断熱材20の表面全体に対する芯材17が占める面積の割合(面積率)は、所定の断熱効果が得られるように決定される。面積率は、芯材17の大きさや熱溶着部21の面積によって決まり、芯材17部の面積率が大きいほど建物11の断熱性が高まる。   The ratio (area ratio) of the area occupied by the core material 17 to the entire surface of the vacuum heat insulating material 20 is determined so as to obtain a predetermined heat insulating effect. The area ratio is determined by the size of the core material 17 and the area of the heat-welded portion 21. The larger the area ratio of the core material 17 portion, the higher the heat insulating property of the building 11.

例えば、建物11が寒冷地域に位置すれば真空断熱材20の表面全体に対する芯材17が占める面積率は大きくなる。また、建物11の部位によって、配設される真空断熱材20の芯材17部の面積率が異なることがある。   For example, if the building 11 is located in a cold region, the area ratio occupied by the core material 17 with respect to the entire surface of the vacuum heat insulating material 20 increases. Further, the area ratio of the 17 parts of the core material of the vacuum heat insulating material 20 to be arranged may vary depending on the part of the building 11.

図21は建築用部材12Dの真空断熱材20Dを、図22は建築用部材12Eの真空断熱材20Eを、図23は建築用部材12Fの真空断熱材20Fをそれぞれ表しており、芯材17部の面積率は、それぞれ91.2%、93.8%、80.2%である。   FIG. 21 shows the vacuum heat insulating material 20D of the building member 12D, FIG. 22 shows the vacuum heat insulating material 20E of the building member 12E, and FIG. 23 shows the vacuum heat insulating material 20F of the building member 12F. The area ratios are 91.2%, 93.8%, and 80.2%, respectively.

なお、芯材17部の面積率は、施工時における釘打ち等による破袋の影響を考慮して決定する必要がある。   In addition, it is necessary to determine the area ratio of 17 parts of core materials in consideration of the influence of the broken bag by nailing etc. at the time of construction.

以上説明したように、実施の形態8では、真空断熱材20の表面全体に対する芯材17の面積率を考慮して、建物11の断熱度を設計する。そのため、建物11が施工される地域の気候条件や建物内における各部屋の用途等に応じて、真空断熱材20の断熱効果を最適化することが可能となる。その結果、居住者にとって快適な建物11を建築することができる。   As described above, in the eighth embodiment, the heat insulation degree of the building 11 is designed in consideration of the area ratio of the core member 17 with respect to the entire surface of the vacuum heat insulating material 20. Therefore, the heat insulation effect of the vacuum heat insulating material 20 can be optimized according to the climatic conditions of the area where the building 11 is constructed, the use of each room in the building, and the like. As a result, a building 11 that is comfortable for residents can be constructed.

(実施の形態9)
実施の形態3において、図8及び図12を用いて説明した真空断熱材20は、複数個の芯材17を一個の外被材18により覆い真空封止することで得られる。そのため、真空断熱材20は、芯材17が存在しない部分、すなわち熱溶着部21で、容易に折り曲げることができる。
(Embodiment 9)
In the third embodiment, the vacuum heat insulating material 20 described with reference to FIGS. 8 and 12 is obtained by covering a plurality of core members 17 with a single jacket material 18 and vacuum-sealing them. Therefore, the vacuum heat insulating material 20 can be easily bent at a portion where the core material 17 does not exist, that is, at the heat welding portion 21.

したがって、真空断熱材20は、図24に示すように、例えばドーム球場の天井部分等の曲面を有する壁40に密着した状態で容易に取り付けることができる。図24は、真空断熱材20が曲面を有する壁40に取り付けられた場合の、真空断熱材20及び壁40の断面図である。また、真空断熱材20は、曲面を有する壁40のみならず、平面ではない部分に密着した状態で容易に取り付けることができる。   Therefore, as shown in FIG. 24, the vacuum heat insulating material 20 can be easily attached in a state of being in close contact with a wall 40 having a curved surface such as a ceiling portion of a dome stadium, for example. FIG. 24 is a cross-sectional view of the vacuum heat insulating material 20 and the wall 40 when the vacuum heat insulating material 20 is attached to a wall 40 having a curved surface. Moreover, the vacuum heat insulating material 20 can be easily attached in the state which contact | adhered not only to the wall 40 which has a curved surface but the part which is not a plane.

