JP2009160714A - Manufacturing method for die - Google Patents

Manufacturing method for die Download PDF

Info

Publication number
JP2009160714A
JP2009160714A JP2008002912A JP2008002912A JP2009160714A JP 2009160714 A JP2009160714 A JP 2009160714A JP 2008002912 A JP2008002912 A JP 2008002912A JP 2008002912 A JP2008002912 A JP 2008002912A JP 2009160714 A JP2009160714 A JP 2009160714A
Authority
JP
Japan
Prior art keywords
grinding wheel
mold
grinding
die
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008002912A
Other languages
Japanese (ja)
Inventor
Yoshio Sakai
由雄 酒井
Akihiro Shimizu
章弘 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2008002912A priority Critical patent/JP2009160714A/en
Publication of JP2009160714A publication Critical patent/JP2009160714A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a die with high accuracy and high curvature while preventing interference between the die and a grinding wheel. <P>SOLUTION: This method includes processes of: coarsely processing into a recess surface; and finishing the coarsely processed surface that is coarsely processed by means of grinding, using the columnar grinding wheel 10. During the finishing process, when the curvature radius of the high curvature die 1 is taken as R, and the diameter of the grinding wheel 10 is taken as D, D/2<R is satisfied. When the inclination angle between the rotational center shaft of the high curvature die and the grinding wheel is taken as θ, the interference length between the high curvature die 1 in the depth direction and the grinding wheel 10 is taken as ΔZ, the deflection amount of the grinding wheel 10 in the diametrical direction is taken as α, the deflection amount of the grinding wheel 10 in the lengthwise direction is taken as β, the clearance portion dimension of the grinding wheel 10 in the diametrical direction is taken as ΔY, and the clearance portion dimension of the grinding wheel 10 in the lengthwise direction is taken as ΔX, the grinding wheel 10 where the clearance portion 14 satisfying ΔY=ΔZcosθ+α, and ΔX=2ΔZsinθ+2β is formed at least in a portion that interferes with an edge of the high curvature die 1, is used during grinding. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、曲率が強い凹面を有する金型の製造方法に関する。   The present invention relates to a method for manufacturing a mold having a concave surface with a strong curvature.

近年、光ディスク装置では、装置の大容量化および高性能化に伴って、開口率(NA)の高い非球面の光学レンズが用いられる傾向にある。このような光学レンズを成形加工するためのレンズ成形金型は、深さが深く曲率の強い凹面形状に形成する必要がある。また、光ディスク装置の小型化に伴って、光学レンズも小径になっている。
このようなレンズの成形金型は、超硬合金、SiCなどの硬脆材料に非球面形状の凹面を粗加工した後、その粗加工面を研削加工により所望の形状精度と表面粗さに仕上げ加工している。
例えば、特許文献1に示す研削加工装置では、円柱状の研削砥石を被研削加工物の回転中心軸に対して所定の角度に傾斜する配置で設けたことにより、被研削加工物と研削砥石との干渉(接触)を少なくすることを可能としている。このことから、研削砥石の軸を太く設定でき、剛性が向上することで加工精度が向上できる研削加工装置が開示されている。
In recent years, with an increase in capacity and performance of an optical disk device, an aspheric optical lens having a high aperture ratio (NA) tends to be used. A lens molding die for molding such an optical lens needs to be formed into a concave shape having a deep depth and a strong curvature. In addition, with the miniaturization of the optical disk device, the optical lens is also reduced in diameter.
In such a lens mold, an aspherical concave surface is roughly machined in a hard and brittle material such as cemented carbide or SiC, and then the roughened surface is ground to a desired shape accuracy and surface roughness. Processing.
For example, in the grinding apparatus shown in Patent Document 1, the workpiece to be ground, the grinding stone, and the like are provided by providing a cylindrical grinding wheel in an arrangement inclined at a predetermined angle with respect to the rotation center axis of the workpiece. It is possible to reduce interference (contact). For this reason, there has been disclosed a grinding apparatus capable of setting the grinding wheel shaft thick and improving the processing accuracy by improving the rigidity.

特開2005−319554号公報JP 2005-319554 A

しかしながら、金型の開口径が小径になり、曲率の強い凹面形状の金型の加工になると、研削砥石を被研削加工物の回転中心軸に対して所定の角度に傾斜して配置しても、研削砥石と金型のふちが接触し、設計形状に加工できないという不具合がある。
例えば金型を法線制御によってクロス研削を行なった場合、図10に示すような金型と研削砥石の位置関係となることがある。研削砥石110は軸部111と砥石部112から構成され、凹面105の研削加工の際に、研削砥石110の砥石部112と金型101のふちが干渉する。このため、金型101のふちが研削加工されてしまい、所望の設計形状に加工できない。
図10では円柱状の研削砥石110を金型101の回転中心軸に対して45°の角度に傾斜する配置をしており、この角度は研削砥石110が金型101との干渉が最も少なくなる配置であるが、干渉を無くすには砥石部112の径を細くしなくてはならない。しかしながら、砥石部112の径を細くすれば、研削砥石110の剛性が低下して、振れが発生し、精度の良い研削加工ができないという問題もあり、金型の深さが深く曲率の強い凹面形状の研削加工には限界がある。
However, when the opening diameter of the mold is reduced and the concave mold having a strong curvature is processed, the grinding wheel may be disposed at a predetermined angle with respect to the rotation center axis of the workpiece to be ground. There is a problem that the grinding wheel and the edge of the mold come into contact with each other and cannot be processed into the designed shape.
For example, when the die is subjected to cross grinding by normal control, the positional relationship between the die and the grinding wheel as shown in FIG. 10 may be obtained. The grinding wheel 110 includes a shaft portion 111 and a grinding wheel portion 112, and the grinding wheel portion 112 of the grinding wheel 110 and the edge of the mold 101 interfere with each other when the concave surface 105 is ground. For this reason, the edge of the mold 101 is ground and cannot be processed into a desired design shape.
In FIG. 10, the cylindrical grinding wheel 110 is disposed so as to be inclined at an angle of 45 ° with respect to the rotation center axis of the mold 101, and this angle minimizes the interference of the grinding wheel 110 with the mold 101. Although it is an arrangement, the diameter of the grindstone portion 112 must be reduced in order to eliminate interference. However, if the diameter of the grindstone 112 is reduced, there is a problem that the rigidity of the grinding grindstone 110 is reduced, causing vibrations and accurate grinding cannot be performed. The concave surface has a deep mold and a strong curvature. There is a limit to shape grinding.

本発明は上記課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]本適用例は、金型の製造方法であって、凹面に粗加工する工程と、前記粗加工した粗加工面を、円柱状の研削砥石を用いて研削加工により仕上げ加工する工程と、を有し、前記仕上げ加工する工程において、前記金型の曲率半径をR、前記研削砥石の直径をDとしたときに、D/2<Rの関係であり、前記金型の回転中心軸と前記研削砥石との傾斜角度をθ、前記金型の深さ方向における前記研削砥石との干渉長をΔZ、前記研削砥石の径方向の振れ量をα、前記研削砥石の長さ方向の振れ量をβ、前記研削砥石の径方向の逃げ部寸法をΔY、前記研削砥石の長さ方向の逃げ部寸法をΔX、としたとき、少なくとも、研削加工のときに前記金型のふちに干渉する部分に、ΔY=ΔZcosθ+α、および、ΔX=2ΔZsinθ+2β、の逃げ部を形成した前記研削砥石を用いることを特徴とする。   [Application Example 1] This application example is a method for manufacturing a mold, in which a step of roughing a concave surface and the roughened roughened surface are finished by grinding using a cylindrical grinding wheel. In the finishing step, when the radius of curvature of the mold is R and the diameter of the grinding wheel is D, the relationship is D / 2 <R, and the rotation of the mold The inclination angle between the central axis and the grinding wheel is θ, the interference length with the grinding wheel in the depth direction of the mold is ΔZ, the deflection amount in the radial direction of the grinding wheel is α, the length direction of the grinding wheel When the deflection amount is β, the clearance dimension in the radial direction of the grinding wheel is ΔY, and the clearance dimension in the length direction of the grinding wheel is ΔX, at least at the edge of the mold during grinding In the interfering part, the relief part of ΔY = ΔZcosθ + α and ΔX = 2ΔZsinθ + 2β The formed grinding wheel is used.

この製造方法によれば、金型の開口径が小径になり、曲率の強い凹面形状の金型の加工においても、仕上げ加工における研削加工において、金型のふちと研削砥石とが干渉せず、設計形状の加工が精度よくできる。また、本適用例の製造方法によれば、逃げ部を研削砥石に成形することで、剛性を大きく損なうことない研削砥石を得ることができ、加工の自由度が向上し、かつ精度が高い強曲率金型の製造方法を提供できる。   According to this manufacturing method, the opening diameter of the mold is reduced, and even in the processing of a concave mold having a strong curvature, the edge of the mold does not interfere with the grinding wheel in the grinding process in the finishing process, Designed shape can be processed with high accuracy. Further, according to the manufacturing method of this application example, by forming the relief portion on the grinding wheel, it is possible to obtain a grinding wheel that does not significantly reduce the rigidity, and the degree of freedom of processing is improved and the strength is high. A method of manufacturing a curvature mold can be provided.

[適用例2]上記適用例にかかる金型の製造方法において、前記研削砥石がダイヤモンド砥粒を用いたレジンボンドの研削砥石であることが望ましい。   Application Example 2 In the mold manufacturing method according to the application example described above, it is preferable that the grinding wheel is a resin-bonded grinding wheel using diamond abrasive grains.

この製造方法によれば、ダイヤモンド砥粒を用いることで精度の高い加工を可能とし、かつダイヤモンド砥粒の結合材料がレジンであるため、研削加工の表面に傷が入りづらく、表面粗さを低下させることなく良好な表面状態に仕上げることができる。   According to this manufacturing method, high precision processing is possible by using diamond abrasive grains, and since the bonding material of diamond abrasive grains is a resin, scratches are difficult to enter on the surface of the grinding process, and the surface roughness is reduced. It is possible to finish it in a good surface state without causing it.

[適用例3]上記適用例にかかる金型の製造方法において、前記粗加工する工程が前記研削砥石を用いた研削加工であり、前記金型の曲率半径をR、前記研削砥石の直径をDとしたときに、D/2<Rの関係であり、前記金型の回転中心軸と前記研削砥石との傾斜角度をθ、前記金型の深さ方向における前記研削砥石との干渉長をΔZ、前記研削砥石の径方向の振れ量をα、前記研削砥石の長さ方向の振れ量をβ、前記研削砥石の径方向の逃げ部寸法をΔY、前記研削砥石の長さ方向の逃げ部寸法をΔX、としたとき、少なくとも、研削加工のときに前記金型のふちに干渉する部分に、ΔY=ΔZcosθ+α、および、ΔX=2ΔZsinθ+2β、の逃げ部を形成した前記研削砥石を用いることが望ましい。   Application Example 3 In the mold manufacturing method according to the application example, the roughing process is grinding using the grinding wheel, the radius of curvature of the mold is R, and the diameter of the grinding wheel is D. Where D / 2 <R, the inclination angle between the rotation center axis of the mold and the grinding wheel is θ, and the interference length with the grinding wheel in the depth direction of the mold is ΔZ. , Α is the amount of runout in the radial direction of the grinding wheel, β is the amount of runout in the length direction of the grinding wheel, ΔY is the size of the relief portion in the radial direction of the grinding wheel, and the size of the relief portion in the length direction of the grinding wheel Is set to ΔX, it is desirable to use the grinding wheel in which relief portions of ΔY = ΔZcosθ + α and ΔX = 2ΔZsinθ + 2β are formed at least in a portion that interferes with the edge of the mold during grinding.

この製造方法によれば、凹面の粗加工においても研削加工をすることができ、粗加工および仕上げ加工を同じ装置を使用して強曲率金型を製造することができる。このことから、製造装置の汎用性を向上させることができ、効率的な強曲率金型の製造が可能となる。   According to this manufacturing method, grinding can be performed even in the roughing of the concave surface, and a strong curvature die can be manufactured using the same apparatus for roughing and finishing. Therefore, the versatility of the manufacturing apparatus can be improved, and an efficient strong curvature mold can be manufactured.

[適用例4]上記適用例にかかる強曲率金型の製造方法において、前記仕上げ加工する工程の後に、仕上げ研磨をする工程を含むことが望ましい。   Application Example 4 In the method for manufacturing a strong curvature mold according to the application example described above, it is preferable that a finishing polishing process is included after the finishing process.

この製造方法によれば、仕上げ研磨をすることで強曲率金型の凹面の表面粗さが向上して、精度が高く良好な強曲率金型を提供できる。   According to this manufacturing method, the surface roughness of the concave surface of the high-curvature mold is improved by finish polishing, and a high-precision and high-rigidity mold can be provided.

以下、本発明を具体化した実施形態について図面に従って説明する。
(第1の実施形態)
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described with reference to the drawings.
(First embodiment)

図1は光学レンズ用の強曲率金型の概略形状を示す構成図であり、図1(a)は概略平面図、図1(b)は同図(a)のA−A断線に沿う概略断面図である。
光学レンズ用の強曲率金型1は、円柱形の超硬合金から凹面5が加工されて形成されている。この強曲率金型1は、強曲率金型1の口径方向の半径をX、強曲率金型1の深さ寸法をZとしたとき、Z≧Xとなる関係にある。凹面5は、軸対称で非球面形状に形成され、表面粗さPVが0.1〜0.3μmに仕上げられている。
FIG. 1 is a configuration diagram showing a schematic shape of a strong curvature mold for an optical lens. FIG. 1 (a) is a schematic plan view, and FIG. 1 (b) is a schematic diagram taken along the line AA in FIG. It is sectional drawing.
A strong curvature mold 1 for an optical lens is formed by processing a concave surface 5 from a cylindrical cemented carbide. This strong curvature mold 1 has a relationship of Z ≧ X, where X is the radius in the caliber direction of the strong curvature mold 1 and Z is the depth dimension of the strong curvature mold 1. The concave surface 5 is axisymmetric and formed in an aspherical shape, and the surface roughness PV is finished to 0.1 to 0.3 μm.

ここで、強曲率について説明する。図9は強曲率を説明する説明図である。
図9は金型を用いて成形された光学レンズ35の曲面を測定する状態を示している。本実施形態では、光学レンズ35の曲面に測定プローブ36を当接させたときの、接線と光学レンズ35底面(基準面)と平行な面とのなす角を測定面傾き角θSと呼び、この測定面傾き角θSが60°以上90°未満である曲面を有するレンズを強曲率レンズと定義している。そして、この強曲率レンズなどの強曲率面を成形するための金型を強曲率金型と呼ぶ。
Here, the strong curvature will be described. FIG. 9 is an explanatory diagram for explaining the strong curvature.
FIG. 9 shows a state in which the curved surface of the optical lens 35 molded using a mold is measured. In the present embodiment, an angle formed between a tangent and a surface parallel to the bottom surface (reference surface) of the optical lens 35 when the measurement probe 36 is brought into contact with the curved surface of the optical lens 35 is referred to as a measurement surface inclination angle θ S. A lens having a curved surface having a measurement surface inclination angle θ S of 60 ° or more and less than 90 ° is defined as a strong curvature lens. A mold for molding a strong curvature surface such as the strong curvature lens is called a strong curvature mold.

次に、強曲率金型の製造方法について説明する。
図2は第1の実施形態における強曲率金型の製造工程を示すフローチャートである。図3は第1の実施形態における研削砥石と金型曲率半径を示す説明図であり、研削砥石先端を通る水平断面での金型と研削砥石の位置関係を示している。図4は第1の実施形態における研削砥石の成形を説明する説明図である。図5は第1の実施形態における金型と研削砥石との位置関係を説明する説明図であり、図5(a)は位置関係図、図5(b)は研削砥石の逃げ部の詳細を示す拡大図である。図8は研削加工機の構成を示す構成図であり、図8(a)は概略側面図、図8(b)は概略平面図である。
Next, a method for manufacturing a strong curvature mold will be described.
FIG. 2 is a flowchart showing a manufacturing process of a strong curvature mold in the first embodiment. FIG. 3 is an explanatory diagram showing the grinding wheel and the radius of curvature of the mold in the first embodiment, and shows the positional relationship between the mold and the grinding wheel in a horizontal section passing through the tip of the grinding wheel. FIG. 4 is an explanatory view for explaining the formation of the grinding wheel in the first embodiment. FIGS. 5A and 5B are explanatory views for explaining the positional relationship between the mold and the grinding wheel in the first embodiment, FIG. 5A is a positional relationship diagram, and FIG. 5B is the details of the relief portion of the grinding wheel. It is an enlarged view shown. FIG. 8 is a block diagram showing the configuration of the grinding machine, FIG. 8 (a) is a schematic side view, and FIG. 8 (b) is a schematic plan view.

以下、図2のフローチャートに従い、順を追って強曲率金型の製造工程について説明する。
まず、光学レンズの仕様に基づき、金型の設計をする(ステップS1)。そして、超硬合金に放電加工により凹面の粗加工を行なう(ステップS2)。この工程では、凹面の表面粗さは粗いものの、ほぼ図1で示した形状まで加工が行なわれる。
Hereafter, the manufacturing process of a strong curvature metal mold | die is demonstrated later on according to the flowchart of FIG.
First, a mold is designed based on the specifications of the optical lens (step S1). Then, rough machining of the concave surface is performed on the cemented carbide by electric discharge machining (step S2). In this process, although the concave surface has a rough surface, the processing is performed to the shape shown in FIG.

次に、ステップS2で形成した凹面に研削加工を行なうために、研削砥石のツルーイングおよび成形を行なう(ステップS3)。
図3に示すように、研削砥石10は円柱状の砥石部12と、砥石部12を固定する軸部11を備えている。研削砥石10の砥石部12の直径をDとして、強曲率金型1の凹面の曲率半径をRとすると、D/2<Rの関係になるような砥石部12の直径Dを選択する。これは、研削砥石10を強曲率金型1の回転中心軸に対して45°の角度に傾斜する配置として加工した場合、D/2>Rの場合には、強曲率金型1と研削砥石が干渉するためである。このため、砥石部12の直径DはD/2<Rの条件を満たす必要があり、この関係は法線制御して強曲率金型1の凹面5を加工するときの、各加工点のすべてにおいて成立する。また、砥石部12の直径は大きいほうが、その剛性は大きく、また磨耗による砥石形状の変化が少ない。このことから、精度良く研削加工を行なうには砥石部12の直径が大きいほうが有利である。これらのことを考え合わせて、砥石部12の直径Dが選択される。
なお、砥石部12は、ダイヤモンド砥粒を用い、ポリイミド樹脂やフェノール樹脂などを結合材料としたレジンボンドの砥石(粒度♯3000番程度)である。
Next, in order to perform grinding on the concave surface formed in step S2, truing and shaping of the grinding wheel are performed (step S3).
As shown in FIG. 3, the grinding wheel 10 includes a cylindrical grindstone portion 12 and a shaft portion 11 that fixes the grindstone portion 12. When the diameter of the grindstone 12 of the grinding wheel 10 is D and the radius of curvature of the concave surface of the strong curvature die 1 is R, the diameter D of the grindstone 12 that satisfies the relationship D / 2 <R is selected. This is because when the grinding wheel 10 is processed so as to be inclined at an angle of 45 ° with respect to the rotation center axis of the strong curvature mold 1, when D / 2> R, the strong curvature mold 1 and the grinding wheel This is because of interference. For this reason, the diameter D of the grindstone 12 needs to satisfy the condition of D / 2 <R, and this relationship is all normal when controlling the concave surface 5 of the strong curvature mold 1 by controlling the normal line. This holds true. In addition, the larger the diameter of the grindstone portion 12, the greater the rigidity, and less change in the grindstone shape due to wear. For this reason, it is advantageous that the diameter of the grindstone 12 is larger in order to perform grinding with high accuracy. Considering these things, the diameter D of the grindstone 12 is selected.
The grindstone 12 is a resin-bonded grindstone (grain size of about # 3000) using diamond abrasive grains and using a polyimide resin or a phenol resin as a binder.

次に、選択された研削砥石10の砥石部12の外周を真円に成形するためにツルーイングと呼ばれる加工を行なう。続いて、図4に示すように研削砥石10の砥石部12に逃げ部14を成形する。
円柱形状の研削砥石10を用いて、傾斜角θ=45°の斜軸で法線制御による研削加工を行なう場合、強曲率金型1の口径方向の半径をX、強曲率金型1の深さ寸法をZとしたとき、Z≧Xであるときは強曲率金型1のふちと干渉する。Z−X=ΔZとすると、研削砥石10は金型にΔZの部分で干渉することになる。逃げ部の成形では研削砥石10の干渉する部分を除去することである。
逃げ部14の成形には、円筒状のツルア(成形用砥石)30を用いる。ツルアの内径は強曲率金型1の設計口径と同じまたは少し小さい口径とし、金型設計形状から算出した設計値を行なうことで法線制御して研削砥石10を動作させる。つまり、実際に金型を研削加工するのと同じ動作を行なう。このようにして、研削砥石10の砥石部12において、強曲率金型のふちと干渉する部分が削られ、逃げ部14を成形することができる。このとき、逃げ部14の形状はアール形状となっている。
この研削砥石10を強曲率金型1の研削加工に使用することで、強曲率金型1のふちと干渉なく加工ができる。
Next, a process called truing is performed in order to form the outer periphery of the grindstone 12 of the selected grinding grindstone 10 into a perfect circle. Subsequently, as shown in FIG. 4, a relief portion 14 is formed in the grindstone portion 12 of the grinding grindstone 10.
When grinding is performed by normal control with an oblique axis having an inclination angle θ = 45 ° using a cylindrical grinding wheel 10, the radius in the caliber direction of the strong curvature die 1 is X, and the depth of the strong curvature die 1 is When the dimension is Z, when Z ≧ X, it interferes with the edge of the strong curvature mold 1. If Z−X = ΔZ, the grinding wheel 10 interferes with the mold at the portion ΔZ. In forming the relief portion, the portion of the grinding wheel 10 that interferes is removed.
A cylindrical truer (molding grindstone) 30 is used for forming the escape portion 14. The inner diameter of the truer is the same as or slightly smaller than the design diameter of the strong curvature mold 1, and the grinding wheel 10 is operated under normal control by performing a design value calculated from the mold design shape. That is, the same operation as that for actually grinding the mold is performed. In this way, the portion of the grinding wheel portion 12 of the grinding wheel 10 that interferes with the edge of the strong curvature die is cut away, and the relief portion 14 can be formed. At this time, the shape of the escape portion 14 is a round shape.
By using this grinding wheel 10 for grinding of the high curvature die 1, the grinding can be performed without interference with the edge of the strong curvature die 1.

次に、研削加工機に上記の研削砥石10を取り付けて研削加工にて、強曲率金型1の仕上げ加工を行なう(ステップS4)。
ここで、研削加工機の一例として3軸研削加工機の構成について説明する。図8に示すように、研削加工機40は、ベッド41の上にx方向移動テーブル42およびy方向移動テーブル43とを備えている。y方向移動テーブル43の上にはワークスピンドル44が設けられ、ベッド41平面に対して水平な回転中心軸45回りに回転駆動するように配置されている。そして、ワークスピンドル44には被研削加工物46が取り付けられる。x方向移動テーブル42の上にはベッド41平面に対して垂直な回転中心軸48回りに回転される回転テーブル47が設けられ、この回転テーブル47の上にはスピンドルホルダ49が立設されている。このスピンドルホルダ49には垂直上下方向に移動可能な昇降テーブル50が取り付けられ、昇降テーブル50には研削スピンドル51が、傾斜角θにて保持され被研削加工物46に向けて下り勾配に傾斜するように配置されている。そして、研削スピンドル51には、回転中心軸52回りに回転駆動される研削砥石などのツール53が取り付けられている。
Next, the grinding wheel 10 is attached to a grinding machine, and the rigid curvature die 1 is finished by grinding (step S4).
Here, a configuration of a three-axis grinding machine will be described as an example of a grinding machine. As shown in FIG. 8, the grinding machine 40 includes an x-direction moving table 42 and a y-direction moving table 43 on a bed 41. A work spindle 44 is provided on the y-direction moving table 43 and is arranged so as to be driven to rotate about a rotation center axis 45 that is horizontal to the plane of the bed 41. A workpiece 46 is attached to the work spindle 44. On the x-direction moving table 42 is provided a rotating table 47 that is rotated around a rotation center axis 48 that is perpendicular to the plane of the bed 41, and a spindle holder 49 is erected on the rotating table 47. . The spindle holder 49 is attached with a lifting table 50 that can move vertically and vertically. A grinding spindle 51 is held at the tilt angle θ and tilts downward toward the workpiece 46 on the lifting table 50. Are arranged as follows. The grinding spindle 51 is attached with a tool 53 such as a grinding wheel that is driven to rotate about the rotation center axis 52.

研削スピンドル51は、例えば45°の傾斜角θで傾斜する配置で昇降テーブル50に固定されており、昇降テーブル50の上下動に伴い上記傾斜角θを保持しながら垂直上下方向に上下動される。また、研削スピンドル51は、保持しているツール53が被研削加工物46に当接する先端部が回転テーブル47の回転中心軸48の上方延長線上に一致するように設定されている。
一方、被研削加工物46は、回転中心軸45がワークスピンドル44の回転中心軸45と一致する配置でワークスピンドル44に取り付けられている。
さらに、ツール53の先端部は、上述のように回転テーブル47の回転中心軸48の上方延長線に一致するとともに、ワークスピンドル44の回転中心軸45を通る水平面に一致するように、昇降テーブル50の上下動により高さ位置が調整されている。
The grinding spindle 51 is fixed to the elevating table 50 so as to be inclined at an inclination angle θ of 45 °, for example, and is moved up and down in the vertical vertical direction while maintaining the inclination angle θ as the elevating table 50 moves up and down. . Further, the grinding spindle 51 is set so that the tip end portion where the held tool 53 abuts on the workpiece 46 is aligned with the upper extension line of the rotation center shaft 48 of the rotary table 47.
On the other hand, the workpiece 46 is attached to the work spindle 44 in such an arrangement that the rotation center axis 45 coincides with the rotation center axis 45 of the work spindle 44.
Further, the tip of the tool 53 coincides with the upper extension line of the rotation center axis 48 of the rotary table 47 as described above, and also coincides with the horizontal plane passing through the rotation center axis 45 of the work spindle 44. The height position is adjusted by the vertical movement of.

上記のような研削加工機40に研削砥石10を取り付けて研削加工にて、図5に示すように、強曲率金型1の仕上げ加工を行なう。この研削加工では、円柱状の研削砥石10を強曲率金型1の回転中心軸に対して傾斜角θ=45°の角度に配置して、法線制御によるクロスカット研削を行なう。クロスカット研削では強曲率金型1の回転方向と研削砥石10の周速ベクトルが直交し、研削砥石表面上の単一加工点によって形状創成が行なわれる。そして、加工後の凹面5の表面粗さPVは、およそ0.2〜0.3μmである。   The grinding wheel 10 is attached to the grinding machine 40 as described above, and the rigid curvature die 1 is finished by grinding as shown in FIG. In this grinding process, a cylindrical grinding wheel 10 is arranged at an inclination angle θ = 45 ° with respect to the rotation center axis of the strong curvature die 1 and cross-cut grinding is performed by normal control. In cross-cut grinding, the rotational direction of the strong curvature die 1 and the peripheral speed vector of the grinding wheel 10 are orthogonal to each other, and a shape is created by a single processing point on the surface of the grinding wheel. And surface roughness PV of the concave surface 5 after a process is about 0.2-0.3 micrometer.

研削砥石10の砥石部12に設けられた逃げ部14は、図5(b)に示すような形状および寸法となっている。
逃げ部14がない場合には強曲率金型1のΔZの部分で研削砥石10が干渉することになる。ここで、研削砥石10の長さ方向の干渉長LはL=2ΔZsinθ、研削砥石10の径方向の干渉長WはW=ΔZcosθ、となる。
研削砥石10の長さ方向の付加量をΔX1,ΔX2、研削砥石10の径方向の付加量をΔY1、研削砥石10の長さ方向の逃げ長さをΔX、研削砥石10の径方向の逃げ長さをΔY、とする。
研削砥石10の径方向の逃げ長さΔYは、
ΔY=W+ΔY1=ΔZcosθ+ΔY1 ・・・(1)
研削砥石10の長さ方向の逃げ長さΔXは、
ΔX=L+ΔX1+ΔX2=2ΔZsinθ+ΔX1+ΔX2 ・・・(2)
となる。
また、研削砥石10の長さ方向の付加量ΔX1,ΔX2および、研削砥石10の径方向の付加量ΔY1は、研削砥石10の加工中におけるそれぞれの方向の振れ量であり、少なくとも、ΔY1=α、ΔX1=ΔX2=β、確保されていれば良い(なお、振れ量α=0.1〜2μm、振れ量β=0.1〜2μmである)。
このことから式(1)、(2)は、
ΔY=ΔZcosθ+α ・・・(3)
ΔX=2ΔZsinθ+2β ・・・(4)
と表すことができる。
このように、少なくとも上記の式(3)、(4)を満たす寸法の逃げ部14が研削砥石10の砥石部12に成形されることで、強曲率金型1と研削砥石10との干渉がない研削加工を可能にする。
The relief portion 14 provided in the grindstone portion 12 of the grinding grindstone 10 has a shape and dimensions as shown in FIG.
When there is no escape portion 14, the grinding wheel 10 interferes with the ΔZ portion of the strong curvature mold 1. Here, the interference length L in the length direction of the grinding wheel 10 is L = 2ΔZsinθ, and the interference length W in the radial direction of the grinding wheel 10 is W = ΔZcosθ.
The additional amount in the length direction of the grinding wheel 10 is ΔX1, ΔX2, the additional amount in the radial direction of the grinding wheel 10 is ΔY1, the clearance length in the length direction of the grinding wheel 10 is ΔX, and the clearance length in the radial direction of the grinding wheel 10 Let ΔY be the thickness.
The radial relief length ΔY of the grinding wheel 10 is
ΔY = W + ΔY1 = ΔZcos θ + ΔY1 (1)
The relief length ΔX in the length direction of the grinding wheel 10 is
ΔX = L + ΔX1 + ΔX2 = 2ΔZsinθ + ΔX1 + ΔX2 (2)
It becomes.
Further, the additional amounts ΔX1, ΔX2 in the length direction of the grinding wheel 10 and the additional amount ΔY1 in the radial direction of the grinding wheel 10 are amounts of deflection in the respective directions during processing of the grinding wheel 10, and at least ΔY1 = α. , ΔX1 = ΔX2 = β, as long as it is ensured (the shake amount α = 0.1 to 2 μm and the shake amount β = 0.1 to 2 μm).
From this, the equations (1) and (2) are
ΔY = ΔZcos θ + α (3)
ΔX = 2ΔZsinθ + 2β (4)
It can be expressed as.
As described above, the relief portion 14 having a size satisfying at least the above equations (3) and (4) is formed on the grindstone portion 12 of the grinding wheel 10, so that the interference between the high-curvature mold 1 and the grinding wheel 10 can be prevented. Allows no grinding.

次に、仕様に応じて、ステップS4にて研削加工で仕上げ加工した面を仕上げ研磨する(ステップS5)。この仕上げ研磨する工程では、加工した凹面の表面粗さを向上させるために、手作業または機械にて研磨が行なわれる。この機械研磨では、例えば、超音波援用マイクロ研磨装置(協伸産業株式会社製、Nano-POLISHER)などが用いられる。この仕上げ研磨における加工面の表面粗さPVは0.1μm程度である。
続いて、強曲率金型の防錆などのために、強曲率金型に表面処理する(ステップS6)。
なお、上記ステップS5、ステップS6の工程は光学レンズ仕様による強曲率金型の設計仕様に基づくものであり、設計仕様によりこれらの工程を行なわないこともある。
Next, according to the specification, the surface finished by grinding in step S4 is finish-polished (step S5). In this final polishing step, polishing is performed manually or by a machine in order to improve the surface roughness of the processed concave surface. In this mechanical polishing, for example, an ultrasonic-assisted micro polishing apparatus (Kyoshin Sangyo Co., Ltd., Nano-POLISHER) is used. The surface roughness PV of the processed surface in this finish polishing is about 0.1 μm.
Subsequently, surface treatment is performed on the strong curvature die for rust prevention of the strong curvature die (step S6).
The steps S5 and S6 are based on the design specifications of the strong curvature mold according to the optical lens specifications, and these steps may not be performed depending on the design specifications.

以上、本実施形態の強曲率金型1の製造方法では、金型の開口径が小径になり、曲率の強い凹面形状の金型の加工においても、仕上げ加工における研削加工において、金型のふちと研削砥石10が干渉せず、設計形状の加工を可能とする。また、この製造方法によれば、逃げ部14を研削砥石10に成形することで、剛性を大きく損なうことない研削砥石10を得ることができ、加工の自由度が向上し、かつ精度が高い強曲率金型1の製造方法を提供できる。
また、この製造方法によれば、研削砥石10の砥石部12にダイヤモンド砥粒を用いることで精度の高い加工を可能とし、かつダイヤモンド砥粒の結合材料がレジンであるため、研削加工の表面に傷が入りづらく、表面粗さを低下させることなく良好な表面状態に仕上げることができる。
さらに、研削加工による仕上げ加工の後に、仕上げ研磨をすることで強曲率金型の凹面の表面粗さが向上して、精度が高く良好な強曲率金型1を提供できる。
(変形例)
As described above, in the manufacturing method of the strong curvature mold 1 of the present embodiment, the opening diameter of the mold is small, and even in the processing of a concave mold having a strong curvature, the edge of the mold is used in the grinding process in the finishing process. The grinding wheel 10 does not interfere with each other, and the design shape can be processed. Further, according to this manufacturing method, by forming the relief portion 14 in the grinding wheel 10, it is possible to obtain the grinding wheel 10 that does not significantly impair the rigidity, and the degree of freedom of processing is improved and the accuracy is high. A method of manufacturing the curvature mold 1 can be provided.
Moreover, according to this manufacturing method, since a high-precision process is enabled by using a diamond abrasive grain for the grindstone part 12 of the grinding stone 10, and the bonding material of the diamond abrasive grains is a resin, It is hard to get scratches and can be finished to a good surface state without reducing the surface roughness.
Furthermore, the surface roughness of the concave surface of the high-curvature mold is improved by performing finish polishing after the finishing process by the grinding process, and the high-curvature mold 1 having high accuracy and good quality can be provided.
(Modification)

次に、第1の実施形態の変形例について説明する。本変形例では、製造工程は第1の実施形態と同様であるが、研削砥石における逃げ部の形状が異なり、この形状について説明する。なお、第1の実施形態と同様な構成については、同符号を付し説明を省略する。
図6は第1の実施形態における金型と研削砥石との位置関係を説明する説明図であり、図6(a)は位置関係図、図6(b)は研削砥石の逃げ部の詳細を示す拡大図である。
Next, a modification of the first embodiment will be described. In this modification, the manufacturing process is the same as in the first embodiment, but the shape of the relief portion in the grinding wheel is different, and this shape will be described. In addition, about the structure similar to 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
FIGS. 6A and 6B are explanatory views for explaining the positional relationship between the mold and the grinding wheel in the first embodiment, FIG. 6A is a positional relationship diagram, and FIG. 6B is the details of the relief portion of the grinding wheel. It is an enlarged view shown.

図6(a)に示すように、研削砥石20は円柱状の砥石部12と、砥石部12を固定する軸部11を備え、砥石部12には逃げ部15が設けられている。研削砥石20の砥石部12の直径Dは、第1の実施形態と同様に、強曲率金型1の凹面の曲率半径Rとの関係が、D/2<Rとなるように決められている。また、砥石部12は、ダイヤモンド砥粒を用い、ポリイミド樹脂やフェノール樹脂などを結合材料としたレジンボンドの砥石(♯3000程度)である。   As shown in FIG. 6A, the grinding wheel 20 includes a cylindrical grindstone portion 12 and a shaft portion 11 that fixes the grindstone portion 12, and the grindstone portion 12 is provided with a relief portion 15. The diameter D of the grindstone 12 of the grinding wheel 20 is determined so that the relationship with the curvature radius R of the concave surface of the strong curvature die 1 is D / 2 <R, as in the first embodiment. . Further, the grindstone 12 is a resin-bonded grindstone (about # 3000) using diamond abrasive grains and using a polyimide resin or a phenol resin as a binding material.

研削砥石20の逃げ部15は、図6(b)に示すような形状および寸法となっている。
逃げ部15がない場合には強曲率金型1のΔZの部分で研削砥石20が干渉することになる。この干渉を避けるために、逃げ部15として成形する研削砥石20の径方向の逃げ長さΔYおよび、研削砥石20の長さ方向の逃げ長さΔXは、前述の式(3)、(4)と同様である。
逃げ部15の形状は図6に示すように段付形状となっており、少なくとも上記の式(3)、(4)を満たす寸法の逃げ部15が研削砥石10の砥石部12に成形されることで、強曲率金型1と研削砥石10との干渉がなく研削加工を可能にする。
また、逃げ部15の成形には、ΔXの幅を持つ成形用砥石を用い、研削砥石20の回転軸に直交する方向にΔYの深さまで押し当てて、逃げ部15を成形すればよい。
(第2の実施形態)
The relief portion 15 of the grinding wheel 20 has a shape and dimensions as shown in FIG.
When there is no escape portion 15, the grinding wheel 20 interferes with the ΔZ portion of the strong curvature mold 1. In order to avoid this interference, the radial relief length ΔY of the grinding wheel 20 formed as the relief portion 15 and the longitudinal relief length ΔX of the grinding stone 20 are expressed by the above-described equations (3) and (4). It is the same.
The shape of the relief portion 15 is a stepped shape as shown in FIG. 6, and the relief portion 15 having a size satisfying at least the above formulas (3) and (4) is formed on the grinding stone portion 12 of the grinding stone 10. Thus, there is no interference between the strong curvature die 1 and the grinding wheel 10 and grinding can be performed.
Further, the relief portion 15 may be formed by using a forming grindstone having a width of ΔX and pressing it to a depth of ΔY in a direction orthogonal to the rotation axis of the grinding stone 20.
(Second Embodiment)

次に、強曲率金型の製造方法における第2の実施形態について説明する。
図7は第2の実施形態における強曲率金型の製造工程を示すフローチャートである。本実施形態は強曲率金型の曲面の加工における粗加工および仕上げ加工を研削加工で行なう形態である。
Next, a second embodiment of the method for manufacturing a strong curvature mold will be described.
FIG. 7 is a flowchart showing a manufacturing process of a strong curvature mold in the second embodiment. In the present embodiment, rough processing and finishing processing in processing of a curved surface of a strong curvature mold are performed by grinding.

まず光学レンズの仕様に基づき、金型の設計をする(ステップS11)。そして、粗加工用研削砥石のツルーイングおよび逃げ部の成形を行なう(ステップS12)。粗加工用研削砥石は、図5または図6で説明した研削砥石と同様な形状で、円柱状の砥石部を有し、ダイヤモンド砥粒を用いたレジンボンドの砥石(粒度♯400番程度)である。粗加工用研削砥石のツルーイングおよび逃げ部の成形は第1の実施形態で示した方法と同様である。   First, a mold is designed based on the specifications of the optical lens (step S11). Then, truing of the roughing grinding wheel and shaping of the relief portion are performed (step S12). The roughing grinding wheel is a resin-bonded grinding wheel (grain size of about # 400) having the same shape as the grinding wheel described in FIG. 5 or 6 and having a cylindrical grinding wheel portion and using diamond abrasive grains. is there. The truing of the roughing grinding wheel and the shaping of the relief portion are the same as the method shown in the first embodiment.

次に、ステップS12で成形した研削砥石を用い、図8で説明した研削加工機にて金型の凹面の粗加工を行なう(ステップS13)。この研削加工では、研削砥石を強曲率金型の回転中心軸に対して傾斜角θ=45°の角度に配置をして、法線制御によるクロスカット研削を行なう。このとき、研削砥石に逃げ部を成形してあることから強曲率金型のふちに干渉せずに、研削加工が可能である。また、凹面の表面粗さは粗いものの、ほぼ図1で示した形状まで加工が行なわれる。   Next, rough processing of the concave surface of the mold is performed by the grinding machine described with reference to FIG. 8 using the grinding wheel formed in step S12 (step S13). In this grinding process, the grinding wheel is disposed at an inclination angle θ = 45 ° with respect to the rotation center axis of the strong curvature mold, and cross-cut grinding by normal control is performed. At this time, since the relief portion is formed on the grinding wheel, grinding can be performed without interfering with the edge of the strong curvature die. Further, although the concave surface has a rough surface, the processing is performed up to the shape shown in FIG.

次に、ステップS13で形成した凹面に研削加工を行なうために、仕上げ加工用研削砥石のツルーイングおよび逃げ部の成形を行なう(ステップS14)。仕上げ加工用研削砥石の砥石部は、ダイヤモンド砥粒を用いたレジンボンドの砥石(粒度♯3000番程度)である。また、仕上げ加工用研削砥石のツルーイングおよび逃げ部の成形は第1の実施形態で示した方法と同様である。   Next, in order to perform grinding on the concave surface formed in step S13, truing of the grinding wheel for finishing and shaping of the relief portion are performed (step S14). The grindstone portion of the finishing grindstone is a resin-bonded grindstone (grain size # 3000 or so) using diamond abrasive grains. Further, the truing of the finishing grindstone and the forming of the relief portion are the same as the method shown in the first embodiment.

次に、研削加工機に上記の仕上げ用研削砥石を取り付けて研削加工にて、強曲率金型の仕上げ加工を行なう(ステップS15)。この研削加工では、研削砥石を強曲率金型の回転中心軸に対して傾斜角θ=45°の角度に配置をして、法線制御によるクロスカット研削を行なう。このとき、研削砥石に逃げ部を成形していることから強曲率金型のふちに干渉せずに、研削加工が可能である。そして、加工面の表面粗さPVは、およそ0.2〜0.3μmとなっている。   Next, the above-mentioned finishing grinding wheel is attached to the grinding machine, and the rigid curvature die is finished by grinding (step S15). In this grinding process, the grinding wheel is disposed at an inclination angle θ = 45 ° with respect to the rotation center axis of the strong curvature mold, and cross-cut grinding by normal control is performed. At this time, since the relief portion is formed on the grinding wheel, grinding can be performed without interfering with the edge of the strong curvature die. The surface roughness PV of the processed surface is about 0.2 to 0.3 μm.

次に、仕様に応じて、ステップS15にて研削加工で仕上げ加工した面を仕上げ研磨する(ステップS16)。この仕上げ研磨する工程では、加工した凹面の表面粗さを向上させるために、手作業または機械にて研磨が行なわれる。この機械研磨では、例えば、超音波援用マイクロ研磨装置(協伸産業株式会社製、Nano-POLISHER)などが用いられる。この仕上げ研磨における加工面の表面粗さPVは0.1μm程度である。
続いて、強曲率金型の防錆などのために、強曲率金型に表面処理する(ステップS17)。
なお、上記ステップS16、ステップS17の工程は光学レンズ仕様による強曲率金型の設計仕様に基づくものであり、設計仕様によりこれらの工程を行なわないこともある。
Next, according to the specification, the surface finished by grinding in step S15 is finish-polished (step S16). In this final polishing step, polishing is performed manually or by a machine in order to improve the surface roughness of the processed concave surface. In this mechanical polishing, for example, an ultrasonic-assisted micro polishing apparatus (Kyoshin Sangyo Co., Ltd., Nano-POLISHER) is used. The surface roughness PV of the processed surface in this finish polishing is about 0.1 μm.
Subsequently, surface treatment is performed on the strong curvature die for rust prevention of the strong curvature die (step S17).
The steps S16 and S17 are based on the design specifications of the strong curvature mold according to the optical lens specifications, and these steps may not be performed depending on the design specifications.

以上、本実施形態の強曲率金型の製造方法によれば、凹面の粗加工および仕上げ加工において研削加工を実施することができ、粗加工および仕上げ加工を同じ装置を使用して強曲率金型を製造することができる。このことから、第1の実施形態の効果に加え、製造装置の汎用性を向上させることができ、効率的な強曲率金型の製造が可能となる。   As described above, according to the method of manufacturing a strong curvature mold of the present embodiment, grinding can be performed in the roughing and finishing of the concave surface, and the roughing and finishing can be performed using the same apparatus. Can be manufactured. Thus, in addition to the effects of the first embodiment, the versatility of the manufacturing apparatus can be improved, and an efficient strong curvature mold can be manufactured.

なお本実施形態では研削加工方法としてクロスカット研削を例にとって説明したが、強曲率金型の回転方向と研削砥石の周速ベクトルが平行で、加工点が研削砥石表面上を移動するパラレル研削においても実施することが可能である。   In this embodiment, cross-cut grinding is described as an example of the grinding method. However, in parallel grinding in which the rotational direction of the strong curvature mold and the peripheral speed vector of the grinding wheel are parallel and the machining point moves on the surface of the grinding wheel. Can also be implemented.

第1の実施形態にかかる強曲率金型の概略形状を示す構成図であり、(a)は概略平面図、(b)は(a)のA−A断線に沿う概略断面図。It is a block diagram which shows schematic shape of the strong curvature metal mold | die concerning 1st Embodiment, (a) is a schematic plan view, (b) is a schematic sectional drawing in alignment with the AA disconnection of (a). 第1の実施形態における強曲率金型の製造工程を示すフローチャート。The flowchart which shows the manufacturing process of the strong curvature metal mold | die in 1st Embodiment. 第1の実施形態における研削砥石と金型曲率半径を示す説明図。Explanatory drawing which shows the grinding wheel and metal mold | die curvature radius in 1st Embodiment. 第1の実施形態における研削砥石の成形を説明する説明図。Explanatory drawing explaining shaping | molding of the grinding stone in 1st Embodiment. 第1の実施形態における金型と研削砥石との位置関係を説明する説明図であり、(a)は位置関係図、(b)は研削砥石の逃げ部の詳細を示す拡大図。It is explanatory drawing explaining the positional relationship of the metal mold | die and grinding wheel in 1st Embodiment, (a) is a positional relationship figure, (b) is an enlarged view which shows the detail of the escape part of a grinding wheel. 第1の実施形態にかかる研削砥石の変形例を示し、(a)は金型と研削砥石との位置関係図、(b)は研削砥石の逃げ部の詳細を示す拡大図。The modification of the grinding wheel concerning a 1st embodiment is shown, (a) is the position related figure of a metallic mold and a grinding wheel, and (b) is an enlarged view showing the details of the escape part of a grinding wheel. 第2の実施形態における強曲率金型の製造工程を示すフローチャート。The flowchart which shows the manufacturing process of the strong curvature metal mold | die in 2nd Embodiment. 研削加工機の構成を示す構成図であり、(a)は概略側面図、(b)は概略平面図。It is a block diagram which shows the structure of a grinding machine, (a) is a schematic side view, (b) is a schematic plan view. 光学レンズの強曲率を説明する説明図。Explanatory drawing explaining the strong curvature of an optical lens. 従来の金型と研削砥石との位置関係を説明する説明図。Explanatory drawing explaining the positional relationship of the conventional metal mold | die and a grinding wheel.

符号の説明Explanation of symbols

1…強曲率金型、5…凹面、10…研削砥石、11…軸部、12…砥石部、14,15…逃げ部、20…研削砥石、21…軸部、22…砥石部、24…逃げ部、30…ツルア、35…光学レンズ、40…研削加工機、θ…傾斜角、θS…測定面傾き角、X…強曲率金型の口径方向の半径、Z…強曲率金型の深さ寸法、ΔZ…強曲率金型の深さ方向の干渉長、ΔY…砥石の径方向の逃げ寸法、ΔX…砥石の長さ方向の逃げ寸法、W…砥石の径方向の干渉長、L…砥石の長さ方向の干渉長、α…砥石の径方向の振れ量、β…砥石の長さ方向の振れ量、D…研削砥石における砥石部の直径、R…強曲率金型の曲率半径。 DESCRIPTION OF SYMBOLS 1 ... Strong curvature metal mold | die, 5 ... Concave surface, 10 ... Grinding wheel, 11 ... Shaft part, 12 ... Grinding wheel part, 14, 15 ... Relief part, 20 ... Grinding wheel, 21 ... Shaft part, 22 ... Grinding wheel part, 24 ... relief portion, 30 ... truer, 35 ... optical lens, 40 ... grinding machine, theta ... inclination angle, theta S ... measurement surface tilt angle, X ... intense curvature die diameter direction of the radius, the Z ... strong curvature mold Depth dimension, ΔZ: Interference length in the depth direction of the strong curvature mold, ΔY: Relief dimension in the radial direction of the grindstone, ΔX: Relief dimension in the length direction of the grindstone, W: Interference length in the radial direction of the grindstone, L ... Interference length in the length direction of the grinding wheel, α ... Amount of deflection in the radial direction of the grinding wheel, β ... Amount of deflection in the length direction of the grinding wheel, D ... Diameter of the grinding wheel portion in the grinding wheel, R ... Radius of curvature of the strong curvature mold .

Claims (4)

金型の製造方法であって、
凹面に粗加工する工程と、
前記粗加工した粗加工面を、円柱状の研削砥石を用いて研削加工により仕上げ加工する工程と、を有し、
前記仕上げ加工する工程において、
前記金型の曲率半径をR、前記研削砥石の直径をDとしたときに、D/2<Rの関係であり、
前記金型の回転中心軸と前記研削砥石との傾斜角度をθ、前記金型の深さ方向における前記研削砥石との干渉長をΔZ、前記研削砥石の径方向の振れ量をα、前記研削砥石の長さ方向の振れ量をβ、前記研削砥石の径方向の逃げ部寸法をΔY、前記研削砥石の長さ方向の逃げ部寸法をΔX、としたとき、
少なくとも、研削加工のときに前記金型のふちに干渉する部分に、ΔY=ΔZcosθ+α、および、ΔX=2ΔZsinθ+2β、の逃げ部を形成した前記研削砥石を用いることを特徴とする金型の製造方法。
A method for manufacturing a mold,
Roughing the concave surface;
A step of finishing the roughened roughened surface by grinding using a cylindrical grinding wheel,
In the step of finishing,
When the radius of curvature of the mold is R and the diameter of the grinding wheel is D, the relationship is D / 2 <R.
The inclination angle between the rotation center axis of the mold and the grinding wheel is θ, the interference length with the grinding wheel in the depth direction of the mold is ΔZ, the runout amount in the radial direction of the grinding wheel is α, the grinding When the amount of runout in the length direction of the grindstone is β, the dimension of the relief part in the radial direction of the grinding wheel is ΔY, and the dimension of the relief part in the length direction of the grinding wheel is ΔX,
A method of manufacturing a mold, comprising using the grinding wheel in which relief portions of ΔY = ΔZcos θ + α and ΔX = 2ΔZsinθ + 2β are formed at least in a portion that interferes with the edge of the mold during grinding.
請求項1に記載の金型の製造方法において、
前記研削砥石がダイヤモンド砥粒を用いたレジンボンドの研削砥石であることを特徴とする金型の製造方法。
In the manufacturing method of the metal mold according to claim 1,
A method for producing a mold, wherein the grinding wheel is a resin-bonded grinding wheel using diamond abrasive grains.
請求項1または2に記載の金型の製造方法において、
前記粗加工する工程が前記研削砥石を用いた研削加工であり、
前記金型の曲率半径をR、前記研削砥石の直径をDとしたときに、D/2<Rの関係であり、
前記金型の回転中心軸と前記研削砥石との傾斜角度をθ、前記金型の深さ方向における前記研削砥石との干渉長をΔZ、前記研削砥石の径方向の振れ量をα、前記研削砥石の長さ方向の振れ量をβ、前記研削砥石の径方向の逃げ部寸法をΔY、前記研削砥石の長さ方向の逃げ部寸法をΔX、としたとき、
少なくとも、研削加工のときに前記金型のふちに干渉する部分に、ΔY=ΔZcosθ+α、および、ΔX=2ΔZsinθ+2β、の逃げ部を形成した前記研削砥石を用いることを特徴とする金型の製造方法。
In the manufacturing method of the metal mold according to claim 1 or 2,
The roughing step is grinding using the grinding wheel,
When the radius of curvature of the mold is R and the diameter of the grinding wheel is D, the relationship is D / 2 <R.
The inclination angle between the rotation center axis of the mold and the grinding wheel is θ, the interference length with the grinding wheel in the depth direction of the mold is ΔZ, the runout amount in the radial direction of the grinding wheel is α, the grinding When the amount of runout in the length direction of the grindstone is β, the dimension of the relief part in the radial direction of the grinding wheel is ΔY, and the dimension of the relief part in the length direction of the grinding wheel is ΔX,
A method of manufacturing a mold, comprising using the grinding wheel in which relief portions of ΔY = ΔZcos θ + α and ΔX = 2ΔZsinθ + 2β are formed at least in a portion that interferes with the edge of the mold during grinding.
請求項1乃至3のいずれか一項に記載の金型の製造方法において、
前記仕上げ加工する工程の後に、仕上げ研磨をする工程を含むことを特徴とする金型の製造方法。
In the manufacturing method of the metallic mold according to any one of claims 1 to 3,
A method of manufacturing a mold, comprising a step of performing a final polishing after the step of finishing.
JP2008002912A 2008-01-10 2008-01-10 Manufacturing method for die Withdrawn JP2009160714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008002912A JP2009160714A (en) 2008-01-10 2008-01-10 Manufacturing method for die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008002912A JP2009160714A (en) 2008-01-10 2008-01-10 Manufacturing method for die

Publications (1)

Publication Number Publication Date
JP2009160714A true JP2009160714A (en) 2009-07-23

Family

ID=40963903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008002912A Withdrawn JP2009160714A (en) 2008-01-10 2008-01-10 Manufacturing method for die

Country Status (1)

Country Link
JP (1) JP2009160714A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043437B1 (en) * 2010-09-17 2011-06-22 최준규 Core processing method for surface forming
KR101336814B1 (en) 2013-07-23 2013-12-04 주식회사 인스턴 Lens machining machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101043437B1 (en) * 2010-09-17 2011-06-22 최준규 Core processing method for surface forming
KR101336814B1 (en) 2013-07-23 2013-12-04 주식회사 인스턴 Lens machining machine

Similar Documents

Publication Publication Date Title
JP5416956B2 (en) Truing tool for grinding wheel and manufacturing method thereof, truing device using the same, manufacturing method of grinding wheel, and wafer edge grinding apparatus
TWI359711B (en) Raster cutting technology for ophthalmic lenses
JP7481518B2 (en) Truing method and chamfering device
JP5988765B2 (en) Wafer chamfering method, wafer chamfering apparatus, and jig for angle adjustment
JP3363587B2 (en) Method and apparatus for processing brittle material
US20100280650A1 (en) Machining apparatus and machining method
JP2016203342A (en) Method for manufacturing truer and method for manufacturing semiconductor wafer, and chamfering device for semiconductor wafer
JP2000254845A (en) Chamfering method of notch groove of wafer, and wafer
KR100659433B1 (en) Method for machining aspherical surface, method for forming aspherical surface, and system for machining aspherical surface
JP2007030119A (en) Wafer chamfering device and wafer chamfering method
JP2006289566A (en) Grinding processing method and grinding processing device of forming die of micro lens array
JP2009160714A (en) Manufacturing method for die
JP3789672B2 (en) Grinding method
JP2019198899A (en) Chamfering grinding device
JP2008142799A (en) Working method for diffraction groove
JP4333876B2 (en) Grinding method
JP2009095973A (en) Grinding wheel molding device and method
JP4519618B2 (en) Grinding wheel molding method and molding apparatus
JP2007062000A (en) Grinding wheel and grinding method
JP2006055961A (en) Method and apparatus for machining axially symmetric aspheric surface by surface grinding machine
JP2002346893A (en) Grinding method
JP5961050B2 (en) How to correct the electrodeposition wheel
KR20230175103A (en) Forming method for truer
CN118559556A (en) Ultra-precise grinding tool for high-length-diameter-ratio high-gradient complex surface and use method thereof
JP2021181151A (en) Work-piece processing device, grindstone, and work-piece processing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110405