JP2006319602A - Solid-state image pickup apparatus and method for detecting flicker defect - Google Patents

Solid-state image pickup apparatus and method for detecting flicker defect Download PDF

Info

Publication number
JP2006319602A
JP2006319602A JP2005139408A JP2005139408A JP2006319602A JP 2006319602 A JP2006319602 A JP 2006319602A JP 2005139408 A JP2005139408 A JP 2005139408A JP 2005139408 A JP2005139408 A JP 2005139408A JP 2006319602 A JP2006319602 A JP 2006319602A
Authority
JP
Japan
Prior art keywords
pixel
output
pixels
value
peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005139408A
Other languages
Japanese (ja)
Other versions
JP4544027B2 (en
Inventor
Kazuyoshi Nishimoto
和義 西元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005139408A priority Critical patent/JP4544027B2/en
Publication of JP2006319602A publication Critical patent/JP2006319602A/en
Application granted granted Critical
Publication of JP4544027B2 publication Critical patent/JP4544027B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Image Input (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To favorably detect flicker defect pixels of a solid-state image pickup device to be used in a solid-state image pickup apparatus such as an infrared camera, even in a period other than a calibration period. <P>SOLUTION: This apparatus is provided with an infrared solid-state image pickup device composed of a plurality of pixels arranged in two dimensions; a frame memory integrator which integrates the output of each of the pixels over a plurality of frames and calculates an integrated pixel output for each pixel; an adjacent pixel average value calculation means for calculating the average of the integrated pixel outputs of neighboring pixels of a detection object pixel; a neighboring pixel comparator which calculates the difference between the value of the integrated pixel output of the detection object pixel and the average value of the integrated pixel outputs of the neighboring pixels of the detection object pixel, and specifies the pixel as a flicker defect pixel, if the difference value exceeds a criterion set beforehand; and a defect correction means which substitutes an alternate value derived from the outputs of the other pixels, for the output of a defective pixel including a flicker defect pixel specified by the neighboring pixel comparator. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、撮像用のデバイスとして固体撮像素子を用いた赤外線カメラ等の固体撮像装置、及び固体撮像素子において発生した点滅欠陥画素を検出するための点滅欠陥検出方法に関する。 The present invention relates to a solid-state imaging device such as an infrared camera using a solid-state imaging device as an imaging device, and a blinking defect detection method for detecting a blinking defective pixel generated in the solid-state imaging device.

固体撮像素子においては、固定欠陥画素とは別に点滅欠陥が存在する。ここで、点滅欠陥画素とは、あるときは正常な輝度のように動作する一方、他のあるときは異常輝度を出力する等、非定常的な振る舞いをする画素のことを示す。
点滅欠陥画素の輝度変動には周期性や規則性がほぼないため、固定欠陥画素検出と同様の方法では検出は難しい。
In the solid-state imaging device, a blinking defect exists in addition to the fixed defective pixel. Here, the blinking defective pixel indicates a pixel that behaves like normal luminance in some cases, but outputs abnormal luminance in other cases, such as outputting abnormal luminance.
Since there is almost no periodicity or regularity in the luminance variation of the blinking defective pixel, it is difficult to detect by the same method as the fixed defective pixel detection.

このような点滅欠陥画素を検出するシステムの一例としては、均一温度被写体を撮像し、輝度変化、ばらつきにより検出する従来技術が知られている。(例えば、特許文献1参照)
特開2003−298949(第1図)
As an example of a system for detecting such blinking defective pixels, a conventional technique is known in which a uniform temperature object is imaged and detected by luminance change and variation. (For example, see Patent Document 1)
JP 2003-298949 A (FIG. 1)

しかしながら、上掲の手法では、オフセット補正、感度補正、固定欠陥補正および点滅欠陥補正を実施するためには、固体撮像素子の画角ほぼ全体に亘りほぼ均一な温度を有する被写体を撮像(以下、キャリブレーションという)することが必要である。
特に点滅欠陥検出に関しては、非定常的に異常輝度を呈し、点滅欠陥出現の周期が不定であるため、キャリブレーション時間より長い周期の点滅欠陥画素を検出することができない。
また、長い周期の点滅欠陥を検出するためには、数100フレームに渡る長時間を要することになり、その時間は本来の被写体を撮像することができない。
さらに点滅欠陥画素は、電源を立ち上げるごとにその発生画素の位置(x、y)が一定でないため、電源投入する度に、長時間にわたるキャリブレーションを実施しなければならない。
However, in the above-described method, in order to perform offset correction, sensitivity correction, fixed defect correction, and blinking defect correction, an object having a substantially uniform temperature is captured over almost the entire angle of view of the solid-state imaging device (hereinafter, Calibration).
In particular, with respect to detection of blinking defects, abnormal luminance is exhibited non-steadily, and the blinking defect appearance cycle is indefinite, and therefore blinking defective pixels having a cycle longer than the calibration time cannot be detected.
Further, in order to detect a flashing defect with a long cycle, it takes a long time of several hundred frames, and the original subject cannot be imaged during that time.
Further, since the position (x, y) of the generated defective pixel is not constant every time the power is turned on, calibration for a long time must be performed every time the power is turned on.

本願に記載の発明は、この様な問題点を解決することを課題としてなされたものであり、赤外線カメラ等の固体撮像装置にて使用される固体撮像素子の点滅欠陥画素の検出を、キャリブレーション期間以外でも好適に検出できるようにすることを目的としている。   The invention described in the present application has been made with the object of solving such problems, and calibration of detection of blinking defective pixels in a solid-state imaging device used in a solid-state imaging device such as an infrared camera is performed. The object is to enable detection outside of the period.

この発明にかかる固体撮像装置は、2次元的に配置された複数の画素から構成される赤外線固体撮像素子と、各々の前記画素について、前記画素が呈する出力を複数フレームに亘り積分して積分画素出力を算出するフレームメモリ積分器と、検出対象画素の周辺画素における前記積分画素出力の平均を算出する隣接画素平均値算出手段と、前記検出対象画素の前記積分画素出力の値と、前記検出対象画素の周辺画素における前記積分画素出力の平均の値との差分をとり、前記差分の値が予め設定した判定基準を上回った画素を以って点滅欠陥画素であると特定する周辺画素比較器と、前記周辺画素比較器により特定された点滅欠陥画素を含めた欠陥画素にかかる出力を他の画素の出力から導出した代替値により代替させる欠陥補正手段とを備えるようにした。   The solid-state imaging device according to the present invention includes an infrared solid-state imaging device composed of a plurality of pixels arranged two-dimensionally, and an integration pixel obtained by integrating the output of the pixel over a plurality of frames for each of the pixels. A frame memory integrator for calculating an output; an adjacent pixel average value calculating means for calculating an average of the integrated pixel outputs in peripheral pixels of the detection target pixel; a value of the integration pixel output of the detection target pixel; and the detection target A peripheral pixel comparator that takes a difference from the average value of the integrated pixel output in the peripheral pixels of the pixel, and identifies the blinking defective pixel as a pixel with the difference value exceeding a predetermined criterion And defect correcting means for substituting the output relating to the defective pixel including the blinking defective pixel specified by the peripheral pixel comparator with an alternative value derived from the output of another pixel. Was to so that.

点滅欠陥画素検出をキャリブレーション期間中に実施する必要がなくなるため、長時間のキャリブレーションが不要となり、本来の撮像時間に対する影響が少なくなる。
また、長時間周期で点滅している点滅欠陥を検出する場合も、キャリブレーション期間中に検出できる点滅周期も限られていたのに対して、常時検出を実施しているため長時間周期での点滅画素検出にも対応できる。
Since it is not necessary to perform blinking defective pixel detection during the calibration period, calibration for a long time is unnecessary, and the influence on the original imaging time is reduced.
In addition, when detecting a blinking defect that blinks in a long cycle, the flash cycle that can be detected during the calibration period is limited, but since it is always detected, it can be detected in a long cycle. It can also handle blinking pixel detection.

実施の形態1.
以下、この発明の好適な実施の形態に関し図面に基づき説明する。実施の形態同士で同様の構成には互いに同一の符号を付し、重複説明を省略する。
Embodiment 1 FIG.
Preferred embodiments of the present invention will be described below with reference to the drawings. The same reference numerals are given to the same configurations in the embodiments, and the duplicate description is omitted.

図1に、この発明の実施の形態1に係る赤外線カメラ100の構成を示す。 FIG. 1 shows the configuration of an infrared camera 100 according to Embodiment 1 of the present invention.

赤外線カメラ100は、赤外線固体撮像素子(以下、固体撮像素子という)1と、この固体撮像素子1の画角ほぼ全体に亘りほぼ均一な温度を有する被写体(図示せず)を撮像したときの固体撮像素子1からの補正前画素データ101を利用して画素間の出力オフセットを補正するオフセット補正手段2と、上記被写体の温度変化による各画素の撮像出力の変化を利用して画素間の感度差を補正する感度補正手段4と、点滅欠陥画素を検出し点滅欠陥画素の位置を特定する点滅欠陥画素検出手段50と、点滅欠陥画素を含めた欠陥画素に係る出力を他の画素の出力から導出した代替値により代替させて補正する欠陥補正手段6とからなる。 The infrared camera 100 captures an infrared solid-state image sensor (hereinafter referred to as a solid-state image sensor) 1 and a solid when an object (not shown) having a substantially uniform temperature over almost the entire angle of view of the solid-state image sensor 1 is imaged. An offset correction unit 2 that corrects an output offset between pixels using the pre-correction pixel data 101 from the image sensor 1 and a sensitivity difference between pixels using a change in imaging output of each pixel due to a temperature change of the subject. Sensitivity correction means 4 for correcting the defect, blinking defective pixel detection means 50 for detecting the blinking defective pixel and specifying the position of the blinking defective pixel, and an output relating to the defective pixel including the blinking defective pixel is derived from outputs of other pixels. And defect correcting means 6 for correcting by substituting with the alternative value.

固体撮像素子1を用いる赤外線カメラ100等の撮像装置では、図1に一例を示すように、(1)オフセット補正、(2)感度補正、(3)欠陥補正等の処理を固体撮像素子1からの補正前画素データ101に施す。
被写体から到来する光線のうち主として赤外線領域に属する光線が、赤外線固体撮像素子1により捕らえられる。
固体撮像素子1は二次元的に配置された多数の画素から構成され、各画素にはそれぞれの画素の位置(x、y)を示すアドレスが付されており、各画素はそれぞれ赤外線の受光強度に応じた出力を呈する。
この各画素出力について(1)オフセット補正、(2)感度補正、(3)欠陥補正の順で、補正処理が施される。
In an imaging apparatus such as an infrared camera 100 using the solid-state imaging device 1, processing such as (1) offset correction, (2) sensitivity correction, and (3) defect correction is performed from the solid-state imaging device 1 as shown in FIG. Is applied to the pixel data 101 before correction.
Of the light rays coming from the subject, the light rays belonging mainly to the infrared region are captured by the infrared solid-state imaging device 1.
The solid-state imaging device 1 is composed of a large number of pixels arranged two-dimensionally, and each pixel is assigned an address indicating the position (x, y) of each pixel, and each pixel receives an infrared light receiving intensity. The output according to is exhibited.
Each pixel output is subjected to correction processing in the order of (1) offset correction, (2) sensitivity correction, and (3) defect correction.

まず、画素間には出力値のずれ(出力オフセット)が生じうる。出力オフセットを示すデータを固体撮像素子1の画素配列に従って配列すると、画素間の出力オフセットが画素配列上でどのようなパターンを有しているかがわかる。出力オフセットが画素配列上で有しているパターンをオフセットパターンと呼ぶ。
オフセットパターンは、例えば、赤外線固体撮像素子1の画角のほぼ全体に亘って均一な温度を有する物体を被写体として撮像を行ったときの赤外線固体撮像素子1の出力から得ることができ、製造の初期段階でROM(Read Only Memory)等に入れられている。
オフセット補正処理とは、オフセット補正データ3に予め記憶させておいたオフセットパターンに従い、通常使用時における赤外線固体撮像素子1の撮像出力から、画素間の出力オフセットを除去又は抑圧する処理であり、オフセット補正手段2により実行される。
なお、オフセット補正処理に使用されるオフセットパターンを、オフセット補正パターンと呼ぶ。
また、上掲の均一温度被写体を撮像しその結果得られるオフセット補正パターンをオフセット補正データ3に記憶させる処理を、キャリブレーションと呼ぶ。
First, an output value shift (output offset) may occur between pixels. When data indicating the output offset is arranged according to the pixel arrangement of the solid-state imaging device 1, it can be seen what pattern the output offset between the pixels has on the pixel arrangement. A pattern that the output offset has on the pixel array is called an offset pattern.
The offset pattern can be obtained, for example, from the output of the infrared solid-state image pickup device 1 when an object having a uniform temperature is captured over almost the entire angle of view of the infrared solid-state image pickup device 1 as a subject. It is stored in a ROM (Read Only Memory) or the like at an initial stage.
The offset correction process is a process for removing or suppressing an output offset between pixels from the imaging output of the infrared solid-state imaging device 1 during normal use according to an offset pattern stored in advance in the offset correction data 3. This is executed by the correction means 2.
The offset pattern used for the offset correction process is called an offset correction pattern.
Further, the above-described processing for capturing an image of a uniform temperature object and storing the offset correction pattern obtained as a result in the offset correction data 3 is called calibration.