なお、構造用面材12aが変形可能なものであれば、構造用面材12aと真空断熱材20とが一体化した建築用部材12を、曲面を有する壁等の平面ではない部分に密着した状態で容易に取り付けることができる。例えば、建築用部材12は、浴室に用いることができる。   If the structural face material 12a can be deformed, the structural member 12 in which the structural face material 12a and the vacuum heat insulating material 20 are integrated is brought into close contact with a non-planar portion such as a curved wall. Can be easily installed in the state. For example, the building member 12 can be used in a bathroom.

(実施の形態10)
真空断熱材20は、図25に示すように、ロール状に巻かれていて、所望する大きさで切断できるように保持されていてもよい。これにより、真空断熱材20を、廃棄する部分を少なくして切り出すことができる。真空断熱材20は、図8等を用いて説明したように、2次元状に重なることなく配置された状態の複数個の同一の大きさの芯材17を、一個の外被材18により上下から覆い真空封止することで得られたものである。したがって、真空断熱材20は、所望のサイズに切断されても、切断されたことによる破袋の影響を切断された箇所以外の部位へ及ばさない。そのため、実施の形態10の真空断熱材20は、様々な大きさ、形状で切り出すことができる。
(Embodiment 10)
As shown in FIG. 25, the vacuum heat insulating material 20 may be wound in a roll shape and held so that it can be cut at a desired size. Thereby, the vacuum heat insulating material 20 can be cut out with less parts to be discarded. As described with reference to FIG. 8 and the like, the vacuum heat insulating material 20 includes a plurality of the same-sized core members 17 arranged in a two-dimensional manner without being overlapped by a single jacket member 18. It is obtained by covering and sealing with vacuum. Therefore, even if the vacuum heat insulating material 20 is cut into a desired size, the influence of the broken bag due to the cutting is not exerted on the portions other than the cut portion. Therefore, the vacuum heat insulating material 20 of Embodiment 10 can be cut out in various sizes and shapes.

なお、真空断熱材20は、図26に示すように、一方の上面に粘着層50が設けられており、その上に剥離紙51が設けられており、その状態でロール状に巻かれていてもよい。これにより、作業者は、剥離紙51を剥離するだけで、所望の大きさに切断された真空断熱材20を、所望する部位に容易に取り付けることができる。粘着層50及び剥離紙51は、真空断熱材20の両方の面に設けられていてもよい。   In addition, as shown in FIG. 26, the vacuum heat insulating material 20 is provided with an adhesive layer 50 on one upper surface, a release paper 51 is provided thereon, and is wound in a roll shape in that state. Also good. Thereby, the operator can easily attach the vacuum heat insulating material 20 cut into a desired size to a desired site simply by peeling the release paper 51. The adhesive layer 50 and the release paper 51 may be provided on both surfaces of the vacuum heat insulating material 20.

また、真空断熱材20は、図27に示すように、例えば30cm間隔等の所定の間隔でマーク60が付けられていてもよい。マーク60を利用すると、大きさが容易に分かるので、建物11の施工現場において、作業者は、所望する大きさの真空断熱材20を容易に切断し、得ることができる。マーク60は、ミシン目等であってもよい。   Moreover, as shown in FIG. 27, the vacuum heat insulating material 20 may be provided with marks 60 at a predetermined interval such as an interval of 30 cm. Since the size can be easily understood by using the mark 60, the operator can easily cut and obtain the vacuum insulating material 20 having a desired size at the construction site of the building 11. The mark 60 may be a perforation or the like.

なお、上述した各実施の形態における真空断熱材及び建築用部材12は、新築の建築物に使用することができるのみならず、建築物をリフォームする際にも使用することができる。   In addition, the vacuum heat insulating material and the building member 12 in each embodiment described above can be used not only for a newly built building but also for renovating a building.

本発明の断熱施工方法は、新築やリフォームにおいて建築物を施工する際等に有用である。また、本発明の断熱施工方法で施工された建物は、住宅用の建物のみならず、商業用の建物等に有用である。   The heat insulation construction method of the present invention is useful when constructing a building in a new construction or renovation. Moreover, the building constructed by the heat insulation construction method of the present invention is useful not only for residential buildings but also for commercial buildings.

実施の形態1における建物の概略断面図Schematic sectional view of the building in the first embodiment 実施の形態1における建物の外壁部の斜視断面図Perspective sectional view of the outer wall of the building in the first embodiment 実施の形態1における建物の外壁部の断面図Sectional drawing of the outer wall part of the building in Embodiment 1 実施の形態1における建物に用いられている建築用部材の外観図External view of building members used in building in Embodiment 1 図4の建築用部材を構成する真空断熱材のA−A’線における断面図Sectional drawing in the A-A 'line of the vacuum heat insulating material which comprises the building member of FIG. 実施の形態2における建築用部材の外観図External view of building member in embodiment 2 実施の形態2における建築用部材の上に木下地を組んだ状態を示す斜視図The perspective view which shows the state which assembled the wooden base on the member for building in Embodiment 2. 実施の形態3における建築用部材の外観図External view of building member in Embodiment 3 図8の建築用部材を構成する真空断熱材のB−B’線における断面図Sectional drawing in the B-B 'line of the vacuum heat insulating material which comprises the building member of FIG. 実施の形態3における建築用部材12の上に木下地9bを組んだ状態を示す斜視図The perspective view which shows the state which assembled the tree base 9b on the member 12 for construction in Embodiment 3. 真空断熱材20の端部のヒレ部(非芯材部)21bの幅を狭めることができることを示す平面図The top view which shows that the width | variety of the fin part (non-core material part) 21b of the edge part of the vacuum heat insulating material 20 can be narrowed. 実施の形態3の変形例の建築用部材の外観図External view of a building member according to a modification of the third embodiment 実施の形態3の変形例の建築用部材12の分解斜視図The exploded perspective view of the building member 12 of the modification of Embodiment 3 実施の形態4における建築用部材の外観図External view of building member according to Embodiment 4 図14の建築用部材を構成する真空断熱材のC−C’線における断面図Sectional drawing in the C-C 'line of the vacuum heat insulating material which comprises the building member of FIG. 実施の形態5における建築用部材の外観図External view of building member in embodiment 5 図16の建築用部材12を構成する硬質ポリウレタンフォームのD−D’線における断面図Sectional drawing in the D-D 'line of the rigid polyurethane foam which comprises the structural member 12 of FIG. 実施の形態6における構造用面材12の外観図External view of structural face material 12 in the sixth embodiment 実施の形態7における建物の概略断面図Schematic sectional view of the building in the seventh embodiment 実施の形態8における建物の概略断面図Schematic sectional view of the building in the eighth embodiment 実施の形態8における真空断熱材の平面図Plan view of vacuum heat insulating material in embodiment 8 実施の形態8における真空断熱材の平面図Plan view of vacuum heat insulating material in embodiment 8 実施の形態8における真空断熱材の平面図Plan view of vacuum heat insulating material in embodiment 8 実施の形態9における真空断熱材が曲面を有する壁に取り付けられた状態を示す断面図Sectional drawing which shows the state in which the vacuum heat insulating material in Embodiment 9 was attached to the wall which has a curved surface 実施の形態10におけるロール状に巻かれた状態の真空断熱材20を示す斜視図The perspective view which shows the vacuum heat insulating material 20 of the state wound in roll shape in Embodiment 10 実施の形態10におけるロール状に巻かれた状態の真空断熱材20を示す斜視図The perspective view which shows the vacuum heat insulating material 20 of the state wound in roll shape in Embodiment 10 実施の形態10におけるロール状に巻かれた状態の真空断熱材20を示す斜視図The perspective view which shows the vacuum heat insulating material 20 of the state wound in roll shape in Embodiment 10 従来の建物の概略断面図Schematic sectional view of a conventional building 従来の建物の外壁部の斜視断面図Perspective sectional view of the outer wall of a conventional building

符号の説明Explanation of symbols

3 外壁仕上材
9b 木下地
11 建物
12 建築用部材
12a 構造用面材
14,14A,14B,14C 真空断熱材
15 防水シート
16 防湿気密シート
17 芯材
18 外被材
19 釘
20,20A,20B,20C 真空断熱材
23 金属箔層
24 金属蒸着層
25 ポリアクリル酸系樹脂層
27 真空断熱材
28 硬質ポリウレタンフォーム
29 貫通孔
30 真空断熱材
3 Exterior wall finishing material 9b Wood base 11 Building 12 Building member 12a Structural face material 14, 14A, 14B, 14C Vacuum heat insulating material 15 Waterproof sheet 16 Moisture-proof airtight sheet 17 Core material 18 Cover material 19 Nail 20, 20A, 20B, 20C Vacuum heat insulating material 23 Metal foil layer 24 Metal vapor deposition layer 25 Polyacrylic acid resin layer 27 Vacuum heat insulating material 28 Hard polyurethane foam 29 Through hole 30 Vacuum heat insulating material

Claims (2)

重なることなく2次元状に配列された板状の複数の芯材を、ラミネートフィルムからなるフレキシブルな二枚の外被材で上下から覆って、各前記芯材が独立した空間に個別に真空封止された真空断熱材を、構造用面材に取り付ける断熱施工方法であって、
前記構造用面材における前記真空断熱材を取り付ける側の面に前記真空断熱材の一方の面を対向させて、前記真空断熱材側から前記真空断熱材における上下の前記外被材同士が熱で溶けて結合している熱溶着部に釘又はビスを打ち込むことにより、前記真空断熱材を前記構造用面材に固定する断熱施工方法。
A plurality of plate-like core materials arranged in a two-dimensional manner without overlapping are covered from above and below with two flexible envelope materials made of a laminate film, and each core material is individually vacuum-sealed in an independent space. A heat insulating construction method for attaching a stopped vacuum heat insulating material to a structural face material,
One surface of the vacuum heat insulating material is opposed to the surface of the structural surface material on which the vacuum heat insulating material is attached, and the upper and lower outer cover materials in the vacuum heat insulating material are heated from the vacuum heat insulating material side. A heat insulation construction method for fixing the vacuum heat insulating material to the structural face material by driving a nail or a screw into a heat welding portion that is melted and bonded.
重なることなく2次元状に配列された板状の複数の芯材を、ラミネートフィルムからなるフレキシブルな二枚の外被材で上下から覆って、各前記芯材が独立した空間に個別に真空封止された真空断熱材を、構造用面材に取り付ける断熱施工方法であって、
前記構造用面材における前記真空断熱材を取り付ける側の面に前記真空断熱材の一方の面を対向させ、さらに複数の木下地を前記真空断熱材と対向するように配置し、前記真空断熱材側から前記木下地を介して前記真空断熱材における上下の前記外被材同士が熱で溶けて結合している熱溶着部に釘又はビスを打ち込むことにより、前記真空断熱材を間に挟んで前記木下地と前記構造用面材とを固定する断熱施工方法。
A plurality of plate-like core members arranged in a two-dimensional manner without overlapping are covered from above and below with two flexible envelopes made of laminate film, and each of the core members is individually vacuum-sealed in an independent space. A heat insulating construction method for attaching a stopped vacuum heat insulating material to a structural face material,
The vacuum heat insulating material is disposed so that one surface of the vacuum heat insulating material faces the surface on the side where the vacuum heat insulating material is attached in the structural face material, and a plurality of tree bases are arranged to face the vacuum heat insulating material. A nail or a screw is inserted between the upper and lower jacket materials of the vacuum heat insulating material from the side to the heat welded portion where the heat insulating material is bonded with heat, thereby sandwiching the vacuum heat insulating material therebetween. A heat insulation construction method for fixing the wood substrate and the structural face material.
JP2006216246A 2006-08-08 2006-08-08 Thermal insulation construction method Expired - Fee Related JP4615489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006216246A JP4615489B2 (en) 2006-08-08 2006-08-08 Thermal insulation construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006216246A JP4615489B2 (en) 2006-08-08 2006-08-08 Thermal insulation construction method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004314824A Division JP3875248B2 (en) 2004-10-28 2004-10-28 building

Publications (2)

Publication Number Publication Date
JP2006328950A true JP2006328950A (en) 2006-12-07
JP4615489B2 JP4615489B2 (en) 2011-01-19

Family

ID=37550907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006216246A Expired - Fee Related JP4615489B2 (en) 2006-08-08 2006-08-08 Thermal insulation construction method

Country Status (1)

Country Link
JP (1) JP4615489B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185506A (en) * 2008-02-06 2009-08-20 Panasonic Corp Heat insulating wall
JP2009197532A (en) * 2008-02-25 2009-09-03 Panasonic Corp Heat insulating wall and house applied with the same
JP2010112155A (en) * 2008-10-08 2010-05-20 Panasonic Corp Building
JP2014051882A (en) * 2013-12-16 2014-03-20 Panasonic Corp Insulation retrofit wall and vacuum insulation body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07139690A (en) * 1993-11-22 1995-05-30 Asahi Chem Ind Co Ltd Vacuum heat insulation material
JPH1122050A (en) * 1997-07-02 1999-01-26 Reiko Furuyama Heat insulating panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07139690A (en) * 1993-11-22 1995-05-30 Asahi Chem Ind Co Ltd Vacuum heat insulation material
JPH1122050A (en) * 1997-07-02 1999-01-26 Reiko Furuyama Heat insulating panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185506A (en) * 2008-02-06 2009-08-20 Panasonic Corp Heat insulating wall
JP2009197532A (en) * 2008-02-25 2009-09-03 Panasonic Corp Heat insulating wall and house applied with the same
JP2010112155A (en) * 2008-10-08 2010-05-20 Panasonic Corp Building
JP2014051882A (en) * 2013-12-16 2014-03-20 Panasonic Corp Insulation retrofit wall and vacuum insulation body

Also Published As

Publication number Publication date
JP4615489B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
WO2006046520A1 (en) Building member and building
JP5494883B2 (en) Thermal insulation reinforcement structure
JP5453907B2 (en) Building construction method
WO2008149090A1 (en) Thermal insulation structure
JP2010047902A (en) Heat insulating wall and building and house having heat insulating wall
JP4615489B2 (en) Thermal insulation construction method
JP2007239288A (en) Member for construction using vacuum insulating material
JP2010007405A (en) Heat insulating wall, and building and house applying the same
JP2010013839A (en) Heat insulating wall
JP5077081B2 (en) Insulated walls and buildings and houses to which they are applied
WO2012098728A1 (en) Vacuum thermal insulator and vacuum thermal insulation panel provided with same
JP5157119B2 (en) Building wall
JP5663321B2 (en) Vacuum insulation
JP2008156910A (en) Building member and building structure
JP5428236B2 (en) Buildings and houses
JP2008095365A (en) Building
JP5239389B2 (en) Insulated wall and house with it
JP5217594B2 (en) Insulated walls and buildings and houses to which they are applied
JP5217924B2 (en) Insulating wall and vacuum insulating material used for insulating wall
JP7387287B2 (en) Heat insulating structure and plate-shaped heat insulating material
JP5286979B2 (en) Insulating wall, vacuum heat insulating material used for it, and buildings and houses to which it is applied
JP2010007333A (en) Heat insulation wall, and building and house using the same
JP2009185506A (en) Heat insulating wall
JP2008255629A (en) Heat insulating wall structure of wooden building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4615489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees