JP2006324406A - Flexible/rigid multilayer printed circuit board - Google Patents

Flexible/rigid multilayer printed circuit board Download PDF

Info

Publication number
JP2006324406A
JP2006324406A JP2005145447A JP2005145447A JP2006324406A JP 2006324406 A JP2006324406 A JP 2006324406A JP 2005145447 A JP2005145447 A JP 2005145447A JP 2005145447 A JP2005145447 A JP 2005145447A JP 2006324406 A JP2006324406 A JP 2006324406A
Authority
JP
Japan
Prior art keywords
fpc
board
bent
plates
conductor layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005145447A
Other languages
Japanese (ja)
Inventor
Akio Nishimura
明男 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005145447A priority Critical patent/JP2006324406A/en
Publication of JP2006324406A publication Critical patent/JP2006324406A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flexible/rigid multilayer printed circuit board which is improved in incorporating workability and effectively prevented from being disconnected by an improvement in durability while it is bent through a process of restraining the action of a very high restoring force caused by a compressive stress and a tensile stress generated at an FPC part composed of three FPC boards. <P>SOLUTION: Multilayered boards 2 and 3 equipped with a first to a third conductor layer 2a, 3a, 2b, 3b, and 2c and 3c, are electrically connected together with a flexible FPC 4 for the formation of flexible/rigid multilayer printed circuit board A, and the FPC is composed of the first to the third FPC board, 4a, 4b and 4c, which electrically connect the conductor layers of the multilayered board parts 2 and 3 separately. The extensional lengths of the FPC boards 4a, 4b and 4c led out separately from the conductor layers are set in such a manner that the external second FPC is extended longer than the internal third FPC board, when the FPC is bent and that the external first FPC board is extended longer than the internal second FPC board so as to make them different. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、多層基板部分同士をFPC部分により電気的に接続してなるフレックスリジッド多層配線板に関し、詳しくは、複数の板よりなるFPC部分を屈曲させた際の耐久性の向上を図る対策に係わる。   The present invention relates to a flex-rigid multilayer wiring board in which multilayer substrate portions are electrically connected to each other by an FPC portion, and more specifically, as a measure for improving durability when bending an FPC portion composed of a plurality of plates. Involved.

従来より、この種フレックスリジッド多層配線板は、それぞれエッチング等により回路形成された複数層の導体層を有する多層基板部分同士が屈曲性を備えたFPC部分により電気的に接続されてなり、この多層基板部分同士とFPC部分とが一体的に構成されてなるものが知られている(例えば、特許文献1参照)。   Conventionally, this type of flex-rigid multi-layer wiring board is formed by electrically connecting multi-layer substrate portions each having a plurality of conductor layers formed by etching or the like through flexible FPC portions. A substrate in which substrate portions and an FPC portion are integrally formed is known (for example, see Patent Document 1).

ところで、フレックスリジッド多層配線板は、平面状態で部品を実装し、機器に組み込む際にFPC部分を屈曲させて実装することにより、立体的な高密度実装に対応でき、機器の小型化、高機能化に貢献できるようになっている。その場合、フレックスリジッド多層配線板を機器に組み込んだ後に、携帯電話のヒンジ部分などのように屈曲部分において繰り返し曲げ伸ばしして使用する際に、多層基板部分同士を連結するFPC部分が電気的導通を確保するケーブルの役目を担いつつ繰り返し屈曲されるように使用されることも多々ある。   By the way, the flex-rigid multilayer wiring board can be used for three-dimensional high-density mounting by mounting components in a flat state and bending the FPC part when mounting in a device. It is possible to contribute to the transformation. In that case, when the flex-rigid multi-layer wiring board is incorporated into a device and then repeatedly bent and stretched at a bent portion such as a hinge portion of a mobile phone, the FPC portion connecting the multi-layer substrate portions is electrically connected. In many cases, it is used to be bent repeatedly while serving as a cable for securing the cable.

そして、フレックスリジッド多層配線板は、図13に示すように、多層基板部分a1,a2同士を単一の板b1よりなるFPC部分bによって連結している場合に、携帯電話のヒンジ部分などにおいてFPC部分bを繰り返し屈曲させても、電気的導通を確保するケーブルとしての役目を担うことができるようになっている一方、図14および図15に示すように、多層基板部分c1,c2同士またはe1,e2同士をその導体層毎に個々に独立して電気的に接続する複数の板d1,d2またはf1〜f3によりFPC部分dまたはfが構成されている場合には、FPC部分dまたはfが複数の板d1,d2またはf1〜f3よりなる構成とすることにより、FPC部分bが1枚の板b1よりなる構造のものと比較して、同じ配線数であればFPC部分dまたはfの板1枚あたりの配線本数を減らせるため、両面構造を片面構造にできる上、FPC部分dまたはfでの板1枚当たりの厚みも減少でき、屈曲性能、柔軟性、繰り返し屈曲時の耐久性を向上させることができるようになっている。
特開平11−68312号公報
Then, as shown in FIG. 13, the flex-rigid multilayer wiring board has an FPC at a hinge portion of a cellular phone when the multilayer substrate portions a1 and a2 are connected to each other by an FPC portion b made of a single plate b1. Even if the portion b is repeatedly bent, it can serve as a cable that ensures electrical continuity. On the other hand, as shown in FIGS. 14 and 15, the multilayer substrate portions c1 and c2 or e1 , E2 are electrically connected independently for each conductor layer, and the FPC portion d or f is composed of a plurality of plates d1, d2 or f1 to f3. If the FPC portion b has the same number of wires as compared to the structure of the single plate b1 by adopting a configuration consisting of a plurality of plates d1, d2 or f1-f3. Since the number of wirings per plate of the PC part d or f can be reduced, the double-sided structure can be made into a single-sided structure, and the thickness per board of the FPC part d or f can also be reduced, bending performance, flexibility, The durability during repeated bending can be improved.
JP-A-11-68312

ところで、フレックスリジッド多層配線板は、上述したように機器に組み込む際に、FPC部分を何らかの屈曲状態にして組み込んだり、携帯電話のヒンジ箇所のように組み込んだ状態で頻繁に屈曲を繰り返すように使用することが多々ある。   By the way, the flex-rigid multi-layer wiring board is used so that the FPC part is bent in some bending state or is repeatedly bent in the state where it is incorporated like a hinge part of a mobile phone when it is incorporated into a device as described above. There are many things to do.

その場合、機器の高機能化によりFPC部分に通す回路の本数は増大の要求が高く、FPC部分が1枚の板で構成されているものでは必要回路数を収めることが困難になってきており、FPC部分を複数の板により構成することが必要不可欠となってきている。また、FPC部分が1枚の両面の板により構成されているものより、片面ずつの2枚の板により構成されているものの方が、繰り返し屈曲時の耐久性が高くなることが知られており、そのためにFPC部分を複数の枚により構成することが必要不可欠となってきている状況もある。   In that case, there is a high demand for an increase in the number of circuits that pass through the FPC part due to higher functionality of the device, and it is difficult to accommodate the required number of circuits if the FPC part is composed of a single plate. It has become indispensable to configure the FPC portion with a plurality of plates. In addition, it is known that the durability when repeatedly bending is higher when the FPC portion is composed of two single-sided plates than when the single-sided double-sided plate is used. For this reason, there are situations in which it is indispensable to configure the FPC portion with a plurality of sheets.

しかし、図13に示すもののように、多層基板部分a1,a2同士を電気的に接続するFPC部分bが1枚の板b1により構成されたものでは、屈曲時にFPC部分bは自由に変形するものの、図14に示すもののように、多層基板部分c1,c2同士を電気的に接続するFPC部分dが2枚の板d1,d2により構成されているものや、図15に示すもののように、多層基板部分e1,e2同士を電気的に接続するFPC部分fが3枚の板f1,f2,f3により構成されているものでは、それぞれのFPC部分d,fの板d1,d2,f1〜f3の長さおよび形状が同一であり、さらに多層基板部分c1,c2,e1,e2から導出される板d1,d2,f1〜f3の導出位置も同じ位置であるため、多層基板部分c1,c2,e1,e2同士をFPC部分d,fにおいて屈曲させて機器に組み込む場合、FPC部分d,f(屈曲部分)では複数枚の板d1,d2,f1〜f3が重なって互いに干渉している。これは、屈曲させた際に内側に位置する板d2,f2(またはf3)と外側に位置する板d1,f1(またはf2)との屈曲半径が異なり、理想的には屈曲させた際に外側に位置する板d1,f1(またはf2)の長さが内側に位置する板d2,f2(またはf3)の長さよりも長くあるべきところが、公知の製造方法で得られるフレックスリジッド多層配線板ではFPC部分d,fを構成する複数枚の板d1,d2,f1〜f3が共に同一長さで同じ形状であるため、屈曲させた際に内側に位置する板d2,f2(またはf3)が理想的な長さより長く、外側に位置する板d1,f1(またはf2)が理想的な長さより短いからである。   However, as shown in FIG. 13, in the case where the FPC portion b electrically connecting the multilayer substrate portions a1 and a2 is composed of one plate b1, the FPC portion b is freely deformed when bent. As shown in FIG. 14, the FPC portion d that electrically connects the multilayer substrate portions c1 and c2 is composed of two plates d1 and d2, and as shown in FIG. In the case where the FPC portion f that electrically connects the substrate portions e1 and e2 is constituted by the three plates f1, f2, and f3, the plates d1, d2, and f1 to f3 of the respective FPC portions d and f. Since the length and shape are the same, and the positions where the plates d1, d2, f1 to f3 derived from the multilayer substrate portions c1, c2, e1, and e2 are derived are also the same position, the multilayer substrate portions c1, c2, and e1 , E When incorporating each other FPC portion d, the device is bent at f, FPC portion d, f (bent portion) in a plurality of plate d1, d2, overlap f1~f3 are interfering with each other. This is because the bending radii of the plates d2, f2 (or f3) located on the inner side when bent and the plates d1, f1 (or f2) located on the outer side are different, and ideally the outer side when bent. In the case of a flex-rigid multilayer wiring board obtained by a known manufacturing method, the length of the board d1, f1 (or f2) located at the position should be longer than the length of the board d2, f2 (or f3) located inside. Since the plurality of plates d1, d2, f1 to f3 constituting the portions d and f are all the same length and the same shape, the plates d2 and f2 (or f3) positioned inside when bent are ideal. This is because the plates d1, f1 (or f2) located outside and longer than the ideal length are shorter than the ideal length.

そのため、図16に示すように、屈曲状態では内側に位置する板d2に圧縮応力が生じて弛みを生じ、外側に位置する板d1には引っ張り応力が生じて強い張力が作用することになる。このような状態では、屈曲された部分を元に戻そうとする復元力が著しく作用する原因となり、機器への組み込み時にFPC部分(屈曲部分)が元の形状に戻ろうとして組み込みの作業性を損ねる原因となる。また、組み込み時に屈曲させた外側の板d1と内側の板d2とに引っ張り応力または圧縮応力が作用した状態となるため、繰り返し屈曲させるように使用すると、回路パターンに過大な応力が加わることにより屈曲時の耐久性が著しく低下することになり、屈曲時にFPC部分bが自由に変形して応力が作用しない1枚の板b1よりなるものと比較して、FPC部分での少ない屈曲回数によって断線に至るおそれがあった。   Therefore, as shown in FIG. 16, in the bent state, a compressive stress is generated in the plate d2 positioned on the inner side to cause slackening, and a tensile stress is generated on the plate d1 positioned on the outer side to exert a strong tension. In such a state, the restoring force to return the bent part to its original state acts remarkably, and the FPC part (bent part) tries to return to its original shape when assembling into the device, and the workability of the incorporation is reduced. Cause damage. In addition, since tensile stress or compressive stress is applied to the outer plate d1 and the inner plate d2 bent at the time of incorporation, if it is used repeatedly, it will be bent due to excessive stress applied to the circuit pattern. The durability at the time is significantly reduced, and the FPC portion b is freely deformed at the time of bending, and the wire is disconnected due to a small number of times of bending at the FPC portion as compared to the one made of a plate b1 on which no stress acts. There was a risk.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、複数枚の板よりなるFPC部分での圧縮応力および引っ張り応力による著しい復元力の作用を抑制し、組み込みの作業性を向上させることができるとともに、屈曲時の耐久性を向上させて屈曲による断線も効果的に回避することができるフレックスリジッド多層配線板を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to suppress the action of a significant restoring force due to compressive stress and tensile stress in the FPC portion composed of a plurality of plates, and to incorporate the work. It is an object of the present invention to provide a flex-rigid multilayer wiring board that can improve the durability, and can effectively prevent disconnection due to bending by improving durability during bending.

上記目的を達成するため、本発明では、それぞれ回路形成された複数層の導体層を有する多層基板部分同士を屈曲性を備えたFPC部分により電気的に接続してなるフレックスリジッド多層配線板を前提とし、上記FPC部分を、多層基板部分の導体層を個々に独立して電気的に接続する複数の板により構成している。そして、各導体層よりそれぞれ導出する各板の導出方向の長さを、多層基板部分同士をFPC部分において屈曲させた際に外側に位置する板が内側に位置する板よりも長くなるように異ならせている。   In order to achieve the above object, the present invention presupposes a flex-rigid multi-layer wiring board in which multi-layer circuit board parts each having a plurality of conductor layers each formed with a circuit are electrically connected by a flexible FPC part. The FPC portion is composed of a plurality of plates that electrically and independently connect the conductor layers of the multilayer substrate portion individually. Then, the lengths of the lead-out directions of the respective plates led out from the respective conductor layers are different so that when the multilayer substrate portions are bent at the FPC portion, the outer plate is longer than the inner plate. It is

この特定事項により、各導体層よりそれぞれ導出する複数の板の導出方向の長さは、屈曲させた際に外側に位置する板が内側に位置する板よりも長くなるように異なっているので、多層基板部分同士をFPC部分において屈曲させて機器に組み込む際に、内側の板の屈曲半径よりも大きな屈曲半径で外側の板が屈曲し、FPC部分(屈曲部分)において複数枚の板が重なって互いに干渉することはない。これにより、FPC部分を屈曲させた状態で内側の板に圧縮応力が生じて弛みを生じたり、外側の板に引っ張り応力が生じて強い張力が作用することが確実に回避され、屈曲された部分を元に戻そうとする著しい復元力が各板に作用することを抑制して、機器への組み込み時の作業性を損ねることがなくなって、組み込み作業性を向上させることが可能となる。しかも、組み込み時に屈曲させた外側の板と内側の板とに引っ張り応力または圧縮応力が作用することがなくなって、繰り返し屈曲させて使用しても、回路パターンに過大な応力が加わることもなく、屈曲時の耐久性の向上を図ることも可能となり、FPC部分での屈曲による断線も効果的に回避することが可能となる。   Due to this specific matter, the length in the direction of leading out of the plurality of plates derived from each conductor layer is different so that the plate located outside when bent is longer than the plate located inside, When the multilayer substrate portions are bent at the FPC portion and incorporated into the device, the outer plate is bent with a bending radius larger than the bending radius of the inner plate, and a plurality of plates overlap in the FPC portion (bending portion). They do not interfere with each other. As a result, it is reliably avoided that a compressive stress is generated on the inner plate with the FPC portion bent and a slack is generated or a tensile stress is generated on the outer plate and a strong tension is applied. It is possible to improve the assembling workability by preventing a significant restoring force from returning to the original state from acting on each plate, and not impairing the workability during assembling into the device. Moreover, tensile stress or compressive stress does not act on the outer plate and inner plate bent at the time of incorporation, and even if it is repeatedly bent and used, no excessive stress is applied to the circuit pattern, It is also possible to improve durability during bending, and it is possible to effectively avoid disconnection due to bending at the FPC portion.

また、上記目的を達成するため、その他の解決手段としては、それぞれ回路形成された複数層の導体層を有する多層基板部分同士を屈曲性を備えたFPC部分により電気的に接続してなるフレックスリジッド多層配線板を同様に前提とし、上記FPC部分を、多層基板部分の導体層を個々に独立して電気的に接続する複数の板により構成している。そして、上記多層基板部分の各導体層よりそれぞれ導出する複数の板を、多層基板部分の層厚方向から見て各板同士がオーバーラップしないように導出方向と直交する方向へ互いに異ならせた位置からそれぞれ導出させている。   In order to achieve the above object, as another solution, a flex rigid formed by electrically connecting multi-layer substrate portions each having a plurality of conductor layers each having a circuit formed by an FPC portion having flexibility. Similarly, assuming a multilayer wiring board, the FPC portion is composed of a plurality of plates that electrically and independently connect the conductor layers of the multilayer substrate portion individually. The plurality of plates derived from the respective conductor layers of the multilayer substrate portion are made different from each other in a direction orthogonal to the extraction direction so that the plates do not overlap each other when viewed from the layer thickness direction of the multilayer substrate portion. Respectively.

この特定事項により、多層基板部分の各導体層よりそれぞれ導出する複数の板は、多層基板部分の層厚方向から見て各板同士がオーバーラップしないように導出方向と直交する方向へ互いに異ならせた位置からそれぞれ導出しているので、多層基板部分同士をFPC部分において屈曲させて機器に組み込む際に、多層基板部分の層厚方向から見て各板が互いにオーバーラップしない位置で屈曲し、FPC部分(屈曲部分)において各板がそれぞれ屈曲していても、各板が重なって互いに干渉することはない。これにより、FPC部分を屈曲させた状態で内側の板に圧縮応力が生じて弛みを生じたり、外側の板に引っ張り応力が生じて強い張力が作用することが確実に回避され、屈曲された部分を元に戻そうとする著しい復元力が各板に作用することを抑制し、機器への組み込み時の作業性を損ねることがなくなって、組み込み作業性を向上させることが可能となる。しかも、組み込み時に屈曲させた各板に引っ張り応力または圧縮応力が作用することがなくなって、繰り返し屈曲させて使用しても、回路パターンに過大な応力が加わることもなく、屈曲時の耐久性の向上を図ることも可能となり、FPC部分での屈曲による断線も効果的に回避することが可能となる。   Due to this specific matter, the plurality of plates derived from the respective conductor layers of the multilayer substrate portion are made different from each other in the direction orthogonal to the derived direction so that the plates do not overlap each other when viewed from the layer thickness direction of the multilayer substrate portion. Therefore, when the multilayer substrate portions are bent at the FPC portion and incorporated in the device, the respective substrates are bent at positions where they do not overlap each other when viewed from the layer thickness direction of the multilayer substrate portion. Even if each plate is bent in the portion (bent portion), the plates do not overlap each other and interfere with each other. As a result, it is reliably avoided that a compressive stress is generated on the inner plate with the FPC portion bent and a slack is generated or a tensile stress is generated on the outer plate and a strong tension is applied. As a result, it is possible to prevent a significant restoring force from returning to the original state from acting on each plate, and not to impair the workability at the time of assembling into a device, thereby improving the workability of assembling. In addition, tensile stress or compressive stress does not act on each plate bent at the time of assembly, and even if it is repeatedly bent and used, excessive stress is not applied to the circuit pattern, and durability at the time of bending is improved. It is also possible to improve, and it is possible to effectively avoid disconnection due to bending at the FPC portion.

ここで、各導体層よりそれぞれ導出する複数の板の導出位置を、多層基板部分同士をFPC部分において屈曲させた際に外側に位置する板の導出長さが内側に位置する板の導出長さよりも長くなるように多層基板部分の層厚方向と直交する側方から見て導出方向へ段差状に異ならせている場合には、外側に位置する板が内側に位置する板よりも導出長さが長くなり、多層基板部分同士をFPC部分において屈曲させて機器に組み込む際に、各板の屈曲半径に差が生じ、各板が重なって互いに干渉することが回避されることになる。これにより、FPC部分を屈曲させた状態で内側の板に圧縮応力が生じて弛みを生じたり、外側の板に引っ張り応力が生じて強い張力が作用することがより確実に回避され、屈曲された部分を元に戻そうとする著しい復元力が各板に作用することを確実に抑制し、機器への組み込み時の作業性を損ねることがなくなって、組み込み作業性をより向上させることが可能となる。しかも、組み込み時に屈曲させた各板に引っ張り応力または圧縮応力が作用することを確実に回避して、繰り返し屈曲させて使用しても、回路パターンに過大な応力が加わることもなく、屈曲時の耐久性の向上をさらに図れる上、FPC部分での屈曲による断線も効果的に回避することが可能となる。   Here, the lead-out positions of the plurality of boards derived from the respective conductor layers are determined based on the lead-out lengths of the boards located on the inner side when the multi-layer board parts are bent at the FPC part. If the difference is stepwise in the lead-out direction when viewed from the side perpendicular to the layer thickness direction of the multilayer substrate part, the lead-out length of the outer plate is larger than the inner plate. When the multi-layer substrate portions are bent at the FPC portion and incorporated in the apparatus, a difference in the bending radius of the respective plates occurs, and the overlapping of the respective plates is prevented from interfering with each other. As a result, it is more reliably avoided that the FPC portion is bent and the inner plate is compressed to generate a slack, or the outer plate is pulled and a tensile stress is applied to exert a strong tension. It is possible to improve the workability of installation by preventing the significant restoring force that tries to restore the part from acting on each plate, and without impairing the workability when installing in equipment. Become. In addition, it avoids the application of tensile stress or compressive stress to each plate bent at the time of assembly, and even if it is repeatedly bent, it does not apply excessive stress to the circuit pattern, and at the time of bending Further, the durability can be further improved, and disconnection due to bending at the FPC portion can be effectively avoided.

更に、多層基板部分同士をFPC部分において屈曲させた際に外側に位置する板を、内側に位置する板よりも屈曲半径が大きくなるように長く引き延ばしている場合には、外側に位置する板が内側に位置する板よりも導出長さが長く引き延ばされて、外側に位置する板の曲率半径が内側に位置する板よりも確実に大きくなり、多層基板部分同士をFPC部分において屈曲させて機器に組み込む際に、各板の屈曲半径の差によって各板が重なって互いに干渉することが確実に回避されることになる。これにより、FPC部分を屈曲させた状態で内側の板に圧縮応力が生じて弛みを生じたり、外側の板に引っ張り応力が生じて強い張力が作用することがより確実に回避され、屈曲された部分を元に戻そうとする著しい復元力が各板に作用することも確実に抑制し、機器への組み込み時の作業性を損ねることがなくなって、組み込み作業性をより一層向上させることが可能となる。しかも、組み込み時に屈曲させた各板に引っ張り応力または圧縮応力が作用することを確実に回避して、繰り返し屈曲させて使用しても、回路パターンに過大な応力が加わることもなく、屈曲時の耐久性の向上をより一層図れる上、FPC部分での屈曲による断線もより一層効果的に回避することが可能となる。   Furthermore, when the board located outside when the multi-layer board parts are bent at the FPC part is extended so as to have a larger bending radius than the board located inside, the board located outside is The lead-out length is extended longer than the plate located on the inner side, the radius of curvature of the plate located on the outer side is surely larger than the plate located on the inner side, and the multilayer substrate portions are bent at the FPC portion. When incorporating into a device, it is ensured that the plates overlap each other and interfere with each other due to the difference in bending radius of the plates. As a result, it is more reliably avoided that the FPC portion is bent and the inner plate is compressed to generate a slack, or the outer plate is pulled and a tensile stress is applied to exert a strong tension. It is possible to further suppress the workability when assembling into the equipment, and to further improve the workability of the assembly, by reliably suppressing the action of a significant restoring force to return the part to each plate. It becomes. In addition, it avoids the application of tensile stress or compressive stress to each plate bent at the time of assembly, and even if it is repeatedly bent, it does not apply excessive stress to the circuit pattern, and at the time of bending The durability can be further improved, and disconnection due to bending at the FPC portion can be avoided more effectively.

以上、要するに、各導体層よりそれぞれ導出する複数の板の導出方向の長さを、屈曲させた際に外側に位置する板が内側に位置する板よりも長くなるように異ならせることで、多層基板部分同士をFPC部分において屈曲させて機器に組み込む際に、内側の板と外側の板との屈曲半径の大小差によりFPC部分での互いの板の干渉を防止して圧縮応力による弛みや引っ張り応力による強い張力の発生をなくし、屈曲された部分を元に戻そうとする著しい復元力が各板に作用することを抑制して、機器への組み込み作業性を向上させることができる上、繰り返し屈曲させた際の回路パターンへの過大な応力の作用を防止して、屈曲時の耐久性の向上を図ることもでき、FPC部分での屈曲による断線も効果的に回避することができる。   In short, the length of the plurality of plates led out from each conductor layer in the lead-out direction is different so that the outer plate is longer than the inner plate when bent. When the board parts are bent at the FPC part and incorporated into the device, the interference between the boards at the FPC part is prevented by the difference in the bending radius between the inner board and the outer board, and the board is loosened or pulled due to compressive stress. It eliminates the generation of strong tension due to stress, suppresses the application of significant restoring force to return the bent part to each plate, and improves the workability of assembling into equipment. It is possible to prevent the action of excessive stress on the circuit pattern when bent, to improve durability during bending, and to effectively avoid disconnection due to bending at the FPC portion.

以下、本発明を実施するための最良の形態を図面に基づいて説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1ないし図6は、本発明の実施例1に係わるフレックスリジッド多層配線板の製造工程を順に示す説明図であって、図1は、加工前の第1ないし第3FPC基板1a〜1cの側面図を示し、この各FPC基板1a〜1cは、ポリイミドやガラスエポキシなどよりなる基材のベース材11と、このベース材11の両面に張られた銅箔12,12とによって構成されている。   FIG. 1 to FIG. 6 are explanatory views sequentially showing the manufacturing process of the flex-rigid multilayer wiring board according to the first embodiment of the present invention. FIG. 1 is a side view of the first to third FPC boards 1a to 1c before processing. Each of the FPC boards 1a to 1c is composed of a base material 11 made of polyimide, glass epoxy, or the like, and copper foils 12 and 12 stretched on both sides of the base material 11.

図2は、ベース材11両面の銅箔12,12にそれぞれエッチング等の公知技術を用いて回路パターン12a,…が形成された状態を示す回路パターン形成後の第1ないし第3FPC基板1a〜1cの側面図である。   FIG. 2 shows the first to third FPC boards 1a to 1c after the circuit patterns are formed, showing a state in which the circuit patterns 12a,... Are formed on the copper foils 12 and 12 on both surfaces of the base material 11 by using a known technique such as etching. FIG.

図3は、回路パターン形成後の第1ないし第3FPC基板1a〜1c両面の回路パターン12a,…の表面上にカバーレイ等の絶縁保護膜13,13を公知の方法で形成した状態を示す絶縁保護膜形成後の第1ないし第3FPC基板1a〜1cの側面図である。   FIG. 3 shows an insulating state in which insulating protective films 13, 13 such as coverlays are formed on the surfaces of the circuit patterns 12a,... On both sides of the first to third FPC boards 1a to 1c after the circuit pattern is formed by a known method. It is a side view of the 1st thru | or 3rd FPC board | substrates 1a-1c after protective film formation.

図4は、絶縁保護膜形成後の第1ないし第3FPC基板1a,1b,1cを積層して一体化する前のフレックスリジッド多層配線板Aの側面図を示している。このフレックスリジッド多層配線板Aは、第1ないし第3FPC基板1a,1b,1cの両端部(図4では左右両端部)において回路パターン12aを形成した第1ないし第3導体層2a,3a,2b,3b,2c,3cが積層されてなる多層基板部分2,3と、この多層基板部分2,3の第1ないし第3導体層2a,3a,2b,3b,2c,3cよりそれぞれ導出し、第1ないし第3導体層2a,3a,2b,3b,2c,3cを個々に独立して電気的に接続する板としての第1ないし第3FPC板4a,4b,4cよりなるFPC基板部分4とが多層プレス形成後に構成されるようになっている。この場合、FPC基板部分4の第1ないし第3FPC板4a,4b,4cは、第1ないし第3FPC基板1a,1b,1cの中央部に位置し、多層プレス形成後に第1ないし第3導体層2a,3a,2b,3b,2c,3cよりそれぞれ導出するようになっている。   FIG. 4 shows a side view of the flex-rigid multilayer wiring board A before the first to third FPC boards 1a, 1b, and 1c are laminated and integrated after the insulating protective film is formed. The flex-rigid multilayer wiring board A includes first to third conductor layers 2a, 3a, 2b in which circuit patterns 12a are formed at both ends (left and right ends in FIG. 4) of the first to third FPC boards 1a, 1b, 1c. , 3b, 2c, 3c are respectively derived from the multilayer substrate portions 2, 3 and the first to third conductor layers 2a, 3a, 2b, 3b, 2c, 3c of the multilayer substrate portions 2, 3, An FPC board portion 4 comprising first to third FPC boards 4a, 4b, 4c as plates for electrically connecting the first to third conductor layers 2a, 3a, 2b, 3b, 2c, 3c individually and independently; Is configured after the multilayer press formation. In this case, the first to third FPC boards 4a, 4b, 4c of the FPC board portion 4 are located at the center of the first to third FPC boards 1a, 1b, 1c, and the first to third conductor layers are formed after the multilayer press is formed. They are derived from 2a, 3a, 2b, 3b, 2c and 3c, respectively.

そして、一方の多層基板部分2(図4では左側の多層基板部分)における第1ないし第3導体層2a,2b,2cの間および他方の多層基板部分3(図4では右側の多層基板部分)における第1ないし第3導体層3a,3b,3cの間には、接着性材料からなるシート状のプリプレグ14がそれぞれ介装されている。また、多層基板部分2,3における最上層の第1導体層2a,3aの上面(反第2導体層2b,3b側面)には、内層側面となる下面にのみエッチング等の公知技術を用いて回路パターン15aが形成されたポリイミドやガラスエポキシなどよりなるベース材15がプリプレグ14を介してそれぞれ設置されている。一方、多層基板部分2,3における最下層の第3導体層2c,3cの下面(反第2導体層b,3b側面)には、内層側面となる上面にのみエッチング等の公知技術を用いて回路パターン16aが形成されたポリイミドやガラスエポキシなどよりなるベース材16がプリプレグ14を介してそれぞれ設置されている。この場合、最上層のベース材15の外層側面となる上面および最下層のベース材16の外層側面となる下面には、それぞれ銅箔12が張られている。   And between the first to third conductor layers 2a, 2b and 2c in one multilayer substrate portion 2 (left multilayer substrate portion in FIG. 4) and the other multilayer substrate portion 3 (right multilayer substrate portion in FIG. 4). A sheet-like prepreg 14 made of an adhesive material is interposed between the first to third conductor layers 3a, 3b, and 3c. Further, on the upper surfaces (side surfaces of the anti-second conductor layers 2b and 3b) of the uppermost first conductor layers 2a and 3a in the multilayer substrate portions 2 and 3, a known technique such as etching is used only on the lower surface serving as the inner layer side surface. Base materials 15 made of polyimide, glass epoxy, or the like, on which circuit patterns 15 a are formed, are installed via prepregs 14. On the other hand, the lower surfaces of the lowermost third conductor layers 2c and 3c (the side surfaces opposite to the second conductor layers b and 3b) in the multilayer substrate portions 2 and 3 are formed using a known technique such as etching only on the upper surface serving as the inner layer side surface. Base materials 16 made of polyimide, glass epoxy, or the like, on which the circuit pattern 16a is formed, are installed via the prepregs 14, respectively. In this case, the copper foil 12 is stretched on the upper surface, which is the outer layer side surface of the uppermost base material 15, and the lower surface, which is the outer layer side surface of the lowermost base material 16.

また、FPC部分4の第1FPC板4aの上面側(反第2FPC板4b側)には、第1スペーサ51が設置されている。この第1スペーサ51の上面側となる反第2FPC板4b側面には、平坦面51aが形成されている一方、下面側となる第1FPC板4a側面には急なパターンで波形に起伏する起伏面51bが形成されている。また、FPC部分4における第1FPC板4aと第2FPC板4bとの間には、第2スペーサ52が設置されている。この第2スペーサ52の上面側となる反第2FPC板4b側面には、上記第1スペーサ51下面の起伏面(第1FPC板4a側面)とほぼ同じパターンで波形に起伏する起伏面52a、つまり第1スペーサ51下面の起伏面に第1FPC板4aを挟んで対応する起伏面52aが形成されている。一方、第2スペーサ52の下面側となる第2FPC板4b側面には、比較的なだらかなパターンで波形に起伏する起伏面52bが形成されている。更に、FPC部分4における第2FPC板4bと第3FPC板4cとの間には、第3スペーサ53が設置されている。この第3スペーサ53の上面側となる第2FPC板4b側面には、上記第2スペーサ52下面の起伏面(第2FPC板4b側面)とほぼ同じパターンで波形に起伏する起伏面53a、つまり第2スペーサ52下面の起伏面52bに第2FPC板4bを挟んで対応する起伏面53aが形成されている。一方、第3スペーサ52の下面側となる第3FPC板4c側面には、平坦面53bが形成されている。   Further, a first spacer 51 is provided on the upper surface side of the FPC portion 4 on the first FPC plate 4a (on the side opposite to the second FPC plate 4b). The flat surface 51a is formed on the side surface of the anti-second FPC plate 4b that is the upper surface side of the first spacer 51, while the undulating surface that undulates in a steep pattern on the side surface of the first FPC plate 4a that is the lower surface side. 51b is formed. Further, a second spacer 52 is provided between the first FPC plate 4 a and the second FPC plate 4 b in the FPC portion 4. On the side surface of the second FPC plate 4b that is the upper surface side of the second spacer 52, there is a undulating surface 52a that undulates in a waveform in substantially the same pattern as the undulating surface of the lower surface of the first spacer 51 (side surface of the first FPC plate 4a). A corresponding undulation surface 52a is formed on the undulation surface of the lower surface of one spacer 51 with the first FPC plate 4a interposed therebetween. On the other hand, on the side surface of the second FPC plate 4b that is the lower surface side of the second spacer 52, a undulating surface 52b that undulates in a corrugated pattern is formed. Further, a third spacer 53 is provided between the second FPC plate 4 b and the third FPC plate 4 c in the FPC portion 4. On the side surface of the second FPC plate 4b that is the upper surface side of the third spacer 53, there is a undulating surface 53a that undulates in a waveform in substantially the same pattern as the undulating surface of the lower surface of the second spacer 52 (side surface of the second FPC plate 4b). A corresponding undulating surface 53a is formed on the undulating surface 52b of the lower surface of the spacer 52 with the second FPC plate 4b interposed therebetween. On the other hand, a flat surface 53 b is formed on the side surface of the third FPC plate 4 c that is the lower surface side of the third spacer 52.

そして、上述したように、3枚の第1ないし第3FPC基板1a,1b,1cを積層し、一方の多層基板部分2の第1ないし第3導体層2a,2b,2cの間および他方の多層基板部分3の第1ないし第3導体層3a,3b,3cの間にそれぞれプリプレグ14を介装し、多層基板部分2,3における最上層の第1導体層2a,3aの上面および最下層の第3導体層2c,3cの下面にベース材15,16をそれぞれプリプレグ14を介して設置し、FPC部分4における第1FPC板4aの上面側、第1FPC板4aと第2FPC板4bとの間、および第2FPC板4bと第3FPC板4cとの間に第1ないし第3スペーサ51〜53をそれぞれ設置した状態で、プレス機(図示せず)により上下方向からプレスすることによって、図5に示すようなフレックスリジッド多層配線板Aが得られるようになっている。また、プレス後に第1ないし第3スペーサ51〜53を取り外すことによって、FPC部分4における第1および第2FPC板4a,4bが第1ないし第3スペーサ51〜53の起伏面51b,52a,52b,53aに沿って引き延ばされ、多層基板部分2,3から導出するFPC部分4の第1ないし第3FPC板4a〜4cの導出方向の長さを互いに異ならせるようにしている。   Then, as described above, the three first to third FPC boards 1a, 1b, and 1c are stacked, and between the first to third conductor layers 2a, 2b, and 2c of one multilayer board portion 2 and the other multilayer. A prepreg 14 is interposed between the first to third conductor layers 3a, 3b, 3c of the substrate portion 3, and the upper and lower layers of the uppermost first conductor layers 2a, 3a in the multilayer substrate portions 2, 3 are disposed. The base materials 15 and 16 are respectively installed on the lower surfaces of the third conductor layers 2c and 3c via the prepreg 14, and the upper surface side of the first FPC plate 4a in the FPC portion 4, between the first FPC plate 4a and the second FPC plate 4b, In addition, the first to third spacers 51 to 53 are installed between the second FPC plate 4b and the third FPC plate 4c, respectively. Suyo flex-rigid multilayer wiring board A is made thus obtained. In addition, by removing the first to third spacers 51 to 53 after pressing, the first and second FPC plates 4a and 4b in the FPC portion 4 are formed into the undulating surfaces 51b, 52a, 52b of the first to third spacers 51 to 53, respectively. The lengths of the first to third FPC plates 4a to 4c in the FPC portion 4 extended along the line 53a and led out from the multilayer substrate portions 2 and 3 are made different from each other.

また、図6に示すように、多層基板部分2,3において最上層に位置するベース材15上面の銅箔12および最下層に位置するベース材16下面の銅箔12には、エッチング等の公知技術を用いて外層回路パターン15b,16bが形成されている。そして、一方の多層基板部分2には、第1ないし第3導体層2a〜2c並びに最上層および最下層のベース材15,16を層厚方向に貫通するスルーホール穴61が設けられ、このスルーホール穴61に銅メッキ62による加工が施されて、一方の多層基板部分2の第1ないし第3導体層2a〜2cの回路パターン12aと最上層および最下層のベース材15,16の外層回路パターン15b,16bとが電気導通可能に接続されている。他方の多層基板部分3の最上層および最下層のベース材15,16には、ベース材15,16のみをそれぞれ層厚方向に貫通するレーザバイアホール63,64が設けられ、このレーザバイアホール63,64にそれぞれ銅メッキ65による加工が施されて、他方の多層基板部分3の最上層のベース材15の回路パターン15aと外層回路パターン15bとが電気導通可能に接続されているとともに、最下層のベース材16の回路パターン16aと外層回路パターン16bとが電気導通可能に接続されている。このように形成されたフレックスリジッド多層配線板Aは、公知の工法にてソルダーレジスト、パターン表面処理、外形加工、検査工程を経て、完成品となる。   Further, as shown in FIG. 6, in the multilayer substrate portions 2 and 3, the copper foil 12 on the upper surface of the base material 15 located in the uppermost layer and the copper foil 12 on the lower surface of the base material 16 located in the lowermost layer are known such as etching. The outer layer circuit patterns 15b and 16b are formed using a technique. One multilayer substrate portion 2 is provided with a through-hole hole 61 penetrating the first to third conductor layers 2a to 2c and the uppermost and lowermost base materials 15 and 16 in the layer thickness direction. The hole hole 61 is processed by the copper plating 62 so that the circuit pattern 12a of the first to third conductor layers 2a to 2c of the multilayer substrate portion 2 and the outer layer circuit of the base materials 15 and 16 of the uppermost layer and the lowermost layer. The patterns 15b and 16b are connected so as to be electrically conductive. Laser via holes 63 and 64 penetrating only the base materials 15 and 16 in the layer thickness direction are provided in the uppermost and lowermost base materials 15 and 16 of the other multilayer substrate portion 3, respectively. , 64 are respectively processed by copper plating 65 so that the circuit pattern 15a of the uppermost base material 15 of the other multilayer substrate portion 3 and the outer circuit pattern 15b are connected so as to be electrically conductive, and the lowermost layer. The circuit pattern 16a of the base material 16 and the outer layer circuit pattern 16b are connected so as to be electrically conductive. The flex-rigid multilayer wiring board A thus formed is a finished product through a solder resist, pattern surface treatment, outer shape processing, and an inspection process by a known method.

そして、図7に示すように、多層基板部分2,3同士をFPC部分4において屈曲させた際に外側に位置する第2FPC板4bがそれよりも内側に位置する第3FPC板4cよりも長く引き延ばされている一方、その第2FPC板4bよりも外側に位置する第1FPC板4aがそれよりも内側に位置する第2FPC板4bよりも長く引き延ばされ、多層基板部分2,3同士をFPC部分4において屈曲させた際に最も外側に位置する第1FPC板4aの屈曲半径が最も大きく、次いで第2FPC板4bの屈曲半径が大きく、最も内側に位置する第3FPC板4cの屈曲半径が最も小さくなるようになっている。   Then, as shown in FIG. 7, when the multilayer substrate portions 2 and 3 are bent at the FPC portion 4, the second FPC plate 4b located outside is pulled longer than the third FPC plate 4c located inside. On the other hand, the first FPC board 4a positioned outside the second FPC board 4b is extended longer than the second FPC board 4b positioned inside the second FPC board 4b. When the FPC portion 4 is bent, the outermost first FPC plate 4a has the largest bending radius, the second FPC plate 4b has the largest bending radius, and the innermost third FPC plate 4c has the largest bending radius. It is getting smaller.

したがって、上記実施例では、多層基板部分2,3の第1ないし第3導体層2a,3a,2b,3b,2c,3cよりそれぞれ導出する第1ないし第3FPC板4a〜4cの導出方向の長さは、多層基板部分2,3同士をFPC部分4において屈曲させた際に外側に位置する第2FPC板4bがそれよりも内側に位置する第3FPC板4cよりも長く引き延ばされ、その第2FPC板4bよりも外側に位置する第1FPC板4aが内側の第2FPC板4bよりも長く引き延ばされて異なっているので、外側に位置する第1および第2FPC板4a,4bが内側に位置する第3FPC板4cよりも導出長さが順に長く引き延ばされて、外側の第2FPC板4bの屈曲半径が内側の第3FPC板4cの曲率半径よりも確実に大きくなる上、外側の第1FPC板4aの屈曲半径が内側の第2FPC板4bの曲率半径よりも確実に大きくなり、多層基板部分2,3同士をFPC部分4において屈曲させて機器に組み込む際に、内側の第3FPC板4cの屈曲半径よりも大きな屈曲半径で外側の第2FPC板4bが屈曲し、この第2FPC板4bよりも外側の第1FPC板4aが内側の第2FPC板4bの屈曲半径よりも大きな屈曲半径で屈曲し、FPC部分4(屈曲部分)において3枚の第1ないし第3FPC板4a〜4cが重なって互いに干渉することはない。これにより、FPC部分4を屈曲させた状態で内側の第2および第3FPC板4b,4cに圧縮応力が生じて弛みを生じたり、外側の第1および第2FPC板4a,4bに引っ張り応力が生じて強い張力が作用することが確実に回避され、屈曲された部分を元に戻そうとする著しい復元力が各FPC板4a〜4cに作用することを抑制して、機器への組み込み時の作業性を損ねることがなくなり、組み込み作業性を向上させることができる。しかも、組み込み時に屈曲させた外側の第1および第2FPC板4a,4bと内側の第2および第3FPC板4b,4cとに引っ張り応力または圧縮応力が作用することがなくなって、繰り返し屈曲させて使用しても、回路パターン12aに過大な応力が加わることもなく、屈曲時の耐久性の向上を図ることもでき、FPC部分4での屈曲による第1ないし第3FPC板4a〜4cの断線も効果的に回避することができる。   Therefore, in the above embodiment, the length of the first to third FPC plates 4a to 4c derived from the first to third conductor layers 2a, 3a, 2b, 3b, 2c, and 3c of the multilayer substrate portions 2 and 3 in the direction of derivation, respectively. The second FPC board 4b located outside when the multilayer board parts 2 and 3 are bent at the FPC part 4 is elongated longer than the third FPC board 4c located inside. Since the first FPC board 4a located outside the 2FPC board 4b is different from the second FPC board 4b extended longer than the inside, the first and second FPC boards 4a, 4b located outside are located inside. The lead-out length is elongated in order from the third FPC plate 4c, and the bending radius of the outer second FPC plate 4b is surely larger than the curvature radius of the inner third FPC plate 4c. The bending radius of the 1FPC board 4a is surely larger than the curvature radius of the inner second FPC board 4b, and the inner third FPC board 4c is bent when the multilayer board portions 2 and 3 are bent at the FPC portion 4 and incorporated in the device. The outer second FPC plate 4b is bent with a bending radius larger than the bending radius of the first FPC plate 4b, and the first FPC plate 4a outside the second FPC plate 4b is bent with a bending radius larger than the bending radius of the inner second FPC plate 4b. In the FPC portion 4 (bent portion), the three first to third FPC plates 4a to 4c do not interfere with each other. As a result, in the state where the FPC portion 4 is bent, a compressive stress is generated in the inner second and third FPC plates 4b and 4c to cause looseness, and a tensile stress is generated in the outer first and second FPC plates 4a and 4b. Work to be surely avoided by applying a strong tension to the FPC plates 4a to 4c by suppressing a significant restoring force to return the bent portion to its original state. Therefore, it is possible to improve the installation workability. In addition, the outer first and second FPC plates 4a and 4b bent at the time of incorporation and the inner second and third FPC plates 4b and 4c are not subjected to tensile stress or compressive stress, and are repeatedly bent and used. However, excessive stress is not applied to the circuit pattern 12a, durability during bending can be improved, and disconnection of the first to third FPC boards 4a to 4c due to bending at the FPC portion 4 is also effective. Can be avoided.

次に、本発明の実施例2を図8ないし図10に基づいて説明する。   Next, a second embodiment of the present invention will be described with reference to FIGS.

この実施例2では、多層基板部分の各導体層から導出する各FPC板を変更している。なお、FPC板を除くその他の構成は、上記実施例1の場合と同じであり、同じ部分については同一の符号を付して、その詳細な説明は省略する。   In the second embodiment, each FPC plate derived from each conductor layer of the multilayer substrate portion is changed. The other configurations except for the FPC board are the same as those in the first embodiment, and the same portions are denoted by the same reference numerals, and detailed description thereof is omitted.

すなわち、本実施例では、図8および図9に示すように、多層基板部分2,3の第1ないし第3導体層2a,3a,2b,3b,2c,3cより導出する第1ないし第3FPC板4d,4e,4fは、それぞれ同じ導出長さに設定されている。そして、多層基板部分2,3の第1導体層2a,3aより導出する第1FPC板4dの導出位置は、その多層基板部分2,3の導出方向と直交する方向(図8では上下方向)の一側端(図8では上端)に位置付けられている。また、多層基板部分2,3の第2導体層2b,3bより導出する第2FPC板4eの導出位置は、その多層基板部分2,3の導出方向と直交する方向の中央位置に位置付けられている。更に、多層基板部分2,3の第3導体層2c,3cより導出する第3FPC板4fの導出位置は、その多層基板部分2,3の導出方向と直交する方向(図8では上下方向)の他側端(図8では下端)に位置付けられている。この場合、多層基板部分2,3の第1ないし第3導体層2a,3a,2b,3b,2c,3cよりそれぞれ導出する第1ないし第3FPC板4d〜4fは、多層基板部分2,3の層厚方向(図8では紙面手前奥方向)から見て各FPC板4d〜4f同士がオーバーラップしないように相隣なるFPC板4d〜4f同士の間に間隙Sが設けられ、多層基板部分2,3の導出方向と直交する方向へ互いに異ならせた位置からそれぞれ導出している。   That is, in this embodiment, as shown in FIGS. 8 and 9, the first to third FPCs derived from the first to third conductor layers 2a, 3a, 2b, 3b, 2c, 3c of the multilayer substrate portions 2 and 3 are used. The plates 4d, 4e, and 4f are set to the same derived length. The lead position of the first FPC board 4d led out from the first conductor layers 2a and 3a of the multilayer substrate portions 2 and 3 is in a direction (vertical direction in FIG. 8) perpendicular to the lead direction of the multilayer substrate portions 2 and 3. It is positioned at one side end (upper end in FIG. 8). In addition, the lead-out position of the second FPC board 4e led out from the second conductor layers 2b and 3b of the multilayer board portions 2 and 3 is positioned at the center position in the direction orthogonal to the lead-out direction of the multilayer board parts 2 and 3. . Furthermore, the lead-out position of the third FPC board 4f led out from the third conductor layers 2c and 3c of the multilayer substrate portions 2 and 3 is in a direction (vertical direction in FIG. 8) perpendicular to the lead-out direction of the multilayer substrate portions 2 and 3. It is positioned at the other end (lower end in FIG. 8). In this case, the first to third FPC boards 4d to 4f derived from the first to third conductor layers 2a, 3a, 2b, 3b, 2c, and 3c of the multilayer substrate portions 2 and 3, respectively, A gap S is provided between the adjacent FPC plates 4d to 4f so that the FPC plates 4d to 4f do not overlap each other when viewed from the layer thickness direction (the front and back direction in FIG. 8). , 3 are derived from positions different from each other in a direction orthogonal to the direction of derivation.

したがって、上記実施例では、多層基板部分2,3の第1ないし第3導体層2a,3a,2b,3b,2c,3cよりそれぞれ導出する第1ないし第3FPC板4d〜4fは、多層基板部分2,3の層厚方向から見て各FPC板4d〜4f同士がオーバーラップしないように間隙Sを存して多層基板部分2,3の導出方向と直交する方向へ互いに異ならせた位置、つまり多層基板部分2,3の一側端(図8では上端)、中央位置および他側端(図8では下端)からそれぞれ導出しているので、図10に示すように、多層基板部分2,3同士をFPC部分4において屈曲させて機器に組み込む際に、多層基板部分2,3の層厚方向から見て各FPC板4d〜4fが互いにオーバーラップしない位置で屈曲し、FPC部分4(屈曲部分)において各FPC板4d〜4fがそれぞれ屈曲していても、各FPC板4d〜4fが重なって互いに干渉することはない。これにより、第1ないし第3FPC部分4d〜4fを屈曲させた状態で内側の第2および第3FPC板4e,4fに圧縮応力が生じて弛みを生じたり、外側の板第1および第2FPC板4d,4eに引っ張り応力が生じて強い張力が作用することが確実に回避され、屈曲された部分を元に戻そうとする著しい復元力が各FPC板4d〜4fに作用することを抑制し、機器への組み込み時の作業性を損ねることがなくなって、組み込み作業性を向上させることができる。   Therefore, in the above embodiment, the first to third FPC plates 4d to 4f derived from the first to third conductor layers 2a, 3a, 2b, 3b, 2c, and 3c of the multilayer substrate portions 2 and 3, respectively, Positions that are different from each other in a direction orthogonal to the lead-out direction of the multilayer substrate portions 2 and 3 with a gap S so that the FPC plates 4d to 4f do not overlap each other when viewed in the thickness direction of the layers 2 and 3. Since they are derived from one side end (upper end in FIG. 8), the center position, and the other end (lower end in FIG. 8), respectively, as shown in FIG. When the FPC portions 4 are bent at the FPC portion 4 and incorporated in the device, the FPC plates 4d to 4f are bent at positions where they do not overlap each other when viewed from the layer thickness direction of the multilayer substrate portions 2 and 3, and the FPC portion 4 (bending portion) ) Even FPC board 4D~4f is not bent, respectively, do not interfere with each other overlap each FPC board 4D~4f. As a result, in the state where the first to third FPC portions 4d to 4f are bent, the inner second and third FPC plates 4e and 4f generate a compressive stress to cause slack, or the outer plate first and second FPC plates 4d. , 4e is surely prevented from applying a strong tension due to a tensile stress, and a significant restoring force to return the bent portion to the original is suppressed from acting on each of the FPC plates 4d to 4f. The workability at the time of assembling into the camera is not impaired, and the workability at assembling can be improved.

しかも、組み込み時に屈曲させた各FPC板4d〜4fに引っ張り応力または圧縮応力が作用することがなくなって、繰り返し屈曲させて使用しても、回路パターン12aに過大な応力が加わることもなく、屈曲時の耐久性の向上を図ることもでき、FPC部分4での屈曲による各FPC板4d〜4fの断線も効果的に回避することができる。   Moreover, tensile stress or compressive stress does not act on each of the FPC plates 4d to 4f bent at the time of incorporation, and even if they are repeatedly bent and used, excessive stress is not applied to the circuit pattern 12a. The durability at the time can also be improved, and disconnection of each of the FPC plates 4d to 4f due to bending at the FPC portion 4 can be effectively avoided.

次に、本発明の実施例3を図11および図12に基づいて説明する。   Next, a third embodiment of the present invention will be described with reference to FIGS.

この実施例3では、多層基板部分の各導体層から導出する各FPC板を変更している。なお、FPC板を除くその他の構成は、上記実施例1の場合と同じであり、同じ部分については同一の符号を付して、その詳細な説明は省略する。   In the third embodiment, each FPC plate derived from each conductor layer of the multilayer substrate portion is changed. The other configurations except for the FPC board are the same as those in the first embodiment, and the same portions are denoted by the same reference numerals, and detailed description thereof is omitted.

すなわち、本実施例では、図11に示すように、多層基板部分2,3の第1ないし第3導体層2a,3a,2b,3b,2c,3cよりそれぞれ導出する第1ないし第3FPC板4g,4h,4iの導出位置は、多層基板部分2,3同士をFPC部分4において屈曲させた際に外側に位置する第2FPC板4hの導出長さがそれよりも内側に位置する第3FPC板4iの導出長さよりも長く、かつその第2FPC板4hよりも外側に位置する第1FPC板4gの導出長さがそれよりも内側に位置する第2FPC板4hの導出長さよりも長くなるように多層基板部分2,3の層厚方向と直交する側方(図11の紙面手前奥方向)から見て導出方向へ段差状、つまり多層基板部分2,3の第3導体層2c,3cが第2導体層2b,3cよりも反導出方向(図11では左右方向外方)へ奥まった位置に、第2導体層2b,3bが第1導体層2a,3aよりも反導出方向(図11では左右方向外方)へ奥まった位置にそれぞれ位置するように段差状に異なっている。   That is, in this embodiment, as shown in FIG. 11, the first to third FPC plates 4g derived from the first to third conductor layers 2a, 3a, 2b, 3b, 2c, 3c of the multilayer substrate portions 2 and 3, respectively. , 4h, 4i is derived from the third FPC board 4i in which the lead-out length of the second FPC board 4h located outside when the multilayer board parts 2, 3 are bent in the FPC part 4 is located further inside. The multi-layer substrate so that the lead length of the first FPC plate 4g located outside the second FPC plate 4h is longer than the lead length of the second FPC plate 4h located inside the second FPC plate 4h. When viewed from the side perpendicular to the layer thickness direction of the portions 2 and 3 (the front and back direction in FIG. 11), the third conductor layers 2c and 3c of the multi-layer substrate portions 2 and 3 are the second conductor. More conductive than layers 2b and 3c The second conductor layers 2b and 3b are recessed in the direction opposite to the first conductor layers 2a and 3a (outward in the left and right direction in FIG. 11) at a position recessed in the direction (outward in the left and right direction in FIG. 11). They are different in steps so that they are located.

この場合、FPC部分4の第1FPC板4gの上面側(反第2FPC板4h側)に第1スペーサ51を、FPC部分4の第1FPC板4gと第2FPC板4hとの間に第2スペーサ52を、FPC部分4の第2FPC板4hと第3FPC板4iとの間に第3スペーサ53をそれぞれ設置し、プレス機によるプレス後に第1ないし第3スペーサ51〜53を取り外すことによって、FPC部分4における第1および第2FPC板4g,4hが第1ないし第3スペーサ51〜53の起伏面51b,52a,52b,53aに沿って引き延ばされて、FPC部分4の第1ないし第3FPC板4g〜4iの導出方向の長さを互いに異ならせるようにしている。   In this case, the first spacer 51 is provided on the upper surface side (on the side opposite to the second FPC plate 4h) of the first FPC plate 4g of the FPC portion 4, and the second spacer 52 is provided between the first FPC plate 4g and the second FPC plate 4h of the FPC portion 4. The third spacer 53 is installed between the second FPC plate 4h and the third FPC plate 4i of the FPC portion 4, and the first to third spacers 51 to 53 are removed after pressing by the press machine, thereby the FPC portion 4 The first and second FPC plates 4g and 4h are extended along the undulating surfaces 51b, 52a, 52b and 53a of the first to third spacers 51 to 53, and the first to third FPC plates 4g of the FPC portion 4 are extended. The lengths of ˜4i in the derivation direction are made different from each other.

したがって、上記実施例では、第3スペーサ51〜53による第1および第2FPC板4g,4hの引き延ばし効果と相俟って、図12に示すように、多層基板部分2,3同士をFPC部分4において屈曲させた際に外側に位置する第2FPC板4hの導出長さがそれよりも内側の第3FPC板4iの導出長さよりも長く、かつその第2FPC板4hよりも外側に位置する第1FPC板4gの導出長さがそれよりも内側の第2FPC板4hの導出長さよりも長くなり、多層基板部分2,3同士をFPC部分4において屈曲させて機器に組み込む際に、第1ないし第3FPC板4g〜4iの屈曲半径に差が生じ、各FPC板4g〜4iが重なって互いに干渉することが回避されることになる。これにより、FPC部分4を屈曲させた状態で内側の第2および第3FPC板4h,4iに圧縮応力が生じて弛みを生じたり、外側のFPC板4g,4hに引っ張り応力が生じて強い張力が作用することがより確実に回避され、屈曲された部分を元に戻そうとする著しい復元力が各FPC板4g〜4iに作用することを確実に抑制し、機器への組み込み時の作業性を損ねることがなくなって、組み込み作業性をより向上させることができる。   Therefore, in the above embodiment, combined with the effect of extending the first and second FPC plates 4g and 4h by the third spacers 51 to 53, as shown in FIG. The first FPC plate positioned outside the second FPC plate 4h located outside is longer than the leading length of the third FPC plate 4i positioned inside the second FPC plate 4h. The leading length of 4g becomes longer than the leading length of the second FPC board 4h on the inner side, and the first to third FPC boards are bent when the multilayer board portions 2 and 3 are bent at the FPC portion 4 and incorporated in the device. A difference occurs in the bending radii of 4g to 4i, and the FPC plates 4g to 4i are prevented from overlapping each other and interfering with each other. As a result, in the state where the FPC portion 4 is bent, a compressive stress is generated in the inner second and third FPC plates 4h and 4i to cause looseness, and a tensile stress is generated in the outer FPC plates 4g and 4h to cause a strong tension. It is more reliably avoided that it acts, and it is possible to reliably prevent the significant restoring force that tries to return the bent part from acting on each FPC plate 4g to 4i, thereby improving the workability when assembling the device. It is possible to improve the assembly workability without being damaged.

しかも、組み込み時に屈曲させた各FPC板4g〜4iに引っ張り応力または圧縮応力が作用することを確実に回避して、繰り返し屈曲させて使用しても、回路パターン12aに過大な応力が加わることもなく、屈曲時の耐久性の向上をさらに図ることができる上、FPC部分4での屈曲による各FPC板4g〜4iの断線も効果的に回避することができる。   Moreover, excessive stress is applied to the circuit pattern 12a even if the FPC plates 4g to 4i bent at the time of incorporation are surely avoided from being subjected to tensile stress or compressive stress and repeatedly bent. In addition, the durability at the time of bending can be further improved, and disconnection of the FPC plates 4g to 4i due to bending at the FPC portion 4 can be effectively avoided.

なお、本発明は上記各実施例に限定されるものではなく、その他種々の変形例を包含している。例えば、上記各実施例では、3枚の第1ないし第3FPC基板1a,1b,1cを積層したフレックスリジッド多層配線板Aについて述べたが、2枚または4枚以上のFPC基板を積層してなるフレックスリジッド多層配線板にも適用できるのはもちろんである。   In addition, this invention is not limited to said each Example, Other various modifications are included. For example, in each of the above-described embodiments, the flex-rigid multilayer wiring board A in which three first to third FPC boards 1a, 1b, and 1c are stacked has been described. However, two or four or more FPC boards are stacked. Of course, it can also be applied to flex-rigid multilayer wiring boards.

また、上記実施例1および実施例2では、スペーサ51〜53により第1および第2FPC板4a,4b,4g,4hの長さを引き延ばしたが、スペーサのみでは第1および第2FPC板の引き延ばし量に限界があるときは、積層前の第1および第2FPC板をプリプレグに仮止めし、その位置をずらしておいてから、その後積層することで対応するようにしてもよい。   Moreover, in the said Example 1 and Example 2, although the length of the 1st and 2nd FPC board 4a, 4b, 4g, 4h was extended by the spacers 51-53, the extending amount of the 1st and 2nd FPC board is only in a spacer. When there is a limit, the first and second FPC plates before lamination may be temporarily fixed to the prepreg, the positions thereof may be shifted, and then the lamination may be performed thereafter.

本発明の実施例1に係わるフレックスリジッド多層配線板の加工前のベース材の両面に銅箔を張った状態を示す第1ないし第3FPC基板の側面図である。It is a side view of the 1st thru | or 3rd FPC board | substrate which shows the state which spread | stretched copper foil on both surfaces of the base material before the process of the flex-rigid multilayer wiring board concerning Example 1 of this invention. 同じくベース材両面の銅箔に回路パターンを形成した状態を示す回路パターン形成後の第1ないし第3FPC基板の側面図である。It is a side view of the 1st thru | or 3rd FPC board after circuit pattern formation which shows the state in which the circuit pattern was similarly formed in the copper foil of both sides of a base material. 同じく絶縁保護膜を形成した状態を示す絶縁保護膜形成後の第1ないし第3FPC基板の側面図である。It is the side view of the 1st thru | or 3rd FPC board after the formation of the insulation protective film which similarly shows the state in which the insulation protective film was formed. 同じく絶縁保護膜形成後の第1ないし第3FPC基板を積層して一体化する前のフレックスリジッド多層配線板の側面図である。FIG. 6 is a side view of the flex-rigid multilayer wiring board before the first to third FPC boards having been similarly formed with the insulating protective film are stacked and integrated. 同じくプレス後のフレックスリジッド多層配線板の側面図である。It is the side view of the flex-rigid multilayer wiring board after the same press. 同じく完成したフレックスリジッド多層配線板の側面図である。It is the side view of the flex-rigid multilayer wiring board completed similarly. 同じく多層基板部分同士をFPC部分において屈曲させた状態を示すフレックスリジッド多層配線板の側面図である。It is a side view of a flex-rigid multilayer wiring board showing a state where the multilayer substrate portions are similarly bent at the FPC portion. 本発明の実施例2に係わるフレックスリジッド多層配線板を層厚方向から見た平面図である。It is the top view which looked at the flex-rigid multilayer wiring board concerning Example 2 of this invention from the layer thickness direction. 同じくフレックスリジッド多層配線板の側面図である。It is a side view of a flex-rigid multilayer wiring board. 同じく多層基板部分同士をFPC部分において屈曲させた状態を示すフレックスリジッド多層配線板の側面図である。It is a side view of a flex-rigid multilayer wiring board showing a state where the multilayer substrate portions are similarly bent at the FPC portion. 本発明の実施例3に係わるフレックスリジッド多層配線板の側面図である。It is a side view of the flex-rigid multilayer wiring board concerning Example 3 of the present invention. 同じく多層基板部分同士をFPC部分において屈曲させた状態を示すフレックスリジッド多層配線板の側面図である。It is a side view of a flex-rigid multilayer wiring board showing a state where the multilayer substrate portions are similarly bent at the FPC portion. 従来例に係わるFPC部分が1枚の板により構成されたフレックスリジッド多層配線板の側面図である。It is a side view of the flex-rigid multilayer wiring board in which the FPC part concerning a prior art example was comprised by one board. 従来例に係わるFPC部分が2枚の板により構成されたフレックスリジッド多層配線板の側面図である。It is a side view of the flex-rigid multilayer wiring board by which the FPC part concerning a prior art example was comprised by the board of 2 sheets. 従来例に係わるFPC部分が3枚の板により構成されたフレックスリジッド多層配線板の側面図である。It is a side view of the flex-rigid multilayer wiring board in which the FPC part concerning a prior art example was comprised by the board of 3 sheets. 従来例に係わる2枚の板により構成されたFPC部分において屈曲させた状態を示すフレックスリジッド多層配線板の側面図である。It is a side view of the flex-rigid multilayer wiring board which shows the state bent in the FPC part comprised by the board of 2 sheets concerning a prior art example.

符号の説明Explanation of symbols

2,3 多層基板部分
2a,3a 第1導体層
2b,3b 第2導体層
2c,3c 第3導体層
4 FPC部分
4a,4d,4g
第1FPC板(板)
4b,4e,4h
第2FPC板(板)
4c,4f,4i
第3FPC板(板)
A フレックスリジッド多層配線板
2, 3 Multilayer substrate portions 2a, 3a First conductor layers 2b, 3b Second conductor layers 2c, 3c Third conductor layer 4 FPC portions 4a, 4d, 4g
1st FPC board (board)
4b, 4e, 4h
Second FPC board (board)
4c, 4f, 4i
3rd FPC board (board)
A Flex-rigid multilayer wiring board

Claims (4)

それぞれ回路形成された複数層の導体層を有する多層基板部分同士を屈曲性を備えたFPC部分により電気的に接続してなるフレックスリジッド多層配線板であって、
上記FPC部分は、多層基板部分の導体層を個々に独立して電気的に接続する複数の板により構成されており、
各導体層よりそれぞれ導出する各板の導出方向の長さを、多層基板部分同士をFPC部分において屈曲させた際に外側に位置する板が内側に位置する板よりも長くなるように異ならせていることを特徴とするフレックスリジッド多層配線板。
A flex-rigid multilayer wiring board formed by electrically connecting multilayer substrate portions each having a plurality of conductor layers formed with circuits by FPC portions having flexibility,
The FPC portion is composed of a plurality of plates that electrically and independently connect the conductor layers of the multilayer substrate portion individually,
The lengths of the lead-out directions of the respective plates derived from the respective conductor layers are made different so that when the multilayer substrate portions are bent at the FPC portion, the outer plate is longer than the inner plate. A flex-rigid multilayer wiring board.
それぞれ回路形成された複数層の導体層を有する多層基板部分同士を屈曲性を備えたFPC部分により電気的に接続してなるフレックスリジッド多層配線板であって、
上記FPC部分は、多層基板部分の導体層を個々に独立して電気的に接続する複数の板により構成されており、
その各導体層よりそれぞれ導出する複数の板は、多層基板部分の層厚方向から見て各板同士がオーバーラップしないように導出方向と直交する方向へ互いに異ならせた位置からそれぞれ導出していることを特徴とするフレックスリジッド多層配線板。
A flex-rigid multilayer wiring board formed by electrically connecting multilayer substrate portions each having a plurality of conductor layers formed with circuits by FPC portions having flexibility,
The FPC portion is composed of a plurality of plates that electrically and independently connect the conductor layers of the multilayer substrate portion individually,
The plurality of plates derived from the respective conductor layers are respectively derived from positions that are different from each other in the direction orthogonal to the derived direction so that the respective plates do not overlap each other when viewed from the layer thickness direction of the multilayer substrate portion. A flex-rigid multilayer wiring board.
上記請求項1または請求項2に記載のフレックスリジッド多層配線板において、
各導体層よりそれぞれ導出する複数の板の導出位置を、多層基板部分同士をFPC部分において屈曲させた際に外側に位置する板の導出長さが内側に位置する板の導出長さよりも長くなるように多層基板部分の層厚方向と直交する側方から見て導出方向へ段差状に異ならせていることを特徴とするフレックスリジッド多層配線板。
In the flex-rigid multilayer wiring board according to claim 1 or 2,
The lead-out positions of the plurality of plates led out from the respective conductor layers are longer than the lead-out lengths of the plates located on the inner side when the multilayer substrate portions are bent at the FPC portions. As described above, the flex-rigid multilayer wiring board is characterized by being stepped in the lead-out direction when viewed from the side perpendicular to the layer thickness direction of the multilayer substrate portion.
上記請求項1または請求項3に記載のフレックスリジッド多層配線板において、
多層基板部分同士をFPC部分において屈曲させた際に外側に位置する板を、内側に位置する板よりも屈曲半径が大きくなるように長く引き延ばしていることを特徴とするフレックスリジッド多層配線板。
In the flex-rigid multilayer wiring board according to claim 1 or 3,
A flex-rigid multilayer wiring board characterized in that a board located outside when the multilayer board parts are bent at the FPC part is elongated so that a bending radius is larger than a board located inside.
JP2005145447A 2005-05-18 2005-05-18 Flexible/rigid multilayer printed circuit board Pending JP2006324406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005145447A JP2006324406A (en) 2005-05-18 2005-05-18 Flexible/rigid multilayer printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005145447A JP2006324406A (en) 2005-05-18 2005-05-18 Flexible/rigid multilayer printed circuit board

Publications (1)

Publication Number Publication Date
JP2006324406A true JP2006324406A (en) 2006-11-30

Family

ID=37543870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005145447A Pending JP2006324406A (en) 2005-05-18 2005-05-18 Flexible/rigid multilayer printed circuit board

Country Status (1)

Country Link
JP (1) JP2006324406A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009118935A1 (en) 2008-03-26 2009-10-01 イビデン株式会社 Flex-rigid wiring board and method for manufacturing the same
JP2011040607A (en) * 2009-08-12 2011-02-24 Tatsuta Electric Wire & Cable Co Ltd Multilayer flexible printed circuit board and method for manufacturing the same
JP2012204464A (en) * 2011-03-24 2012-10-22 Toshiba Design & Manufacturing Service Corp Multilayer rigid flexible substrate and manufacturing method therefor
US8461459B2 (en) 2010-02-23 2013-06-11 Ibiden Co., Ltd. Flex-rigid wiring board and method for manufacturing the same
CN103152980A (en) * 2013-03-23 2013-06-12 广州安费诺诚信软性电路有限公司 Bookend type hard-soft combined circuit board and manufacturing method thereof
JP2015038908A (en) * 2012-03-06 2015-02-26 イビデン株式会社 Flex-rigid wiring board
JP2015038907A (en) * 2012-03-06 2015-02-26 イビデン株式会社 Flex-rigid wiring board
WO2015155859A1 (en) * 2014-04-09 2015-10-15 山一電機株式会社 Multilayer substrate and method for manufacturing same
WO2016024415A1 (en) * 2014-08-12 2016-02-18 日本メクトロン株式会社 Extensible flexible printed circuit board and method for manufacturing extensible flexible printed circuit board
CN105578739A (en) * 2016-02-25 2016-05-11 广东欧珀移动通信有限公司 Circuit board and terminal
JP2016157902A (en) * 2015-02-26 2016-09-01 東芝ディーエムエス株式会社 Multilayer rigid flexible substrate and manufacturing method of the same
CN105979698A (en) * 2016-07-15 2016-09-28 广州杰赛科技股份有限公司 Rigid-flex circuit board and preparation method thereof
JP2017006311A (en) * 2015-06-19 2017-01-12 株式会社三共 Game machine
CN107155265A (en) * 2017-05-26 2017-09-12 维沃移动通信有限公司 A kind of rigid-flex combined board preparation method, rigid-flex combined board and mobile terminal
US10054487B2 (en) 2014-09-30 2018-08-21 Sumitomo Chemical Company, Limited Laminated film and flexible electronic device
CN112601369A (en) * 2021-02-24 2021-04-02 福莱盈电子股份有限公司 Processing method of flexible circuit board for improving reliability of blind hole

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133733A (en) * 2001-10-22 2003-05-09 Nippon Mektron Ltd Flexible printed board provided with cable part
JP2003133734A (en) * 2001-10-24 2003-05-09 Nippon Mektron Ltd Flexible printed board provided with cable
JP2003283131A (en) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd Laminated circuit and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133733A (en) * 2001-10-22 2003-05-09 Nippon Mektron Ltd Flexible printed board provided with cable part
JP2003133734A (en) * 2001-10-24 2003-05-09 Nippon Mektron Ltd Flexible printed board provided with cable
JP2003283131A (en) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd Laminated circuit and its manufacturing method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009118935A1 (en) 2008-03-26 2009-10-01 イビデン株式会社 Flex-rigid wiring board and method for manufacturing the same
US8399775B2 (en) 2008-03-26 2013-03-19 Ibiden Co., Ltd. Flex-rigid wiring board and method of manufacturing the same
JP2011040607A (en) * 2009-08-12 2011-02-24 Tatsuta Electric Wire & Cable Co Ltd Multilayer flexible printed circuit board and method for manufacturing the same
KR20120071387A (en) * 2009-08-12 2012-07-02 다츠다 덴센 가부시키가이샤 Multilayer flexible printed circuit board, and method for fabricating the same
KR101580203B1 (en) * 2009-08-12 2015-12-24 다츠다 덴센 가부시키가이샤 Multilayer flexible printed circuit board, and method for fabricating the same
US8461459B2 (en) 2010-02-23 2013-06-11 Ibiden Co., Ltd. Flex-rigid wiring board and method for manufacturing the same
JP2012204464A (en) * 2011-03-24 2012-10-22 Toshiba Design & Manufacturing Service Corp Multilayer rigid flexible substrate and manufacturing method therefor
JP2015038908A (en) * 2012-03-06 2015-02-26 イビデン株式会社 Flex-rigid wiring board
JP2015038907A (en) * 2012-03-06 2015-02-26 イビデン株式会社 Flex-rigid wiring board
CN103152980A (en) * 2013-03-23 2013-06-12 广州安费诺诚信软性电路有限公司 Bookend type hard-soft combined circuit board and manufacturing method thereof
WO2015155859A1 (en) * 2014-04-09 2015-10-15 山一電機株式会社 Multilayer substrate and method for manufacturing same
JP2016040793A (en) * 2014-08-12 2016-03-24 日本メクトロン株式会社 Extensible flexible printed board and method for manufacturing extensible flexible printed board
WO2016024415A1 (en) * 2014-08-12 2016-02-18 日本メクトロン株式会社 Extensible flexible printed circuit board and method for manufacturing extensible flexible printed circuit board
CN106664792A (en) * 2014-08-12 2017-05-10 日本梅克特隆株式会社 Extensible flexible printed circuit board and method for manufacturing extensible flexible printed circuit board
US10136514B2 (en) 2014-08-12 2018-11-20 Nippon Mektron, Ltd. Extensible flexible printed circuit board and method for manufacturing extensible flexible printed circuit board
US10054487B2 (en) 2014-09-30 2018-08-21 Sumitomo Chemical Company, Limited Laminated film and flexible electronic device
JP2016157902A (en) * 2015-02-26 2016-09-01 東芝ディーエムエス株式会社 Multilayer rigid flexible substrate and manufacturing method of the same
JP2017006311A (en) * 2015-06-19 2017-01-12 株式会社三共 Game machine
CN105578739A (en) * 2016-02-25 2016-05-11 广东欧珀移动通信有限公司 Circuit board and terminal
CN105979698A (en) * 2016-07-15 2016-09-28 广州杰赛科技股份有限公司 Rigid-flex circuit board and preparation method thereof
CN107155265A (en) * 2017-05-26 2017-09-12 维沃移动通信有限公司 A kind of rigid-flex combined board preparation method, rigid-flex combined board and mobile terminal
CN107155265B (en) * 2017-05-26 2019-07-26 维沃移动通信有限公司 A kind of rigid-flex combined board production method, rigid-flex combined board and mobile terminal
CN112601369A (en) * 2021-02-24 2021-04-02 福莱盈电子股份有限公司 Processing method of flexible circuit board for improving reliability of blind hole
CN112601369B (en) * 2021-02-24 2021-07-09 福莱盈电子股份有限公司 Processing method of flexible circuit board for improving reliability of blind hole

Similar Documents

Publication Publication Date Title
JP2006324406A (en) Flexible/rigid multilayer printed circuit board
JP4499126B2 (en) Rigid flexible printed circuit board and manufacturing method thereof
JP5121942B2 (en) Flex-rigid wiring board and manufacturing method thereof
US20080179079A1 (en) Printed-Wiring Board, Bending Processing Method for Printed-Wiring Board, and Electronic Equipment
JP2007165707A (en) Flexible wiring circuit board
JP4414365B2 (en) High-speed transmission board
JP2007281145A (en) Flexible wiring member
US7816609B2 (en) Wired circuit board
JP3992470B2 (en) Flexible printed circuit board having cable part
JP4136695B2 (en) Flexible printed circuit board
JP4236837B2 (en) Flexible printed circuit board having cable part
JP4793230B2 (en) Flexible printed circuit board
JP2000196205A (en) Flexible printed board
JP5115116B2 (en) Flexible wiring board
KR20220064117A (en) Flexible printed circuit board and electronic device including the same
JP4481184B2 (en) Method for manufacturing multilayer flexible circuit board
JP2009099837A (en) Flexible wiring board
JP5027535B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2006005134A (en) Flexible printed wiring board and its manufacturing method
JP2006253217A (en) Connection structure of flexible board, pickup, electronic apparatus and method of connecting flexible board
JP4653402B2 (en) Flex-rigid wiring board and manufacturing method thereof
JP4645261B2 (en) Flexible printed circuit board
JP2005142425A (en) Flexible wiring board and electronic equipment employing it
JP2008166496A (en) Flexible wiring board
KR101052160B1 (en) Flat cable with multiple wiring layers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Effective date: 20100105

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100511

Free format text: JAPANESE INTERMEDIATE CODE: A02