オフセット補正手段2によりオフセット補正処理を経たオフセット補正後画素撮像出力102には、画素間の感度差が残っている。
全画面(全画素)に亘り均一な出力特性を実現するため、オフセット補正手段2を経たオフセット補正後画素撮像出力102に感度補正係数ΔVave/ΔV(x,y)を乗ずる感度補正処理が、感度補正手段4により実行される。
(x,y)は画素の位置、ΔV(x,y)は(x、y)で示される画素における温度による出力変化分即ちオフセット差分値、ΔVaveはΔV(x,y)の全画面平均値である。
なお、ΔV(x,y)は、例えば、任意温度Tを有する物体を被写体としたときのオフセットパターンと、他の任意温度T+ΔTを有する物体を被写体としたときのオフセットパターンから求めることができる。ΔVaveは、そのようにして求めたΔV(x,y)を全画面(全画素)に亘り平均することにより得ることができ、製造の初期段階でROM(Read Only Memory)等に入れられている。
A sensitivity difference between pixels remains in the post-offset-corrected pixel imaging output 102 that has undergone the offset correction processing by the offset correction means 2.
In order to realize uniform output characteristics over the entire screen (all pixels), a sensitivity correction process for multiplying the post-offset-corrected pixel imaging output 102 through the offset correction means 2 by the sensitivity correction coefficient ΔVave / ΔV (x, y) This is executed by the correction means 4.
(X, y) is the pixel position, ΔV (x, y) is the output change due to temperature in the pixel indicated by (x, y), that is, the offset difference value, and ΔVave is the average value of the entire screen of ΔV (x, y). It is.
Note that ΔV (x, y) can be obtained from, for example, an offset pattern when an object having an arbitrary temperature T is used as a subject and an offset pattern when another object having an arbitrary temperature T + ΔT is used as a subject. ΔVave can be obtained by averaging ΔV (x, y) thus obtained over the entire screen (all pixels), and is stored in a ROM (Read Only Memory) or the like at an initial stage of manufacturing. .

オフセット補正処理及び感度補正処理を経た感度補正後画素撮像出力103は、更に、欠陥補正手段6による欠陥補正処理が施される。
欠陥補正処理は、異常輝度出力を呈する画素である欠陥画素について、その画素の出力に代えて代替値を供給して補正する処理である。代替値としては、例えばその欠陥画素を取り巻く周囲の画素の平均出力を用いる。
The post-sensitivity pixel imaging output 103 that has undergone the offset correction process and the sensitivity correction process is further subjected to a defect correction process by the defect correction means 6.
The defect correction process is a process for supplying a replacement value for a defective pixel, which is a pixel that exhibits an abnormal luminance output, and correcting the defective pixel instead of the output of the pixel. As an alternative value, for example, an average output of surrounding pixels surrounding the defective pixel is used.

この欠陥補正処理を行うためには、欠陥画素を検出する必要がある。まず、欠陥画素のうち固定欠陥画素の検出方法について次に説明する。
固定欠陥画素に関しては、画素の位置(x,y)が変化することがない。そこで、感度補正処理で、画素の位置(x,y)毎に求めた感度補正係数ΔVave/ΔV(x,y)が所定の閾値を上回っている画素を、異常な感度を有する欠陥画素として検出することができる。欠陥補正データとして検出された欠陥画素の位置(x,y)を製造の初期段階で欠陥補正データ7に記憶しておく。
欠陥補正手段6は、欠陥補正データ7に欠陥画素位置として記憶されている位置(x,y)の画素について、上掲の欠陥補正処理を実行する。
In order to perform this defect correction process, it is necessary to detect defective pixels. First, a detection method of fixed defective pixels among defective pixels will be described next.
For a fixed defective pixel, the pixel position (x, y) does not change. Therefore, in the sensitivity correction process, a pixel whose sensitivity correction coefficient ΔVave / ΔV (x, y) obtained for each pixel position (x, y) exceeds a predetermined threshold is detected as a defective pixel having abnormal sensitivity. can do. The position (x, y) of the defective pixel detected as the defect correction data is stored in the defect correction data 7 at the initial stage of manufacturing.
The defect correction means 6 executes the above-described defect correction process for the pixel at the position (x, y) stored as the defective pixel position in the defect correction data 7.

次に、欠陥画素のうち点滅欠陥画素の検出方法について図2、図3を用いて説明する。
図2に、点滅欠陥画素を検出する際における、対象画素とその対象画素周辺の周辺画素のイメージ図を示す。また、図3に実施の形態1にかかる点滅欠陥画素を検出する検出フローを示す。なお、図3中の番号は、図1の番号と同一のものは図1の番号に対応する。
Next, a method for detecting a blinking defective pixel among defective pixels will be described with reference to FIGS.
FIG. 2 shows an image diagram of a target pixel and peripheral pixels around the target pixel when detecting a blinking defective pixel. FIG. 3 shows a detection flow for detecting a blinking defective pixel according to the first embodiment. 3 that are the same as the numbers in FIG. 1 correspond to the numbers in FIG.

図3のステップS101において、フレームメモリ積分器8は、出力オフセット補正及び感度補正が施された感度補正後画素撮像出力103が書き込まれたフレームメモリにおいて、それぞれの画素の位置(x,y)ごとにデータを読み出して全画面分フレーム積分し、画素位置ごとに積分画素出力Vn(x,y)111を出力する。ここでは一例としてフレーム積分回数nをn=128回とした。 In step S101 of FIG. 3, the frame memory integrator 8 performs, for each pixel position (x, y), in the frame memory in which the post-sensitivity-corrected pixel imaging output 103 subjected to output offset correction and sensitivity correction is written. The data is read out and frame integration is performed for the entire screen, and an integrated pixel output Vn (x, y) 111 is output for each pixel position. Here, as an example, the number of frame integrations n is n = 128.

ステップS102において、周辺画素平均値算出手段12は積分画素出力Vn(x,y)111を用いて、固体撮像素子1を構成する画素の画素位置(x,y)に対して、その周辺画素の平均輝度データVave(x、y)112を計算する。
ここで、周辺画素とは点滅欠陥画素であるかを調べる対象画素を中心としてその周囲に位置する複数の画素のことである。一例として、図2において対象画素の位置を(xi,yj)とし、周辺画素を対象画素を中心とした周囲3×3画素とした場合、周辺画素はその周囲のドット部分で示した8画素のことをいう。図2の例では、周辺画素平均値算出手段12は、対象画素を除いた周囲8画素についてその平均輝度を計算する。
In step S <b> 102, the peripheral pixel average value calculation unit 12 uses the integrated pixel output Vn (x, y) 111 to calculate the pixel position (x, y) of the pixels constituting the solid-state imaging device 1. Average luminance data Vave (x, y) 112 is calculated.
Here, the peripheral pixels are a plurality of pixels located around the target pixel to be examined as to whether it is a blinking defective pixel. As an example, when the position of the target pixel in FIG. 2 is (xi, yj) and the surrounding pixels are 3 × 3 pixels around the target pixel, the surrounding pixels are 8 pixels indicated by the surrounding dot portions. That means. In the example of FIG. 2, the peripheral pixel average value calculation means 12 calculates the average luminance of the surrounding eight pixels excluding the target pixel.

次にステップS103において、輝度閾値算出手段13は周辺画素の平均輝度データVave112に基づき、対象画素と周辺画素の輝度差が一定の比率内であるかを判定するための判定基準である平均値閾値を計算する。このときの比率を閾値係数εとすると、例えば、周辺画素平均値に対して50%を閾値とした場合、平均値閾値=周辺画素の平均輝度データVave112×閾値係数ε(ε=0.5)と算出される。ここで算出した平均値閾値を平均値閾値データ113として出力する。 Next, in step S103, the luminance threshold value calculation means 13 is an average value threshold value that is a determination criterion for determining whether the luminance difference between the target pixel and the peripheral pixels is within a certain ratio based on the average luminance data Vave112 of the peripheral pixels. Calculate Assuming that the ratio at this time is the threshold coefficient ε, for example, when 50% is set as the threshold value with respect to the average value of surrounding pixels, the average value threshold = average luminance data Vave112 of the surrounding pixels × threshold coefficient ε (ε = 0.5) is calculated. Is done. The average value threshold value calculated here is output as average value threshold value data 113.

次にS104において、周辺画素比較器9は、積分画素出力Vn(x,y)111と、周辺画素の平均輝度データ112との差分の大きさを、S103で算出した平均値閾値データ113と比較する。比較の結果、平均値閾値データ113内に属していない出力を呈した画素を以て、点滅欠陥画素として特定する。また、比較の結果、平均値閾値データ113内に属している場合は、ステップS102に戻り次の画素について同様にして判定を行う。 Next, in S104, the peripheral pixel comparator 9 compares the magnitude of the difference between the integrated pixel output Vn (x, y) 111 and the average luminance data 112 of the peripheral pixels with the average value threshold data 113 calculated in S103. To do. As a result of comparison, a pixel that exhibits an output that does not belong to the average value threshold data 113 is identified as a blinking defective pixel. As a result of the comparison, if it belongs to the average value threshold data 113, the process returns to step S102 and the next pixel is similarly determined.

ここで、点滅画素は、原理的に1画素単位で発生する特徴がある。画素周辺の局所的なエリアにおいては、大きな被写体を撮像する場合は、ほぼ同一の輝度であると考えられる。従って、局所エリアにおける1画素単位での異常輝度に対しては点滅欠陥画素と判定できる。
さらに、被写体が1画素単位の小さな被写体を撮像する場合は、時間軸方向にフレーム積分した出力にて判定することにより、本来の被写体であれば、時間とともに画素アドレス位置が変動すると考えられ、特定の画素アドレスのみ異常輝度が発生することは考えにくく、逆に点滅画素の場合は特定の画素アドレスにのみ異常輝度が発生することになるため本来の被写体との判別が可能となる。
したがって、撮像中であってもフレーム積分された局所エリアの画素出力平均値と常に比較することで、点滅欠陥画素の検出が可能となる。
Here, the blinking pixel is characterized in that it is generated in units of one pixel in principle. In a local area around the pixel, it is considered that the luminance is almost the same when a large subject is imaged. Therefore, it can be determined that the abnormal luminance is in blinking defective pixels for each pixel in the local area.
Furthermore, when the subject is capturing a small subject in units of one pixel, it is considered that the pixel address position will change with time if it is the original subject by making a determination based on the frame-integrated output in the time axis direction. It is unlikely that abnormal luminance will occur only at the pixel address, and on the contrary, in the case of a blinking pixel, abnormal luminance will occur only at a specific pixel address, so that it can be distinguished from the original subject.
Therefore, even during imaging, it is possible to detect a blinking defective pixel by always comparing it with the average pixel output value of the local area integrated with the frame.

周辺画素比較器9は、点滅欠陥画素として検出された画素の位置(x、y)を表すアドレス115を欠陥補正データ7に出力する。 The peripheral pixel comparator 9 outputs an address 115 indicating the position (x, y) of the pixel detected as the blinking defective pixel to the defect correction data 7.

ステップS105において、周辺画素比較器9が出力した点滅画素アドレス115が欠陥補正データ7に追加される。
ステップS106において、点滅欠陥画素の検出を終了するか否かを判定し、継続の場合はステップS102に戻る。
ステップS107において、欠陥補正手段6は、点滅画素アドレス115で位置が示される画素の欠陥補正を行う。欠陥補正処理は、異常輝度出力を呈する画素である欠陥画素について、その画素の出力に代えて代替値を供給して補正する処理である。代替値としては、例えばその欠陥画素を取り巻く周囲の画素の平均出力を用いる。
In step S <b> 105, the blinking pixel address 115 output from the peripheral pixel comparator 9 is added to the defect correction data 7.
In step S106, it is determined whether or not the detection of the blinking defective pixel is to be ended, and in the case of continuing, the process returns to step S102.
In step S <b> 107, the defect correction unit 6 performs defect correction on the pixel whose position is indicated by the blinking pixel address 115. The defect correction processing is processing for correcting a defective pixel that is a pixel that exhibits an abnormal luminance output by supplying an alternative value instead of the output of the pixel. As an alternative value, for example, an average output of surrounding pixels surrounding the defective pixel is used.

この実施の形態によれば、従来検出困難であった点滅欠陥を長時間のキャリブレーションを実施することなく検出することができる。
また、長い時間間隔で点滅している点滅欠陥を検出する場合も、従来ではキャリブレーション中の撮像フレーム数を多くすることで対応していたのに対して、撮像期間中常時検出しているので、さまざまな周期で変化する点滅欠陥にも対応できる。
更に、点滅のみならず、ゴミの付着等により撮像中に発生した固定欠陥の検出も可能である。
According to this embodiment, it is possible to detect a blinking defect, which has been difficult to detect in the past, without performing long-time calibration.
Also, when detecting a blinking defect that blinks at a long time interval, it has been supported by increasing the number of imaging frames during calibration in the past, but it is always detected during the imaging period. It can also handle flashing defects that change in various cycles.
Furthermore, it is possible to detect not only blinking but also a fixed defect generated during imaging due to dust adhesion or the like.

実施の形態2.
図4に、この発明の実施の形態2に係る赤外線カメラの構成を示す。
実施の形態2は、実施の形態1に、周辺画素標準偏差算出手段11と標準偏差閾値算出手段14を設けた構成を有している。
Embodiment 2. FIG.
FIG. 4 shows the configuration of an infrared camera according to Embodiment 2 of the present invention.
The second embodiment has a configuration in which the peripheral pixel standard deviation calculating unit 11 and the standard deviation threshold calculating unit 14 are provided in the first embodiment.

周辺画素標準偏差算出手段11は、積分画素出力Vn(x,y)111を用いてそれぞれの画素の位置(x、y)に対して周辺画素の標準偏差σを求める。
標準偏差閾値算出手段14は、周辺画素標準偏差算出手段11で求めた標準偏差σに基づき標準偏差閾値を計算する。
The peripheral pixel standard deviation calculation means 11 calculates the standard deviation σ of the peripheral pixels for each pixel position (x, y) using the integrated pixel output Vn (x, y) 111.
The standard deviation threshold calculation unit 14 calculates a standard deviation threshold based on the standard deviation σ obtained by the peripheral pixel standard deviation calculation unit 11.

図5に、実施の形態2にかかる点滅欠陥画素を検出する検出フローを示す。実施の形態1で説明した検出フローにおいて、ステップS120、S121が追加され、また、ステップS104で行う判定条件が変更されている。図5を用いて、実施の形態2にかかる点滅欠陥画素の検出フローを説明する。なお、実施の形態1と同じステップ番号については、説明を省略する。 FIG. 5 shows a detection flow for detecting a blinking defective pixel according to the second embodiment. In the detection flow described in the first embodiment, steps S120 and S121 are added, and the determination condition performed in step S104 is changed. The detection flow of the blinking defective pixel according to the second embodiment will be described with reference to FIG. Note that the description of the same step numbers as those in Embodiment 1 is omitted.

ステップS101において、フレームメモリ積分器8は積分画素出力Vn(x,y)111を周辺画素平均値算出手段12、周辺画素比較器9及び周辺画素標準偏差算出手段11に出力する。
ステップS120において、周辺画素標準偏差算出手段11は、積分画素出力Vn(x,y)111を用いてそれぞれの画素の位置(x、y)に対して周辺画素の標準偏差σを求め、求めた標準偏差σを周辺画素標準偏差データ120として標準偏差閾値算出手段14に供給する。
ステップS121において、標準偏差閾値算出手段14は、周辺画素標準偏差算出手段11で求めた標準偏差σを用いて、点滅欠陥画素であるか否かを判定する判定基準である標準偏差閾値を算出する。そして、算出した標準偏差閾値を標準偏差閾値データ121として周辺画素比較器9に出力する。図3では標準偏差閾値算出手段14は、標準偏差閾値の一例として、標準偏差閾値=3×σを算出する。
ステップS122において、周辺画素比較器9は、まず実施例1と同様に、周辺画素平均値算出手段12から得られる各画素に対する周辺画素の平均輝度データ112と積分画素出力Vn(x,y)111との差分が、ステップS103において輝度閾値算出手段13が計算した輝度閾値データ113(=周辺画素の平均輝度データVave112×閾値係数ε)内に属しているか判定し、属していない画素を検出する。
さらに、周辺画素比較器9は、輝度閾値データ113内に属していない画素の中で、周辺画素平均値算出手段12から得られる各画素に対する周辺画素の平均輝度データ112と積分画素出力Vn(x,y)111との差分が、ステップS121で算出した標準偏差閾値データ121の値の内に属するかを判定し、属していない画素について点滅欠陥画素として検出する。
In step S101, the frame memory integrator 8 outputs the integrated pixel output Vn (x, y) 111 to the peripheral pixel average value calculating means 12, the peripheral pixel comparator 9, and the peripheral pixel standard deviation calculating means 11.
In step S120, the peripheral pixel standard deviation calculating unit 11 uses the integrated pixel output Vn (x, y) 111 to determine the standard deviation σ of the peripheral pixels for each pixel position (x, y). The standard deviation σ is supplied to the standard deviation threshold calculation means 14 as the peripheral pixel standard deviation data 120.
In step S121, the standard deviation threshold calculation unit 14 uses the standard deviation σ obtained by the peripheral pixel standard deviation calculation unit 11 to calculate a standard deviation threshold that is a determination criterion for determining whether the pixel is a blinking defective pixel. . Then, the calculated standard deviation threshold value is output as standard deviation threshold value data 121 to the peripheral pixel comparator 9. In FIG. 3, the standard deviation threshold calculation means 14 calculates standard deviation threshold = 3 × σ as an example of the standard deviation threshold.
In step S122, the peripheral pixel comparator 9 first determines the peripheral pixel average luminance data 112 and the integrated pixel output Vn (x, y) 111 for each pixel obtained from the peripheral pixel average value calculation means 12, as in the first embodiment. Is determined to belong to the luminance threshold data 113 (= average luminance data Vave112 of the surrounding pixels × threshold coefficient ε) calculated by the luminance threshold calculation means 13 in step S103, and pixels that do not belong are detected.
Further, the peripheral pixel comparator 9 includes the average luminance data 112 of the peripheral pixels and the integrated pixel output Vn (x) for each pixel obtained from the peripheral pixel average value calculation unit 12 among the pixels not belonging to the luminance threshold data 113. , Y) It is determined whether the difference from 111 belongs to the value of the standard deviation threshold data 121 calculated in step S121, and pixels that do not belong are detected as blinking defective pixels.

このように実施の形態2では、輝度出力の絶対値である平均値のみによる判定だけでなく、輝度標準偏差によるばらつきの分布による判定を追加することにより、ノイズの多い画像であっても、より精度が高く点滅画素の検出が可能となる。 As described above, in the second embodiment, not only the determination based on the average value that is the absolute value of the luminance output but also the determination based on the distribution of variation due to the luminance standard deviation is added, so that even a noisy image can be obtained. It is possible to detect a blinking pixel with high accuracy.

実施の形態3.
図6に、この発明の実施の形態3に係る赤外線カメラの構成を示す。
この実施の形態3では、赤外線カメラは判定画素数設定手段15を新たに設けた構成を有している。
Embodiment 3 FIG.
FIG. 6 shows the configuration of an infrared camera according to Embodiment 3 of the present invention.
In the third embodiment, the infrared camera has a configuration in which a determination pixel number setting unit 15 is newly provided.

図6の周辺画素比較器9においては、各画素の出力が、輝度閾値および標準偏差閾値の基準範囲内にあるか否かを実施の形態2同様に比較検出する。
連続画素数検出手段15は周辺画素比較器9から点滅画素アドレスデータ115を受ける。連続画素数検出手段15は点滅画素アドレスデータ115で示される点滅欠陥画素の位置に関し、その点滅欠陥画素同士が隣接しているか否かを調べ、隣接している場合は、その隣接している連続数をカウントする。連続画素数検出手段15は検出された点滅欠陥画素の連続数により、点滅欠陥画素検出の有効、無効の判定を行う。
点滅画素は、原理的にその発生画素数は1画素単位であり、連続して複数画素発生しない。このため、連続画素数検出手段15は連続ではなく1画素のみ独立で点滅欠陥画素が検出された場合のみを点滅画素の検出結果が有効と判断し、それ以外の複数画素連続して検出された場合は無効と判断する。
In the peripheral pixel comparator 9 of FIG. 6, whether or not the output of each pixel is within the reference range of the luminance threshold value and the standard deviation threshold value is compared and detected as in the second embodiment.
The continuous pixel number detecting means 15 receives the blinking pixel address data 115 from the peripheral pixel comparator 9. The continuous pixel number detecting means 15 checks whether or not the blinking defective pixels are adjacent to each other with respect to the position of the blinking defective pixel indicated by the blinking pixel address data 115. Count the number. The continuous pixel number detection means 15 determines whether the defective flashing pixel detection is valid or invalid based on the detected continuous number of defective flashing pixels.
In principle, the number of generated pixels of the blinking pixel is one pixel unit, and a plurality of pixels are not generated continuously. For this reason, the continuous pixel number detection means 15 judges that the detection result of the blinking pixel is valid only when only one pixel is detected independently and the blinking defective pixel is detected, and a plurality of other pixels are continuously detected. In the case, it is determined to be invalid.

このように実施の形態3では、点滅欠陥画素として検出された画素の連続数を調べ、連続ではなく1画素のみ独立で点滅欠陥画素が検出された場合のみを、その検出結果が有効である判断するようにしたので、点滅欠陥画素の検出精度を向上させることができる。 As described above, in the third embodiment, the number of consecutive pixels detected as blinking defective pixels is checked, and only when only one pixel is detected independently and not a blinking defective pixel, the determination result is valid. As a result, the detection accuracy of the blinking defective pixel can be improved.

この発明の実施の形態1に係る赤外線カメラの構成を示すブロック図である。It is a block diagram which shows the structure of the infrared camera which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る点滅欠陥画素を検出する際の周辺画素のイメージ図である。It is an image figure of the surrounding pixel at the time of detecting the blinking defect pixel which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る点滅欠陥画素を検出する検出フロー図である。It is a detection flowchart which detects the blinking defect pixel which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る赤外線カメラの構成を示すブロック図である。It is a block diagram which shows the structure of the infrared camera which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る点滅欠陥画素を検出する検出フロー図である。It is a detection flowchart which detects the blinking defect pixel which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る赤外線カメラの構成を示すブロック図である。It is a block diagram which shows the structure of the infrared camera which concerns on Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 赤外線固体撮像素子、2 オフセット補正手段、3 オフセット補正データ、4 感度補正手段、5 感度補正データ、6 欠陥補正手段、7 欠陥補正データ、8 フレームメモリ積分器、9 周辺画素比較器、10 タイミングコントロール回路、11 周辺画素標準偏差算出手段、12 周辺画素平均値算出手段、13 輝度閾値算出手段、14 標準偏差閾値算出手段、15 連続画素数検出手段、20 レンズ、21 シャッタ、50 点滅欠陥画素検出手段、100 赤外線カメラ、101 補正前画素データ、102 オフセット補正後画素撮像出力、103 感度補正後画素撮像出力、
110 フレームメモリ制御信号、111 積分画素出力Vn(x,y)、112 周辺画素の平均輝度データ、113 平均値閾値データ、114 比較タイミング信号、115 点滅画素アドレスデータ、120 周辺画素標準偏差データ、121 標準偏差閾値データ。
DESCRIPTION OF SYMBOLS 1 Infrared solid-state image sensor, 2 Offset correction means, 3 Offset correction data, 4 Sensitivity correction means, 5 Sensitivity correction data, 6 Defect correction means, 7 Defect correction data, 8 Frame memory integrator, 9 Peripheral pixel comparator, 10 Timing Control circuit, 11 peripheral pixel standard deviation calculating means, 12 peripheral pixel average value calculating means, 13 luminance threshold value calculating means, 14 standard deviation threshold value calculating means, 15 continuous pixel number detecting means, 20 lens, 21 shutter, 50 blinking defective pixel detection Means, 100 infrared camera, 101 pixel data before correction, 102 pixel imaging output after offset correction, 103 pixel imaging output after sensitivity correction,
110 frame memory control signal, 111 integrated pixel output Vn (x, y), 112 average luminance data of peripheral pixels, 113 average value threshold data, 114 comparison timing signal, 115 blinking pixel address data, 120 peripheral pixel standard deviation data, 121 Standard deviation threshold data.

Claims (6)

2次元的に配置された複数の画素から構成される固体撮像素子と、
画素位置ごとに前記画素が出力する出力値を複数フレームに亘り積分して積分画素出力を算出するフレームメモリ積分器と、
前記各画素の周囲に位置する周辺画素に関して前記積分画素出力の値の平均値を算出する周辺画素平均値算出手段と、
前記各画素の前記積分画素出力の値と、当該画素に対応して前記周辺画素平均値算出手段が算出する前記平均値との比較結果に基いて点滅欠陥画素を検出する周辺画素比較器とを備えることを特徴とする固体撮像装置。
A solid-state imaging device composed of a plurality of pixels arranged two-dimensionally;
A frame memory integrator that integrates an output value output by the pixel for each pixel position over a plurality of frames to calculate an integrated pixel output;
A peripheral pixel average value calculating means for calculating an average value of the integrated pixel output values with respect to peripheral pixels located around each of the pixels;
A peripheral pixel comparator for detecting a blinking defective pixel based on a comparison result between the value of the integrated pixel output of each pixel and the average value calculated by the peripheral pixel average value calculating unit corresponding to the pixel; A solid-state imaging device comprising:
2次元的に配置された複数の画素から構成される固体撮像素子と、
画素位置ごとに前記画素が出力する出力値を複数フレームに亘り積分して積分画素出力を算出するフレームメモリ積分器と、
前記各画素の周囲に位置する周辺画素に関して前記積分画素出力の値の平均値を算出する周辺画素平均値算出手段と、
前記平均値に基いて平均値閾値を算出する輝度閾値算出手段と、
前記各画素の前記積分画素出力の値と当該画素に対応した前記周辺画素における前記平均値との差分をとり、前記差分の値が前記平均値閾値を上回った画素を以って前記画素を点滅欠陥画素であると判定する周辺画素比較器とを備えることを特徴とする固体撮像装置。
A solid-state imaging device composed of a plurality of pixels arranged two-dimensionally;
A frame memory integrator that integrates an output value output by the pixel for each pixel position over a plurality of frames to calculate an integrated pixel output;
A peripheral pixel average value calculating means for calculating an average value of the integrated pixel output values with respect to peripheral pixels located around each of the pixels;
Luminance threshold value calculating means for calculating an average value threshold value based on the average value;
The difference between the integrated pixel output value of each pixel and the average value of the surrounding pixels corresponding to the pixel is taken, and the pixel blinks with a pixel whose difference value exceeds the average value threshold value. A solid-state imaging device comprising: a peripheral pixel comparator that determines that the pixel is a defective pixel.
前記周辺画素に関して前記積分画素出力の値の標準偏差を算出する周辺画素標準偏差算出手段と、
前記標準偏差の値を用いて標準偏差閾値を算出する標準偏差閾値算出手段を備え、
前記周辺画素比較器は、前記各画素の前記積分画素出力の値と当該画素に対応した前記周辺画素における前記積分画素出力の平均の値との差分をとり、前記差分の値が前記標準偏差閾値を上回った画素を以って点滅欠陥画素であると判定することを特徴とする請求項1または請求項2記載の固体撮像装置。
Peripheral pixel standard deviation calculating means for calculating a standard deviation of the value of the integrated pixel output with respect to the peripheral pixels;
Standard deviation threshold value calculation means for calculating a standard deviation threshold value using the standard deviation value,
The peripheral pixel comparator takes a difference between a value of the integrated pixel output of each pixel and an average value of the integrated pixel output in the peripheral pixel corresponding to the pixel, and the value of the difference is the standard deviation threshold value. 3. The solid-state imaging device according to claim 1, wherein a pixel that exceeds the threshold is determined to be a blinking defective pixel. 4.
前記周辺画素比較器により前記点滅欠陥画素が1画素のみ独立して検出された場合に前記検出の結果を有効であると判定する連続画素数検出手段を備えたことを特徴とする請求項1〜3のいずれかに記載の固体撮像装置。 The continuous pixel number detecting means for determining that the result of the detection is valid when only one pixel of the blinking defective pixel is independently detected by the peripheral pixel comparator. The solid-state imaging device according to any one of 3. 前記周辺画素は、前記画素を中央とする縦3列×横3列からなる9個の画素のうち前記画素を除いた8個の画素であることを特徴とする請求項1〜4のいずれかに記載の固体撮像装置。 5. The peripheral pixel is an eight pixel excluding the pixel among nine pixels composed of 3 vertical columns and 3 horizontal columns with the pixel at the center. The solid-state imaging device described in 1. 2次元的に配置された複数の画素から構成される固体撮像素子で、画素位置ごとに前記画素が出力する出力値を複数フレームに亘り積分して積分画素出力を算出するステップと、
前記各画素の周囲に位置する周辺画素に関して前記積分画素出力の値の平均値を算出するステップと、
前記各画素の前記積分画素出力の値と、当該画素に対応して前記周辺画素における前記積分画素出力の値の平均の値との差分をとり、前記差分の値が予め設定した判定基準を上回った画素を以って点滅欠陥画素であると判定するステップとを有することを特徴とする点滅欠陥検出方法。
A solid-state imaging device composed of a plurality of pixels arranged two-dimensionally, calculating an integrated pixel output by integrating an output value output by the pixel for each pixel position over a plurality of frames;
Calculating an average value of the integrated pixel output values for peripheral pixels located around each of the pixels;
The difference between the integrated pixel output value of each pixel and the average value of the integrated pixel output values in the surrounding pixels corresponding to the pixel is taken, and the difference value exceeds a preset criterion. And a step of determining that the pixel is a blinking defective pixel.
JP2005139408A 2005-05-12 2005-05-12 Solid-state imaging device and blinking defect detection method Expired - Fee Related JP4544027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005139408A JP4544027B2 (en) 2005-05-12 2005-05-12 Solid-state imaging device and blinking defect detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005139408A JP4544027B2 (en) 2005-05-12 2005-05-12 Solid-state imaging device and blinking defect detection method

Publications (2)

Publication Number Publication Date
JP2006319602A true JP2006319602A (en) 2006-11-24
JP4544027B2 JP4544027B2 (en) 2010-09-15

Family

ID=37539876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005139408A Expired - Fee Related JP4544027B2 (en) 2005-05-12 2005-05-12 Solid-state imaging device and blinking defect detection method

Country Status (1)

Country Link
JP (1) JP4544027B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872253B1 (en) 2007-08-23 2008-12-05 삼성전기주식회사 Method for eliminating noise of image generated by image sensor
JP2010074240A (en) * 2008-09-16 2010-04-02 Canon Inc Image capturing apparatus and defective pixel detection method
GB2495731A (en) * 2011-10-18 2013-04-24 Selex Galileo Ltd Infrared detector system having noise filtering based on neighbouring pixels
JP2013219665A (en) * 2012-04-11 2013-10-24 Canon Inc Imaging device, control method therefor, and program
CN103916609A (en) * 2014-03-21 2014-07-09 中国科学院长春光学精密机械与物理研究所 Infrared camera integration time sequence calibration device
KR101553707B1 (en) 2013-07-30 2015-09-17 (주)탑중앙연구소 Image stain detection method for camera module defect determination
JP2016082484A (en) * 2014-10-20 2016-05-16 株式会社ニコン Imaging device
KR101765563B1 (en) * 2015-07-07 2017-08-07 한국과학기술연구원 Method for calibrating intensity data of optical sensor and method for removing noise from intensity data of optical sensor
JP2019153866A (en) * 2018-03-01 2019-09-12 オリンパス株式会社 Imaging apparatus and imaging method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115785A (en) * 1990-09-06 1992-04-16 Sony Corp Luminescent spot detector
JPH04345383A (en) * 1991-05-23 1992-12-01 Hitachi Ltd Picture defect correcting circuit
JPH05130512A (en) * 1991-11-01 1993-05-25 Matsushita Electric Ind Co Ltd Picture element defect measuring instrument for solid-state image pickup element
JPH06292091A (en) * 1993-04-02 1994-10-18 Sony Corp Solid-state image pickup device
JP2000023049A (en) * 1998-06-30 2000-01-21 Hitachi Denshi Ltd Defective pixel detecting device and its method
JP2001008107A (en) * 1999-06-18 2001-01-12 Canon Inc Image processor, image processing system, its method, and storage medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115785A (en) * 1990-09-06 1992-04-16 Sony Corp Luminescent spot detector
JPH04345383A (en) * 1991-05-23 1992-12-01 Hitachi Ltd Picture defect correcting circuit
JPH05130512A (en) * 1991-11-01 1993-05-25 Matsushita Electric Ind Co Ltd Picture element defect measuring instrument for solid-state image pickup element
JPH06292091A (en) * 1993-04-02 1994-10-18 Sony Corp Solid-state image pickup device
JP2000023049A (en) * 1998-06-30 2000-01-21 Hitachi Denshi Ltd Defective pixel detecting device and its method
JP2001008107A (en) * 1999-06-18 2001-01-12 Canon Inc Image processor, image processing system, its method, and storage medium

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872253B1 (en) 2007-08-23 2008-12-05 삼성전기주식회사 Method for eliminating noise of image generated by image sensor
JP2010074240A (en) * 2008-09-16 2010-04-02 Canon Inc Image capturing apparatus and defective pixel detection method
GB2495731A (en) * 2011-10-18 2013-04-24 Selex Galileo Ltd Infrared detector system having noise filtering based on neighbouring pixels
US9418404B2 (en) 2011-10-18 2016-08-16 Selex Es Ltd. Infrared detector system and method
JP2013219665A (en) * 2012-04-11 2013-10-24 Canon Inc Imaging device, control method therefor, and program
KR101553707B1 (en) 2013-07-30 2015-09-17 (주)탑중앙연구소 Image stain detection method for camera module defect determination
CN103916609A (en) * 2014-03-21 2014-07-09 中国科学院长春光学精密机械与物理研究所 Infrared camera integration time sequence calibration device
CN103916609B (en) * 2014-03-21 2017-04-05 中国科学院长春光学精密机械与物理研究所 Infrared camera integration sequence caliberating device
JP2016082484A (en) * 2014-10-20 2016-05-16 株式会社ニコン Imaging device
KR101765563B1 (en) * 2015-07-07 2017-08-07 한국과학기술연구원 Method for calibrating intensity data of optical sensor and method for removing noise from intensity data of optical sensor
JP2019153866A (en) * 2018-03-01 2019-09-12 オリンパス株式会社 Imaging apparatus and imaging method
JP7064351B2 (en) 2018-03-01 2022-05-10 オリンパス株式会社 Imaging device and imaging method

Also Published As

Publication number Publication date
JP4544027B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4544027B2 (en) Solid-state imaging device and blinking defect detection method
JP4978214B2 (en) Imaging system and pixel defect correction apparatus
JP4657287B2 (en) Image forming system with adjusted dark floor correction
CN101431597A (en) Method of reading a two-dimensional pixel matrix and device for implementing said method
JP2010074240A (en) Image capturing apparatus and defective pixel detection method
KR100874670B1 (en) Image Processor, Image Processing Unit, and Defective Pixel Correction Methods
JP4305225B2 (en) Infrared image correction device
JP3884952B2 (en) Imaging device
JP2006166194A (en) Pixel defect detection circuit and pixel defect detection method
JP5970960B2 (en) Defect detection method, image correction method, and infrared imaging apparatus
JP2008283620A (en) Solid-state imaging apparatus
JP2008311834A (en) Defective pixel correcting device and method
JP2009232200A (en) Method for correcting pixel defect of image pickup device
JP2004241600A (en) Circuit and method for defect detection
JP2003189189A5 (en)
JP4262253B2 (en) Image pickup apparatus having image signal processing apparatus, and camera using the same
JP2008131546A (en) Fixed pattern noise elimination apparatus
JP2007243778A (en) Imaging apparatus
US10819927B1 (en) Image sensor with self-testing black level correction
JP2011114473A (en) Pixel defect correction device
JP4329677B2 (en) Motion detection device
JP2007081453A (en) Imaging apparatus, signal processing method, and program
JP4397869B2 (en) Smear correction method and smear correction circuit
JP2004247880A (en) Shading correction method and apparatus therefor
JP2005176062A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees