JP4333876B2 - Grinding method - Google Patents

Grinding method Download PDF

Info

Publication number
JP4333876B2
JP4333876B2 JP2004140833A JP2004140833A JP4333876B2 JP 4333876 B2 JP4333876 B2 JP 4333876B2 JP 2004140833 A JP2004140833 A JP 2004140833A JP 2004140833 A JP2004140833 A JP 2004140833A JP 4333876 B2 JP4333876 B2 JP 4333876B2
Authority
JP
Japan
Prior art keywords
grinding
workpiece
rotary
ground
center axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004140833A
Other languages
Japanese (ja)
Other versions
JP2005319554A (en
Inventor
文宣 高見
芳則 白藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004140833A priority Critical patent/JP4333876B2/en
Publication of JP2005319554A publication Critical patent/JP2005319554A/en
Application granted granted Critical
Publication of JP4333876B2 publication Critical patent/JP4333876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

本発明は、主として、軸対称で非球面形状の凹面を有する成形金型や光学レンズなどを研削加工により製作するための研削加工方法に関するものである。 The present invention mainly relates to a grinding method for manufacturing a molding die, an optical lens, and the like having an asymmetrical aspherical concave surface by grinding .

近年、光学レンズは、レンズ成形金型を用いた成形加工により製作することが可能となり、それに伴って大量生産が可能になっている。上記レンズ成形金型は、一般に、超精密切削加工または研削加工の何れかの加工手段により製作されている。その中の研削加工は、特に、被加工物が超硬素材からなる場合に適しており、軸対称で非球面形状の所望の凹面を有する粗加工面を形成したのち、その粗加工面を研削加工により所望の形状精度と表面粗さに精密仕上げ加工する工程を経るものである。この研削加工としては2種の加工方法が存在し、この2種の加工方法について、図6を参照しながら説明する。   In recent years, an optical lens can be manufactured by a molding process using a lens molding die, and accordingly, mass production is possible. The lens molding die is generally manufactured by any one of ultra-precision cutting or grinding. The grinding process is particularly suitable when the workpiece is made of a cemented carbide material. After forming a rough surface with a desired aspherical asymmetrical concave surface, the rough surface is ground. A process of precision finishing to a desired shape accuracy and surface roughness is performed by processing. As this grinding process, there are two types of processing methods, and these two types of processing methods will be described with reference to FIG.

図6(a)は第1の研削加工方法による研削加工工程の切断平面図、同図(b)はその切断側面図をそれぞれ示す。この第1の研削加工方法では、円柱状の被研削加工物60の一端面である被加工面60aに、軸対称で非球面形状の凹面を有する粗加工面60cを形成したのち、その粗加工面60cを回転砥石62による研削加工を行って所望の形状精度と表面粗さに仕上げ加工する工程を経るものである。この研削加工方法では、被研削加工物60を図示矢印方向に回転させるとともに、この被研削加工物60の回転中心軸60bに対し自体の回転軸61が直交する配置とされた回転砥石62を、回転させながら、その周端面を被研削加工物60の粗加工面60cに対し図6(a)に矢印で示す軌跡に沿って移動させることにより、研削加工が実行される。   FIG. 6A is a cut plan view of a grinding process according to the first grinding method, and FIG. 6B is a cut side view thereof. In this first grinding method, a rough machining surface 60c having an asymmetrical aspherical surface is formed on the work surface 60a, which is one end face of a cylindrical work piece 60, and then the rough machining is performed. The surface 60c is ground by the rotating grindstone 62 to finish the desired shape accuracy and surface roughness. In this grinding method, a rotating grindstone 62 in which the workpiece 60 is rotated in the direction of the arrow shown in the drawing, and the rotation axis 61 of the workpiece 60 is orthogonal to the rotation center axis 60b of the workpiece 60, Grinding is executed by moving the peripheral end surface of the workpiece 60 along the locus indicated by the arrow in FIG. 6A while rotating it.

すなわち、第1の研削加工方法では、回転砥石62が粗加工面60cに当接する研削ポイントにおける被研削加工物60の回転方向に対し回転砥石62の回転方向が非平行となる状態を保持しながら、回転砥石62を、被研削加工物60の回転中心軸60bを通る水平面に沿って移動させるものであり、そこで、この第1の研削加工方法を、以後において、クロス研削加工方法と称するものとする。   That is, in the first grinding method, while maintaining the rotation direction of the rotating grindstone 62 non-parallel to the rotation direction of the workpiece 60 at the grinding point where the rotating grindstone 62 abuts the rough machining surface 60c. The rotary grindstone 62 is moved along a horizontal plane passing through the rotation center axis 60b of the workpiece 60, and this first grinding method is hereinafter referred to as a cross grinding method. To do.

このクロス研削加工方法では、被研削加工物60の粗加工面60cを研削することにより、図6(c)に示すように、回転中心軸60bを中心とした放射線状の研削目を有する研削加工面に仕上げ加工される。このクロス研削加工方法では、研削目の粗い研削加工面に研削されるが、被研削加工物60に目標加工形状を研削加工するための回転砥石62の移動制御を簡単に行える利点がある。   In this cross-grinding method, by grinding the roughened surface 60c of the workpiece 60, as shown in FIG. 6C, a grinding process having a radial grinding center around the rotation center axis 60b. Finished on the surface. In this cross-grinding method, grinding is performed on a rough grinding surface, but there is an advantage that movement control of the rotating grindstone 62 for grinding a target machining shape on the workpiece 60 can be easily performed.

一方、図6(d)は第2の研削加工方法による研削加工工程の切断平面図、同図(e)はその切断側面図をそれぞれ示す。この第2の研削加工方法では、回転砥石62が、図6(e)に矢印で示す移動軌跡のように、自体の回転軸61に対し平行な方向に向けて移動される。すなわち、第2の研削加工方法では、回転砥石62が粗加工面60cに当接する研削ポイントにおける被研削加工物60の回転方向に対し回転砥石62の回転方向が平行となる状態を保持しながら、回転砥石62を、回転軸61に対し平行な鉛直方向に沿って移動させるものであり、そこで、この第2の研削加工方法を、以後において、パラレル研削加工方法と称するものとする。   On the other hand, FIG. 6 (d) shows a cut plan view of the grinding process by the second grinding method, and FIG. 6 (e) shows a cut side view thereof. In this second grinding method, the rotating grindstone 62 is moved in a direction parallel to its own rotating shaft 61 as shown by a movement locus indicated by an arrow in FIG. That is, in the second grinding method, while maintaining the state in which the rotation direction of the rotary grindstone 62 is parallel to the rotation direction of the workpiece 60 at the grinding point at which the rotary grindstone 62 contacts the rough machining surface 60c, The rotating grindstone 62 is moved along a vertical direction parallel to the rotating shaft 61. Therefore, this second grinding method is hereinafter referred to as a parallel grinding method.

上記パラレル研削加工方法では、被研削加工物60の粗加工面60cが、図6(f)に示すように、回転中心軸60bに対し多数の同心円の研削目を有する研削加工面に仕上げ加工される。このパラレル研削加工方法では、研削目の細かい良好な研削加工面に研削加
工できる利点があるが、回転砥石62の研削部分を正確な形状に形成し、且つその形状を維持するのが非常に難しい難点がある。
In the parallel grinding method, as shown in FIG. 6 (f), the rough surface 60c of the workpiece 60 is finished into a ground surface having a large number of concentric grounds with respect to the rotation center shaft 60b. The This parallel grinding method has an advantage that grinding can be performed on a fine ground surface with fine grinding, but it is very difficult to form the ground portion of the rotating grindstone 62 in an accurate shape and maintain the shape. There are difficulties.

ところで、近年の光ディスク装置では、大容量化および高性能化に伴って、NA(開口率)の高い非球面の光学レンズが用いられる傾向にあり、このような光学レンズを形成加工するためのレンズ成形金型は、深さの大きな凹面を有する形状に形成する必要がある。さらに、光ディスク装置の小型化に伴って、この光ディスク装置に用いる光学レンズも小さくなってきている。したがって、近年では、小径で小曲率の非球面形状の凹面を有するレンズ形成金型が要望されている。   By the way, in recent optical disc apparatuses, an aspherical optical lens having a high NA (aperture ratio) tends to be used with an increase in capacity and performance, and a lens for forming and processing such an optical lens. The molding die must be formed into a shape having a concave surface with a large depth. Furthermore, with the miniaturization of the optical disk device, the optical lens used in the optical disk device is also becoming smaller. Therefore, in recent years, there has been a demand for a lens forming mold having an aspheric concave surface with a small diameter and a small curvature.

上述のように小径で小曲率の非球面形状の凹面を有するレンズ成形金型を研削加工するためには、回転砥石62の径を加工形状の近似曲率半径よりも小さくする必要がある。このような径の小さい回転砥石62では、これの回転軸61も、被研削加工物60の被加工面60aに接触しないように径を小さくする必要があるが、そのような径の小さい回転軸61は剛性が低下して歪みが発生し易いから、研削加工中に振動が生じて被研削加工物60の研削加工後の加工面の形状精度および表面粗さが悪化する。   As described above, in order to grind a lens mold having a small diameter and small curvature aspherical concave surface, it is necessary to make the diameter of the rotating grindstone 62 smaller than the approximate curvature radius of the machining shape. In the rotating grindstone 62 having such a small diameter, it is necessary to reduce the diameter of the rotating shaft 61 so that the rotating shaft 61 does not come into contact with the processing surface 60 a of the workpiece 60. Since the rigidity of 61 is easily reduced and distortion is generated, vibration is generated during the grinding process, and the shape accuracy and surface roughness of the machined surface of the workpiece 60 after grinding are deteriorated.

そこで、従来では、小径の円柱状被研削加工物の被加工面に、小径で小曲率の非球面形状の凹面を高精度に研削加工できるように図った研削加工装置が提案されている(例えば、特許文献1参照)。この研削加工装置は、図5(a)に示すように、台板40上に設けられたワークスピンドル41により被研削加工物42を保持して回転駆動させ、台板40上に設置されて互いに直交するX方向およびY方向に移動されるXYテーブル43上に、ワークスピンドル41つまり被研削加工物42の回転中心軸42aに対して所定角度に傾斜する傾斜面44aを有する傾斜台44が、ワークスピンドル41に相対向する配置で設けられている。この傾斜台44には、移動台47が傾斜面44aに沿って移動可能に設けられ、その移動台47に、回転砥石48を保持して回転駆動させる研削スピンドル49が固定されている。回転砥石48は、円柱状であって、鋭いエッジ形状またはアール形状に形成された先端の周端部により被研削加工物42を研削加工するようになっている。   Therefore, conventionally, a grinding apparatus has been proposed that is capable of grinding a concave surface of an aspherical shape with a small diameter and a small curvature on a work surface of a cylindrical work piece with a small diameter (for example, , See Patent Document 1). As shown in FIG. 5A, this grinding apparatus holds and rotates a work piece 42 to be ground by a work spindle 41 provided on a base plate 40, and is installed on the base plate 40 and mutually connected. An inclined table 44 having an inclined surface 44a inclined at a predetermined angle with respect to the work spindle 41, that is, the rotation center axis 42a of the workpiece 42, is moved on the XY table 43 moved in the orthogonal X and Y directions. It is provided in an arrangement opposite to the spindle 41. A moving table 47 is provided on the inclined table 44 so as to be movable along the inclined surface 44 a, and a grinding spindle 49 that holds and rotates the rotating grindstone 48 is fixed to the moving table 47. The rotating grindstone 48 has a cylindrical shape, and the workpiece 42 is ground by a peripheral end portion of a tip formed in a sharp edge shape or a round shape.

この研削加工装置では、円柱状の回転砥石48を、これの回転中心軸48aが被研削加工物42の回転中心軸42aに対して所定角度に傾斜する配置で設けたことにより、回転軸50を太く設定することができるから、剛性が向上し、被研削加工物42の被加工面に、小径で小曲率の非球面形状の研削粗加工面を形成することが可能になっている。   In this grinding apparatus, a cylindrical rotary grindstone 48 is provided in an arrangement in which the rotation center axis 48a is inclined at a predetermined angle with respect to the rotation center axis 42a of the workpiece 42, whereby the rotation axis 50 is provided. Since the thickness can be set thick, the rigidity is improved, and it is possible to form an aspherical rough grinding surface having a small diameter and a small curvature on the surface of the workpiece 42 to be ground.

図5(b)は上記研削加工装置における粗加工面42bに対する研削加工開始時時の切断平面図、(c),(d)は研削加工完了時の切断平面図および切断側面図をそれぞれ示す。この研削加工装置では、先ず、移動台47を傾斜台44の傾斜面44aに沿って移動させることにより、研削スピンドル49に保持された回転砥石48の先端の周端部が被研削加工物42の回転中心軸42aに合致するように研削スピンドル49を位置決めして固定する。   FIG. 5B shows a cut plan view at the start of grinding for the rough surface 42b in the grinding apparatus, and FIGS. 5C and 5D respectively show a cut plan view and a cut side view when the grinding process is completed. In this grinding apparatus, first, the moving table 47 is moved along the inclined surface 44 a of the inclined table 44, so that the peripheral end portion of the tip of the rotating grindstone 48 held by the grinding spindle 49 is the workpiece 42 to be ground. The grinding spindle 49 is positioned and fixed so as to coincide with the rotation center axis 42a.

つぎに、XYテーブル43をX方向に移動させて、被研削加工物42の回転中心軸42aを通る水平線と回転砥石48の回転中心軸48aとがX軸上で一致するように調整するとともに、XYテーブル43をY方向に移動させて、図(a)に示すように、回転砥石48の先端の周端部が被研削加工物42の被加工面に形成された粗加工面42bの一端部に当接した時点から研削工程を開始する。 Next, the XY table 43 is moved in the X direction and adjusted so that the horizontal line passing through the rotation center axis 42a of the workpiece 42 and the rotation center axis 48a of the rotating grindstone 48 coincide on the X axis. the XY table 43 is moved in the Y direction, as shown in FIG. 5 (a), one end of the rough machining surface 42b formed on the processed surface of the peripheral end portion of the tip of the grinding wheel 48 to be ground workpiece 42 The grinding process starts from the point of contact with the part.

そののち、予め作成されたNCプログラムに基づきXYテーブル43がX方向およびY方向に移動制御されることにより、研削スピンドル49により回転される回転砥石48が、被研削加工物42の被加工面の粗加工面42bに沿って移動するように制御される。すなわち、回転砥石48は、図5(b)の位置から同図(c)の位置まで粗加工面42bに沿って水平方向に移動され、この回転砥石48によるクロス研削加工方法により、被研削加工物42の被加工面に目標加工形状の研削面が研削加工される。   After that, the XY table 43 is controlled to move in the X direction and the Y direction based on the NC program created in advance, so that the rotating grindstone 48 rotated by the grinding spindle 49 is applied to the work surface of the work piece 42. It is controlled to move along the rough surface 42b. That is, the rotating grindstone 48 is moved in the horizontal direction along the roughened surface 42b from the position of FIG. 5B to the position of FIG. 5C, and is processed by the cross grinding method using the rotating grindstone 48. A ground surface having a target processing shape is ground on the work surface of the article 42.

この研削加工装置では、径が小さく、且つ回転中心軸48a方向に長い円柱状の回転砥石48を用いることにより、小径の円柱状被研削加工物42の被加工面に予め形成された、小径で小曲率の非球面形状の凹面を有する加工面を容易に研削加工することができるとともに、回転砥石48の回転中心軸48aを被研削加工物42の回転中心軸42aに対して所定角度に傾斜させて研削加工するので、回転砥石48の回転軸50が被研削加工物42の被加工面と位置的に干渉することがないため、回転軸50の径を太くすることができるから、回転砥石48の回転軸50が歪んで研削加工中に振動が生じると言ったことがない。
特開平8−229792号公報
In this grinding apparatus, by using a cylindrical rotating grindstone 48 that has a small diameter and is long in the direction of the rotation center axis 48a, a small diameter is formed in advance on the processing surface of the small-diameter cylindrical workpiece 42. A machining surface having an aspherical concave surface with a small curvature can be easily ground, and the rotation center axis 48a of the rotating grindstone 48 is inclined at a predetermined angle with respect to the rotation center axis 42a of the workpiece 42. Since the rotary shaft 50 of the rotary grindstone 48 does not interfere with the surface of the workpiece 42 to be machined, the diameter of the rotary shaft 50 can be increased. It has never been said that the rotation shaft 50 is distorted and vibration occurs during grinding.
Japanese Patent Laid-Open No. 8-229792

しかしながら、上記研削加工装置による研削加工方法では、回転砥石48が被研削加工物42に当接する研削ポイントが、被研削加工物42の被加工面の外周付近を加工する研削加工開始時に、図5(b)に示すように、上方から見て回転砥石48の側方のA点にあるが、被研削加工物42の中心を加工する研削加工完了時に、図5(c)に示すように、上方から見て回転砥石48の回転中心軸48aに対応するB点に移動している。また、上記研削ポイントは、図5(d)に太線矢印で示す研削ポイントの移動軌跡Cのように、側方から見た場合に回転砥石48の回転中心軸48aに対応する位置から上端エッジ部に移動している。さらに、被研削加工物42では、図5(e)に太線矢印で示す研削ポイントの移動軌跡Dのように、回転砥石48が回転しながら水平方向に移動されるにも拘わらず、回転砥石48が当接する接触ポイントが水平方向に向け直線的に変位していない。   However, in the grinding method using the above grinding device, the grinding point at which the rotating grindstone 48 abuts on the workpiece 42 starts at the start of the grinding process in which the vicinity of the outer periphery of the workpiece surface of the workpiece 42 is started. As shown in FIG. 5 (c), as shown in FIG. 5 (c), when the grinding process for machining the center of the workpiece 42 is completed. When viewed from above, the rotary grindstone 48 has moved to a point B corresponding to the rotation center axis 48a. Further, the grinding point is located at the upper edge portion from the position corresponding to the rotation center axis 48a of the rotating grindstone 48 when viewed from the side as shown by the movement locus C of the grinding point indicated by the thick line arrow in FIG. Has moved to. Further, in the work piece 42 to be ground, the rotating grindstone 48 is moved in the horizontal direction while rotating as indicated by a thick point arrow shown in FIG. The contact point where the abuts is not linearly displaced in the horizontal direction.

このように回転砥石48による被研削加工物42の研削ポイントが研削加工開始時から研削加工完了時までの間に回転砥石48において移動するため、回転砥石48に加わる研削抵抗の位置と方向は、被研削加工物42の被加工面の外周付近を加工する研削加工開始時と被研削加工物42の中心を加工する研削加工完了時とで大きく異なるから、回転砥石48に不安定な撓みなどが発生し易く、被研削加工物42の被加工面に、所望の目標加工形状を所定の形状精度を得られるように高精度に形成することが困難となる。   Thus, since the grinding point of the workpiece 42 by the rotating grindstone 48 moves on the rotating grindstone 48 from the start of the grinding to the completion of the grinding, the position and direction of the grinding resistance applied to the rotating grindstone 48 are as follows. Since the grinding wheel 48 is largely different from the start of the grinding process for machining the vicinity of the outer periphery of the work surface of the workpiece 42 and the completion of the grinding process for machining the center of the workpiece 42, the rotating grindstone 48 is unstablely bent. It tends to occur, and it becomes difficult to form a desired target machining shape with high accuracy on the surface of the workpiece 42 so as to obtain a predetermined shape accuracy.

本発明は前記従来の問題に鑑みてなされたもので、回転砥石のような回転研削工具による被研削加工物の研削ポイントを一点に固定して、回転研削工具に加わる研削抵抗の位置と方向とを一定に保てるように制御することができる研削加工方法を提供することを目的としている。 The present invention has been made in view of the above-described conventional problems. The grinding point of a workpiece to be ground by a rotary grinding tool such as a rotary grindstone is fixed at one point, and the position and direction of the grinding resistance applied to the rotary grinding tool are determined. An object of the present invention is to provide a grinding method that can be controlled so as to be kept constant.

前記目的を達成するために、請求項1に係る発明の研削加工方法は、円柱状または円盤状の回転研削工具を、その回転中心軸が軸対称な形状の被研削加工物の回転中心軸に対し所定の傾斜角度配置、前記回転研削工具の先端角部が前記被研削加工物の端面被加工面に当接した状態で目標加工形状に倣うように前記被研削加工物および前記回転研削工具を相対移動させることにより、前記被加工面に非球面形状の凹面を形成する研削加工方法において、前記所定の傾斜角度を維持した状態で、前記回転研削工具の回転中心軸を、前記先端角部が前記被加工面と当接する研削ポイントに対する法線に、相対移動の移動平面に対し直交方向から見て常に合致させるように、前記被研削加工物または前記回転研削工具の少なくとも一方を研削加工の進行に対応して回動制御することを特徴としている。 To achieve the above object, grinding process of the invention according to claim 1, the rotation center of the cylindrical or disk-shaped rotating grinding engineering tools, the rotational center axis, the grinding of the axisymmetric shape The workpiece to be ground so as to follow a target machining shape in a state where the tip corner portion of the rotary grinding tool is in contact with the workpiece surface of the end surface of the workpiece to be ground, and arranged at a predetermined inclination angle with respect to the shaft. In the grinding method for forming an aspherical concave surface on the work surface by relatively moving the rotary grinding tool, the rotation center axis of the rotary grinding tool is maintained while maintaining the predetermined inclination angle . At least one of the workpiece or the rotary grinding tool so that the tip corner always matches the normal to the grinding point where the tip is in contact with the workpiece surface when viewed from the direction orthogonal to the relative movement plane. Grinding In response to the progress of engineering it is characterized by controlling rotation.

請求項2に係る発明は、請求項1の発明の研削加工方法において、回転研削工具の先端角部が被加工面に当接する研削ポイントにおける被研削加工物の回転方向に対し回転研削工具の回転方向が非平行となる状態を保持しながら、前記被研削加工物および前記回転研削工具を相対移動させるように移動制御するようにした。   According to a second aspect of the present invention, in the grinding method of the first aspect of the invention, the rotation of the rotary grinding tool relative to the direction of rotation of the workpiece to be ground at a grinding point where the tip corner portion of the rotary grinding tool contacts the workpiece surface. While maintaining a state in which the directions are not parallel, movement control is performed so that the workpiece to be ground and the rotary grinding tool are relatively moved.

請求項3に係る発明は、請求項1または2の発明の研削加工方法において、回転研削工具の先端角部が被加工面に当接する研削ポイントの移動軌跡が直線となるように被研削加工物および前記回転研削工具を相対移動させるように制御するようにした。   According to a third aspect of the present invention, in the grinding method according to the first or second aspect of the present invention, the workpiece to be ground is such that the movement locus of the grinding point at which the tip corner of the rotary grinding tool abuts the surface to be machined is a straight line In addition, the rotary grinding tool is controlled to move relatively.

請求項1の発明では、円柱状または円盤状の回転研削工具および被研削加工物を相対移動させる2軸の直線移動制御に加えて、上記相対移動の移動平面に対し直交方向から見て、例えば上方から見て、回転研削工具の回転中心軸が、回転研削工具と被研削加工物との研削ポイントに対する法線に常に合致するように、回転研削工具または被研削加工物の少なくとも一方を回動制御する1軸の回動制御を行っていることにより、例えば、上方から見た被研削加工物に対する回転砥石の研削ポイントが、研削加工開始時から研削加工完了時までの間において常に回転研削工具の回転中心軸上の一点に存在するよう維持される。したがって、回転研削工具に加わる研削抵抗の位置および方向は、研削加工開始時から研削加工完了時まで常に一定に保たれるので、回転研削工具に不安定な撓みなどが発生するおそれがない。しかも、研削抵抗の位置および方向は回転研削工具における最も安定な回転中心軸に合致しているため、回転研削工具を一層安定に回転駆動することができる。これにより、この研削加工方法では、小径の円柱状被研削加工物の被加工面に目標加工形状の研削加工面を高精度な形状および面精度に確実に研削加工することが可能となる。   In the first aspect of the invention, in addition to the biaxial linear movement control for moving the cylindrical or disk-shaped rotary grinding tool and the workpiece to be ground relative to each other, when viewed from a direction orthogonal to the movement plane of the relative movement, for example, When viewed from above, at least one of the rotary grinding tool or work piece is rotated so that the rotation center axis of the rotary grinding tool always matches the normal to the grinding point between the rotary grinding tool and the work piece. By performing rotation control of one axis to be controlled, for example, the grinding point of the rotating grindstone with respect to the workpiece to be ground viewed from above is always a rotating grinding tool between the start of grinding and the completion of grinding. Is maintained at a point on the rotation center axis. Therefore, since the position and direction of the grinding resistance applied to the rotary grinding tool are always kept constant from the start of the grinding process to the completion of the grinding process, there is no possibility of unstable bending or the like occurring in the rotary grinding tool. Moreover, since the position and direction of the grinding resistance matches the most stable rotation center axis of the rotary grinding tool, the rotary grinding tool can be driven to rotate more stably. As a result, in this grinding method, it is possible to reliably grind the ground surface of the target shape to the work surface of the small-diameter cylindrical work piece with high precision and surface accuracy.

請求項2の発明では、回転研削工具の先端角部が被加工面に当接する研削ポイントにおける被研削加工物の回転方向に対し回転研削工具の回転方向が非平行となる状態を保持しながら、被研削加工物および回転研削工具を相対移動させるクロス研削加工方法を採用しているので、被研削加工物の被加工面には、研削目が比較的粗い研削面が研削されるが、
被研削加工物に目標加工形状を研削加工するための回転研削工具の制御を容易に行える利点がある。特に、この研削加工方法では、回転研削工具と被研削加工物との相対位置を2軸の直線移動制御により制御するのに加えて、回転研削工具または被研削加工物を回動させる1軸の回動制御を行うことから、制御が簡単なクロス研削加工方法を採用するメリットが大きい。
In the invention of claim 2, while maintaining the state in which the rotational direction of the rotary grinding tool is non-parallel to the rotational direction of the workpiece to be ground at the grinding point where the tip corner portion of the rotary grinding tool contacts the workpiece surface, Since the cross-grinding method in which the work piece and the rotary grinding tool are moved relative to each other is adopted, the work surface of the work piece is ground with a relatively rough grinding surface.
There is an advantage that it is possible to easily control a rotary grinding tool for grinding a target machining shape on a workpiece. In particular, in this grinding method, in addition to controlling the relative position of the rotary grinding tool and the workpiece to be ground by biaxial linear movement control, a single axis for rotating the rotary grinding tool or workpiece to be ground is provided. Since rotation control is performed, there is a great merit in adopting a cross grinding method that is easy to control.

請求項3の発明では、被研削加工物の被加工面における回転研削工具による研削ポイントの移動軌跡を、例えば、被研削加工物の中心を通る水平線に沿った直線となるように設定することができ、回転研削工具に不安定な撓みなどが発生するのを一層確実に防止することができ、例えば、小径の円柱状被研削加工物の被加工面に、小径で小曲率の非球面形状を研削加工する場合であっても、目標加工形状の研削加工面を極めて高精度な形状および面精度に確実に研削加工することができる。   In the invention of claim 3, the movement trajectory of the grinding point by the rotary grinding tool on the workpiece surface of the workpiece to be ground can be set to be a straight line along a horizontal line passing through the center of the workpiece to be ground, for example. It is possible to more reliably prevent unstable bending and the like from occurring in the rotary grinding tool.For example, an aspherical shape with a small diameter and a small curvature is formed on the work surface of a small-diameter cylindrical work piece. Even in the case of grinding, it is possible to reliably grind the grinding surface of the target machining shape with a highly accurate shape and surface accuracy.

以下、本発明の最良の実施の形態について、図面を参照しながら説明する。図1は本発明の一実施の形態に係る研削加工方法を具現化した研削加工装置を示す側面図、図2はその平面図である。この研削加工装置は、台板1上に設置されたX方向移動テーブル2およびY方向移動テーブル3と、Y方向移動テーブル3上に設置されて円柱状の被研削加工物7を水平の回転中心軸4a回りに回転駆動するワークスピンドル4と、X方向移動テーブル2上に設置されて鉛直な回転中心軸8a回りに回転される回転テーブル8と、この回転テーブル8上の外周近傍箇所に鉛直な配置で立設されたスピンドルホルダ9と、このスピンドルホルダ9に鉛直上下方向に移動可能に取り付けられた昇降テーブル10と、被研削加工物7に向けて下り勾配に傾斜する配置で前記昇降テーブル10に保持された研削スピンドル11と、この研削スピンドル11に保持されて回転中心軸11a回りに回転駆動される回転砥石12とを備えて構成されている。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a side view showing a grinding apparatus embodying a grinding method according to an embodiment of the present invention, and FIG. 2 is a plan view thereof. This grinding apparatus is provided with an X-direction moving table 2 and a Y-direction moving table 3 installed on a base plate 1, and a column-shaped workpiece 7 that is installed on the Y-direction moving table 3 with a horizontal rotation center. A work spindle 4 that rotates around an axis 4 a, a rotary table 8 that is installed on the X-direction moving table 2 and rotates around a vertical rotation center axis 8 a, and a vertical position near the outer periphery on the rotary table 8. The spindle holder 9 erected in the arrangement, the elevating table 10 attached to the spindle holder 9 so as to be movable vertically and vertically, and the elevating table 10 arranged so as to incline downward toward the workpiece 7. And a rotating grindstone 12 held by the grinding spindle 11 and driven to rotate about the rotation center axis 11a.

上記研削スピンドル11は、これの回転中心軸11aが水平のワークスピンドル4の回転中心軸4aに対し任意の傾斜角度θ、例えば45°の傾斜角度θで傾斜する配置で昇降テーブル10に固定されており、昇降テーブル10の上下動に伴い上記傾斜角度θを保持しながら鉛直上下方向に上下動される。また、研削スピンドル11は、自体に保持している回転砥石12における被研削加工物7に当接する突出先端部が回転テーブル8の回転中心軸8aの上方延長線上に一致するようにセッティングされている。一方、被研削加工物7は、自体の回転中心軸がワークスピンドル4の回転中心軸4aと一致する配置でワークスピンドル4に取り付けられている。さらに、回転砥石12の突出先端部は、上述のように回転テーブル8の回転中心軸8aの上方延長線に一致するとともに、ワークスピンドル4の回転中心軸4aを通る水平面に一致するように、昇降テーブル10の上下動により高さ位置が調整されている。   The grinding spindle 11 is fixed to the elevating table 10 in such an arrangement that the rotation center axis 11a thereof is inclined with respect to the rotation center axis 4a of the horizontal work spindle 4 at an arbitrary inclination angle θ, for example, 45 °. As the elevating table 10 moves up and down, it is moved up and down in the vertical up and down direction while maintaining the tilt angle θ. In addition, the grinding spindle 11 is set so that the protruding tip end of the rotating grindstone 12 held on the grinding spindle 11 is in contact with the upper extension line of the rotation center axis 8 a of the rotary table 8. . On the other hand, the workpiece 7 is attached to the work spindle 4 in an arrangement in which the rotation center axis of the workpiece 7 coincides with the rotation center axis 4 a of the work spindle 4. Further, the protruding tip of the rotating grindstone 12 is raised and lowered so as to coincide with the upper extension line of the rotation center axis 8a of the rotary table 8 and to the horizontal plane passing through the rotation center axis 4a of the work spindle 4 as described above. The height position is adjusted by the vertical movement of the table 10.

つぎに、上記研削加工装置により被研削加工物7を研削加工する工程について説明する
。図3(a)は上記研削加工装置における研削加工開始時の要部の切断平面図、(b),(c)は研削加工完了時の要部の切断平面図および要部の切断側面図をそれぞれ示す。被研削加工物7の被加工面7aには、この研削加工装置による被研削加工物7の研削加工に先立って、所定の非球面形状の凹面を有する粗加工面7bが予め形成されており、上記研削加工装置では、その粗加工面7bに対し回転砥石12により研削加工を行って、目標加工形状になるように高精度に仕上げ加工する。
Next, a process of grinding the workpiece 7 by the grinding apparatus will be described. FIG. 3A is a cut plan view of the main part at the start of grinding in the grinding apparatus, and FIGS. 3B and 3C are a cut plan view of the main part and a cut side view of the main part when the grinding process is completed. Each is shown. Prior to the grinding of the workpiece 7 by the grinding apparatus, a roughened surface 7b having a predetermined aspherical concave surface is formed in advance on the workpiece surface 7a of the workpiece 7 to be ground, In the grinding apparatus, the roughened surface 7b is ground by the rotating grindstone 12 and finished with high accuracy so as to obtain a target shape.

まず、上記研削加工装置では、上述した研削加工の開始に先立って、傾斜した配置の回転砥石12における被研削加工物7に当接される突出先端部が、回転テーブル8の回転中心軸8aの上方延長線上に一致するようにセッティングされ、さらに昇降テーブル10の上下動により研削スピンドル11の高さの位置調整が行われて、回転砥石12の突出先端部は、ワークスピンドル4の回転中心軸4aを通る水平面つまり被研削加工物7の回転中心軸を通る水平面に一致するように位置決めされることになる。   First, in the above-described grinding apparatus, the protruding tip portion that comes into contact with the workpiece 7 in the inclined grinding wheel 12 in the inclined arrangement before the start of the above-described grinding process is formed on the rotation center shaft 8 a of the rotary table 8. The height of the grinding spindle 11 is adjusted by moving the lifting table 10 up and down to match the upper extension line, and the protruding tip of the rotating grindstone 12 is the rotation center axis 4 a of the work spindle 4. Is positioned so as to coincide with a horizontal plane passing through the rotation center axis of the workpiece 7 to be ground.

そののち、研削加工装置では、図3(a)に示すように、X方向移動テーブル2がX方向における図2の手前側に向け移動されるとともに、Y方向移動テーブル3がY方向における図2の右方に向け移動されて、回転砥石12の突出先端部が、被研削加工物7の被加工面7aに形成された粗加工面7bの一端部に向けて移動されていく。   After that, in the grinding apparatus, as shown in FIG. 3A, the X-direction moving table 2 is moved toward the near side of FIG. 2 in the X direction, and the Y-direction moving table 3 is shown in FIG. The projecting tip of the rotating grindstone 12 is moved toward one end of the roughened surface 7b formed on the workpiece surface 7a of the workpiece 7 to be ground.

さらに、回転テーブル8が図2のL矢印方向に回転されることにより、この回転テーブル8上のスピンドルホルダ9に研削スピンドル11および昇降テーブル10を介して保持されている回転砥石12は、研削スピンドル11の回転中心軸11aつまり回転砥石12の回転中心軸が、回転砥石12の突出先端部と被研削加工物7の一端部とが接触する研削ポイントEを通る接線Gに対し上方から見て直角となる配置に、つまり上方から見て回転砥石12の回転中心軸が研削ポイントEの法線と合致する配置になるように回転制御される。   Further, when the rotary table 8 is rotated in the direction of the arrow L in FIG. 2, the rotary grindstone 12 held on the spindle holder 9 on the rotary table 8 via the grinding spindle 11 and the lifting table 10 becomes the grinding spindle. 11, that is, the rotation center axis of the rotating grindstone 12 is perpendicular to the tangent line G passing through the grinding point E where the projecting tip of the rotating grindstone 12 and one end of the workpiece 7 are in contact with each other. The rotation is controlled so that the rotation center axis of the rotating grindstone 12 matches the normal line of the grinding point E as viewed from above.

このようにして回転砥石12の突出先端部が被研削加工物7の被加工面7aにおける粗加工面7bの一端に当接された時点から、ワークスピンドル4により回転駆動されている被研削加工物7の粗加工面7bを、研削スピンドル11により回転駆動されている回転砥石12により研削する研削加工が開始される。そののち、研削加工装置では、予め作成されたNGプログラムに基づいて、X方向移動テーブル2およびY方向移動テーブル3が移動制御され、且つ回転テーブル8が図2のR矢印方向に向け徐々に回転制御される。   In this way, the workpiece to be ground that is driven to rotate by the work spindle 4 from the time when the protruding tip of the rotating grindstone 12 contacts one end of the roughened surface 7b of the workpiece surface 7a of the workpiece 7 to be ground. Then, the grinding process is started to grind the rough machining surface 7b of No. 7 with the rotating grindstone 12 that is rotationally driven by the grinding spindle 11. After that, in the grinding apparatus, the X direction moving table 2 and the Y direction moving table 3 are controlled to move based on the NG program created in advance, and the rotary table 8 is gradually rotated in the direction of the arrow R in FIG. Be controlled.

すなわち、X方向移動テーブル2は、回転砥石12の突出先端部が被研削加工物7の粗加工面7bに当接しながら、この粗加工面7bの一端部から中心まで水平方向に変位するようにX方向に移動制御される。また、Y方向移動テーブル3は、X方向に向け水平移動する回転砥石12における突出先端部が被研削加工物7の粗加工面7bの一端部から中心までの凹面形状に沿って倣いながら常時接触するようにY方向に移動制御される。さらに、回転テーブル8は、研削スピンドル11の回転中心軸11aつまり回転砥石12の回転中心軸が上方から見て回転砥石12と被研削加工物7との研削ポイントの法線に常に合致するように、回転砥石12を上記研削ポイントE,Fの変位に対応して図3(a)の向きから同図(b)の向きとなる範囲で徐々に回転される。   That is, the X-direction moving table 2 is displaced in the horizontal direction from one end portion to the center of the roughing surface 7b while the protruding tip portion of the rotating grindstone 12 is in contact with the roughing surface 7b of the workpiece 7 to be ground. The movement is controlled in the X direction. The Y-direction moving table 3 is always in contact with the protruding tip of the rotating grindstone 12 that horizontally moves in the X direction following the concave shape from one end of the roughened surface 7b of the workpiece 7 to the center. Thus, movement control is performed in the Y direction. Further, the rotary table 8 is such that the rotation center axis 11a of the grinding spindle 11, that is, the rotation center axis of the rotary grindstone 12, always matches the normal of the grinding point between the rotary grindstone 12 and the workpiece 7 when viewed from above. The rotating grindstone 12 is gradually rotated in the range from the direction shown in FIG. 3A to the direction shown in FIG. 3B in accordance with the displacement of the grinding points E and F.

このようにして、回転砥石48を、予め作成されたNGプログラムに基づき被研削加工物7の粗加工面7bに沿って移動制御および回動制御することにより、回転砥石12を図3(a)の位置から同図(b)の位置まで水平方向に移動させ、且つ図2のR矢印方向に回動させて、回転砥石12によるクロス研削加工方法によって被研削加工物7の被加工面7aの粗加工面7bが目標加工形状の研削粗加工面に研削加工される。   In this way, the rotational grindstone 12 is controlled to move and rotate along the rough surface 7b of the workpiece 7 based on the NG program created in advance, whereby the rotational grindstone 12 is controlled as shown in FIG. 2 to the position shown in FIG. 2 (b) and rotated in the direction of the arrow R in FIG. 2, and the surface 7a of the workpiece 7a to be ground 7 is processed by the cross grinding method using the rotating grindstone 12. The roughened surface 7b is ground into a ground roughened surface having a target shape.

この研削加工方法では、回転砥石12をX方向に移動制御し、且つ被研削加工物7をY方向に移動制御する2軸の直線移動制御に加えて、上方から見て研削スピンドル11の回転中心軸11aつまり回転砥石12の回転中心軸が、回転砥石12と被研削加工物7との研削ポイントE,Fの接線G,Hに対し常に直角になるように、つまり研削ポイントE,Fに対する法線に常に合致するように回転砥石12を回動制御する1軸の回動制御を行っていることにより、図3(a)および同図(b)に示すように、上方から見た被研削加工物7に対する回転砥石12の研削ポイントE,Fは、研削加工開始時から研削加工完了時までの間において常に研削スピンドル11の回転中心軸11aつまり回転砥石12の回転中心軸上の一点に存在するよう維持される。   In this grinding method, in addition to the biaxial linear movement control for controlling the movement of the rotary grindstone 12 in the X direction and for controlling the movement of the workpiece 7 in the Y direction, the rotation center of the grinding spindle 11 as viewed from above. The axis 11a, that is, the rotation center axis of the rotating grindstone 12 is always perpendicular to the tangents G, H of the grinding points E, F between the rotating grindstone 12 and the workpiece 7; As shown in FIG. 3 (a) and FIG. 3 (b), the object to be ground is viewed from above by performing one-axis rotation control for rotating the rotating grindstone 12 so as to always match the line. The grinding points E and F of the rotating grindstone 12 with respect to the workpiece 7 always exist at one point on the rotation center axis 11a of the grinding spindle 11, that is, the rotation center axis of the rotating grindstone 12 from the start of the grinding process to the completion of the grinding process. To do It is equity.

また、回転砥石12は回動されながら水平方向に移動されるから、図3(c)に示すように、側方から見たときの回転砥石12における研削ポイントの移動規制は、回転砥石12における回転中心軸の真上の突出先端部の一点に存在するように維持される。したがって、図3(d)に太線矢印で示すように、被研削加工物7の被加工面7aにおける回転砥石12による研削ポイントの移動軌跡Iは、被研削加工物7の中心を通る水平線に沿った直線となる。   Further, since the rotating grindstone 12 is moved in the horizontal direction while being rotated, as shown in FIG. 3C, the movement restriction of the grinding point in the rotating grindstone 12 when viewed from the side is the same as that in the rotating grindstone 12. It is maintained so that it exists in one point of the protrusion front-end | tip just above a rotation center axis | shaft. Therefore, as shown by a thick arrow in FIG. 3D, the movement locus I of the grinding point by the rotating grindstone 12 on the workpiece surface 7 a of the workpiece 7 follows a horizontal line passing through the center of the workpiece 7. It becomes a straight line.

上述のように、回転砥石12を、被研削加工物7に対する研削ポイントE,Fが自体の回転中心軸上の一点に固定し、且つ直線の移動軌跡となるように制御することから、回転砥石12に加わる研削抵抗の位置および方向は、研削加工開始時から研削加工完了時まで常に一定に保たれるので、回転砥石12に不安定な撓みなどが発生するおそれがない。しかも、研削抵抗の位置および方向は回転砥石12における最も安定な回転中心軸に合致しているため、回転砥石12を一層安定に回転駆動することができる。これにより、この研削加工装置では、小径の円柱状被研削加工物7の被加工面7aに目標加工形状の研削加工面を高精度な形状および面精度に確実に研削加工することが可能となる。   As described above, the rotating grindstone 12 is controlled so that the grinding points E and F with respect to the workpiece 7 are fixed to one point on the rotation center axis of the grindstone 7 and a linear movement locus is obtained. Since the position and direction of the grinding resistance applied to 12 are always kept constant from the start of the grinding process to the completion of the grinding process, there is no possibility of unstable bending of the rotating grindstone 12 or the like. In addition, since the position and direction of the grinding resistance matches the most stable rotation center axis of the rotary grindstone 12, the rotary grindstone 12 can be driven to rotate more stably. As a result, in this grinding apparatus, it is possible to reliably grind the grinding surface of the target machining shape to the machining surface 7a of the small-diameter cylindrical workpiece 7 with high precision and surface accuracy. .

また、上記研削加工装置では、回転砥石12の回転中心軸11aを被研削加工物7の回転中心軸4aに対して任意の角度に傾斜させて研削加工するので、小径の円柱状被研削加工物7の被加工面7aに、小径で小曲率の非球面形状を研削加工する場合であっても、径が小さく、且つ回転中心軸方向に長い円柱状の回転砥石12を用いることにより、回転砥石12が被研削加工物7の被加工面7aと位置的に干渉することがないので、回転砥石12が歪んで研削加工中に振動が生じると言ったことがない。これにより、被研削加工物7の被加工面7aに所要の研削加工面を一層高精度に研削加工することができる。   Further, in the above-described grinding apparatus, the grinding is performed by inclining the rotation center axis 11a of the rotating grindstone 12 at an arbitrary angle with respect to the rotation center axis 4a of the workpiece 7 to be ground. Even when the aspherical surface having a small diameter and a small curvature is ground on the work surface 7a, the rotary grindstone can be obtained by using the cylindrical grindstone 12 having a small diameter and long in the direction of the rotation center axis. Since 12 does not positionally interfere with the work surface 7a of the work 7 to be ground, it is never said that the rotating grindstone 12 is distorted and vibration is generated during grinding. Thereby, it is possible to grind the required grinding surface on the workpiece surface 7a of the workpiece 7 with higher accuracy.

さらに、上記研削加工装置では、回転砥石12を、粗加工面7bに当接する研削ポイントにおける被研削加工物7の回転方向に対し回転砥石12の回転方向が非平行となる状態を保持しながら、被研削加工物7および回転砥石12を相対移動させるクロス研削加工方法を採用しているので、被研削加工物7の被加工面7aには、研削目が比較的粗い研削面が研削されるが、被研削加工物7に目標加工形状を研削加工するための回転砥石12の制御を容易に行える利点がある。特に、上記研削加工方法では、回転砥石12をX軸方向に移動制御し、且つ被研削加工物7をY軸方向に移動制御する2軸の直線移動制御に加えて、回転砥石12を回動させる1軸の回動制御を行うことから、回転砥石12の制御が簡単なクロス研削加工方法を採用するメリットが大きい。   Furthermore, in the above grinding apparatus, while maintaining the state in which the rotational direction of the rotary grindstone 12 is non-parallel to the rotational direction of the workpiece 7 at the grinding point that contacts the rough machining surface 7b, Since a cross-grinding method in which the workpiece 7 and the rotating grindstone 12 are moved relative to each other is adopted, a grinding surface having a relatively rough grinding surface is ground on the workpiece surface 7a of the workpiece 7 to be ground. There is an advantage that it is possible to easily control the rotary grindstone 12 for grinding the target machining shape on the workpiece 7. In particular, in the above grinding method, the rotary grindstone 12 is rotated in addition to the biaxial linear movement control for moving the rotary grindstone 12 in the X-axis direction and controlling the workpiece 7 to move in the Y-axis direction. Since the rotation control of one axis to be performed is performed, the merit of adopting a cross grinding method in which the control of the rotating grindstone 12 is simple is great.

なお、上記実施の形態では、回転砥石12を回転テーブル8の回転により回動させる構成を例示して説明したが、Y方向移動テーブル3上に回転テーブル8を設置して、その回転テーブル8上にワークスピンドル4を設けることにより、上方から見て研削スピンドル11の回転中心軸11aが回転砥石12と被研削加工物7との研削ポイントに対する法線に合致するように被研削加工物7を回動制御する構成としても、上述したと同様の効果を得ることができる。その場合、研削スピンドル11はX方向移動テーブル2上に設けて、
回転砥石12をX方向のみに移動制御することになる。但し、制御上からは、上記実施の形態のように、回転砥石12を回転テーブル8によって回動させる方が有利である。
In the above-described embodiment, the configuration in which the rotary grindstone 12 is rotated by the rotation of the rotary table 8 has been described as an example. However, the rotary table 8 is installed on the Y-direction moving table 3 and the rotary table 8 is By providing the workpiece spindle 4 on the workpiece 7, the workpiece 7 is rotated so that the rotation center axis 11 a of the grinding spindle 11 coincides with the normal to the grinding point between the rotary grindstone 12 and the workpiece 7 as viewed from above. The same effect as described above can be obtained even in a configuration that performs dynamic control. In that case, the grinding spindle 11 is provided on the X-direction moving table 2,
The rotary grindstone 12 is controlled to move only in the X direction. However, from the viewpoint of control, it is advantageous to rotate the rotary grindstone 12 by the rotary table 8 as in the above embodiment.

図4は、本発明の他の実施の形態に係る研削加工方法を具現化した研削加工装置を示し、同図(a)は研削加工開始時時の要部の切断平面図、同図(b)は切削加工時の切断側面図であり、図3と同一若しくは実質的に同等のものに同一の符号を付してある。この実施の形態では、一実施の形態の円柱状の回転砥石12に代えて、そろばん玉形状のような形状を有する円盤状の回転砥石13を回転軸14の先端に固着して用いている。この回転砥石13は、一実施の形態と同様に移動制御および回動制御される。したがって、この実施の形態においても、一実施の形態で説明したと同様の効果を得ることができる。   FIG. 4 shows a grinding apparatus that embodies a grinding method according to another embodiment of the present invention. FIG. 4 (a) is a plan view of the main part at the start of grinding, and FIG. 4 (b). ) Is a cut side view at the time of cutting, and the same reference numerals are given to the same or substantially the same as FIG. In this embodiment, instead of the columnar rotating grindstone 12 of one embodiment, a disk-shaped rotating grindstone 13 having a shape like an abacus ball is fixed to the tip of the rotating shaft 14 and used. The rotary grindstone 13 is controlled to move and rotate as in the embodiment. Therefore, also in this embodiment, the same effect as described in the embodiment can be obtained.

この発明は、被研削加工物の端面の被粗加工面に凹状の研削粗加工面を形成するに際して、回転砥石による被研削加工物の研削ポイントを、研削加工開始時から研削加工完了時まで所定の一点になるように制御することにより、研削加工時に回転砥石に加わる研削抵抗の位置および方向を一定に保って、極めて安定した研削加工を行うことができるので、近い将来において、小径で、小曲率の非球面形状の凹面を有するレンズ成形金型の製作が要望された場合にも、そのようなレンズ成形金型を高精度な形状および面精度に研削加工できるように対応できる。   In the present invention, when forming a concave rough grinding surface on the rough surface of the end surface of the workpiece, the grinding point of the workpiece to be ground by the rotating grindstone is determined from the start of the grinding process to the completion of the grinding process. By controlling to be one point, extremely stable grinding can be performed while keeping the position and direction of the grinding resistance applied to the rotating wheel constant during grinding, so in the near future, small diameter and small Even when it is desired to manufacture a lens molding die having an aspherical curvature surface, it is possible to handle such a lens molding die so that it can be ground with high precision and surface accuracy.

本発明の一実施の形態に係る研削加工方法を具現化した研削加工装置を示す側面図。The side view which shows the grinding device which actualized the grinding method which concerns on one embodiment of this invention. 同上の研削加工装置の平面図。The top view of a grinding processing apparatus same as the above. (a)は同上の研削加工装置の研削加工開始時時の要部の切断平面図、(b),(c)は研削加工完了時の要部の切断平面図および切断側面図、(d)は被研削加工物における回転砥石による研削ポイントの移動軌跡を示す説明図。(A) is a cutting plan view of the main part at the start of the grinding process of the above grinding apparatus, (b) and (c) are a cutting plan view and a cut side view of the main part when the grinding process is completed, (d). These are explanatory drawings which show the movement locus | trajectory of the grinding point by the rotating grindstone in a workpiece. 本発明の他の実施の形態に係る研削加工方法を具現化した研削加工装置を示し、(a)は研削加工開始時時の要部の切断平面図、(b)は切削加工時の切断側面図。1 shows a grinding apparatus that embodies a grinding method according to another embodiment of the present invention, in which (a) is a plan view of a main part at the start of grinding, and (b) is a cut side view at the time of cutting. Figure. 従来の研削加工装置を示す斜視図、(b)は研削加工開始時時の切断平面図、(c),(d)は研削加工完了時の切断平面図および切断側面図、(e)は被研削加工物における回転砥石による研削ポイントの移動軌跡を示す説明図。(B) is a cut plan view at the start of grinding, (c) and (d) are a cut plan view and a cut side view when grinding is completed, Explanatory drawing which shows the movement locus | trajectory of the grinding point by the rotating grindstone in a grinding workpiece. (a),(b)はクロス研削加工方法による研削工程の切断平面図および切断側面図、(c)はクロス研削加工方法により研削加工された被研削加工物の粗加工面を示す図、(d),(e)はパラレル研削加工方法による研削工程の切断平面図および切断側面図、(f)はパラレル研削加工方法により研削加工された被研削加工物の粗加工面を示す図。(A), (b) is a cut plan view and a cut side view of a grinding process by a cross grinding method, (c) is a diagram showing a rough surface of a workpiece to be ground that has been ground by a cross grinding method, (d), (e) is a cutting plan view and a cut side view of a grinding process by a parallel grinding method, and (f) is a diagram showing a rough surface of a workpiece to be ground that has been ground by the parallel grinding method.

符号の説明Explanation of symbols

2 X方向移動テーブル(移動テーブル)
3 Y方向移動テーブル(移動テーブル)
4 ワークスピンドル
4a ワークスピンドルの回転中心軸(被研削加工物の回転中心軸)
7 被研削加工物
7a 被粗加工面
8 回転テーブル
8a 回転テーブルの回転中心軸
9 スピンドルホルダ
10 昇降テーブル
11 研削スピンドル
11a 研削スピンドルの回転中心軸(回転研削工具の回転中心軸)
12,13 回転砥石(回転研削工具)
θ 傾斜角度
E,F 研削ポイント
I 研削ポイントの移動軌跡
2 X direction moving table (moving table)
3 Y-direction moving table (moving table)
4 Work spindle 4a Rotation center axis of work spindle (Rotation center axis of workpiece to be ground)
7 Workpiece to be ground 7a Roughened surface
8 Rotary table 8a Rotation center axis of rotary table
9 Spindle holder 10 Lifting table 11 Grinding spindle 11a Rotation center axis of grinding spindle (Rotation center axis of rotary grinding tool)
12,13 Rotary grinding wheel (Rotating grinding tool)
θ Inclination angle E, F Grinding point
I Movement path of grinding point

Claims (3)

円柱状または円盤状の回転研削工具を、その回転中心軸が軸対称な形状の被研削加工物の回転中心軸に対し所定の傾斜角度配置、前記回転研削工具の先端角部が前記被研削加工物の端面被加工面に当接した状態で目標加工形状に倣うように前記被研削加工物および前記回転研削工具を相対移動させることにより、前記被加工面に非球面形状の凹面を形成する研削加工方法において、
前記所定の傾斜角度を維持した状態で、前記回転研削工具の回転中心軸を、前記先端角部が前記被加工面と当接する研削ポイントに対する法線に、相対移動の移動平面に対し直交方向から見て常に合致させるように、前記被研削加工物または前記回転研削工具の少なくとも一方を研削加工の進行に対応して回動制御することを特徴とする研削加工方法。
A cylindrical or disk-shaped rotating grinding engineering tools, the rotational center axis, with respect to the rotation center axis of the grinding of the axial symmetric shape arranged at a predetermined inclination angle, the tip angle portion of the rotating grinding tool By moving the workpiece and the rotary grinding tool relative to each other so as to follow the target machining shape in contact with the workpiece surface of the end surface of the workpiece, the workpiece surface has an aspheric shape. In the grinding method for forming the concave surface,
In a state where the predetermined inclination angle is maintained, the rotation center axis of the rotary grinding tool is perpendicular to the moving plane of relative movement with respect to the normal to the grinding point at which the tip corner comes into contact with the workpiece surface. A grinding method characterized in that at least one of the workpiece to be ground or the rotary grinding tool is rotationally controlled in accordance with the progress of grinding so as to be consistent with each other.
回転研削工具の先端角部が被加工面に当接する研削ポイントにおける被研削加工物の回転方向に対し回転研削工具の回転方向が非平行となる状態を保持しながら、前記被研削加工物および前記回転研削工具を相対移動させるように移動制御するようにした請求項1に記載の研削加工方法。   While maintaining the state in which the rotational direction of the rotary grinding tool is non-parallel to the rotational direction of the workpiece to be ground at the grinding point where the tip corner portion of the rotary grinding tool abuts on the workpiece surface, The grinding method according to claim 1, wherein the movement control is performed so that the rotary grinding tool is relatively moved. 回転研削工具の先端角部が被加工面に当接する研削ポイントの移動軌跡が直線となるように被研削加工物および前記回転研削工具を相対移動させるように制御する請求項1または2に記載の研削加工方法。   The control unit is configured to control the workpiece to be ground and the rotary grinding tool to move relative to each other so that a movement locus of a grinding point at which a tip corner portion of the rotary grinding tool comes into contact with a workpiece surface is a straight line. Grinding method.
JP2004140833A 2004-05-11 2004-05-11 Grinding method Expired - Fee Related JP4333876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004140833A JP4333876B2 (en) 2004-05-11 2004-05-11 Grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004140833A JP4333876B2 (en) 2004-05-11 2004-05-11 Grinding method

Publications (2)

Publication Number Publication Date
JP2005319554A JP2005319554A (en) 2005-11-17
JP4333876B2 true JP4333876B2 (en) 2009-09-16

Family

ID=35467202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004140833A Expired - Fee Related JP4333876B2 (en) 2004-05-11 2004-05-11 Grinding method

Country Status (1)

Country Link
JP (1) JP4333876B2 (en)

Also Published As

Publication number Publication date
JP2005319554A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
JP5213442B2 (en) Raster cutting technology for ophthalmic lenses
JP2005001100A (en) Method of working aspherical face and method of forming aspherical face
US20100280650A1 (en) Machining apparatus and machining method
JP2009184066A (en) Method of machining concave fresnel lens shape member, and concave fresnel lens shape member
JP2009184066A5 (en)
JP2006289566A (en) Grinding processing method and grinding processing device of forming die of micro lens array
US7077729B2 (en) Aspherical surface processing method, aspherical surface forming method and aspherical surface processing apparatus
JP4662018B2 (en) Curved surface processing apparatus and parallel link mechanism calibration method
JP2007118117A (en) Machining device and method for fly-eye lens forming die
JP2006320970A (en) Machining device
JP4333876B2 (en) Grinding method
JP2007044853A (en) Method and apparatus for chamfering wafer
JP7016568B1 (en) Fresnel lens mold manufacturing method, processing equipment and cutting tools
JP2007253306A (en) Nc machine tool
JP2009160714A (en) Manufacturing method for die
US20100035524A1 (en) Method of producing optical element, and optical element
JP2008142799A (en) Working method for diffraction groove
JP2008137094A (en) Grinding method for workpiece such as material for long drill
JP2009095973A (en) Grinding wheel molding device and method
JP2006055961A (en) Method and apparatus for machining axially symmetric aspheric surface by surface grinding machine
JPH10328995A (en) Curved surface grinding method
JP3839326B2 (en) Axisymmetric aspheric grinding method
JP4342391B2 (en) Method for forming a ground workpiece
JP2007062000A (en) Grinding wheel and grinding method
JP2006007551A (en) Processing method of lens mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees