JP2006326833A - Method of machining aspheric surface - Google Patents

Method of machining aspheric surface Download PDF

Info

Publication number
JP2006326833A
JP2006326833A JP2006188959A JP2006188959A JP2006326833A JP 2006326833 A JP2006326833 A JP 2006326833A JP 2006188959 A JP2006188959 A JP 2006188959A JP 2006188959 A JP2006188959 A JP 2006188959A JP 2006326833 A JP2006326833 A JP 2006326833A
Authority
JP
Japan
Prior art keywords
workpiece
rotary tool
axis
aspherical surface
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006188959A
Other languages
Japanese (ja)
Inventor
Makoto Miyazawa
信 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006188959A priority Critical patent/JP2006326833A/en
Publication of JP2006326833A publication Critical patent/JP2006326833A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Machine Tool Units (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for machining an aspheric surface capable of quickly grinding and cutting a considerably uneven workpiece with high quality through the use of a conventional aspheric surface machining device in a simple control method, and an apparatus therefor. <P>SOLUTION: A workpiece 208 to be machined rotating around the rotation axis as the center and a rotary tool 214 relatively movable with the workpiece in the same direction as the rotary axis of the workpiece and in the direction orthogonal to the rotary axis of the workpiece are provided. The rotary tool moves in a constant direction with a predetermined feed pitch over a partial or entire region from the center of the rotary axis of the workpiece to the outer periphery of the workpiece in the direction orthogonal to the rotary axis of the workpiece for machining the workpiece into a non-axisymmetrical aspheric surface. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非球面加工方法に関し、特に、凹凸の段差が大きい非球面を迅速に研削及び切削することができる非球面加工方法、非球面形成方法及び非球面加工装置に関する。   The present invention relates to an aspherical surface processing method, and more particularly, to an aspherical surface processing method, an aspherical surface forming method, and an aspherical surface processing apparatus capable of rapidly grinding and cutting an aspherical surface having a large uneven surface.

老視矯正用の眼鏡レンズとしていわゆる境目のない累進屈折力レンズが多く用いられている。近年、眼球側の凹面に累進面あるいは累進面トーリック面を合成した曲面を設けたいわゆる内面累進レンズが提案されている。この内面累進レンズは、累進屈折力レンズの欠点である、ゆれや歪みを軽減でき、光学性能を飛躍的に向上させることができる。   As a spectacle lens for correcting presbyopia, a so-called progressive power lens without a border is often used. In recent years, so-called inner surface progressive lenses have been proposed in which a concave surface on the eyeball side is provided with a curved surface obtained by combining a progressive surface or a progressive surface toric surface. This inner surface progressive lens can reduce fluctuations and distortions, which are disadvantages of a progressive power lens, and can dramatically improve optical performance.

このような眼鏡レンズの凹面の累進面等の非軸対称非球面を創成する技術に関連する先行技術文献情報としては、特許文献1、特許文献2に示すものがある。   Prior art document information relating to a technique for creating a non-axisymmetric aspheric surface such as a concave progressive surface of a spectacle lens includes those shown in Patent Document 1 and Patent Document 2.

非軸対称非球面を創成する3軸制御の非球面加工装置は、X軸テーブル、Y軸テーブル、ワーク回転手段の3軸を使って回転工具を所定の位置に連続的に位置決めし、研削及び切削によりレンズ設計形状に基づいた形状創成を行う。   A three-axis controlled aspherical processing device that creates a non-axisymmetric aspherical surface uses an X-axis table, a Y-axis table, and a workpiece rotating means to continuously position a rotary tool at a predetermined position, and perform grinding and grinding. Create a shape based on the lens design shape by cutting.

制御方法の概要は、ワークを回転させながら、このワークの回転位置をエンコーダで割り出し、その回転位置に同期させて、X軸テーブル、Y軸テーブル、ワーク回転手段の3軸を制御する。   The outline of the control method is that while rotating the workpiece, the rotation position of the workpiece is indexed by an encoder, and the three axes of the X-axis table, the Y-axis table, and the workpiece rotation means are controlled in synchronization with the rotation position.

この非球面加工装置を用いる従来の形状創成の制御方法である法線制御加工方法について、図12、図13及び図14を用いて説明する。図12は、法線制御加工方法におけるレンズの加工面を示す概略図である。図12(a)はレンズの正面図、図12(b)は、図12(a)のB−B'断面図である。図13は、法線制御加工方法を示す概念図である。図14は、法線制御加工方法におけるX軸方向の回転工具中心の位置を示す概念図である。   A normal control processing method that is a conventional shape creation control method using this aspherical processing apparatus will be described with reference to FIGS. 12, 13, and 14. FIG. FIG. 12 is a schematic view showing a processed surface of a lens in the normal control processing method. 12A is a front view of the lens, and FIG. 12B is a cross-sectional view taken along the line BB ′ of FIG. FIG. 13 is a conceptual diagram showing a normal control processing method. FIG. 14 is a conceptual diagram showing the position of the rotary tool center in the X-axis direction in the normal control machining method.

法線制御加工方法のNC制御のための数値データについて、図12に示す任意の点Qxを用いて説明する。法線制御加工方法のNC制御のための数値データは、円形のレンズの外周から回転中心までの送りピッチPで規定される螺旋を想定し、レンズの回転中心から所定の角度毎の放射線と螺旋の各交点の座標値がレンズの回転角度(θ)と回転中心からの距離(半径Rx)で与えられる。また、図示しない各交点を通るY軸方向の面形状に応じた高さ(y)が求められる。この三点が加工点の座標値(θ、Rx、y)として求められる。   Numerical data for NC control in the normal control machining method will be described using an arbitrary point Qx shown in FIG. The numerical data for NC control of the normal control processing method assumes a spiral defined by a feed pitch P from the outer periphery of the circular lens to the rotation center, and the radiation and spiral at a predetermined angle from the rotation center of the lens. The coordinate value of each intersection is given by the rotation angle (θ) of the lens and the distance (radius Rx) from the rotation center. Further, the height (y) corresponding to the surface shape in the Y-axis direction passing through each intersection not shown is obtained. These three points are obtained as coordinate values (θ, Rx, y) of the machining points.

トーリック面は、A−A'線に沿った最小の曲率の曲線(ベースカーブ)と、A−A'線と直交するB−B'線に沿った最大の曲率の曲線(クロスカーブ)とを有する曲面である。ベースカーブとクロスカーブの曲率の差が大きいと、図12(b)に示すように、クロスカーブに沿って切断した断面は、極めて厚い両端部と薄い中央部とを有する曲面形状となる。回転工具214は、180度回転する毎に、最小の厚みの部分の高さと最大の厚みの部分の高さを往復運動する。即ち、Y軸方向に往復運動する。例えば、図13に示すように、レンズがA−A'断面部からB−B'断面部まで90度回転すると、最小の厚みの部分における任意の加工点Qnから最大の高さの任意の加工点Qnmまで回転工具214はY軸方向のプラス側へ移動する。   The toric surface has a curve with a minimum curvature along the line AA ′ (base curve) and a curve with the maximum curvature along the line BB ′ orthogonal to the line AA ′ (cross curve). It has a curved surface. When the difference in curvature between the base curve and the cross curve is large, as shown in FIG. 12B, the cross section cut along the cross curve has a curved surface shape having extremely thick end portions and a thin central portion. Each time the rotary tool 214 rotates 180 degrees, it reciprocates between the height of the minimum thickness portion and the height of the maximum thickness portion. That is, it reciprocates in the Y axis direction. For example, as shown in FIG. 13, when the lens is rotated 90 degrees from the AA ′ cross-section to the BB ′ cross-section, an arbitrary processing with the maximum height from an arbitrary processing point Qn in the minimum thickness portion. The rotary tool 214 moves to the plus side in the Y-axis direction up to the point Qnm.

研削及び切削に用いられる回転工具214の先端部は断面円弧状(以下アール形状という)に形成されている。法線制御では、例えば、レンズの加工点Qnに立てた法線方向に回転工具214の先端部のアール部分の中心を位置決めする。   The tip of the rotary tool 214 used for grinding and cutting is formed in a cross-sectional arc shape (hereinafter referred to as a round shape). In the normal control, for example, the center of the rounded portion of the tip of the rotary tool 214 is positioned in the normal direction set up at the processing point Qn of the lens.

詳述すると、最小の厚みの曲線(ベースカーブ、A−A'断面)における任意の加工点Qnでは、加工点Qnから立てた法線方向に回転工具214の中心点Pnが位置決めされる。加工点Qnからレンズが90度回転した最大の高さの曲線(クロスカーブ、B−B'断面)上の任意の加工点Qnmでは、加工点Qnmから立てた法線方向に回転工具214の中心点Pnmが位置決めされる。ここで、加工点Qnmは、加工点QnからX軸方向の中心側へ1/4ピッチ分移動している。この加工点Qnから加工点Qnmに移動する間に回転工具214は、Y軸方向のプラス方向にΔY移動する一方、X軸方向の中心側へXm相対移動する。レンズが更に90度回転した最小の高さの曲線(ベースカーブ、A−A'断面)上の任意の加工点Qnrでは、回転工具214は、図示しないがY軸方向のマイナス方向に移動している。このときX軸方向では、送りピッチの中心側へ向かう速度よりも厚みが減少して外側に向かう速度の方が大きいため、回転工具214は、図14(c)に示すように、外周側へXr分相対移動する。即ち、B−B'断面のクロスカーブが移動の方向の符号が正逆になる変曲点となり、回転工具214は、B−B'断面のクロスカーブを境に運動方向が正逆反対となり、Y軸方向及びX軸方向の往復運動を行う。   More specifically, at an arbitrary machining point Qn on the minimum thickness curve (base curve, AA ′ cross section), the center point Pn of the rotary tool 214 is positioned in the normal direction established from the machining point Qn. At an arbitrary processing point Qnm on the maximum height curve (cross curve, BB ′ cross section) obtained by rotating the lens 90 degrees from the processing point Qn, the center of the rotary tool 214 in the normal direction established from the processing point Qnm. Point Pnm is positioned. Here, the processing point Qnm moves from the processing point Qn by a quarter pitch toward the center side in the X-axis direction. While moving from the machining point Qn to the machining point Qnm, the rotary tool 214 moves ΔY in the plus direction in the Y-axis direction, and relatively moves Xm toward the center side in the X-axis direction. At an arbitrary processing point Qnr on the minimum height curve (base curve, AA ′ cross section) obtained by further rotating the lens by 90 degrees, the rotary tool 214 moves in the negative direction of the Y-axis direction (not shown). Yes. At this time, in the X-axis direction, since the thickness decreases and the speed toward the outside is larger than the speed toward the center side of the feed pitch, the rotary tool 214 moves toward the outer periphery as shown in FIG. Move relative to Xr. That is, the cross curve of the BB ′ cross section becomes an inflection point where the sign of the moving direction is forward and reverse, and the rotary tool 214 has the opposite direction of motion with respect to the cross curve of the BB ′ cross section. Perform reciprocal movement in the Y-axis direction and the X-axis direction.

法線制御による加工方法では、図12に示したように、螺旋と放射線の交点を加工点とし、回転工具214の先端部の中心位置がこの加工点に立てた法線方向に制御されている。即ち、法線制御による加工方法では、回転工具214は前述のように運動方向が正逆反対となることを繰り返し、ジグザグ状の複雑な螺旋の軌跡を描きながらワークを研削及び切削する。   In the processing method by normal control, as shown in FIG. 12, the intersection of the spiral and the radiation is used as a processing point, and the center position of the tip of the rotary tool 214 is controlled in the normal direction set at this processing point. . That is, in the machining method based on normal control, the rotary tool 214 repeats that the direction of motion is opposite to the opposite direction as described above, and grinds and cuts the workpiece while drawing a complicated zigzag spiral path.

特許第3367102号公報Japanese Patent No. 3367102 特開平10−175149号公報Japanese Patent Laid-Open No. 10-175149

前述による非球面加工装置による法線制御加工方法では、X軸テーブルは、ワークをX軸方向に微小の往復運動をさせ、また、Y軸テーブルは、回転工具をY軸方向に微小の往復運動をさせているため、X軸テーブルの往復運動制御と、Y軸テーブルの往復運動制御とが絡み合って両テーブルの制御は複雑になっている。そのため、凹凸の段差の大きい強度の乱視を矯正するトーリック面等を研削及び切削する場合に、通常のレンズの加工に採用されている制御方法では、往復運動に伴うバックラッシュによる研削及び切削形状の崩れ等が発生している。従って、複雑な制御方法及びそれを動作させるための高機能な制御装置が必要になるという問題が生じている。   In the normal control processing method using the aspherical surface processing apparatus described above, the X-axis table causes the workpiece to reciprocate in the X-axis direction, and the Y-axis table causes the rotary tool to reciprocate in the Y-axis direction. Therefore, the reciprocating motion control of the X-axis table and the reciprocating motion control of the Y-axis table are intertwined, and the control of both tables is complicated. Therefore, when grinding and cutting a toric surface or the like that corrects high-level astigmatism with uneven steps, the control method employed in normal lens processing uses grinding and cutting shapes due to backlash associated with reciprocating motion. Collapse has occurred. Therefore, there is a problem that a complicated control method and a high-function control device for operating the method are required.

また、X軸テーブルは、少なくともワークの半径の距離を移動させる必要があるため、小さくすることには限界があり、大型で重く慣性力が大きくなってしまう。そのため、ワークをX軸方向に高速で微小の往復運動をさせることが困難である。そのため、トーリック面等を研削及び切削する場合に、通常のレンズの加工に採用されているワークの回転数ではX軸テーブルが追従できない。超高出力のモータを用いればX軸テーブルを高速で往復運動させる可能性があるが、現実的でない。従って、X軸テーブルが追従できる程度にワークの回転数を低下させている。その結果、生産性が低下してしまうという問題が生じている。   Further, since the X-axis table needs to move at least the distance of the radius of the workpiece, there is a limit to making it small, and the inertial force is large and heavy. Therefore, it is difficult to make the workpiece reciprocate at a high speed in the X-axis direction. Therefore, when the toric surface or the like is ground and cut, the X-axis table cannot follow the rotational speed of the workpiece employed in normal lens processing. If an ultra-high output motor is used, the X-axis table may be reciprocated at high speed, but this is not practical. Therefore, the number of rotations of the workpiece is reduced to the extent that the X-axis table can follow. As a result, the problem that productivity falls will arise.

本発明は、上記事情に鑑みてなされたもので、従来の非球面加工装置を用いて凹凸の段差が大きいワークをシンプルな制御方法で高品質かつ迅速に研削、切削することができる非球面加工方法、非球面形成方法及び非球面加工装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an aspherical surface processing capable of grinding and cutting a workpiece having a large unevenness with a simple control method with a simple control method using a conventional aspherical surface processing device. It is an object to provide a method, an aspherical surface forming method, and an aspherical surface processing apparatus.

前述の目的を達成するために、本発明に係る非球面加工方法は、回転軸を中心に回転する被加工ワークと、前記ワークの回転軸と同一方向及び前記ワークの回転軸と直交する方向に、前記ワークと相対移動可能な回転工具と、を有し、前記回転工具は、前記ワークの回転軸と直交する方向において前記ワークの回転軸の中心から前記ワークの外周部までの一部もしくはすべての領域で、所定の送りピッチで一定方向に移動して前記ワークを非軸対称非球面に加工することを特徴とする。   In order to achieve the above-mentioned object, an aspherical surface processing method according to the present invention includes a workpiece to be rotated about a rotation axis, a direction identical to the rotation axis of the workpiece, and a direction orthogonal to the rotation axis of the workpiece. A rotary tool that can move relative to the workpiece, and the rotary tool is a part or all from the center of the rotation axis of the workpiece to the outer periphery of the workpiece in a direction orthogonal to the rotation axis of the workpiece. In this area, the workpiece is processed into a non-axisymmetric aspherical surface by moving in a predetermined direction at a predetermined feed pitch.

本発明に係る非球面加工方法によれば、前記回転工具が所定の送りピッチで一定方向に移動して前記ワークを加工することから、前記回転工具はジグザグ状ではない単純な螺旋の軌跡を描きながらワークを研削及び切削する。即ち、回転工具はワークの回転軸と直交する方向において往復運動せずに常に一定方向に相対移動する。   According to the aspherical surface processing method of the present invention, the rotary tool moves in a predetermined direction at a predetermined feed pitch to process the workpiece, and therefore the rotary tool draws a simple spiral trajectory that is not zigzag-shaped. While grinding and cutting the workpiece. That is, the rotary tool always moves relatively in a fixed direction without reciprocating in the direction orthogonal to the rotation axis of the workpiece.

そのため、非球面加工装置のX軸テーブルは、ワークを往復運動させずに一定方向の運動になるので、X軸テーブルの制御方法がシンプルになり、その制御装置を高性能化する必要がなくなる。また、凹凸の段差が大きいワークの回転数を上げても追随することが可能となり、従来例と比較してシンプルな制御方法で高品質かつ迅速に研削及び切削することが可能となる。   Therefore, since the X-axis table of the aspherical surface processing apparatus moves in a fixed direction without reciprocating the workpiece, the control method of the X-axis table is simplified, and it is not necessary to improve the performance of the control apparatus. Further, it is possible to follow even if the number of rotations of a workpiece having a large unevenness is increased, and it is possible to perform grinding and cutting quickly with high quality by a simple control method as compared with the conventional example.

また、前記回転工具の位置を、前記ワークの加工点に立てた法線方向に前記回転工具の先端の回転中心軸が位置するように制御することを特徴とする非球面加工方法を提供する。   Further, the present invention provides an aspherical machining method characterized in that the position of the rotary tool is controlled so that the rotation center axis of the tip of the rotary tool is positioned in the normal direction set at the machining point of the workpiece.

また、前記回転工具による加工を、前記ワークの回転軸と直交する方向における前記ワークの回転中心と前記回転工具の先端との距離がゼロ又はゼロ近傍から、または前記ワークの外周縁部と前記回転工具先端との距離がゼロ又はゼロ近傍から、開始するように制御することを特徴とする非球面加工方法を提供する。   Further, the machining with the rotary tool is performed when the distance between the rotation center of the workpiece and the tip of the rotary tool in the direction orthogonal to the rotation axis of the workpiece is zero or near zero, or with the outer peripheral edge of the workpiece and the rotation. Provided is an aspherical surface processing method characterized in that control is performed so that the distance from the tool tip starts from zero or near zero.

また、前記回転工具は、回転軸を中心に回転する砥石であることを特徴とする非球面加工方法を提供する。   The rotating tool is a grindstone that rotates about a rotation axis.

また、前記回転工具は、回転軸を中心に回転する刃具であることを特徴とする非球面加工方法を提供する。   The rotating tool is a cutting tool that rotates about a rotation axis.

また、前記ワークを所望の形状に近似する形状に形成する粗削り工程と、前記粗削り工程に引き続き、前記ワークに請求項1乃至請求項3に記載の非球面加工方法を用いて加工することにより、前記ワークを所望の形状に形成する仕上げ削り工程とを有することを特徴とする非球面形成方法を提供する。   Further, by roughing the workpiece into a shape that approximates a desired shape, and processing the workpiece using the aspherical surface processing method according to claim 1 to claim 3, following the roughing step, A method of forming an aspherical surface, comprising: a finishing cutting step for forming the workpiece into a desired shape.

