JP2006324049A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2006324049A
JP2006324049A JP2005144348A JP2005144348A JP2006324049A JP 2006324049 A JP2006324049 A JP 2006324049A JP 2005144348 A JP2005144348 A JP 2005144348A JP 2005144348 A JP2005144348 A JP 2005144348A JP 2006324049 A JP2006324049 A JP 2006324049A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
electrode terminal
positive electrode
battery element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005144348A
Other languages
Japanese (ja)
Other versions
JP4678235B2 (en
Inventor
Minoru Hasegawa
稔 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005144348A priority Critical patent/JP4678235B2/en
Publication of JP2006324049A publication Critical patent/JP2006324049A/en
Application granted granted Critical
Publication of JP4678235B2 publication Critical patent/JP4678235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery which is superior in battery characteristics such to have a small deterioration of capacity at high rate discharge and a high charge and discharge voltage, and which is improved in vibration resistant property by preventing fracture of a negative electrode terminal. <P>SOLUTION: One piece of positive electrode terminal is connected to the nearly central part in longitudinal direction of a positive electrode of belt-shape in which a positive electrode active material is formed, and respectively each one piece, total two pieces, of negative electrode terminals are connected to the both end parts of a negative electrode of belt-shape in which a negative electrode active material is formed. A battery element is formed by using these positive electrode and negative electrode, and stored in a battery can, then, the negative electrode terminals are connected to the battery can. At this time, the negative electrode terminal which is led out from inner peripheral part of the battery element is bent to the outer periphery side of the battery element, and connected to the battery can together with another one piece of negative electrode terminal which is bent to the inner periphery side of the battery element, led out from the outer periphery side of the battery element, and again bent to the inner periphery side of the battery element. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、金属缶により外装された非水電解質二次電池に関する。   The present invention relates to a nonaqueous electrolyte secondary battery covered with a metal can.

近年、携帯電話、ノートブック型パソコンなどをはじめとする電子機器のコードレス化、ポータブル化が進み、薄型、小型、軽量の携帯電子機器が次々と開発されている。また、機器や機能の多様化によって電力使用量が増加しており、それら電子機器のエネルギー源である電池の高容量化に対する要求が高まっている。   In recent years, electronic devices such as mobile phones and notebook computers have become cordless and portable, and thin, small, and lightweight portable electronic devices have been developed one after another. In addition, the amount of power used is increasing due to diversification of devices and functions, and there is an increasing demand for higher capacities of batteries that are energy sources of these electronic devices.

従来、これら電子機器の携帯用電源として、アルカリマンガン電池のような一次電池や、鉛畜電池、ニッカド(Ni−Cd)電池、ニッケル水素(Ni−MH)電池等の二次電池が用いられてきた。   Conventionally, primary batteries such as alkaline manganese batteries, secondary batteries such as lead livestock batteries, nickel-cadmium (Ni-Cd) batteries, nickel-metal hydride (Ni-MH) batteries have been used as portable power sources for these electronic devices. It was.

ところが、電子機器の小型、薄型化および多機能化により、軽量小型でありながらエネルギー密度の高い携帯用電源が要求されるため、一回の放電のみの使用でコスト的に不利である一次電池はもとより、放電電圧が低く、エネルギー密度の向上が困難であり、軽量化が難しい上述のような二次電池では要求を十分に満たすものとはなっていなかった。   However, due to the downsizing, thinning, and multi-functionality of electronic devices, a portable power source that is lightweight and compact but has high energy density is required. Of course, the secondary battery as described above, which has a low discharge voltage, is difficult to improve energy density, and is difficult to reduce in weight, has not sufficiently satisfied the requirements.

かかる状況から、例えばLiCoO2やLiNiO2等のリチウム複合酸化物を用いた正極活物質からなる正極と、リチウムをドープ/脱ドープ可能な例えばグラファイトや難黒鉛化性炭素材料等の炭素系材料を用いた負極活物質からなる負極とを用いた非水電解液二次電池が提案されている。 Under these circumstances, for example, a positive electrode comprising a positive active material with LiCoO 2 and LiNiO lithium composite oxides such as 2, a carbonaceous material such as lithium doping / possible dedoping as graphite or non-graphitizable carbon material A non-aqueous electrolyte secondary battery using a negative electrode made of the negative electrode active material used has been proposed.

上述の非水電解液二次電池は、両面に正極活物質層が形成され、正極端子が溶接された帯状の正極と、両面に負極活物質層が形成され、負極端子が溶接された帯状の負極とを、セパレータを介して積層、巻回して電池素子とし、これを例えば電池缶などの外装材に収容した後、非水電解液を注液し、正極端子板(電池蓋)をかしめて電池とする。このような非水電解液二次電池は高い充放電電圧を示し、高エネルギー密度を有する等、数々の利点を有するものである。   The non-aqueous electrolyte secondary battery described above has a strip-shaped positive electrode in which a positive electrode active material layer is formed on both sides and a positive electrode terminal is welded, and a strip-shaped positive electrode in which a negative electrode active material layer is formed on both surfaces and a negative electrode terminal is welded. A negative electrode is stacked and wound via a separator to form a battery element, which is housed in, for example, an outer packaging material such as a battery can, and then injected with a non-aqueous electrolyte, and a positive electrode terminal plate (battery cover) is caulked. Use batteries. Such a non-aqueous electrolyte secondary battery has a number of advantages such as a high charge / discharge voltage and a high energy density.

以下の特許文献1に、正極活物質材料としてリチウム複合酸化物を用い、負極活物質材料として炭素系材料を用いた二次電池が記載されている。
特開2001−110453号公報
Patent Document 1 below describes a secondary battery using a lithium composite oxide as a positive electrode active material and a carbon-based material as a negative electrode active material.
JP 2001-110453 A

特許文献1の二次電池では、高率放電時の容量低下が小さく、かつ出力特性に優れた二次電池とするために、一例として図1Aに示される正極活物質1bが形成された正極集電体1a上に正極端子3を溶接した正極1と、図1Bに示される負極活物質2bが形成された負極集電体2a上に2本の負極端子4a,4b(以下、特定の負極端子を示さないときは負極端子4と適宜称する。)を溶接した負極2とを用いている。正極1および負極2はセパレータを介して積層し、巻回して電池素子とし、これを金属製の電池缶に収容する。このとき負極は負極端子4a側から巻回され、電池素子内周部から負極端子4aが導出されるとともに、電池素子外周部から負極端子4bが導出され、負極端子4aおよび4bが電池缶底面と接続される。   In the secondary battery of Patent Document 1, in order to obtain a secondary battery that has a small capacity drop during high-rate discharge and excellent output characteristics, a positive electrode collector in which the positive electrode active material 1b shown in FIG. 1A is formed as an example. Two negative terminals 4a and 4b (hereinafter referred to as specific negative terminals) are formed on the positive electrode 1 in which the positive electrode terminal 3 is welded on the electric body 1a and the negative electrode current collector 2a in which the negative electrode active material 2b shown in FIG. 1B is formed. In this case, the negative electrode 2 is used. The positive electrode 1 and the negative electrode 2 are laminated via a separator and wound to form a battery element, which is accommodated in a metal battery can. At this time, the negative electrode is wound from the negative electrode terminal 4a side, the negative electrode terminal 4a is derived from the battery element inner periphery, the negative electrode terminal 4b is derived from the battery element outer periphery, and the negative electrodes 4a and 4b are connected to the bottom surface of the battery can. Connected.

上述のように、正極端子3および負極端子4間の距離を狭めることにより、電池が高い充放電電圧を有するとともに、電池内部の抵抗が低減されて放電容量の損失を抑制することができる。   As described above, by reducing the distance between the positive electrode terminal 3 and the negative electrode terminal 4, the battery has a high charge / discharge voltage, and the internal resistance of the battery is reduced, so that loss of discharge capacity can be suppressed.

ところで、上述の構造の電池では例えば図2に示すように、導出された2本の負極端子4a,4bがそれぞれ電池中心部に向けて内側に折り曲げられた状態で電池素子を電池缶5に収容し、負極端子4aおよび4bと電池缶5とを電池缶底面の中心部で接続している。なお、負極端子4aおよび4bは負極集電体2aに接続されているが、図2では便宜的に負極端子4aと負極集電体2aまたは負極端子4bと負極集電体2aが一体となっているように示している。   By the way, in the battery having the above structure, for example, as shown in FIG. 2, the battery element is accommodated in the battery can 5 in a state where the derived two negative terminals 4 a and 4 b are bent inward toward the center of the battery. The negative terminals 4a and 4b and the battery can 5 are connected at the center of the bottom surface of the battery can. The negative terminals 4a and 4b are connected to the negative current collector 2a. However, for convenience, the negative terminal 4a and the negative current collector 2a or the negative terminal 4b and the negative current collector 2a are integrated in FIG. As shown.

ところが、この構造の二次電池では、電池が繰り返し振動した場合に内周側の負極端子4aが破断されてしまうことがある。これは、内周側の負極端子4aが電池素子から導出されている部分から電池缶と接続されている部分までの距離が非常に短く、電池素子が小さく振動する場合であっても負極端子4aが引っ張られて負担がかかり、結果として負極端子4aに大きなダメージが加えられるためである。一方、外周側の負極端子4bにおいては、電池素子から導出されている部分から電池缶との接続部分までの距離が長いため、内周側の負極端子4aほどの負担はかからない。   However, in the secondary battery with this structure, the negative electrode terminal 4a on the inner peripheral side may be broken when the battery is repeatedly vibrated. This is because even if the distance from the portion where the negative electrode terminal 4a on the inner peripheral side is led out from the battery element to the portion connected to the battery can is very short and the battery element vibrates slightly, the negative electrode terminal 4a This is because a large load is applied to the negative electrode terminal 4a as a result. On the other hand, the negative electrode terminal 4b on the outer peripheral side is not as burdened as the negative electrode terminal 4a on the inner peripheral side because the distance from the portion led out from the battery element to the connection portion with the battery can is long.

したがって、この発明は上記問題点に鑑み、負極端子の破断を防止し、耐振動性に優れた非水電解質二次電池を提供することを目的とする。   Therefore, in view of the above problems, an object of the present invention is to provide a non-aqueous electrolyte secondary battery that prevents breakage of the negative electrode terminal and has excellent vibration resistance.

上記課題を解決するために、この発明による非水電解質二次電池では、1本の正極端子を設けた帯状の正極と、負極の両端部にそれぞれ1本ずつ負極端子を設けた帯状の負極とから構成される電池素子を有し、この電池素子が電池缶に収容された二次電池において、内周側の負極端子をいったん電池素子外周側に屈曲させ、さらに電池素子内周側に屈曲させて電池缶との接続部までの長さを持たせ、電池素子が振動する際に負極端子が追随できるような構成とする。   In order to solve the above problems, in the nonaqueous electrolyte secondary battery according to the present invention, a belt-like positive electrode provided with one positive electrode terminal, and a belt-like negative electrode provided with one negative electrode terminal at each of both ends of the negative electrode, In the secondary battery in which the battery element is housed in a battery can, the negative electrode terminal on the inner peripheral side is once bent toward the outer peripheral side of the battery element and further bent toward the inner peripheral side of the battery element. Thus, a length up to the connection portion with the battery can is provided so that the negative electrode terminal can follow when the battery element vibrates.

具体的には、直径A[mm]の電池缶を用いた場合、内周側の負極端子が電池素子から導出され、電池素子外周側に屈曲された部分から電池素子内周側に屈曲させた部分までの距離を1mm以上(A/2)mm以下とする。   Specifically, when a battery can having a diameter A [mm] is used, the negative electrode terminal on the inner peripheral side is led out from the battery element, and bent from the portion bent toward the outer peripheral side of the battery element toward the inner peripheral side of the battery element. The distance to the part is 1 mm or more and (A / 2) mm or less.

この発明によれば、電池素子振動時において、電池素子内周部から導出した負極端子にかかる負担を大幅に低減することが可能となる。このため、負極端子の破断を防ぐことができ、非水電解質二次電池の耐振動性が向上する。   According to the present invention, it is possible to significantly reduce the burden on the negative electrode terminal derived from the battery element inner periphery when the battery element vibrates. For this reason, the breakage of the negative electrode terminal can be prevented, and the vibration resistance of the nonaqueous electrolyte secondary battery is improved.

以下、この発明の一実施形態について図面を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図3は、この発明を適用したリチウムイオン二次電池の断面図である。この二次電池は、いわゆる円筒型といわれるものであり、ほぼ中空円柱状の電池缶11の内部に、帯状の正極21と負極22とがセパレータ25(25a,25b)を介して巻回された電池素子20を有している。電池缶11は、例えばニッケルめっきが施された鉄により構成されており、一端部が閉鎖され他端部が開放されている。電池缶11の内部には、電池素子20を挟むように巻回周面に対して垂直に一対の絶縁板12a,12bがそれぞれ配置されている。   FIG. 3 is a cross-sectional view of a lithium ion secondary battery to which the present invention is applied. This secondary battery is a so-called cylindrical type, and a strip-like positive electrode 21 and a negative electrode 22 are wound inside a substantially hollow cylindrical battery can 11 via a separator 25 (25a, 25b). The battery element 20 is included. The battery can 11 is made of, for example, iron plated with nickel, and has one end closed and the other end open. Inside the battery can 11, a pair of insulating plates 12 a and 12 b are respectively disposed perpendicular to the winding peripheral surface so as to sandwich the battery element 20.

電池缶11の開放端部には、正極端子板13と、この正極端子板13の内側に設けられた安全弁機構14およびPTC素子15とが、絶縁封口ガスケット16を介してかしめられることにより取り付けられている。正極端子板13は、例えば電池缶11と同様の材料により構成されている。安全弁機構14は、PTC素子15を介して正極端子板13と電気的に接続されており、内部短絡あるいは外部からの加熱などにより電池の内圧が一定以上となった場合にディスク板14aが反転して正極端子板13と電池素子20との電気的接続を切断するようになっている。PTC素子15は、温度が上昇すると抵抗値の増大により電流を制限し、大電流による異常な発熱を防止するものであり、例えば、チタン酸バリウム系半導体セラミックスにより構成されている。絶縁封口ガスケット16は、例えば絶縁材料により構成されており、表面にはアスファルトが塗布されている。   A positive terminal plate 13 and a safety valve mechanism 14 and a PTC element 15 provided inside the positive terminal plate 13 are attached to the open end portion of the battery can 11 by caulking through an insulating sealing gasket 16. ing. The positive electrode terminal plate 13 is made of the same material as the battery can 11, for example. The safety valve mechanism 14 is electrically connected to the positive electrode terminal plate 13 via the PTC element 15, and the disk plate 14a is reversed when the internal pressure of the battery exceeds a certain level due to internal short circuit or external heating. Thus, the electrical connection between the positive terminal plate 13 and the battery element 20 is cut off. When the temperature rises, the PTC element 15 limits the current by increasing the resistance value and prevents abnormal heat generation due to a large current. For example, the PTC element 15 is made of barium titanate semiconductor ceramics. The insulating sealing gasket 16 is made of, for example, an insulating material, and asphalt is applied to the surface.

電池素子20は、センターピン26を中心に巻回されている。電池素子20の正極21には正極端子23が接続されており、負極22には2本の負極端子24a,24bが接続されている。正極端子23は安全弁機構14に溶接されることにより正極端子板13と電気的に接続されており、負極端子は電池缶11に溶接され電気的に接続されている。   The battery element 20 is wound around the center pin 26. A positive electrode terminal 23 is connected to the positive electrode 21 of the battery element 20, and two negative electrode terminals 24 a and 24 b are connected to the negative electrode 22. The positive electrode terminal 23 is electrically connected to the positive electrode terminal plate 13 by being welded to the safety valve mechanism 14, and the negative electrode terminal is welded and electrically connected to the battery can 11.

以下、電池缶11に収容された電池素子20の構成について説明する。   Hereinafter, the configuration of the battery element 20 accommodated in the battery can 11 will be described.

[正極]
正極21は、正極活物質を含有する正極活物質層21bが、正極集電体21aの両面上に形成されたものである。正極集電体21aは、例えばアルミニウム(Al)箔,ニッケル箔あるいはステンレス箔などの金属箔により構成されている。
[Positive electrode]
The positive electrode 21 is obtained by forming positive electrode active material layers 21b containing a positive electrode active material on both surfaces of the positive electrode current collector 21a. The positive electrode current collector 21a is made of a metal foil such as an aluminum (Al) foil, a nickel foil, or a stainless steel foil.

正極活物質層21bは、例えば正極活物質と、導電剤と、結着剤とを含有して構成されている。正極活物質、導電剤、結着剤および溶剤は、均一に分散していればよく、その混合比は問わない。   The positive electrode active material layer 21b includes, for example, a positive electrode active material, a conductive agent, and a binder. The positive electrode active material, the conductive agent, the binder, and the solvent only need to be uniformly dispersed, and the mixing ratio is not limited.

正極活物質としては、目的とする電池の種類に応じて、金属酸化物、金属硫化物または特定の高分子を用いることができる。例えばリチウムイオン二次電池を構成する場合、LiMO2(式中、Mは1種以上の遷移金属を表す)を主体とする、リチウムと遷移金属との複合酸化物またはリチウムを含んだ層間化合物が用いられる。これらを構成する遷移金属としては、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、アルミニウム(Al)、バナジウム(V)、チタン(Ti)のうち少なくとも1種類が選択される。 As the positive electrode active material, a metal oxide, a metal sulfide, or a specific polymer can be used depending on the type of the target battery. For example, in the case of constituting a lithium ion secondary battery, a composite oxide of lithium and transition metal, or an intercalation compound containing lithium, mainly composed of LiMO 2 (wherein M represents one or more transition metals) is used. Used. As a transition metal constituting these, at least one selected from cobalt (Co), nickel (Ni), manganese (Mn), iron (Fe), aluminum (Al), vanadium (V), and titanium (Ti) is selected. Is done.

また、LiaMXb(式中、Mは上述の遷移金属から選ばれる1種であり、XはS、Se、PO4から選ばれ、a、bは整数である。)を用いることもできる。 Li a MX b (wherein, M is one selected from the above transition metals, X is selected from S, Se, and PO 4 , and a and b are integers) can also be used. .

また、正極活物質としてLiyMIO2またはLiyMII24で表されるリチウム複合酸化物を用いることもできる。このようなリチウム複合酸化物は正極活物質として用いることにより高電圧を発生させることができ、エネルギー密度に優れるため、特に好ましい材料である。これらの組成式においてMIは1種類以上の遷移金属元素を表しており、具体的にはコバルトおよびニッケルのうちの少なくとも1種を含むことが好ましい。MIIは1種類以上の遷移金属元素を表しており、具体的にはマンガン(Mn)が好ましい。また、yの値は電池の充放電状態によって異なり、通常、0.05以上1.10以下の範囲内である。このようなリチウム複合酸化物の具体例としては、LiCoO2、LiNiO2、LiNizCo1-z2(式中、0<z<1である。)あるいはLiMn24等が挙げられる。 Alternatively, a lithium composite oxide represented by Li y MIO 2 or Li y MII 2 O 4 can be used as the positive electrode active material. Such a lithium composite oxide is a particularly preferable material because it can generate a high voltage when used as a positive electrode active material and has an excellent energy density. In these composition formulas, MI represents one or more transition metal elements, and specifically, preferably contains at least one of cobalt and nickel. MII represents one or more transition metal elements, and specifically, manganese (Mn) is preferable. The value of y varies depending on the charge / discharge state of the battery, and is usually in the range of 0.05 to 1.10. Specific examples of such a lithium composite oxide include LiCoO 2 , LiNiO 2 , LiNi z Co 1-z O 2 (where 0 <z <1), LiMn 2 O 4, and the like.

導電剤としては、例えばカーボンブラックあるいはグラファイトなどの炭素材料等が用いられる。また、結着剤としては、例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニリデンフルオライド等が用いられる。また、溶剤としては、例えばN−メチル−2−ピロリドン(NMP)等が用いられる。   As the conductive agent, for example, a carbon material such as carbon black or graphite is used. As the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, polyvinylidene fluoride, or the like is used. Moreover, as a solvent, N-methyl-2-pyrrolidone (NMP) etc. are used, for example.

上述の正極活物質、結着剤、導電剤を均一に混合して正極合剤とし、この正極合剤を溶剤中に分散させてスラリー状にする。次いで、このスラリーをドクターブレード法等により正極集電体の両面に均一に塗布する。さらに、高温で乾燥させて溶剤を飛ばすことにより正極活物質層が形成される。   The above-described positive electrode active material, binder, and conductive agent are uniformly mixed to form a positive electrode mixture, and this positive electrode mixture is dispersed in a solvent to form a slurry. Next, this slurry is uniformly applied to both surfaces of the positive electrode current collector by a doctor blade method or the like. Furthermore, the positive electrode active material layer is formed by drying at a high temperature and removing the solvent.

また、正極21は正極集電体の長手方向略中央部にスポット溶接または超音波溶接で接続された1本の正極端子23を有している。この正極端子23は金属箔、網目状のものが望ましいが、電気化学的および化学的に安定であり、導通がとれるものであれば金属でなくとも問題はない。正極端子23の材料としては、例えばAl等が挙げられる。また、正極集電体21a上の正極端子溶接部分は、正極活物質層21bを形成しない正極集電体露呈部としてもよい。この場合、正極端子23が容易に溶接できる他、正極端子溶接時に発生する熱や振動によって活物質層がダメージを受け、活物質層の脱落などが生じる場合があり、これを防止することができる。   Moreover, the positive electrode 21 has one positive electrode terminal 23 connected by spot welding or ultrasonic welding to a substantially central portion in the longitudinal direction of the positive electrode current collector. The positive electrode terminal 23 is preferably a metal foil or mesh-like one, but there is no problem even if it is not a metal as long as it is electrochemically and chemically stable and can conduct electricity. Examples of the material of the positive electrode terminal 23 include Al. Moreover, the positive electrode terminal welding part on the positive electrode collector 21a is good also as a positive electrode collector exposed part which does not form the positive electrode active material layer 21b. In this case, the positive electrode terminal 23 can be easily welded, and the active material layer may be damaged due to heat and vibration generated during the positive electrode terminal welding, and the active material layer may fall off, which can be prevented. .

[負極]
負極22は、負極活物質を含有する負極活物質層22bが、負極集電体22aの両面上に形成されたものである。負極集電体22aは、例えば銅箔,ニッケル箔あるいはステンレス箔などの金属箔により構成されている。
[Negative electrode]
The negative electrode 22 is obtained by forming a negative electrode active material layer 22b containing a negative electrode active material on both surfaces of a negative electrode current collector 22a. The negative electrode current collector 22a is made of a metal foil such as a copper foil, a nickel foil, or a stainless steel foil.

負極活物質層22bは、例えば負極活物質と、必要であれば導電剤と、結着剤とを含有して構成されている。負極活物質、導電剤、結着剤および溶剤は、正極活物質と同様に、その混合比は問わない。   The negative electrode active material layer 22b includes, for example, a negative electrode active material, a conductive agent if necessary, and a binder. The mixing ratio of the negative electrode active material, the conductive agent, the binder, and the solvent is not limited as in the positive electrode active material.

負極活物質としては、リチウムをドープ/脱ドープ可能な炭素材料、結晶質、非結晶質金属酸化物が用いられる。具体的に、リチウムをドープ/脱ドープ可能な炭素材料としては、グラファイト、難黒鉛化性炭素材料、易黒鉛化性炭素材料、結晶構造が発達した高結晶性炭素材料等が挙げられる。より具体的には、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス)、黒鉛類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭等の炭素材料を使用することができる。   As the negative electrode active material, a carbon material that can be doped / undoped with lithium, a crystalline material, and an amorphous metal oxide are used. Specifically, examples of the carbon material that can be doped / undoped with lithium include graphite, non-graphitizable carbon material, graphitizable carbon material, and highly crystalline carbon material with a developed crystal structure. More specifically, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke), graphites, glassy carbons, organic polymer compound fired bodies (phenolic resin, furan resin, etc.) at an appropriate temperature. Carbon materials such as those obtained by firing and carbonization), carbon fibers, activated carbon, and the like can be used.

また、他の負極活物質材料として、リチウムと合金を形成可能な金属、またはこのような金属の合金化合物が挙げられる。ここで言う合金化合物とは、具体的にはリチウムと合金を形成可能なある金属元素をMとしたとき、MpM'qLir(式中、M'はLi元素およびM元素以外の1つ以上の金属元素である。また、pは0より大きい数値であり、q,rは0以上の数値である。)で表される化合物である。さらに、この発明では半導体元素であるB,Si,As等の元素も金属元素に含めることとする、具体的には、Mg,B,Al,Ga,In,Si,Ge,Sn,Pb,Sb,Bi,Cd、Ag、Zn、Hf、Zr、Yの各金属とそれらの合金化合物、すなわち、例えばLi−Al,Li−Al−M(式中、Mは2A族、3B族、4B族遷移金属元素のうち1つ以上からなる。)、AlSb、CuMgSb等が挙げられる。 As another negative electrode active material, a metal capable of forming an alloy with lithium, or an alloy compound of such a metal can be given. Specifically, the alloy compound referred to here is M p M ′ q Li r (where M ′ is 1 other than Li element and M element), where M is a metal element capable of forming an alloy with lithium. And p is a numerical value greater than 0, and q and r are numerical values greater than or equal to 0). Further, in the present invention, elements such as B, Si, As and the like, which are semiconductor elements, are also included in the metal element, specifically, Mg, B, Al, Ga, In, Si, Ge, Sn, Pb, Sb. , Bi, Cd, Ag, Zn, Hf, Zr, Y and their alloy compounds, that is, for example, Li-Al, Li-Al-M (wherein M is a 2A group, 3B group, 4B group transition) 1 or more of metal elements), AlSb, CuMgSb, and the like.

上述したような元素の中でも、3B族典型元素の他、SiやSn等の元素またはその合金を用いるのが好ましく、さらにSiまたはSi合金が特に好適である。SiまたはSi合金として具体的には、MxSi、MxSn(式中、MはSiまたはSnを除く1つ以上の金属元素である。)で表される化合物で、具体的にはSiB4、SiB6、Mg2Si、Mg2Sn、Ni2Si、TiSi2、MoSi2、CoSi2、NiSi2、CaSi2、CrSi2、Cu5Si、FeSi2、MnSi2、NbSi2、TaSi2、VSi2、WSi2、ZnSi2等が挙げられる。 Among the elements described above, it is preferable to use elements such as Si and Sn or alloys thereof in addition to the group 3B typical elements, and Si or Si alloys are particularly preferable. Specifically, Si or Si alloy is a compound represented by M x Si, M x Sn (wherein M is one or more metal elements excluding Si or Sn), specifically, SiB. 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 and the like.

結着剤としては、例えばポリフッ化ビニリデン、スチレンブタジエンゴム等が用いられる。また、溶剤としては、例えばN−メチル−2−ピロリドン、メチルエチルケトン等が用いられる。   As the binder, for example, polyvinylidene fluoride, styrene butadiene rubber or the like is used. Examples of the solvent include N-methyl-2-pyrrolidone and methyl ethyl ketone.

上述の負極活物質、結着剤、導電剤を均一に混合して負極合剤とし、溶剤中に分散させてスラリー状にする。次いで、このスラリーをドクターブレード法等により負極集電体の両面に均一に塗布する。さらに、高温で乾燥させて溶剤を飛ばすことにより負極活物質層が形成される。   The above-described negative electrode active material, binder, and conductive agent are uniformly mixed to form a negative electrode mixture, which is dispersed in a solvent to form a slurry. Next, this slurry is uniformly applied to both surfaces of the negative electrode current collector by a doctor blade method or the like. Furthermore, the negative electrode active material layer is formed by drying at a high temperature and removing the solvent.

また、負極22は集電体の両端部にスポット溶接または超音波溶接で接続された2本の負極端子24a,24bを有している。この負極端子24a,24bは電気化学的および化学的に安定であり、導通がとれるものであれば金属でなくとも問題はない。負極端子24a,24bの材料としては、例えば銅、ニッケル等が挙げられる。正極端子溶接部分と同様に、負極端子溶接部分を負極集電体露呈部としても良く、これにより負極端子溶接時の活物質の脱落などを防止することができる。   The negative electrode 22 has two negative terminals 24a and 24b connected to both ends of the current collector by spot welding or ultrasonic welding. The negative terminals 24a and 24b are electrochemically and chemically stable, and there is no problem even if they are not made of metal as long as they can be electrically connected. Examples of the material of the negative terminals 24a and 24b include copper and nickel. Similarly to the positive electrode terminal welded portion, the negative electrode terminal welded portion may be a negative electrode current collector exposed portion, thereby preventing the active material from dropping off during the negative electrode terminal welding.

[電解液]
電解液は、非水溶媒に電解質塩が溶解されたものであり、リチウムイオン電池に一般的に使用される材料が使用可能である。非水溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、テトラヒドロフラン、2−ジメトキシエタン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリルあるいはプロピオニトリル等が好ましく、これらのうちのいずれか1種または2種以上を混合して用いることができる。
[Electrolyte]
The electrolytic solution is obtained by dissolving an electrolyte salt in a non-aqueous solvent, and materials generally used for lithium ion batteries can be used. Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, tetrahydrofuran, 2-dimethoxyethane, 1,3-dioxolane, 4-methyl-1,3-dioxolane. , Diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, and the like are preferable, and any one of these or a mixture of two or more thereof can be used.

電解質塩としては、上記非水溶媒に溶解するものが用いられ、カチオンとアニオンが組み合わされてなる。カチオンにはアルカリ金属やアルカリ土類金属が用いられ、アニオンには、Cl-,Br-,I-,SCN-,ClO4 -,BF4 -,PF6 -,CF3SO3 -等が用いられる。具体的には、例えばLiCl、LiClO4、LiAsF6、LiPF6、LiBF4、LiB(C654、LiBr、CH3SO3Li、CF3SO3Li、N(CnF2n+1SO22Liなどがあり、これらのうちのいずれか1種または2種以上が混合して用いられている。中でも、LiPF6を主として用いることが好ましい。また、電解質塩濃度としては、上記非水溶媒に溶解することができる濃度であれば問題ないが、リチウムイオン濃度が非水溶媒に対して0.4mol/kg以上、2.0mol/kg以下の範囲であることが好ましい。 As the electrolyte salt, one that dissolves in the non-aqueous solvent is used, and a combination of a cation and an anion is used. Alkali metals and alkaline earth metals are used as cations, and Cl , Br , I , SCN , ClO 4 , BF 4 , PF 6 , CF 3 SO 3 − and the like are used as anions. It is done. Specifically, for example, LiCl, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, N (CnF 2n + 1SO 2 ) 2 Li and the like, and any one of these or a mixture of two or more thereof is used. Among them, it is preferable to mainly use LiPF 6 . The electrolyte salt concentration is not a problem as long as it can be dissolved in the non-aqueous solvent, but the lithium ion concentration is 0.4 mol / kg or more and 2.0 mol / kg or less with respect to the non-aqueous solvent. A range is preferable.

また、導電性高分子化合物の単体あるいは混合物を含有する高分子固体電解質や、膨潤溶媒を含有するゲル状電解質を用いてもよい。高分子固体電解質やゲル状電解質に含有される導電性高分子化合物としては電解液に相溶するものであり、具体的にシリコンゲル、アクリルゲル、アクリロニトリルゲル、ポリフォスファゼン変性ポリマー、ポリエチレンオキサイド、ポリプロピレンオキサイド、フッ素系ポリマー、およびこれらの複合ポリマーや架橋ポリマー、変性ポリマー等が使用可能である。フッ素系ポリマーとしては、例えばポリ(ビニリデンフルオライド)、ポリ(ビニリデンフルオライド−co−ヘキサフルオロプロピレン)、ポリ(ビニリデンフルオロライド−co−トリフルオロエチレン),或いはポリ(ビニリデンフルオロライド−co−テトラフルオロエチレン)等の高分子材料、およびこれらの混合物が使用される。   Alternatively, a polymer solid electrolyte containing a simple substance or a mixture of conductive polymer compounds or a gel electrolyte containing a swelling solvent may be used. The conductive polymer compound contained in the polymer solid electrolyte or the gel electrolyte is compatible with the electrolytic solution, specifically silicon gel, acrylic gel, acrylonitrile gel, polyphosphazene modified polymer, polyethylene oxide, Polypropylene oxide, fluorine-based polymers, composite polymers, cross-linked polymers, modified polymers, and the like thereof can be used. Examples of the fluorine-based polymer include poly (vinylidene fluoride), poly (vinylidene fluoride-co-hexafluoropropylene), poly (vinylidene fluoride-co-trifluoroethylene), or poly (vinylidene fluoride-co-tetra). Polymer materials such as fluoroethylene) and mixtures thereof are used.

[セパレータ]
セパレータは、例えばポリプロピレン(PP)あるいはポリエチレン(PE)などのポリオレフィン系の材料よりなる多孔質膜、またはセラミック製の不織布などの無機材料よりなる多孔質膜により構成されており、これら2種以上の多孔質膜を積層した構造とされていてもよい。中でも、ポリエチレン、ポリプロピレンの多孔質フィルムが最も有効である。
[Separator]
The separator is composed of, for example, a porous film made of a polyolefin-based material such as polypropylene (PP) or polyethylene (PE), or a porous film made of an inorganic material such as a ceramic nonwoven fabric. A structure in which a porous film is laminated may be used. Among these, polyethylene and polypropylene porous films are the most effective.

一般的にセパレータの厚みは5〜50μmが好適に使用可能であるが、7〜30μmがより好ましい。セパレータは、厚すぎると活物質の充填量が低下して電池容量が低下するとともに、イオン伝導性が低下して電流特性が低下する。逆に薄すぎると、膜の機械的強度が低下する。   In general, the thickness of the separator is preferably 5 to 50 μm, more preferably 7 to 30 μm. If the separator is too thick, the amount of the active material filled decreases, the battery capacity decreases, and the ionic conductivity decreases and the current characteristics deteriorate. On the other hand, if the film is too thin, the mechanical strength of the film decreases.

[電池素子の作製]
上述のような正極21および負極22を、正極21、セパレータ25a、負極22、セパレータ25bの順に積層し、セパレータ25bを内側にして巻回して電池素子20とする。固体状あるいはゲル状の電解質を用いる場合は、電解質溶液を正極21および負極22の表面に均一に塗布し、常温もしくは高温雰囲気下で乾燥させ、溶媒を気化・除去して電解質層を形成する。その後セパレータとともに積層して巻回し、電池素子とする。
[Production of battery element]
The positive electrode 21 and the negative electrode 22 as described above are laminated in the order of the positive electrode 21, the separator 25 a, the negative electrode 22, and the separator 25 b, and wound with the separator 25 b inside to form the battery element 20. When a solid or gel electrolyte is used, the electrolyte solution is uniformly applied to the surfaces of the positive electrode 21 and the negative electrode 22, dried in a normal temperature or high temperature atmosphere, and the solvent is vaporized and removed to form an electrolyte layer. Thereafter, it is laminated with a separator and wound to obtain a battery element.

上述の電子素子20からは電池素子内周部から導出された負極端子(以下、内周側負極端子と適宜称する。)24aおよび電池素子外周側から導出された負極端子(以下、外周側負極端子と適宜称する。)24bがそれぞれ導出されている。内周側負極端子24aは電池素子20から導出された部分から電池素子外周側へ屈曲し、さらに電池素子内周側に折り返して略U字状または略V字状の断面とする。外周側負極端子24bは導出された電池素子外周側から電池素子内周側に向けて屈曲させる。   From the electronic element 20 described above, a negative electrode terminal (hereinafter referred to as an inner peripheral negative electrode terminal) 24a derived from the battery element inner peripheral portion and a negative electrode terminal (hereinafter referred to as an outer peripheral negative electrode terminal) derived from the battery element outer peripheral side. 24b are derived respectively. The inner peripheral side negative terminal 24a is bent from the portion led out from the battery element 20 to the outer periphery side of the battery element, and is further folded back to the inner peripheral side of the battery element to have a substantially U-shaped or substantially V-shaped cross section. The outer peripheral side negative terminal 24b is bent from the derived battery element outer peripheral side toward the battery element inner peripheral side.

このときの内周側負極端子24aおよび外周側負極端子24bの屈曲の様子を図4A、図4B、図5A、図5Bおよび図6の各図にて詳細に説明する。なお、図4Aおよび図5Aはこの発明を適用した非水電解質二次電池の正面からみた場合の内部構成を示した模式図であり、図4Bおよび図5Bはこの非水電解質二次電池に収容された電池素子の底面部の様子を示した模式図である。また、特に図4Aおよび図4Bを特定しないときは図4と適宜称し、図5Aおよび図5Bを特定しないときは図5と適宜称する。   The bending state of the inner peripheral negative electrode terminal 24a and the outer peripheral negative electrode terminal 24b at this time will be described in detail with reference to FIGS. 4A, 4B, 5A, 5B, and 6. FIG. 4A and 5A are schematic views showing the internal configuration when viewed from the front of the non-aqueous electrolyte secondary battery to which the present invention is applied, and FIGS. 4B and 5B are housed in the non-aqueous electrolyte secondary battery. It is the schematic diagram which showed the mode of the bottom face part of the battery element made. 4A and 4B are appropriately referred to as FIG. 4, and when FIGS. 5A and 5B are not specified, they are appropriately referred to as FIG.

また、図4Aおよび図5Aの模式図では電池缶11底面部分と電池素子20の間に空隙を設けて負極端子24aおよび24bの構成を説明しているが、これはこの発明の詳細の説明を容易にするためである。実際は電池素子20が電池缶11底面部まで挿入されており、空隙を持たせて構成するものではない。   4A and 5A, the gaps between the bottom surface of the battery can 11 and the battery element 20 are provided to explain the configuration of the negative terminals 24a and 24b. This is a detailed explanation of the present invention. This is to make it easier. Actually, the battery element 20 is inserted to the bottom of the battery can 11 and is not configured to have a gap.

図4に示すように、内周側負極端子24aの導出部と外周側負極端子24bの導出部とがセンターピン挿入部分を中心として電池素子の半径上に位置する場合、内周側負極端子24aを外周側に屈曲させ、内側に向けて再度屈曲させる。さらに、外周側負極端子24bを内周側負極端子24aと重なるようにして屈曲させる。   As shown in FIG. 4, when the lead-out portion of the inner peripheral negative electrode terminal 24a and the lead-out portion of the outer peripheral negative electrode terminal 24b are located on the radius of the battery element with the center pin insertion portion as the center, the inner peripheral negative electrode terminal 24a Is bent to the outer peripheral side and bent again toward the inside. Further, the outer peripheral negative electrode terminal 24b is bent so as to overlap the inner peripheral negative electrode terminal 24a.

このとき、内周側負極端子24aが電池素子から導出され、電池素子外周側に向けて屈曲させた部分から再度電池素子内周側に向けて屈曲させた部分までの長さLを内周側負極端子24aの折り返し量とし、用いる電池缶の直径をA[mm]とすると、内周側負極端子24aの折り返し量は1[mm]以上A/2[mm]以下の長さとなるように構成する。具体的には、直径26mmの電池系であれば内周側負極端子24aの折り返し量を1mm以上13mm以下、直径18mmの電池系であれば内周側負極端子24aの折り返し量を1mm以上9mm以下とすればよい。   At this time, a length L from the portion where the inner peripheral negative electrode terminal 24a is led out from the battery element and bent toward the outer peripheral side of the battery element to the portion bent again toward the inner peripheral side of the battery element is the inner peripheral side. Assuming that the negative electrode terminal 24a is folded back and the diameter of the battery can used is A [mm], the inner circumferential negative electrode terminal 24a is folded back to a length of 1 [mm] or more and A / 2 [mm] or less. To do. Specifically, if the battery system has a diameter of 26 mm, the folding amount of the inner circumferential negative electrode terminal 24 a is 1 mm or more and 13 mm or less, and if the battery system has a diameter of 18 mm, the folding amount of the inner circumferential negative electrode terminal 24 a is 1 mm or more and 9 mm or less. And it is sufficient.

折り返し量が1mm未満である場合、振動時に内周側負極端子24aが電池素子20の動きに追随できず、内周側負極端子24aが破断してしまうおそれがある。また、折り返し量が13mmより大きくなった場合は内周側負極端子24aが歪み、電極と接触しやすくなるためショートが発生しやすくなる。   When the amount of folding is less than 1 mm, the inner circumferential negative electrode terminal 24a cannot follow the movement of the battery element 20 during vibration, and the inner circumferential negative electrode terminal 24a may be broken. Further, when the folding amount is larger than 13 mm, the inner circumferential negative electrode terminal 24a is distorted and easily comes into contact with the electrode, so that a short circuit is likely to occur.

また、図5に示すように、内周側負極端子24aの導出部と外周側負極端子24bの導出部とがセンターピン挿入部分を挟んで反対側に位置し、それぞれが電池素子20の直径上に位置する場合や、図6に示すように、例えば内周側負極端子24aの導出部と外周側負極端子24bの導出部とがセンターピン挿入部分を中心として90°の角度の位置にあるなど、図4以外の状態である場合が考えられる。   Further, as shown in FIG. 5, the lead-out portion of the inner peripheral negative electrode terminal 24 a and the lead-out portion of the outer peripheral negative electrode terminal 24 b are located on opposite sides of the center pin insertion portion, and each is on the diameter of the battery element 20. 6, for example, as shown in FIG. 6, the lead-out portion of the inner peripheral negative electrode terminal 24 a and the lead-out portion of the outer peripheral negative electrode terminal 24 b are at an angle of 90 ° with the center pin insertion portion as the center. A case other than the state shown in FIG. 4 is conceivable.

この場合も、内周側負極端子24aを略U字状または略V字状に屈曲させ、外周側負極端子24bを電池素子内周側に向けて屈曲させることで、内周側負極端子24aと外周側負極端子24bとが電池缶底面中央部で重なるため、この重なった部分と電池缶とを抵抗溶接により接続する。内周側負極端子24aの折り返し部分は図4の場合と同様に電池缶の直径をA[mm]とすると、内周側負極端子24aの折り返し量が1[mm]以上A/2[mm]以下の長さとなるようにする。   Also in this case, the inner peripheral negative electrode terminal 24a is bent in a substantially U shape or a substantially V shape, and the outer peripheral negative electrode terminal 24b is bent toward the inner peripheral side of the battery element. Since the outer peripheral side negative electrode terminal 24b overlaps at the center of the bottom surface of the battery can, the overlapped portion and the battery can are connected by resistance welding. When the diameter of the battery can is A [mm] at the folded portion of the inner peripheral negative electrode terminal 24a as in FIG. 4, the folded amount of the inner peripheral negative electrode terminal 24a is 1 [mm] or more and A / 2 [mm]. The length should be as follows.

次いで、上述の電池素子20を電池缶11に収容する。このとき、電池素子20の巻回面の負極端子導出側が、絶縁性樹脂により作製された絶縁板12aで覆うようにして収容する。この後、一方の電極棒を電池素子巻回中心部から挿入し、もう一方の電極棒を電池缶底面外側に配置して、内周側負極端子24aおよび外周側負極端子24bを重ねた状態で抵抗溶接を行う。   Next, the battery element 20 described above is accommodated in the battery can 11. At this time, the negative electrode terminal lead-out side of the winding surface of the battery element 20 is accommodated so as to be covered with an insulating plate 12a made of an insulating resin. Thereafter, one electrode rod is inserted from the battery element winding center portion, the other electrode rod is disposed outside the bottom surface of the battery can, and the inner peripheral negative electrode terminal 24a and the outer peripheral negative electrode terminal 24b are overlapped. Resistance welding is performed.

2本の負極端子24aおよび24bを電池缶11と溶接した後、センターピン26を挿入し、電池缶開放端部に位置する巻回面部分にも絶縁板12bを配置して電解液を注液する。このとき、固体状あるいはゲル状の電解質を用いる場合は電解液の注液は行わない。さらに、内側に安全弁機構14およびPTC素子15を設けた正極端子板13に正極端子23を接続するとともに、この正極端子板13が絶縁封口ガスケット16を介してかしめられることにより取り付けられ、電池缶11の内部が密閉される。   After the two negative terminals 24a and 24b are welded to the battery can 11, the center pin 26 is inserted, and the insulating plate 12b is also disposed on the winding surface portion located at the open end of the battery can to inject the electrolyte. To do. At this time, when a solid or gel electrolyte is used, the electrolyte solution is not injected. Further, the positive terminal 23 is connected to the positive terminal plate 13 provided with the safety valve mechanism 14 and the PTC element 15 on the inner side, and the positive terminal plate 13 is attached by caulking through an insulating sealing gasket 16, so that the battery can 11 The inside of is sealed.

なお、正極端子は製造工程上、ある程度の長さを持ったものを用いる必要がある。これは、あらかじめ正極端子23を正極端子板13に設けられた安全弁機構14に接続してから電池缶の開放端部を密閉するためであり、正極端子23が短いほど正極端子23と正極端子板13の接続が困難になる。このような構造を用いることにより、正極端子23が電池内部で略U字状に屈曲して収容される。   In addition, it is necessary to use a positive electrode terminal having a certain length in the manufacturing process. This is because the open end of the battery can is sealed after the positive electrode terminal 23 is connected to the safety valve mechanism 14 provided on the positive electrode terminal plate 13 in advance. The shorter the positive electrode terminal 23 is, the positive electrode terminal 23 and the positive electrode terminal plate are. 13 connections become difficult. By using such a structure, the positive terminal 23 is bent and accommodated in a substantially U shape inside the battery.

上述のようにして、この発明を適用した非水電解質二次電池が作製される。   As described above, a nonaqueous electrolyte secondary battery to which the present invention is applied is manufactured.

また、上記非水電解質二次電池内に収容する電池素子20において、正極集電体21aの巻回終端部に正極合剤を塗布しない正極集電体露呈部と、負極集電体22aの巻回終端部に負極合剤を塗布しない負極集電体露呈部とをそれぞれ設けた構造としても良い。このとき、巻回後の電池素子20において正極集電体露呈部および負極集電体露呈部が対向するように配置し、正極集電体露呈部と負極集電体露呈部との対向部が電池素子20の最外周を1周以上覆う構造とすることにより、電池缶外部から大きな負荷がかかり電池が圧壊した場合や、釘等が刺さった場合に瞬時に低抵抗の短絡を起こすことができ、急激な発熱を防ぐことができる。   Further, in the battery element 20 accommodated in the non-aqueous electrolyte secondary battery, the positive electrode current collector exposed portion where no positive electrode mixture is applied to the winding end portion of the positive electrode current collector 21a, and the negative electrode current collector 22a are wound. It is good also as a structure which provided the negative electrode electrical power collector exposure part which does not apply | coat a negative mix to a turn termination | terminus part, respectively. At this time, the battery element 20 after winding is disposed so that the positive electrode current collector exposed portion and the negative electrode current collector exposed portion face each other, and the facing portion between the positive electrode current collector exposed portion and the negative electrode current collector exposed portion is By having a structure that covers the outermost periphery of the battery element 20 more than one round, when a large load is applied from the outside of the battery can and the battery is crushed or a nail or the like is pierced, a short-circuit with low resistance can be instantaneously generated. , Can prevent sudden heat generation.

以下、実施例によりこの発明を具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

<実施例1>
[正極の作製]
正極活物質としてLiNiO2とLiMn24との複合材料を用いて正極を作製する。まず、LiNiO2とLiMn24とを6:4の割合で混合し、焼成してリチウム複合材料とする。このリチウム複合材料94重量部と、導電剤としてグラファイト3重量部と、結着剤としてポリフッ化ビニリデン3重量部とを混合して調製し、さらにこれをN−メチル−2−ピロリドンに分散させてスラリー状の正極合剤とした。
<Example 1>
[Production of positive electrode]
A positive electrode is produced using a composite material of LiNiO 2 and LiMn 2 O 4 as a positive electrode active material. First, LiNiO 2 and LiMn 2 O 4 are mixed at a ratio of 6: 4 and fired to obtain a lithium composite material. 94 parts by weight of this lithium composite material, 3 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were prepared and further dispersed in N-methyl-2-pyrrolidone. A slurry-like positive electrode mixture was prepared.

次いで、このスラリー状正極合剤を正極集電体である厚さ20μmの帯状アルミニウム箔の両面に厚さ120μmで均一に塗布した。次いで、乾燥工程を経てロールプレス機で圧縮成形し、正極とした。また、正極の略中央部にはアルミニウム製の正極端子を1本接続した。   Next, this slurry-like positive electrode mixture was uniformly applied to both surfaces of a 20 μm-thick strip-shaped aluminum foil as a positive electrode current collector with a thickness of 120 μm. Next, after a drying process, compression molding was performed with a roll press to obtain a positive electrode. Further, one aluminum positive electrode terminal was connected to the substantially central portion of the positive electrode.

[負極の作製]
粉砕した人造黒鉛粉末90重量部と、結着剤としてポリフッ化ビニリデン10重量部とを混合して調製し、さらにこれをN−メチル−2−ピロリドンに分散させてスラリー状の負極合剤とした。
[Production of negative electrode]
90 parts by weight of the pulverized artificial graphite powder and 10 parts by weight of polyvinylidene fluoride as a binder were prepared and further dispersed in N-methyl-2-pyrrolidone to obtain a slurry-like negative electrode mixture. .

次いで、このスラリー状負極合剤を負極集電体である厚さ20μmの帯状銅箔の両面に厚さ150μmで均一に塗布した。次いで、乾燥工程を経て、ロールプレス機で圧縮成形し、負極とした。また、負極の両端部にはそれぞれニッケル製の負極端子を接続し、2本の負極端子が導出されるようにした。   Next, this slurry-like negative electrode mixture was uniformly applied to both surfaces of a 20 μm-thick strip-shaped copper foil as a negative electrode current collector with a thickness of 150 μm. Then, after passing through a drying process, it was compression molded with a roll press to obtain a negative electrode. Moreover, the negative electrode terminal made from nickel was connected to the both ends of a negative electrode, respectively, and two negative electrode terminals were derived | led-out.

[電解液]
エチレンカーボネート(EC)50重量部とプロピレンカーボネート(PC)50重量部とを混合し、電解質塩としてLiPF6を0.7mol/kgを溶解させて電解液を作製した。
[Electrolyte]
50 parts by weight of ethylene carbonate (EC) and 50 parts by weight of propylene carbonate (PC) were mixed, and 0.7 mol / kg of LiPF 6 was dissolved as an electrolyte salt to prepare an electrolytic solution.

[試験用電池の作製]
上述のようにして作製した正極、および負極を、正極、セパレータ、負極、セパレータの順に積層し、巻回して電池素子とする。次いでこの電池素子を電池缶に収容し、内周側負極端子の折り返し量を1mmとして屈曲させ、外側負極端子とともに電池缶に接続した後、内側に安全弁機構およびPTC素子を設けた正極端子板に正極端子を接続し、正極端子板を電池缶に取り付けて直径26mm、高さ650mmの試験用電池とした。なお、試験用電池は5個作製した。
[Production of test battery]
The positive electrode and the negative electrode produced as described above are laminated in the order of the positive electrode, the separator, the negative electrode, and the separator, and wound to obtain a battery element. Next, this battery element is accommodated in a battery can, bent by setting the folding amount of the inner peripheral negative electrode terminal to 1 mm, and connected to the battery can together with the outer negative terminal, and then on the positive terminal plate provided with the safety valve mechanism and the PTC element on the inner side. A positive electrode terminal was connected, and the positive electrode terminal plate was attached to a battery can to obtain a test battery having a diameter of 26 mm and a height of 650 mm. Five test batteries were produced.

<実施例2>
内周側負極端子の折り返し量を5mmとし、他は実施例1と同様にして5個の試験用電池を作製した。
<Example 2>
Five test batteries were produced in the same manner as in Example 1 except that the amount of folding of the inner peripheral negative electrode terminal was 5 mm.

<実施例3>
内周側負極端子の折り返し量を13mmとし、他は実施例1と同様にして5個の試験用電池を作製した。
<Example 3>
Five test batteries were produced in the same manner as in Example 1 except that the amount of folding of the inner peripheral negative electrode terminal was 13 mm.

<比較例1>
内周側負極端子の折り返し量を0mmとし、他は実施例1と同様にして5個の試験用電池を作製した。
<Comparative Example 1>
Five test batteries were produced in the same manner as in Example 1 except that the amount of folding of the inner peripheral negative electrode terminal was 0 mm.

<比較例2>
内周側負極端子の折り返し量を0.5mmとし、他は実施例1と同様にして5個の試験用電池を作製した。
<Comparative Example 2>
Five test batteries were produced in the same manner as in Example 1 except that the amount of folding of the inner peripheral negative electrode terminal was 0.5 mm.

<比較例3>
内周側負極端子の折り返し量を14mmとし、他は実施例1と同様にして5個の試験用電池を作製した。
<Comparative Example 3>
Five test batteries were produced in the same manner as in Example 1 except that the amount of folding of the inner peripheral negative electrode terminal was 14 mm.

上述のようにして作製した各試験用電池について、2.5A、4.2Vの定電流定電圧充電を2時間半行った。   About each battery for a test produced as mentioned above, constant current constant voltage charge of 2.5A and 4.2V was performed for 2.5 hours.

充電後、振動試験を実施した。振動試験は(社)電池工業会の指針による「リチウム二次電池安全性評価基準ガイドライン」(SBA G1101−1997)に規定された「安全性試験基準」に基づいて実施した。   After charging, a vibration test was performed. The vibration test was carried out based on the “safety test standard” defined in “Lithium Secondary Battery Safety Evaluation Standard Guidelines” (SBA G1101-1997) according to the guidelines of the Battery Industry Association.

振動試験後、2.5Aでの定電流放電を行い、電池電圧が2.5Vに達した時点で終了とし、このときの電池容量を測定した。また、放電後にショートの有無を確認し、さらに各試験用電池を解体して内周側負極端子24aの切れの状態を確認した。   After the vibration test, a constant current discharge at 2.5 A was performed, and when the battery voltage reached 2.5 V, the process was terminated, and the battery capacity at this time was measured. Moreover, the presence or absence of a short circuit was confirmed after discharge, and each test battery was disassembled to confirm the state of the inner peripheral negative electrode terminal 24a being cut.

以下の表1に、測定結果を示す。   Table 1 below shows the measurement results.

Figure 2006324049
Figure 2006324049

表1から分かるように、直径26mmの電池において、内周側負負極端子の折り返し量が1mm以上13mm以下の場合にあっては、振動試験後の電池容量が2500mAh以上の高容量を有し、内周側負極端子の切れやショートが発生しておらず、優れた耐振動性能を有していることがわかる。   As can be seen from Table 1, in the case of a battery having a diameter of 26 mm, when the folding amount of the inner peripheral negative electrode terminal is 1 mm or more and 13 mm or less, the battery capacity after the vibration test has a high capacity of 2500 mAh or more, It can be seen that the inner peripheral negative terminal is not cut or short-circuited and has excellent vibration resistance.

これに対して、内周側負極端子の外側への折り返し量が1mm未満である比較例1および比較例2の試験用電池にいたっては、0mAhと電池容量の低下が見られ、内周側負極端子の切れも発生していた。これは振動を繰り返すことにより内周側負極端子がダメージを受け、内周側負極端子の破断したものと考える。   On the other hand, in the test batteries of Comparative Example 1 and Comparative Example 2 in which the amount of folding back to the outside of the inner peripheral negative electrode terminal is less than 1 mm, the battery capacity decreased to 0 mAh, and the inner peripheral side The negative electrode terminal was also cut off. This is considered to be because the inner peripheral negative terminal was damaged by repeated vibration and the inner peripheral negative terminal was broken.

また、比較例3のように内周側負極端子の外側への折り返し量が14mmと電池缶の半径より大きくなった場合、内周側負極端子の破断は起こらないものの、ショートが発生した。これは、電池内部の内周側負極端子に発生した歪みが電極と接触したためであると考える。   Moreover, when the amount of folding outward of the inner peripheral negative electrode terminal was 14 mm, which was larger than the radius of the battery can as in Comparative Example 3, the inner peripheral negative electrode terminal did not break, but a short circuit occurred. This is considered to be because the distortion generated in the inner peripheral negative electrode terminal inside the battery was in contact with the electrode.

以上、この発明の一実施形態について具体的に説明したが、この発明は、上述の実施形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。   Although one embodiment of the present invention has been specifically described above, the present invention is not limited to the above-described embodiment, and various modifications based on the technical idea of the present invention are possible.

例えば、上述の一実施形態において挙げた数値はあくまでも例に過ぎず、必要に応じてこれと異なる数値を用いてもよい。   For example, the numerical values given in the above-described embodiment are merely examples, and different numerical values may be used as necessary.

また、上述の実施形態においては正極活物質材料としてリチウム複合酸化物を用いた円筒形非水電解質二次電池について説明したが、リチウムイオン二次電池のみならず、他の材料を用いた電池についても適用可能である。さらに、円筒形のみならず角型等の電池にも適用可能である。   In the above-described embodiment, the cylindrical non-aqueous electrolyte secondary battery using the lithium composite oxide as the positive electrode active material has been described. However, not only the lithium ion secondary battery but also a battery using other materials. Is also applicable. Furthermore, it is applicable not only to a cylindrical battery but also to a square battery.

特許文献1の電池における正極および負極の構造を示す模式図である。2 is a schematic diagram showing the structure of a positive electrode and a negative electrode in a battery of Patent Document 1. 特許文献1の電池における電池構成を示す断面図である。2 is a cross-sectional view showing a battery configuration in a battery of Patent Document 1. FIG. この発明を適用した非水電解質二次電池の電池構成の一例を示す断面図である。It is sectional drawing which shows an example of the battery structure of the nonaqueous electrolyte secondary battery to which this invention is applied. この発明を適用した非水電解質二次電池の電池構成の一例を示す模式図である。It is a schematic diagram which shows an example of the battery structure of the nonaqueous electrolyte secondary battery to which this invention is applied. この発明を適用した非水電解質二次電池の電池構成の一例を示す模式図である。It is a schematic diagram which shows an example of the battery structure of the nonaqueous electrolyte secondary battery to which this invention is applied. この発明を適用した非水電解質二次電池の電池構成の一例を示す模式図である。It is a schematic diagram which shows an example of the battery structure of the nonaqueous electrolyte secondary battery to which this invention is applied.

符号の説明Explanation of symbols

1,21・・・正極
1a,21a・・・正極集電体
1b,21b・・・正極活物質層
2,22・・・負極
2a,22a・・・負極集電体
2b,22b・・・負極活物質層
3,23・・・正極端子
4,4a,4b・・・負極端子
5,11・・・電池缶
12a,12b・・・絶縁板
13・・・正極端子板
14・・・安全弁機構
14a・・・ディスク板
15・・・PTC素子
16・・・絶縁封口ガスケット
20・・・電池素子
24a・・・内周側負極端子24a
24b・・・外周側負極端子24b
25,25a,25b・・・セパレータ
26・・・センターピン
1, 21 ... Positive electrode 1a, 21a ... Positive electrode current collector 1b, 21b ... Positive electrode active material layer 2, 22 ... Negative electrode 2a, 22a ... Negative electrode current collector 2b, 22b ... Negative electrode active material layers 3, 23 ... Positive electrode terminals 4, 4a, 4b ... Negative electrode terminals 5, 11 ... Battery cans 12a, 12b ... Insulating plate 13 ... Positive electrode terminal plate 14 ... Safety valve Mechanism 14a ... Disk plate 15 ... PTC element 16 ... Insulation sealing gasket 20 ... Battery element 24a ... Inner peripheral negative electrode terminal 24a
24b ... Outer peripheral side negative terminal 24b
25, 25a, 25b ... separator 26 ... center pin

Claims (3)

負極集電体上に負極活物質層が形成され、上記負極集電体の両端部にそれぞれ第1の負極端子および第2の負極端子が接続された帯状の負極と、正極集電体上に正極活物質層が形成され、上記第1の負極端子および上記第2の負極端子の略中央部に対向する部分に正極端子が接続された帯状の正極とから電池素子が構成され、上記電池素子が直径Ammの電池缶に収容された非水電解質二次電池において、
上記電池素子の内周部より導出され、電池素子外周側に屈曲され、さらに電池素子内周側に屈曲された上記第1の負極端子と、上記電池素子の外周部より導出され、電池素子内周側に屈曲された上記第2の負極端子とが電池缶底面部に接続され、
上記第1の負極端子の電池素子外周側への折り曲げ量が1mm以上(A/2)mm以下であることを特徴とする非水電解質二次電池。
A negative electrode active material layer is formed on the negative electrode current collector, and a strip-shaped negative electrode in which the first negative electrode terminal and the second negative electrode terminal are connected to both ends of the negative electrode current collector, and the positive electrode current collector A battery element is formed from a strip-like positive electrode in which a positive electrode active material layer is formed and a positive electrode terminal is connected to a portion facing the substantially central portion of the first negative electrode terminal and the second negative electrode terminal. Is a non-aqueous electrolyte secondary battery housed in a battery can having a diameter of Amm,
Derived from the inner periphery of the battery element, bent toward the outer periphery of the battery element, and further bent toward the inner periphery of the battery element, and derived from the outer periphery of the battery element, The second negative electrode terminal bent to the peripheral side is connected to the bottom of the battery can,
A non-aqueous electrolyte secondary battery, wherein the amount of bending of the first negative electrode terminal toward the outer periphery of the battery element is 1 mm or more (A / 2) mm or less.
直径26mmの電池缶を有し、上記第1の負極端子の電池素子外側への折り曲げ量が1mm以上13mm以下であることを特徴とする請求項1に記載の非水電解質二次電池。   2. The nonaqueous electrolyte secondary battery according to claim 1, further comprising a battery can having a diameter of 26 mm, wherein an amount of bending of the first negative electrode terminal to the outside of the battery element is 1 mm or more and 13 mm or less. 直径18mmの電池缶を有し、上記第1の負極端子の電池素子外側への折り曲げ量が1mm以上9mm以下であることを特徴とする請求項1に記載の非水電解質二次電池。   2. The nonaqueous electrolyte secondary battery according to claim 1, further comprising a battery can having a diameter of 18 mm, wherein an amount of bending of the first negative electrode terminal to the outside of the battery element is 1 mm or more and 9 mm or less.
JP2005144348A 2005-05-17 2005-05-17 Nonaqueous electrolyte secondary battery Active JP4678235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005144348A JP4678235B2 (en) 2005-05-17 2005-05-17 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005144348A JP4678235B2 (en) 2005-05-17 2005-05-17 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2006324049A true JP2006324049A (en) 2006-11-30
JP4678235B2 JP4678235B2 (en) 2011-04-27

Family

ID=37543577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005144348A Active JP4678235B2 (en) 2005-05-17 2005-05-17 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4678235B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335232A (en) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd Secondary battery and its manufacturing method
JP2009170365A (en) * 2008-01-18 2009-07-30 Sanyo Electric Co Ltd Sealed battery
JP2010003686A (en) * 2008-06-20 2010-01-07 Samsung Sdi Co Ltd Secondary battery and its manufacturing method
WO2013038676A1 (en) * 2011-09-14 2013-03-21 パナソニック株式会社 Non-aqueous electrolyte secondary cell
KR101810269B1 (en) * 2013-09-24 2017-12-18 주식회사 엘지화학 The secondary battery with increased bonding strength between electrode assembly and the battery case
CN111902968A (en) * 2018-03-28 2020-11-06 三洋电机株式会社 Battery and method for manufacturing same
CN113328133A (en) * 2021-05-31 2021-08-31 珠海冠宇电池股份有限公司 Battery with a battery cell
CN113328064A (en) * 2021-05-31 2021-08-31 珠海冠宇电池股份有限公司 Negative plate and battery
CN114424388A (en) * 2019-09-30 2022-04-29 株式会社村田制作所 Secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261439A (en) * 1997-03-19 1998-09-29 Sanyo Electric Co Ltd Lithium secondary battery
JP2001110453A (en) * 1999-10-04 2001-04-20 Sony Corp Nonaqueous electrolytic solution secondary battery
JP2001135299A (en) * 1999-11-05 2001-05-18 Sony Corp Sealed battery
JP2001256954A (en) * 2000-03-10 2001-09-21 Sony Corp Electricity storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261439A (en) * 1997-03-19 1998-09-29 Sanyo Electric Co Ltd Lithium secondary battery
JP2001110453A (en) * 1999-10-04 2001-04-20 Sony Corp Nonaqueous electrolytic solution secondary battery
JP2001135299A (en) * 1999-11-05 2001-05-18 Sony Corp Sealed battery
JP2001256954A (en) * 2000-03-10 2001-09-21 Sony Corp Electricity storage device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335232A (en) * 2006-06-15 2007-12-27 Matsushita Electric Ind Co Ltd Secondary battery and its manufacturing method
JP2009170365A (en) * 2008-01-18 2009-07-30 Sanyo Electric Co Ltd Sealed battery
JP2010003686A (en) * 2008-06-20 2010-01-07 Samsung Sdi Co Ltd Secondary battery and its manufacturing method
US8703327B2 (en) 2008-06-20 2014-04-22 Samsung Sdi Co., Ltd. Rechargeable battery and manufacturing method thereof
WO2013038676A1 (en) * 2011-09-14 2013-03-21 パナソニック株式会社 Non-aqueous electrolyte secondary cell
KR101810269B1 (en) * 2013-09-24 2017-12-18 주식회사 엘지화학 The secondary battery with increased bonding strength between electrode assembly and the battery case
CN111902968A (en) * 2018-03-28 2020-11-06 三洋电机株式会社 Battery and method for manufacturing same
CN114424388A (en) * 2019-09-30 2022-04-29 株式会社村田制作所 Secondary battery
CN113328133A (en) * 2021-05-31 2021-08-31 珠海冠宇电池股份有限公司 Battery with a battery cell
CN113328064A (en) * 2021-05-31 2021-08-31 珠海冠宇电池股份有限公司 Negative plate and battery

Also Published As

Publication number Publication date
JP4678235B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP4915390B2 (en) Non-aqueous electrolyte battery
JP4678235B2 (en) Nonaqueous electrolyte secondary battery
JP2009048981A (en) Nonaqueous electrolyte secondary battery
KR20060128690A (en) Electrolytic solution and battery
JP5412843B2 (en) battery
JP2008041504A (en) Nonaqueous electrolyte battery
JP2004031165A (en) Nonaqueous electrolyte battery
JP4539658B2 (en) battery
JP2001338639A (en) Non-aqueous electrolyte battery
JP2005166290A (en) Electrolyte and battery using it
US20140370379A1 (en) Secondary battery and manufacturing method thereof
JP2009164053A (en) Battery
JP5141940B2 (en) Secondary battery
JP4591674B2 (en) Lithium ion secondary battery
JP2001185213A5 (en)
JP2010186689A (en) Nonaqueous electrolyte secondary battery
JP2005302382A (en) Nonaqueous electrolyte secondary battery pack
JP2009054469A (en) Nonaqueous secondary battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP3714259B2 (en) Nonaqueous electrolyte secondary battery
JP2009048815A (en) Nonaqueous electrolyte solution secondary battery
JP4839746B2 (en) Cylindrical non-aqueous electrolyte secondary battery
JP2007172947A (en) Nonaqueous electrolyte secondary battery
JP2012074403A (en) Secondary battery
JP2002203556A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R151 Written notification of patent or utility model registration

Ref document number: 4678235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250