また、請求項6に記載の非球面形成方法が組み込まれた非球面加工装置を提供する。   An aspherical surface processing apparatus incorporating the aspherical surface forming method according to claim 6 is provided.

以下、本発明に係る非球面加工方法の実施例について説明する。   Examples of the aspherical surface processing method according to the present invention will be described below.

==加工装置の説明==
本発明の非球面加工方法で用いる非球面加工装置(NC制御装置ともいう。)について、眼鏡レンズの研削及び切削加工を一例として図1を用いて説明する。図1は、第1の実施例の非球面加工方法で用いる非球面加工装置を示す立面図である。
== Description of the processing apparatus ==
An aspherical surface processing device (also referred to as an NC control device) used in the aspherical surface processing method of the present invention will be described with reference to FIG. FIG. 1 is an elevation view showing an aspherical surface processing apparatus used in the aspherical surface processing method of the first embodiment.

この非球面加工装置200は、ベッド201上にX軸テーブル202とY軸テーブル203が備えられている。X軸テーブル202はX軸駆動用モータ204によってX軸方向に往復運動するように駆動される。X軸方向の位置は、X軸駆動用モータ204に組み込まれた図示しないエンコーダによって割り出される。X軸テーブル202の上に、ワーク軸回転手段としてのワーク軸回転ユニット205が固定されている。ワーク軸回転ユニット205にワークチャック206が取り付けられ、ワーク回転軸駆動用モータ207によってX軸と直交するY軸方向の主軸を回転軸として回転駆動される。ワークチャック206の回転位置は、ワーク回転軸駆動用モータ207に組み込まれた図示しないエンコーダによって割り出される。ワークチャック206には、図示しないブロック治具を介して加工すべきワーク(眼鏡レンズ)208が取り付けられる。Y軸テーブル203は、X軸テーブル202と直交するほぼ水平方向のY軸方向にY軸駆動用モータ209によって往復運動するように駆動される。Y軸方向の位置は、Y軸駆動用モータ209に組み込まれた図示しないエンコーダによって割り出される。Y軸テーブル203の上に、Z軸テーブル210が備えられている。Z軸テーブル210はZ軸駆動用モータ211によってZ軸方向に往復運動するように駆動される。Z軸方向の位置は、Z軸駆動用モータ211に組み込まれた図示しないエンコーダによって割り出される。Z軸テーブル210の上に、回転工具回転手段としての回転工具回転ユニット212が固定されている。回転工具回転ユニット212の回転工具軸213に回転工具214が取り付けられ、Z軸駆動用モータ211によってX軸と直交するZ軸方向の主軸を回転軸として回転駆動される。   The aspherical surface processing apparatus 200 includes an X-axis table 202 and a Y-axis table 203 on a bed 201. The X-axis table 202 is driven to reciprocate in the X-axis direction by an X-axis drive motor 204. The position in the X-axis direction is determined by an encoder (not shown) incorporated in the X-axis drive motor 204. A workpiece axis rotating unit 205 as a workpiece axis rotating means is fixed on the X axis table 202. A workpiece chuck 206 is attached to the workpiece axis rotation unit 205, and is rotated by a workpiece rotation axis driving motor 207 with the main axis in the Y axis direction orthogonal to the X axis as a rotation axis. The rotation position of the work chuck 206 is determined by an encoder (not shown) incorporated in the work rotation shaft driving motor 207. A workpiece (eyeglass lens) 208 to be processed is attached to the workpiece chuck 206 via a block jig (not shown). The Y-axis table 203 is driven to reciprocate by a Y-axis drive motor 209 in a substantially horizontal Y-axis direction orthogonal to the X-axis table 202. The position in the Y-axis direction is determined by an encoder (not shown) incorporated in the Y-axis drive motor 209. A Z-axis table 210 is provided on the Y-axis table 203. The Z-axis table 210 is driven to reciprocate in the Z-axis direction by a Z-axis drive motor 211. The position in the Z-axis direction is determined by an encoder (not shown) incorporated in the Z-axis drive motor 211. On the Z-axis table 210, a rotary tool rotating unit 212 as a rotary tool rotating means is fixed. A rotating tool 214 is attached to the rotating tool shaft 213 of the rotating tool rotating unit 212, and is rotated by a Z-axis driving motor 211 about the main axis in the Z-axis direction orthogonal to the X-axis as a rotating shaft.

非球面加工装置200は、X軸テーブル202の駆動でワーク軸回転ユニット205をX軸方向に往復運動させることに代えて、ワーク軸回転ユニット205を固定し、Y軸テーブル203をX軸テーブル202の上に載置し、X軸テーブル202で回転工具214をX軸方向に往復運動させるようにしてもよい。   The aspherical surface processing apparatus 200 fixes the workpiece axis rotating unit 205 and replaces the Y axis table 203 with the X axis table 202 instead of reciprocating the workpiece axis rotating unit 205 in the X axis direction by driving the X axis table 202. The rotary tool 214 may be reciprocated in the X-axis direction by the X-axis table 202.

また、X軸、Y軸及びZ軸の位置検出手段としてエンコーダに代えて、リニアスケールを用いてもよい。   Further, a linear scale may be used in place of the encoder as the X axis, Y axis, and Z axis position detecting means.

ここで、制御方法について説明する。   Here, a control method will be described.

先ず、エンコーダによって割り出されるZ軸方向における回転工具214の回転中心をワーク208の回転中心に位置合わせする。次に、ワーク208を回転させながら、このワーク208の回転位置をエンコーダで割り出しを行う。次に、エンコーダによって割り出されるワーク208の回転軸であるY軸方向の回転工具214とワーク208の相対的な位置をワーク208の回転に同期させると共に、エンコーダによって割り出されるX軸方向における回転工具軸213の回転中心とワーク208の回転中心との距離をワーク208の回転に同期させる。このように、X軸テーブル202、Y軸テーブル203及びワーク軸回転ユニット205の3軸を使って回転工具214を加工点に位置決めする。この加工点に対応した回転工具軸213の回転中心座標の位置決めを連続して行うことでレンズ設計形状に基づいた形状創成を行う。   First, the rotation center of the rotary tool 214 in the Z-axis direction determined by the encoder is aligned with the rotation center of the workpiece 208. Next, while rotating the workpiece 208, the rotation position of the workpiece 208 is indexed by an encoder. Next, the relative position of the rotary tool 214 in the Y-axis direction, which is the rotation axis of the workpiece 208 indexed by the encoder, and the workpiece 208 are synchronized with the rotation of the workpiece 208, and the rotation in the X-axis direction indexed by the encoder is performed. The distance between the rotation center of the tool shaft 213 and the rotation center of the workpiece 208 is synchronized with the rotation of the workpiece 208. In this way, the rotary tool 214 is positioned at the machining point using the three axes of the X-axis table 202, the Y-axis table 203, and the workpiece axis rotation unit 205. The shape creation based on the lens design shape is performed by continuously positioning the rotation center coordinate of the rotary tool shaft 213 corresponding to the machining point.

また、非球面加工装置200がワーク(眼鏡レンズ)208の加工を行うために必要な数値データは、入力手段である入力装置300から入力された眼鏡レンズの処方データに基づき計算用コンピュータ400によって計算され、ホストコンピュータ500を介して非球面加工装置200内部の記憶装置に格納されるか、加工中にホストコンピュータ500から非球面加工装置200へ伝送される。   The numerical data necessary for the aspherical surface processing apparatus 200 to process the workpiece (eyeglass lens) 208 is calculated by the calculation computer 400 based on the prescription data of the eyeglass lens input from the input device 300 that is an input means. Then, it is stored in the storage device inside the aspherical surface processing apparatus 200 via the host computer 500 or transmitted from the host computer 500 to the aspherical surface processing apparatus 200 during the processing.

==研削及び切削手順の説明==
ここで、非球面を創成する研削及び切削手順について図2を用いて説明する。図2は、ワークの一例であるレンズの断面図である。
== Description of grinding and cutting procedures ==
Here, grinding and cutting procedures for creating an aspheric surface will be described with reference to FIG. FIG. 2 is a cross-sectional view of a lens which is an example of a workpiece.

研削及び切削方法には、外径加工、近似加工面粗削り加工、仕上げ削り加工、面取り加工等が含まれる。外径加工は、図2に示すように、ワーク208の一例としての、後加工代(切削代、研削代)を持ったやや厚手のレンズ208(以下、「セミフィニッシュレンズ208」という。)の不要な外周部208aを削って所定の外径まで縮小する加工である。外形加工は、粗削り加工や仕上げ加工を短時間化するための加工でもある。近似加工面粗削り加工は、セミフィニッシュレンズ208を速やかに削って所定の近似面形状208bに仕上げる粗削り加工である。仕上げ削り加工は、近似面形状208bから削り出し加工により所望のレンズ面形状208cを精密に創成する。面取り加工は、仕上げ削り加工後のレンズのエッジはシャープで危険であり、また、欠けやすいため、回転工具214(仕上げ用)により縁の面取り208dを行う加工である。   The grinding and cutting method includes outer diameter machining, approximate machining roughing machining, finishing machining, chamfering machining, and the like. As shown in FIG. 2, the outer diameter machining is a slightly thick lens 208 (hereinafter referred to as “semi-finish lens 208”) having a post-processing allowance (cutting allowance, grinding allowance) as an example of the workpiece 208. In this process, the unnecessary outer peripheral portion 208a is cut and reduced to a predetermined outer diameter. The external shape processing is also processing for shortening roughing processing and finishing processing. The approximate machining surface roughing process is a roughing process in which the semifinished lens 208 is quickly ground to a predetermined approximate surface shape 208b. In the finish machining, a desired lens surface shape 208c is precisely created by machining from the approximate surface shape 208b. The chamfering process is a process in which the edge of the lens after the finishing process is sharp and dangerous, and is easily chipped, so that the edge chamfering 208d is performed by the rotary tool 214 (for finishing).

図1に示す非球面加工装置200を用いてセミフィニッシュレンズ208の研削及び切削加工を行う工程を説明する。図示しないブロック治具に固定されたセミフィニッシュレンズ208をワークチャック206に固定し、そのセミフィニッシュレンズ208に対して与えられた外径加工データに基づいてセミフィニッシュレンズ208の外径が所定の径まで回転工具214(粗削り用)で研削及び切削される。続いて、回転工具214(粗削り用)を用いて近似面加工面粗削り加工データに基づいて所望のレンズ面形状208cに近似した自由曲面、トーリック面又は球面の面形状で面粗さRmaxが100μm以下の近似面形状208bまで研削及び切削加工される。続いて、回転工具214(仕上げ用)を用いて仕上げ削り加工データに基づき、更に0.1〜5.0mm程度を研削及び切削して面粗さRmaxが1〜10μm程度の眼鏡レンズの処方データに基づくレンズ面形状208cまで加工される。続いて、回転工具214(仕上げ用)を用いて面取り加工データに基づく面取り208dの加工が行われる。   A process for grinding and cutting the semi-finished lens 208 using the aspherical surface processing apparatus 200 shown in FIG. 1 will be described. A semi-finished lens 208 fixed to a block jig (not shown) is fixed to the work chuck 206, and the outer diameter of the semi-finished lens 208 is set to a predetermined diameter based on outer diameter processing data given to the semi-finished lens 208. Until the rotating tool 214 (for roughing) is ground and cut. Subsequently, the surface roughness Rmax is 100 μm or less with a free curved surface, a toric surface or a spherical surface shape approximated to the desired lens surface shape 208c based on the rough surface processing data of the approximate surface processing surface using the rotary tool 214 (for roughing). The approximate surface shape 208b is ground and cut. Subsequently, prescription data for a spectacle lens whose surface roughness Rmax is about 1 to 10 μm by further grinding and cutting about 0.1 to 5.0 mm based on the finishing machining data using the rotary tool 214 (for finishing). To the lens surface shape 208c based on the above. Subsequently, the chamfering 208d based on the chamfering data is performed using the rotary tool 214 (for finishing).

==研削及び切削条件の説明==
研削及び切削条件としては、次の範囲である。
<研削の場合>
回転工具:砥石 ボンド種類:メタル、レジン。ワーク回転数は、粗削り加工では1〜300rpm、仕上げ加工では1〜300rpm。送りピッチは、粗削り加工では0.05〜5.0mm/rev、仕上げ加工では0.005〜1.0mm/rev。切り込み量は、粗削り加工では0.1〜5.0mm/pass。仕上げ加工では0.001〜0.5mm/pass(砥石のメッシュによる)。
<切削の場合>
回転工具:カッター 材質:単結晶・多結晶ダイヤ。ワーク回転数は、粗削り加工では1〜300rpm、仕上げ加工では1〜300rpm。送りピッチは、粗削り加工では0.05〜5.0mm/rev、仕上げ加工では0.005〜1.0mm/rev。切り込み量は、粗削り加工では0.1〜10.00mm/pass。仕上げ加工では0.05〜3.0mm/pass。
== Explanation of grinding and cutting conditions ==
The grinding and cutting conditions are as follows.
<For grinding>
Rotary tool: Whetstone Bond type: Metal, Resin. The number of rotations of the workpiece is 1 to 300 rpm for roughing and 1 to 300 rpm for finishing. The feed pitch is 0.05 to 5.0 mm / rev for roughing and 0.005 to 1.0 mm / rev for finishing. The cutting depth is 0.1 to 5.0 mm / pass for roughing. In the finishing process, 0.001 to 0.5 mm / pass (depending on the mesh of the grindstone).
<For cutting>
Rotary tool: Cutter Material: Monocrystalline / polycrystalline diamond. The number of rotations of the workpiece is 1 to 300 rpm for roughing and 1 to 300 rpm for finishing. The feed pitch is 0.05 to 5.0 mm / rev for roughing and 0.005 to 1.0 mm / rev for finishing. The cutting depth is 0.1 to 10.00 mm / pass in rough cutting. In finishing, 0.05 to 3.0 mm / pass.

なお、大多数は送りピッチが一定の条件で加工するが、加工の途中で送りピッチを変更するようにしてもよい。一例をあげて説明すると、レンズの屈折率によらず乱視が2.00D以上の場合は、レンズ外周部でのチッピングが発生しやすい。このようなレンズを加工する場合は、レンズの外周部では小さな送りピッチP1で加工し、レンズの中心部に近い内周部では大きな送りピッチP0で加工する(P1<P0)。具体的には、P1は、0.01mm/rev〜0.07mm/rev、P0は、0.03mm/rev〜0.10mm/revの範囲で決定する。また、送りピッチP1で加工を行うレンズの外周部は、レンズの最外周から5〜15mmの範囲である。   Most of the machining is performed under the condition that the feed pitch is constant, but the feed pitch may be changed during the machining. As an example, when the astigmatism is 2.00 D or more regardless of the refractive index of the lens, chipping at the outer periphery of the lens is likely to occur. When processing such a lens, the lens is processed at a small feed pitch P1 at the outer peripheral portion of the lens, and is processed at a large feed pitch P0 at the inner peripheral portion near the center of the lens (P1 <P0). Specifically, P1 is determined in the range of 0.01 mm / rev to 0.07 mm / rev, and P0 is determined in the range of 0.03 mm / rev to 0.10 mm / rev. Moreover, the outer peripheral part of the lens which processes with the feed pitch P1 is the range of 5-15 mm from the outermost periphery of a lens.

本発明の非球面加工方法の第1の実施例を、眼鏡レンズ(以下、「レンズ」という。)の加工を例にして、図3、図4、図5、図6及び図7を用いて説明する。図3は、非球面加工方法におけるレンズの加工面を示す概略図である。図3(a)はレンズの正面図、図3(b)は、図3(a)のB−B'線に沿った断面図である。図4は、回転工具の先端部の表面の格子状に区切った三次元座標の概念図である。図4(a)は、ワークと回転工具の位置関係を表す立面図、平面図及び側面図、図4(b)は、図4(a)の回転工具の拡大図である。図5は、ワーク表面上と回転工具先端部の表面上との3次元座標を示す概念図である。図6は、非球面加工方法を示す概念図である。図7は、非球面加工方法におけるX軸方向の回転工具の中心の位置を示す概念図である。   The first embodiment of the aspherical surface processing method of the present invention will be described with reference to FIGS. 3, 4, 5, 6, and 7 by taking processing of a spectacle lens (hereinafter referred to as “lens”) as an example. explain. FIG. 3 is a schematic view showing a processed surface of a lens in the aspherical processing method. 3A is a front view of the lens, and FIG. 3B is a cross-sectional view taken along the line BB ′ of FIG. 3A. FIG. 4 is a conceptual diagram of three-dimensional coordinates divided into a lattice pattern on the surface of the tip of the rotary tool. 4A is an elevation view, a plan view, and a side view showing the positional relationship between the workpiece and the rotary tool, and FIG. 4B is an enlarged view of the rotary tool in FIG. 4A. FIG. 5 is a conceptual diagram showing three-dimensional coordinates on the workpiece surface and the surface of the tip of the rotary tool. FIG. 6 is a conceptual diagram showing an aspherical surface processing method. FIG. 7 is a conceptual diagram showing the position of the center of the rotary tool in the X-axis direction in the aspherical surface processing method.

第1の実施例の非球面加工方法では、回転工具214の砥石は、図3に示すように、回転工具軸213の回転中心が螺旋の軌跡を描きながら研削を行う。従来の法線制御では、レンズの回転角度と回転中心からの距離で表される加工点が予め決まっているが、第1の実施例の非球面加工方法では、回転工具軸213の回転中心位置が描く螺旋形状が予め決まっている。即ち、回転工具軸213の回転中心が描く螺旋の軌跡は、ワーク208の回転軸と直交する方向(X軸)における所定の送りピッチで決まる。本例は、ワーク208の回転中心から回転工具軸213の回転中心までの距離(Rx)を所定の送りピッチで連続的に減少するようにしたとき、即ち、レンズの外周方向から中心方向に向かったときに描く螺旋形状である。   In the aspherical surface processing method of the first embodiment, the grindstone of the rotary tool 214 is ground while the rotational center of the rotary tool shaft 213 draws a spiral trajectory as shown in FIG. In the conventional normal control, the machining point represented by the rotation angle of the lens and the distance from the rotation center is determined in advance. In the aspherical machining method of the first embodiment, the rotation center position of the rotary tool shaft 213 is determined. The spiral shape to be drawn is predetermined. That is, the spiral trajectory drawn by the rotation center of the rotary tool shaft 213 is determined by a predetermined feed pitch in a direction (X axis) orthogonal to the rotation axis of the workpiece 208. In this example, when the distance (Rx) from the rotation center of the workpiece 208 to the rotation center of the rotary tool shaft 213 is continuously decreased at a predetermined feed pitch, that is, from the outer peripheral direction of the lens toward the central direction. It is a spiral shape to draw.

また、第1の実施例の非球面加工方法では、回転工具軸213の回転軸中心の座標Cxの数値データが、ワーク208の回転位置(θ)、ワーク208の回転軸と直交する方向(X軸)における所定の送りピッチで連続的に減少するようにしたときのワーク208の回転中心からの距離(Rx)、及び図示しないワーク208の回転軸と同一方向における(Y軸)ワーク208の加工点に回転工具214の先端部が接触する位置(y)の三点(θ,Rx,y)で表される。回転工具軸213の回転軸中心座標の位置決めを連続して行うことでレンズ設計形状に基づいた形状創成を行う。なお、座標は、各点の絶対値、或いは一つ前の座標点に対する相対値、を用いて加工のための数値データを構成するようにしてもよい。   Further, in the aspherical surface processing method of the first embodiment, the numerical data of the coordinate Cx of the rotational axis center of the rotary tool shaft 213 is the rotational position (θ) of the workpiece 208 and the direction orthogonal to the rotational axis of the workpiece 208 (X Machining the workpiece 208 in the same direction as the rotation axis of the workpiece 208 (not shown) (Y-axis) and the distance (Rx) from the rotation center of the workpiece 208 when continuously decreasing at a predetermined feed pitch in the axis) The point is represented by three points (θ, Rx, y) of the position (y) where the tip of the rotary tool 214 contacts. The shape creation based on the lens design shape is performed by continuously positioning the rotation axis central coordinates of the rotary tool shaft 213. Note that the coordinates may constitute numerical data for processing using an absolute value of each point or a relative value with respect to the previous coordinate point.

図4(b)に示すように、回転工具214の先端部が半径Rでアール形状とされた表面の所定の位置に、所定の規則で格子状に区切る格子点の三次元座標を求める。   As shown in FIG. 4B, the three-dimensional coordinates of the lattice points that are divided into a lattice pattern according to a predetermined rule are obtained at predetermined positions on the surface of the rotary tool 214 having a radius R and a rounded shape.

また、図5に示すように、ワーク208の表面に、回転工具214の先端の表面の三次元座標をY軸の原点方向に沿って転写し、ワーク208の表面に回転工具214の表面の三次元座標と同じ所定の規則で格子状に区切ったワーク208の表面の三次元座標を求める。   Further, as shown in FIG. 5, the three-dimensional coordinates of the tip surface of the rotary tool 214 are transferred to the surface of the workpiece 208 along the origin direction of the Y axis, and the surface of the rotary tool 214 is transferred to the surface of the workpiece 208. The three-dimensional coordinates of the surface of the workpiece 208 divided in a grid pattern according to the same predetermined rule as the original coordinates are obtained.

これにより、ワーク208の表面と回転工具214の表面との距離を、ワーク208の表面の三次元座標と回転工具214の表面の三次元座標との対応する格子点毎に計算し、格子点間距離が最小となる格子点の組み合わせを求める。この格子点の座標(Lxn,Lym)が接触点になる。   Thereby, the distance between the surface of the workpiece 208 and the surface of the rotary tool 214 is calculated for each grid point corresponding to the three-dimensional coordinate of the surface of the workpiece 208 and the three-dimensional coordinate of the surface of the rotary tool 214, and the distance between the grid points is calculated. Find the combination of grid points that minimizes the distance. The coordinates (Lxn, Lym) of the lattice points become contact points.

なお、格子の一辺を長くすると加工点を導き出す精度が粗くなり、短くすると精度は上がるが計算時間が長くなる。現実的には、0.001〜0.1mm程度である。   In addition, if the length of one side of the lattice is lengthened, the accuracy of deriving a machining point becomes rough, and if the length is shortened, the accuracy increases but the calculation time is lengthened. Actually, it is about 0.001 to 0.1 mm.

図6及び図7に示すように、例えば最小の厚みの部分(ベースカーブ、A−A'断面)の任意の点Cn上に回転工具214の先端部のワーク208の回転軸と直交する方向(X軸)における中心軸(以下、「先端部の中心軸」という。)が存在するときに、回転工具214先端部の中心軸のY軸方向の位置は、図5に示すように、回転工具214を自由にY軸方向に動かして回転工具214の先端部の表面の三次元座標と、ワーク208の表面の三次元座標とで対応する格子点が最初に接する点Qs(Lxns,Lyms)が接触点(加工点)になる。また、図6及び図7に示すように、点Qsに立てた法線上に回転工具214の先端部の中心軸が位置することになる。   As shown in FIGS. 6 and 7, for example, on an arbitrary point Cn of the minimum thickness portion (base curve, AA ′ cross section), the direction orthogonal to the rotation axis of the workpiece 208 at the tip of the rotary tool 214 ( When the central axis (hereinafter referred to as “the central axis of the tip portion”) exists in the X axis), the position of the central axis of the tip portion of the rotary tool 214 in the Y-axis direction is as shown in FIG. The point Qs (Lxns, Lyms) at which the corresponding grid point first contacts between the three-dimensional coordinates of the surface of the tip of the rotary tool 214 and the three-dimensional coordinates of the surface of the workpiece 208 by freely moving 214 in the Y-axis direction. It becomes a contact point (processing point). As shown in FIGS. 6 and 7, the central axis of the tip of the rotary tool 214 is located on the normal line set up at the point Qs.

レンズが90度回転し、点Cnから最大の厚みの部分(クロスカーブ、B−B'断面)の任意の点Cnm上に回転工具214の先端部の回転中心軸が存在するときに、回転工具214の先端部の中心軸のY軸方向の位置は、回転工具214を自由にY軸方向に動かして回転工具214の先端部の表面の三次元座標と、ワーク208の表面の三次元座標とで対応する格子点が最初に接する点Qsm(接触点)に立てた法線上に回転工具214の先端部の中心軸が位置することになる。レンズが90度回転し、CnからCnmへ回転工具214が動いたときに、回転工具214はY軸方向のプラス方向にΔY移動する一方、回転工具214は、X軸方向の中心側へ正確に1/4ピッチ分のXnm分相対移動する。即ち、ワーク208は、X軸テーブル202によってX軸方向の外側へ正確に1/4ピッチ分Xnmに移動する。   When the lens rotates 90 degrees and the rotation center axis of the tip of the rotary tool 214 exists on an arbitrary point Cnm of the maximum thickness portion (cross curve, BB ′ cross section) from the point Cn, the rotary tool The position of the central axis of the tip of 214 in the Y-axis direction is determined by the three-dimensional coordinates of the surface of the tip of the rotary tool 214 and the three-dimensional coordinates of the surface of the workpiece 208 by freely moving the rotary tool 214 in the Y-axis direction. Thus, the central axis of the tip of the rotary tool 214 is positioned on the normal line set up at the point Qsm (contact point) where the corresponding lattice point first contacts. When the lens rotates 90 degrees and the rotating tool 214 moves from Cn to Cnm, the rotating tool 214 moves ΔY in the positive direction of the Y-axis direction, while the rotating tool 214 accurately moves to the center side in the X-axis direction. Relatively move by X nm for 1/4 pitch. In other words, the workpiece 208 is accurately moved to the outside in the X-axis direction by X-axis by the X-axis table 202 to Xnm.

レンズが更に90度回転し、点Cnmから最小の厚みの部分の任意の点Cnr上に回転工具214の先端部の中心が存在するとき、回転工具214は、Y軸方向のマイナス方向に移動する一方、X軸方向の中心側へ正確に1/4ピッチ分Xnrに相対移動する。即ち、ワーク208は、X軸テーブル202によってX軸方向の外側へ正確に1/4ピッチ分Xnrに移動する。   When the lens further rotates 90 degrees and the center of the tip of the rotary tool 214 exists on an arbitrary point Cnr of the minimum thickness portion from the point Cnm, the rotary tool 214 moves in the negative direction of the Y-axis direction. On the other hand, it moves relative to the center side in the X-axis direction exactly by 1/4 pitch Xnr. That is, the workpiece 208 is accurately moved to the outside in the X-axis direction by X-axis by Xnr by the X-axis table 202.

第1の実施例の非球面加工方法では、ワーク208の回転軸と直交する方向(X軸)におけるワーク208の回転中心と回転工具214の先端部の中心軸との距離Rxを、所定の送りピッチで連続的に減少するように制御することにより、非球面加工装置200のX軸テーブル202は、レンズ208を往復運動させずに一定方向のみへの運動となる。なお、ワーク208の回転数が一定で、送りピッチも一定であれば等速運動になる。このように、レンズ208上の回転工具214の描く軌跡は、従来のジグザグ状でない単純な螺旋状となっており、凹凸の段差が大きいワーク208の回転数を上げても追随することが可能となる。換言すれば、研削速度を上げて研削を行うことが可能となる。   In the aspherical surface processing method of the first embodiment, a distance Rx between the rotation center of the workpiece 208 and the center axis of the tip of the rotary tool 214 in a direction (X axis) orthogonal to the rotation axis of the workpiece 208 is set to a predetermined feed rate. By controlling so as to decrease continuously with the pitch, the X-axis table 202 of the aspherical surface processing apparatus 200 moves only in a certain direction without reciprocating the lens 208. In addition, if the rotation speed of the workpiece | work 208 is constant and a feed pitch is also constant, it will become constant velocity motion. Thus, the locus drawn by the rotary tool 214 on the lens 208 is a simple spiral that is not a conventional zigzag shape, and can be followed even if the number of revolutions of the workpiece 208 with a large unevenness is increased. Become. In other words, it is possible to perform grinding at an increased grinding speed.

第1の実施例の非球面加工方法では、従来の法線制御による加工方法と比較して約1.3倍の生産性となっている。   In the aspherical surface processing method of the first embodiment, the productivity is about 1.3 times that of the conventional normal control method.

以上詳述したように本実施例によれば、以下の効果が得られる。   As described above in detail, according to this embodiment, the following effects can be obtained.

本発明の非球面加工方法、非球面形成方法及び非球面加工装置によれば、慣性力が大きいテーブルを往復運動させずに一定方向へのみ運動するようなシンプルな制御ができるためテーブルの追随性が良く、凹凸の段差が大きいワーク208でも高速回転させて品質の良いものを迅速に加工することができる。   According to the aspherical surface processing method, the aspherical surface forming method, and the aspherical surface processing apparatus of the present invention, since the table having a large inertial force can be controlled simply so as to move only in a certain direction without reciprocating, the followability of the table. Even a workpiece 208 having a large uneven surface can be quickly processed with high quality by rotating at high speed.

本発明の非球面加工方法の第2の実施例を、図8、及び図9を用いて説明する。図8は、第2の実施例の非球面加工方法におけるレンズの加工面を示す概略図である。図8(a)はレンズの正面図、図8(b)は、図8(a)のB−B'線に沿った断面図である。図9は、非球面加工方法を示す概念図である。   A second embodiment of the aspherical surface processing method of the present invention will be described with reference to FIGS. FIG. 8 is a schematic view showing the processed surface of the lens in the aspherical surface processing method of the second embodiment. 8A is a front view of the lens, and FIG. 8B is a cross-sectional view taken along the line BB ′ of FIG. 8A. FIG. 9 is a conceptual diagram showing an aspherical surface processing method.

第2の実施例の非球面加工方法では、回転工具214の砥石は図8に示したように螺旋の軌跡を描きながら研削を行う。本例は、ワーク208の回転中心から回転工具214の先端の中心軸までの距離(Rx)を所定の送りピッチで増加するようにする。即ち、ワーク208の回転中心又は回転中心近傍の加工点から研削を開始し、ワーク208の外周側へ研削する。その研削加工データは、ワーク208の回転中心からワーク208の外周側へ向かう螺旋に沿って作成される。   In the aspherical surface processing method of the second embodiment, the grindstone of the rotary tool 214 performs grinding while drawing a spiral trajectory as shown in FIG. In this example, the distance (Rx) from the rotation center of the workpiece 208 to the center axis of the tip of the rotary tool 214 is increased at a predetermined feed pitch. That is, grinding is started from a processing point near the rotation center of the workpiece 208 or near the rotation center, and is ground to the outer peripheral side of the workpiece 208. The grinding data is created along a spiral from the rotation center of the workpiece 208 toward the outer periphery of the workpiece 208.

第2の実施例の非球面加工方法では、回転工具214の先端部の中心軸の座標の数値データが、実施例1で説明した距離Rxに代えて、ワーク208の回転軸と直交する方向(X軸)における所定の送りピッチで増加するようにしたときのワーク208の回転中心からの距離(Rx)となる。   In the aspherical surface processing method of the second embodiment, the numerical data of the coordinate of the central axis of the tip portion of the rotary tool 214 is a direction orthogonal to the rotation axis of the workpiece 208 instead of the distance Rx described in the first embodiment ( The distance (Rx) from the center of rotation of the workpiece 208 when increasing at a predetermined feed pitch in the X axis).

図8、及び図9に示すように、第2の実施例の非球面加工方法では、研削の開始時に、Y軸(主軸)で示されるワーク208の回転中心の加工点Soに立てた法線方向に回転工具214の先端部の中心軸を位置決めする。ワーク208の回転中心の加工点Soから加工を開始し、例えば最大の厚みの部分(クロスカーブ、B−B'断面)の任意の点Sn上に回転工具214の先端部の中心軸が存在するときに、回転工具214の先端部の中心軸のY軸方向の位置は、回転工具214を自由にY軸方向に動かして回転工具214の先端部の表面の三次元座標と、ワーク208の表面の三次元座標とで対応する格子点が最初に接する点Qt(接触点)に立てた法線上に回転工具214の先端部の中心軸が位置することになる。   As shown in FIG. 8 and FIG. 9, in the aspherical surface processing method of the second embodiment, the normal line set at the processing point So of the rotation center of the workpiece 208 indicated by the Y axis (main axis) at the start of grinding. The central axis of the tip of the rotary tool 214 is positioned in the direction. Machining is started from the machining point So at the rotation center of the workpiece 208, and the central axis of the tip of the rotary tool 214 exists on an arbitrary point Sn of the maximum thickness portion (cross curve, BB ′ cross section), for example. Sometimes, the position of the central axis of the tip of the rotary tool 214 in the Y-axis direction is determined by freely moving the rotary tool 214 in the Y-axis direction and the surface of the workpiece 208. The center axis of the tip of the rotary tool 214 is located on the normal line set at the point Qt (contact point) where the corresponding lattice point first contacts with the three-dimensional coordinates.

レンズ208が90度回転し、点Snから最小の厚みの部分(ベースカーブ、A−A'断面)の任意の点Snm上に回転工具214の先端部の中心軸が存在するときに、回転工具214の先端部の中心軸のY軸方向の位置は、回転工具214を自由にY軸方向に動かして回転工具214の先端部の表面の三次元座標と、ワーク208の表面の三次元座標とで対応する格子点が最初に接する位置であり、加工点は、回転工具214の先端部の表面の三次元座標と、ワーク208の表面の三次元座標とで対応する格子点が最初に接した点Qtm(接触点)である。レンズ208が90度回転し、SnからSnmへ回転工具214が動いたときに、回転工具214は、Y軸方向のマイナス方向にΔY移動する一方、回転工具214は、X軸方向のレンズ208外周側へ正確に1/4ピッチ分Xnmに相対移動する。即ち、ワーク208は、X軸テーブル202によってX軸方向の中心側へ正確に1/4ピッチ分Xnmに移動する。   When the lens 208 is rotated 90 degrees and the central axis of the tip of the rotary tool 214 exists on an arbitrary point Snm of a portion (base curve, AA ′ cross section) having a minimum thickness from the point Sn, the rotary tool The position of the central axis of the tip of 214 in the Y-axis direction is determined by the three-dimensional coordinates of the surface of the tip of the rotary tool 214 and the three-dimensional coordinates of the surface of the workpiece 208 by freely moving the rotary tool 214 in the Y-axis direction. Is the position where the corresponding grid point first touches, and the processing point is the first touch of the corresponding grid point between the three-dimensional coordinate of the surface of the tip of the rotary tool 214 and the three-dimensional coordinate of the surface of the workpiece 208. This is a point Qtm (contact point). When the lens 208 rotates 90 degrees and the rotary tool 214 moves from Sn to Snm, the rotary tool 214 moves ΔY in the negative direction of the Y-axis direction, while the rotary tool 214 has an outer periphery of the lens 208 in the X-axis direction. Relatively moves to the side by exactly 1/4 pitch Xnm. In other words, the workpiece 208 is accurately moved to the center side in the X-axis direction by the X-axis table 202 to the X pitch by X nm.

このように、第2の実施例の非球面加工方法では、ワーク208の回転軸と直交する方向(X軸)におけるワーク208の回転中心と回転工具214の先端部の中心軸との距離Rxを、所定の送りピッチで増加するように制御することにより、レンズ208上の回転工具214の描く軌跡を従来のジグザグ状でない単純な螺旋状としている。   Thus, in the aspherical surface processing method of the second embodiment, the distance Rx between the rotation center of the workpiece 208 and the central axis of the tip of the rotary tool 214 in the direction (X axis) orthogonal to the rotation axis of the workpiece 208 is set. By controlling so as to increase at a predetermined feed pitch, the locus drawn by the rotary tool 214 on the lens 208 is made a simple spiral that is not a conventional zigzag shape.

ワーク208の外周側から研削を開始する場合、高速で回転しているワーク208の周速度の速い外周面に回転工具214を当て始めるときに、ワーク208の外周面に回転工具214を急に当てることができず、ワーク208の外周面よりやや外側の離れた位置に回転工具214をワーク208に当たらないようにまず配置し、その後、通常の研削の送りピッチで回転工具214をゆっくりと回転中心側に動かし、外周面に回転工具214を当てて研削を開始させる必要がある。通常ワーク208の外周面から5mm程度外方から回転工具214の移動を開始するが、このとき回転工具214は、研削を行っておらず無駄な生産時間となっていた。   When grinding is started from the outer peripheral side of the workpiece 208, when the rotary tool 214 starts to be applied to the outer peripheral surface of the workpiece 208 that is rotating at a high speed, the rotary tool 214 is suddenly applied to the outer peripheral surface of the workpiece 208. The rotating tool 214 is first arranged at a position slightly outside the outer peripheral surface of the workpiece 208 so as not to hit the workpiece 208, and then the rotating tool 214 is slowly rotated at the center of rotation at a normal grinding feed pitch. It is necessary to start grinding by applying the rotary tool 214 to the outer peripheral surface. Normally, the rotary tool 214 starts to move from the outside of the outer peripheral surface of the workpiece 208 by about 5 mm. However, at this time, the rotary tool 214 is not ground, resulting in wasted production time.

第2の実施例の非球面加工方法では、ワーク208の回転中心から研削を開始することによって、回転工具214がワーク208に最初に当たる部分は周速度がゼロか殆どゼロの回転中心、又は回転中心の近傍であるため、直ちに回転工具214を当てることが可能であり、研削を必要とする領域のみの回転工具214の移動で加工が終了する。   In the aspherical surface processing method of the second embodiment, by starting grinding from the rotation center of the workpiece 208, the portion where the rotary tool 214 first hits the workpiece 208 is the rotation center where the peripheral speed is zero or almost zero, or the rotation center. Therefore, the rotary tool 214 can be applied immediately, and the processing is completed when the rotary tool 214 is moved only in the area that requires grinding.

このように、ワーク208の回転中心又は回転中心近傍から研削を開始することによって、回転工具214の速度を減じることなく、加工が必要な領域のみ回転工具214を移動して加工することから、ワーク208の外周側から研削を開始する場合よりも、研削加工時間を短縮することができる。   In this way, by starting grinding from the rotation center of the workpiece 208 or the vicinity of the rotation center, the rotary tool 214 is moved and processed only in an area where processing is necessary without reducing the speed of the rotary tool 214. The grinding time can be shortened compared to the case where the grinding is started from the outer peripheral side of 208.

また、加工のための研削加工データは、ワーク208の加工面に対応するだけでよく、研削加工データ量を少なくすることも可能となる。   Further, the grinding data for processing only needs to correspond to the processed surface of the workpiece 208, and the amount of grinding data can be reduced.

なお、ワーク208の回転中心から研削を開始する非球面加工方法は、周速度がゼロか殆どゼロの回転中心から研削を開始するため、後述する加工手順の内の仕上げ削り加工に適用することが望ましい。なお、0.1〜5.0mm程度の研削量(切込量)であれば、ワーク208の回転中心に直接回転工具214を当てて研削を開始することも可能である。   Note that the aspherical surface processing method that starts grinding from the rotation center of the workpiece 208 starts grinding from the rotation center at which the peripheral speed is zero or almost zero, and therefore can be applied to finishing machining in the processing procedure described later. desirable. If the grinding amount (cutting amount) is about 0.1 to 5.0 mm, grinding can be started by directly applying the rotary tool 214 to the rotation center of the workpiece 208.

また、研削の開始時に、Y軸(主軸)で示されるワーク208の回転中心の軌跡の加工点Soを通るY軸上に回転工具214の先端部のアール部分の中心軸が配置され、そのときの回転工具214が当接するレンズの加工点を加工するように回転工具214のY軸方向の位置が制御される。ワーク208の回転中心から外側へ向かう螺旋の軌跡に回転工具214の先端の中心軸座標の位置決めを連続して行うことでレンズ設計形状に基づいた形状創成を行う。なお、座標は、各点の絶対値、或いは一つ前の座標点に対する相対値、を用いて加工のための数値データを構成するようにしてもよい。   At the start of grinding, the center axis of the rounded portion of the tip of the rotary tool 214 is arranged on the Y axis passing through the machining point So of the locus of the rotation center of the workpiece 208 indicated by the Y axis (main axis). The position of the rotary tool 214 in the Y-axis direction is controlled so as to process the processing point of the lens with which the rotary tool 214 abuts. The shape creation based on the lens design shape is performed by continuously positioning the central axis coordinate of the tip of the rotary tool 214 on the trajectory of the spiral from the rotation center of the workpiece 208 to the outside. Note that the coordinates may constitute numerical data for processing using an absolute value of each point or a relative value with respect to the previous coordinate point.

前述のように、第2の実施例の非球面加工方法では、実施例1よりも更に迅速に加工を行うことができる。   As described above, the aspherical surface processing method of the second embodiment can perform processing more rapidly than the first embodiment.

以上詳述したように本実施例によれば、以下の効果が得られる。   As described above in detail, according to this embodiment, the following effects can be obtained.

本発明の非球面加工方法、非球面形成方法及び非球面加工装置によれば、慣性力が大きいテーブルを往復運動させずに一定方向へのみ運動するようなシンプルな制御ができるためテーブルの追随性が良く、凹凸の段差が大きいワーク208でも高速回転させて品質の良いものを迅速に加工することができる。   According to the aspherical surface processing method, the aspherical surface forming method, and the aspherical surface processing apparatus of the present invention, since the table having a large inertial force can be controlled simply so as to move only in a certain direction without reciprocating, the followability of the table. Even a workpiece 208 having a large uneven surface can be quickly processed with high quality by rotating at high speed.

本発明の非球面加工方法の第3の実施例を、図10を用いて説明する。図10は、第3の実施例の非球面加工方法における回転工具214を示す概略図である。図10(a)は、回転工具214の正面図、図10(b)は、回転工具214の側面図である。   A third embodiment of the aspherical surface processing method of the present invention will be described with reference to FIG. FIG. 10 is a schematic view showing the rotary tool 214 in the aspherical surface processing method of the third embodiment. FIG. 10A is a front view of the rotary tool 214, and FIG. 10B is a side view of the rotary tool 214.

第3の実施例の非球面加工方法では、回転工具214の円周の側面上に中心を挟んで2箇所に刃具としてのカッター215が配置されている。   In the aspherical surface processing method of the third embodiment, cutters 215 serving as cutting tools are disposed at two positions on the circumferential side surface of the rotary tool 214 with the center interposed therebetween.

また、第3の実施例の非球面加工方法は、第1及び第2の実施例に基づき説明した回転工具214が砥石による研削加工方法と同様である。   Further, the aspherical surface processing method of the third embodiment is the same as the grinding method using the grindstone with the rotary tool 214 described based on the first and second embodiments.

以上詳述したように本実施形態によれば、切削加工の形態でも第1及び第2の実施例と同様な効果が得られる。   As described in detail above, according to the present embodiment, the same effects as those of the first and second examples can be obtained in the form of cutting.

本発明の非球面加工方法の第4の実施例を、図11を用いて説明する。図11は、第4の実施例の非球面加工方法における回転工具214を示す概略図である。図11(a)は、回転工具214の正面図、図11(b)は、回転工具214の側面図である。   A fourth embodiment of the aspherical surface processing method of the present invention will be described with reference to FIG. FIG. 11 is a schematic view showing the rotary tool 214 in the aspherical surface processing method of the fourth embodiment. FIG. 11A is a front view of the rotary tool 214, and FIG. 11B is a side view of the rotary tool 214.

第4の実施例の非球面加工方法では、回転工具214の円周の側面上の1箇所にカッター215が配置されている。   In the aspherical surface processing method of the fourth embodiment, a cutter 215 is arranged at one place on the circumferential side surface of the rotary tool 214.

また、第4の実施例の非球面加工方法は、第1及び第2の実施例に基づき説明した回転工具214が砥石による研削加工方法と同様である。   Further, the aspherical surface processing method of the fourth embodiment is the same as the grinding method using the grindstone with the rotary tool 214 described based on the first and second embodiments.

以上詳述したように本実施形態によれば、回転工具214にカッター215が1枚の形態でも第3の実施例と同様な効果が得られる。   As described above in detail, according to the present embodiment, the same effect as that of the third embodiment can be obtained even if the rotary tool 214 has one cutter 215.

なお、本発明は上記の実施例に限定されるものではない。例えば、以下の態様で実施することもできる。   In addition, this invention is not limited to said Example. For example, it can also be implemented in the following manner.

(1)本発明の非球面加工方法は、レンズ208全体を加工してもよい。また、レンズ208の一部を本発明の非球面加工方法で加工し、一部を従来の法線制御加工方法で加工してもよい。特に、ワーク208中心近傍に傾斜部を有する、例えば、プリズム付きレンズの場合には、本発明の加工方法では回転工具214のワーク208中心側でプリズム部との干渉が出る可能性がある。従って、一部に従来の法線制御加工方法により研削及び切削加工することが有効な手段となる。   (1) The aspherical surface processing method of the present invention may process the entire lens 208. Further, a part of the lens 208 may be processed by the aspherical processing method of the present invention, and a part thereof may be processed by a conventional normal control processing method. In particular, in the case of, for example, a lens with a prism having an inclined portion near the center of the workpiece 208, the machining method of the present invention may cause interference with the prism portion at the center of the workpiece 208 of the rotary tool 214. Accordingly, it is effective to partially grind and cut by the conventional normal control processing method.

(2)本発明の非球面加工方法は、レンズの周速度が大きいレンズの外周部において特に有効である。レンズの中心部近傍においては凹凸の差が少なくなるので、従来の法線制御加工方法を採用してもそれほど生産性は低下しない。そのため、レンズの外周部では本発明の非球面加工方法を採用し、レンズの中心近傍では法線制御加工方法を採用することも可能である。   (2) The aspherical surface processing method of the present invention is particularly effective at the outer peripheral portion of the lens where the peripheral speed of the lens is large. In the vicinity of the center of the lens, the difference in unevenness is reduced, so that the productivity does not decrease so much even if the conventional normal control processing method is adopted. Therefore, the aspherical surface processing method of the present invention can be adopted at the outer periphery of the lens, and the normal control processing method can be adopted near the center of the lens.

(3)本発明の非球面加工方法は、眼鏡レンズの処方データに基づく最終のレンズ面形状だけでなく、例えば、レンズの外径を削って外径を縮小する外径加工、最終のレンズ面形状に近似した自由曲面、トーリック面又は球面の面形状に形成する粗削り加工、レンズの端の尖った部分を削る面取り加工にも適用することができる。   (3) The aspherical surface processing method of the present invention is not limited to the final lens surface shape based on the prescription data of the spectacle lens, but, for example, outer diameter processing for reducing the outer diameter by reducing the outer diameter of the lens, and the final lens surface The present invention can also be applied to a free cutting surface that approximates a shape, a rough cutting process that forms a toric surface or a spherical surface shape, and a chamfering process that cuts a sharp end of a lens.

(4)ワーク208としては、眼鏡レンズに代えてその他のレンズや、レンズを注型重合する型などでもよい。また、加工面も凹面に限らず凸面でもよい。   (4) The workpiece 208 may be another lens instead of the spectacle lens, or a mold that casts and superimposes the lens. The processed surface is not limited to a concave surface, and may be a convex surface.

第1の実施例の非球面加工方法を使用する非球面加工装置を示す立面図。The elevational view which shows the aspherical surface processing apparatus which uses the aspherical surface processing method of 1st Example. ワークの一例であるレンズの断面図。Sectional drawing of the lens which is an example of a workpiece | work. 非球面加工方法におけるレンズの加工面を示す概略図であり、(a)は、レンズの正面図、(b)は、図3(a)のB−B'線に沿った断面図。It is the schematic which shows the processed surface of the lens in an aspherical surface processing method, (a) is a front view of a lens, (b) is sectional drawing along the BB 'line of Fig.3 (a). 回転工具の先端部の表面の格子状に区切った三次元座標の概念図であり、(a)は、ワークと回転工具の位置関係を表す立面図、平面図及び側面図、(b)は、図4(a)の回転工具の拡大図。It is the conceptual diagram of the three-dimensional coordinate divided | segmented into the grid | lattice form of the surface of the front-end | tip part of a rotary tool, (a) is the elevation, the top view, and side view showing the positional relationship of a workpiece | work and a rotary tool, (b) is FIG. 5 is an enlarged view of the rotary tool of FIG. ワーク表面上と回転工具先端部の表面上との3次元座標を示す概念図。The conceptual diagram which shows the three-dimensional coordinate on the workpiece | work surface and the surface of a rotary tool front-end | tip part. 非球面加工方法を示す概念図。The conceptual diagram which shows the aspherical surface processing method. 非球面加工方法におけるX軸方向の回転工具の中心位置を示す概念図。The conceptual diagram which shows the center position of the rotary tool of the X-axis direction in an aspherical surface processing method. 第2の実施例の非球面加工方法におけるレンズの加工面を示す概略図であり、(a)は、レンズの正面図、(b)は、図8(a)のB−B'線に沿った断面図。It is the schematic which shows the processed surface of the lens in the aspherical surface processing method of 2nd Example, (a) is a front view of a lens, (b) is along the BB 'line of Fig.8 (a). Sectional view. 非球面加工方法を示す概念図。The conceptual diagram which shows the aspherical surface processing method. 第3の実施例の非球面加工方法における回転工具を示す概略図。Schematic which shows the rotary tool in the aspherical surface processing method of a 3rd Example. 第4の実施例の非球面加工方法における回転工具を示す概略図。Schematic which shows the rotary tool in the aspherical surface processing method of a 4th Example. 従来例としての法線制御加工方法におけるレンズの加工面を示す概略図であり、(a)は、レンズの正面図、(b)は、図12(a)のB−B'断面図。It is the schematic which shows the processed surface of the lens in the normal control processing method as a prior art example, (a) is a front view of a lens, (b) is BB 'sectional drawing of Fig.12 (a). 法線制御加工方法を示す概念図。The conceptual diagram which shows a normal line control processing method. 法線制御加工方法におけるX軸方向の回転工具中心の位置を示す概念図。The conceptual diagram which shows the position of the rotary tool center of the X-axis direction in a normal control processing method.

符号の説明Explanation of symbols

200…非球面加工装置、201…ベッド、202…X軸テーブル、203…Y軸テーブル、204…X軸駆動用モータ、205…ワーク軸回転手段としてのワーク軸回転ユニット、206…ワークチャック、207…ワーク回転軸駆動用モータ、208…ワーク及びレンズ(セミフィニッシュレンズ)、208a…外周部、208b…近似面形状、208c…レンズ面形状、208d…縁の面取り、209…Y軸駆動用モータ、210…Z軸テーブル、211…Z軸駆動用モータ、212…回転工具回転手段としての回転工具回転ユニット、213…回転工具軸、214…回転工具、215…刃具としてのカッター、300…入力装置、400…計算用コンピュータ、500…ホストコンピュータ。
DESCRIPTION OF SYMBOLS 200 ... Aspherical surface processing apparatus, 201 ... Bed, 202 ... X-axis table, 203 ... Y-axis table, 204 ... X-axis drive motor, 205 ... Work axis rotating unit as a work axis rotating means, 206 ... Work chuck, 207 DESCRIPTION OF SYMBOLS ... Work rotary shaft drive motor, 208 ... Work and lens (semi-finish lens), 208a ... Outer peripheral part, 208b ... Approximate surface shape, 208c ... Lens surface shape, 208d ... Edge chamfer, 209 ... Y-axis drive motor, 210 ... Z-axis table, 211 ... Z-axis drive motor, 212 ... Rotary tool rotating unit as rotating tool rotating means, 213 ... Rotating tool axis, 214 ... Rotating tool, 215 ... Cutter as cutting tool, 300 ... Input device, 400: computer for calculation, 500: host computer.

Claims (7)

回転軸を中心に回転する被加工ワークと、前記ワークの回転軸と同一方向及び前記ワークの回転軸と直交する方向に、前記ワークと相対移動可能な回転工具とを有し、
前記回転工具は、前記ワークの回転軸と直交する方向において前記ワークの回転軸の中心から前記ワークの外周部までの一部もしくはすべての領域で、所定の送りピッチで一定方向に移動して前記ワークを非軸対称非球面に加工することを特徴とする非球面加工方法。
A workpiece to be rotated about a rotation axis, and a rotary tool that can move relative to the workpiece in the same direction as the rotation axis of the workpiece and in a direction orthogonal to the rotation axis of the workpiece,
The rotating tool moves in a predetermined direction at a predetermined feed pitch in a part or all of the region from the center of the workpiece rotation axis to the outer periphery of the workpiece in a direction orthogonal to the workpiece rotation axis. An aspherical processing method comprising processing a workpiece into an axisymmetric aspherical surface.
前記回転工具の位置を、前記ワークの加工点に立てた法線方向に前記回転工具の先端の回転中心軸が位置するように制御することを特徴とする請求項1に記載の非球面加工方法。   2. The aspherical surface processing method according to claim 1, wherein the position of the rotary tool is controlled so that a rotation center axis of a tip of the rotary tool is positioned in a normal direction set at a processing point of the workpiece. . 前記回転工具による加工を、前記ワークの回転軸と直交する方向における前記ワークの回転中心と前記回転工具の先端との距離がゼロ又はゼロ近傍から、または前記ワークの外周縁部と前記回転工具先端との距離がゼロ又はゼロ近傍から、開始するように制御することを特徴とする請求項1または請求項2に記載の非球面加工方法。   When machining with the rotary tool, the distance between the rotation center of the workpiece and the tip of the rotary tool in the direction orthogonal to the rotation axis of the workpiece is zero or near zero, or the outer peripheral edge of the workpiece and the tip of the rotary tool 3. The aspherical surface processing method according to claim 1, wherein the distance is controlled to start from zero or near zero. 前記回転工具は、回転軸を中心に回転する砥石であることを特徴とする請求項1乃至請求項3のいずれか一項に記載の非球面加工方法。   The aspherical surface processing method according to any one of claims 1 to 3, wherein the rotary tool is a grindstone that rotates about a rotation axis. 前記回転工具は、回転軸を中心に回転する刃具であることを特徴とする請求項1乃至請求項3のいずれか一項に記載の非球面加工方法。   The aspherical surface processing method according to claim 1, wherein the rotary tool is a cutting tool that rotates about a rotation axis. 前記ワークを所望の形状に近似する形状に形成する粗削り工程と、前記粗削り工程に引き続き、前記ワークに請求項1乃至請求項5のいずれか一項に記載の非球面加工方法を用いて加工することにより、前記ワークを所望の形状に形成する仕上げ削り工程とを有することを特徴とする非球面形成方法。   6. The rough machining step of forming the workpiece into a shape approximating a desired shape, and the workpiece is machined using the aspherical machining method according to any one of claims 1 to 5, following the rough machining step. And a finishing cutting step of forming the workpiece into a desired shape. 請求項6に記載の非球面形成方法が組み込まれた非球面加工装置。
An aspherical surface processing apparatus incorporating the aspherical surface forming method according to claim 6.
JP2006188959A 2006-07-10 2006-07-10 Method of machining aspheric surface Withdrawn JP2006326833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006188959A JP2006326833A (en) 2006-07-10 2006-07-10 Method of machining aspheric surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006188959A JP2006326833A (en) 2006-07-10 2006-07-10 Method of machining aspheric surface

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003369066A Division JP2005131724A (en) 2003-10-29 2003-10-29 Aspheric surface processing method, aspheric surface forming method and aspheric surface processing apparatus

Publications (1)

Publication Number Publication Date
JP2006326833A true JP2006326833A (en) 2006-12-07

Family

ID=37549060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006188959A Withdrawn JP2006326833A (en) 2006-07-10 2006-07-10 Method of machining aspheric surface

Country Status (1)

Country Link
JP (1) JP2006326833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8215210B2 (en) * 2005-03-17 2012-07-10 Essilor International (Compagnie Generale D'optique) Method of machining a face of an ophthalmic lens that is prism-ballasted at the centre

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8215210B2 (en) * 2005-03-17 2012-07-10 Essilor International (Compagnie Generale D'optique) Method of machining a face of an ophthalmic lens that is prism-ballasted at the centre

Similar Documents

Publication Publication Date Title
KR100560273B1 (en) Method for machining an aspheric surface and method for forming an aspheric surface
TWI359711B (en) Raster cutting technology for ophthalmic lenses
KR100659433B1 (en) Method for machining aspherical surface, method for forming aspherical surface, and system for machining aspherical surface
JP5181703B2 (en) Processing method of concave Fresnel lens shaped member and concave Fresnel lens shaped member
CN101046521A (en) Process of producing asymmetric aspheric lens
JP4576255B2 (en) Tool whetstone shape creation method
JP2009184066A5 (en)
CN101046522B (en) Process of producing asymmetric aspheric lens
JP2002283204A (en) Manufacturing method of spectacle lens
JP3426132B2 (en) Machining non-axisymmetric aspheric surface
JP4668872B2 (en) Grinding method and grinding apparatus
JP7016568B1 (en) Fresnel lens mold manufacturing method, processing equipment and cutting tools
JP2006326833A (en) Method of machining aspheric surface
JP2007283433A (en) Grinding method
US20100035524A1 (en) Method of producing optical element, and optical element
JP2017124460A (en) Method and apparatus for continuously processing non-spherical shape of workpiece by cup shaped grind stone
JP2007283488A (en) Manufacturing method of spectacle lens
JP2005028556A (en) Machining method of free curved surface
JP2003231001A (en) Lens shape machining method and device thereof
JP7431645B2 (en) Dress grinding device and method
JP2007062000A (en) Grinding wheel and grinding method
JP2009095973A (en) Grinding wheel molding device and method
JP4333876B2 (en) Grinding method
JP2005246495A (en) Manufacturing method for optical lens, optical lens, manufacturing method for mold, and mold
JP2006150481A (en) Method and device for forming abrasive wheel

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Effective date: 20080422

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20080527

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20080704

Free format text: JAPANESE INTERMEDIATE CODE: A761