JPH05130512A - Picture element defect measuring instrument for solid-state image pickup element - Google Patents

Picture element defect measuring instrument for solid-state image pickup element

Info

Publication number
JPH05130512A
JPH05130512A JP3287470A JP28747091A JPH05130512A JP H05130512 A JPH05130512 A JP H05130512A JP 3287470 A JP3287470 A JP 3287470A JP 28747091 A JP28747091 A JP 28747091A JP H05130512 A JPH05130512 A JP H05130512A
Authority
JP
Japan
Prior art keywords
pixel
picture element
signal
solid
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3287470A
Other languages
Japanese (ja)
Inventor
Mikio Murayama
幹夫 村山
Yasutoshi Yamamoto
靖利 山本
Toshiyuki Yasui
敏之 安井
Ryuichiro Kuga
龍一郎 久我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3287470A priority Critical patent/JPH05130512A/en
Publication of JPH05130512A publication Critical patent/JPH05130512A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform measurement with correlation with the picture element defect visual inspection of a solid-state image pickup element in picture element defect measurement used for the evaluation of the solid-state image pickup element. CONSTITUTION:An A/D converter 2 quantizes the signal of the solid-state image pickup element 1, and accumulates a digital output signal in frame memory 3. A differential signal between a picture element signal from which a random noise is eliminated at an inter-frame averaging part 4 and the shading component of an image detected at a space averaging part 5 is detected at an inter-frame difference part 6. A picture element defect detecting part 8 judges a picture element defective picture element at every picture element base on a histogram analysis at a histogram analyzing part 7, and a picture element position storage part 9 stores the position of the picture element defective picture element and the signal value of the picture element. A picture element defect grouping part 10 recognizes that the picture element is continued if a picture element defect exists in the peripheral picture element of the picture element defective picture element, and performs grouping by judging that it is one group.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体撮像素子の評価に
用いる画素欠陥測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pixel defect measuring device used for evaluating a solid-state image pickup device.

【0002】[0002]

【従来の技術】従来、固体撮像素子の画素欠陥の測定方
法としては、オシロスコ−プを用いて固体撮像素子の1
走査線毎に画素欠陥画素1個を1個の画素欠陥と判断
し、前記画素欠陥画素の位置と、一定光量のチャ−トを
固体撮像素子で撮像したときに出力される信号に対する
画素欠陥画素の信号値の比率を信号レベルとして測定し
ていた。また、固体撮像素子の画素欠陥目視検査の方法
としては、固体撮像素子の出力信号をモニタに出力さ
せ、目視により画素欠陥を数えていた。
2. Description of the Related Art Conventionally, as a method of measuring a pixel defect of a solid-state image pickup device, an oscilloscope has been used to measure the solid-state image pickup device.
One pixel defective pixel is determined as one pixel defect for each scanning line, and the pixel defective pixel for the signal output when the position of the pixel defective pixel and the chart with a constant light amount are imaged by the solid-state image sensor The signal level ratio was measured as the signal level. As a method of visually inspecting pixel defects of the solid-state image sensor, the output signal of the solid-state image sensor is output to a monitor and the pixel defects are visually counted.

【0003】[0003]

【発明が解決しようとする課題】従来、固体撮像素子の
画素欠陥を測定する際、オシロスコ−プを用いて画素欠
陥画素1個を1個の画素欠陥と判断し、前記画素欠陥画
素の位置と、一定光量のチャ−トを固体撮像素子で撮像
したときに出力される信号に対する画素欠陥画素の信号
値の比率を信号レベルとして測定していたので、空間的
に連続している画素欠陥画素を1個のかたまりとしては
判断できず、固体撮像素子の出力信号をモニタに出力し
て目視により画素欠陥の数を数える固体撮像素子の画素
欠陥目視検査との対応が取れていなかった。
Conventionally, when measuring a pixel defect of a solid-state image pickup device, one pixel defective pixel is judged to be one pixel defect using an oscilloscope, and the position of the pixel defective pixel is determined. As the signal level was measured as the ratio of the signal value of the pixel defective pixel to the signal output when the chart with a constant light amount was imaged by the solid-state image sensor, spatially continuous pixel defective pixels were detected. It cannot be judged as one lump, and the output signal of the solid-state image pickup device is output to the monitor and the pixel defect visual inspection of the solid-state image pickup device which visually counts the number of pixel defects cannot be taken.

【0004】本発明は、上記問題点を解決するために、
画素欠陥画素が空間的に連続していれば、1個のグル−
プとし、前記グル−プ1個を1個の画素欠陥と判断する
ことで、前記目視検査との対応が取れる固体撮像素子の
画素欠陥測定装置を提供することを目的とする。
In order to solve the above problems, the present invention provides
If defective pixels are spatially continuous, one group
It is an object of the present invention to provide a pixel defect measuring device for a solid-state image pickup device, which is capable of dealing with the visual inspection by judging each of the groups as one pixel defect.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するため、固体撮像素子の出力信号を量子化するA/D
変換器と、前記A/D変換器の出力信号を蓄積するフレ
−ムメモリと、前記フレ−ムメモリの信号を任意回数フ
レ−ム間平均を行い固体撮像素子の信号に含まれるラン
ダムノイズを軽減させるフレ−ム間平均化部と、前記フ
レ−ム間平均化部から得られた画像信号を空間的に平均
して画像のシェ−ディング成分を検出する空間平均化部
と、前記フレ−ム間平均化部から得れた画像信号と前記
空間平均化部から得られた画像信号との差分信号を検出
するフレ−ム間差分部と、前記フレ−ム間差分部から得
られた画像信号のヒストグラム分析を行うヒストグラム
分析部と、前記フレ−ム間差分部から得れた画像信号を
1画素毎に前記ヒストグラム分析部から得られた任意の
レベルと比較し画素欠陥画素と判断する画素欠陥検出部
と、前記画素欠陥画素の位置と画素の信号値を記憶する
画素位置記憶部と、前記画素欠陥画素の周辺画素に画素
欠陥画素が存在するならば空間的に連続であると認識
し、1個のグル−プであると判断する画素欠陥グル−プ
分け部と、一定光量のチャ−トを固体撮像素子で撮像し
たときに出力される信号値を外部入力で与える信号値入
力部から構成されるものである。
In order to achieve the above object, the present invention is an A / D for quantizing an output signal of a solid-state image pickup device.
A converter, a frame memory for accumulating the output signal of the A / D converter, and a frame memory signal for averaging the signals of the frame memory any number of times to reduce random noise contained in the signal of the solid-state image sensor. An inter-frame averaging unit, a spatial averaging unit that spatially averages the image signals obtained from the inter-frame averaging unit to detect a shading component of an image, and the inter-frame averaging unit. An inter-frame difference section that detects a difference signal between an image signal obtained from an averaging section and an image signal obtained from the spatial averaging section, and an image signal obtained from the inter-frame difference section Pixel defect detection for judging a pixel defective pixel by comparing the image signal obtained from the inter-frame difference unit with a histogram analysis unit for performing a histogram analysis for each pixel with an arbitrary level obtained from the histogram analysis unit Part and the pixel defect A pixel position storage unit that stores a pixel position and a signal value of a pixel, and if a pixel defective pixel exists in the peripheral pixels of the pixel defective pixel, it is recognized as spatially continuous, and one group is used. It is composed of a pixel defect group dividing unit which judges that there is a certain amount, and a signal value input unit which gives an external input a signal value output when a chart of a constant light amount is picked up by the solid-state image pickup device.

【0006】[0006]

【作用】本発明は上記した構成により、A/D変換器は
固体撮像素子の信号を量子化し、フレ−ムメモリは前記
A/D変換器のディジタル出力信号を蓄積し、フレ−ム
間平均化部は前記フレ−ムメモリのディジタル出力信号
を任意回数取り込み固体撮像素子に含まれるランダムノ
イズを取り除き、空間平均部は前記フレ−ム間平均化部
から得られた画像信号を空間的に平均化して画像のシェ
−ディング成分を検出し、フレ−ム間差分部は前記フレ
−ム間平均化部から得られた画像信号と前記空間平均部
から得れた画像信号の差分信号を検出し、ヒストグラム
分析部は前記フレ−ム間差分部から得られた画像信号の
ヒストグラム分析を行い、画素欠陥検出部はフレ−ム間
差分部から得られた画像信号を1画素毎に前記ヒストグ
ラム分析部から得られた任意のレベルと比較し画素欠陥
画素と判断し、画素位置記憶部は前記画素欠陥画素の位
置と画素の信号値を記憶し、画素欠陥グル−プ分け部
は、前記画素欠陥画素の周辺画素に画素欠陥が存在する
ならば空間的に連続であると認識し、1個のグル−プと
判断することでグル−プ分けを行い、前記1個のグル−
プの画素欠陥画素の信号値をグル−プ内で加算し、前記
加算和を一定光量のチャ−トを固体撮像素子で撮像した
とき出力される信号値で割り算する。
According to the present invention having the above-mentioned structure, the A / D converter quantizes the signal of the solid-state image pickup device, the frame memory stores the digital output signal of the A / D converter, and the inter-frame averaging is performed. The unit takes in the digital output signal of the frame memory any number of times to remove random noise contained in the solid-state image pickup device, and the spatial averaging unit spatially averages the image signals obtained from the inter-frame averaging unit. The shading component of the image is detected, the inter-frame difference unit detects a difference signal between the image signal obtained from the inter-frame averaging unit and the image signal obtained from the spatial averaging unit, and a histogram The analysis unit performs a histogram analysis of the image signal obtained from the inter-frame difference unit, and the pixel defect detection unit obtains the image signal obtained from the inter-frame difference unit from the histogram analysis unit for each pixel. Determined to be a pixel defective pixel, the pixel position storage unit stores the position of the pixel defective pixel and the signal value of the pixel, and the pixel defect group dividing unit is arranged around the pixel defective pixel. If a pixel has a pixel defect, it is recognized as spatially continuous, and it is judged as one group to perform group division.
The signal values of defective pixels of the group are added in the group, and the addition sum is divided by the signal value output when the chart of the constant light amount is imaged by the solid-state image sensor.

【0007】このように、本発明は画素欠陥のグル−プ
分けを行うため、画素欠陥が単体または空間的に連続す
る場合においても画素欠陥を正確に測定できるため固体
撮像素子の画素欠陥目視検査との対応が取れ、フレ−ム
メモリを用いているため高速に1フレ−ム領域内の画素
欠陥測定ができる。
As described above, according to the present invention, since the pixel defects are classified into groups, the pixel defects can be accurately measured even when the pixel defects are single or spatially continuous. Since a frame memory is used, pixel defects in one frame area can be measured at high speed.

【0008】[0008]

【実施例】以下本発明の実施例を図面を用いて詳細に説
明する。(図1)は本発明の一実施例を示す固体撮像素
子の画素欠陥測定装置の概略構成図であるが、(図1)
は光学系、固体撮像素子を駆動するための駆動回路、固
体撮像素子の出力を得るための信号処理回路等は省略し
ている。
Embodiments of the present invention will be described in detail below with reference to the drawings. (FIG. 1) is a schematic configuration diagram of a pixel defect measuring apparatus for a solid-state image sensor according to an embodiment of the present invention.
The optical system, the drive circuit for driving the solid-state image sensor, the signal processing circuit for obtaining the output of the solid-state image sensor, etc. are omitted.

【0009】(図1)において、1は被測定物である固
体撮像素子、2は固体撮像素子1の信号を量子化するA
/D変換器、3はA/D変換器2のディジタル出力信号
を蓄積するフレ−ムメモリ、4はフレ−ムメモリ3のデ
ィジタル出力信号を任意回数取り込んでフレ−ム間平均
を行い、固体撮像素子1に含まれるランダムノイズを軽
減させる平均化部、5はフレ−ム間平均化部4から得ら
れた画像信号を空間的に平均化して画像のシェ−ディン
グ成分を検出する空間平均化部、6はフレ−ム間平均化
部4から得られた画像信号と空間平均化部5から得られ
た画像信号の差分信号を検出するフレ−ム間差分部、7
はフレ−ム間差分部から得られた画像信号のヒストグラ
ム分析を行うヒストグラム分析部である。
In FIG. 1, 1 is a solid-state image sensor which is an object to be measured, and 2 is A for quantizing a signal from the solid-state image sensor 1.
A / D converter, 3 is a frame memory for accumulating the digital output signal of the A / D converter 2, and 4 is a solid-state image pickup device for fetching the digital output signal of the frame memory 3 an arbitrary number of times and performing inter-frame averaging. 1 is an averaging unit that reduces random noise included in 1; 5 is a spatial averaging unit that spatially averages the image signals obtained from the inter-frame averaging unit 4 to detect a shading component of the image; Reference numeral 6 is an inter-frame difference section for detecting a difference signal between the image signal obtained from the inter-frame averaging section 4 and the image signal obtained from the spatial averaging section 5, and 7
Is a histogram analysis section for performing a histogram analysis of the image signal obtained from the inter-frame difference section.

【0010】8はフレ−ム間差分部6から得られた画像
信号をヒストグラム分析部7から得られた任意のレベル
と比較し、画素欠陥画素と判断する画素欠陥検出部、9
は画素欠陥検出装置8により検出された前記画素欠陥画
素の位置と画素の信号値を記憶する画素欠陥位置記憶
部、10は画素欠陥位置記憶部9により記憶された画素
欠陥画素の周辺画素に画素欠陥が存在するならば空間的
に連続であると認識し、1個のグル−プと判断し、前記
1個のグル−プ内の画素欠陥画素の信号値を加算し、前
記加算和を、一定光量のチャ−トを固体撮像素子で撮像
したときに出力される信号値で割り算する画素欠陥グル
−プ分け部、11は前記加算和を割り算する前記信号値
を外部入力する信号値入力部、12は以上のA/D変換
器2から画素欠陥グル−プ分け部10を用いて構成され
る固体撮像素子の画素欠陥測定装置である。
A pixel defect detection unit 8 compares the image signal obtained from the inter-frame difference unit 6 with an arbitrary level obtained from the histogram analysis unit 7 to determine a pixel defective pixel.
Is a pixel defect position storage unit for storing the position of the pixel defective pixel detected by the pixel defect detection device 8 and the signal value of the pixel, and 10 is a pixel around the pixel defective pixel stored by the pixel defect position storage unit 9. If there is a defect, it is recognized as spatially continuous, it is judged as one group, the signal values of the pixel defective pixels in the one group are added, and the addition sum is A pixel defect group dividing unit that divides a chart with a constant light amount by a signal value output when an image is captured by a solid-state image sensor, and 11 is a signal value input unit that externally inputs the signal value that divides the addition sum. , 12 are pixel defect measuring devices for a solid-state image sensor, which are configured by using the pixel defect group dividing unit 10 from the above A / D converter 2.

【0011】次に、本実施例の固体撮像素子の画素欠陥
測定装置を動作させ、固体撮像素子を遮光状態にして固
体撮像素子の画素欠損の一種類である白欠損いわゆる白
キズ測定の動作について説明する。なお、一定光量のチ
ャートを固体撮像素子で撮像すれば黒欠損いわゆる黒キ
ズの測定が行える。(図1)において、固体撮像素子1
の出力はA/D変換器2により量子化される。A/D変
換器2のディジタル出力信号はフレ−ムメモリ3に蓄積
された後、フレ−ム間平均化部4に取り込まれ、画像信
号は(図2)Aで示される状態になる。(図2)Aには
固体撮像素子1で出力される画像信号が量子化されたも
ので、前記画像信号にはランダムノイズ、固定パタ−ン
ノイズと画像信号のシェ−ディング成分が含まれてい
る。固体撮像素子の画素欠陥測定には不要であるランダ
ムノイズとシェ−ディング成分を取り除くため、以下の
動作を行う。フレ−ムメモリ3のディジタル出力信号
は、フレ−ム単位でフレ−ム間平均化部4に任意回数取
り込まれ、まずランダムノイズが取り除かれて出力さ
れ、画像信号は(図2)Bで示される状態となる。次
に、固体撮像素子1の出力信号に含まれるシェ−ディン
グ成分を検出するため、フレ−ム間平均化部4の画像信
号は空間平均化部5に取り込まれる。
Next, the operation of the pixel defect measuring apparatus for a solid-state image sensor according to the present embodiment is operated to make the solid-state image sensor in a light-shielding state, that is, white defect, which is one kind of pixel defect of the solid-state image sensor, so-called white defect measurement. explain. It should be noted that if a chart of a constant amount of light is imaged by a solid-state image sensor, a black defect or so-called black defect can be measured. In FIG. 1, the solid-state image sensor 1
Is quantized by the A / D converter 2. The digital output signal of the A / D converter 2 is stored in the frame memory 3 and then taken into the inter-frame averaging unit 4, and the image signal is in the state shown by A in FIG. 2). In FIG. 2A, the image signal output from the solid-state image sensor 1 is quantized, and the image signal includes random noise, fixed pattern noise, and a shading component of the image signal. .. The following operations are performed in order to remove random noise and shading components, which are unnecessary for the pixel defect measurement of the solid-state image sensor. The digital output signal of the frame memory 3 is taken into the inter-frame averaging unit 4 for each frame in an arbitrary number of times, the random noise is first removed, and the image signal is output. It becomes a state. Next, in order to detect the shading component included in the output signal of the solid-state image sensor 1, the image signal of the inter-frame averaging unit 4 is taken in by the spatial averaging unit 5.

【0012】空間平均化部5では空間平均化、つまり2
次元のロ−パスフィルタが画像信号に掛け合わされるこ
とになるため、画像信号に含まれる固定パタ−ンノイズ
が取り除かれ、空間平均化部5で出力される画像信号
は、(図2)Cで示される状態となる。さらに、固体撮
像素子の固定パタ−ンノイズを検出するため、フレ−ム
間平均化部4で出力される画像信号から空間平均化部5
で出力される画像信号のフレ−ム間差分をフレ−ム間差
分部6で行い、画像信号は(図2)Dで示される状態と
なる。画素欠陥検出において周知の事実により、固定パ
タ−ンノイズの中に画素欠陥が含まれていることより、
一般的に画素欠陥の検出方法としては、固定パタ−ンノ
イズのヒストグラム分析を行い、固定パタ−ンノイズの
絶対値レベルの大きいものを、画素欠陥として検出す
る。そこでフレ−ム間差分部6で出力される画像信号の
ヒストグラム分析をヒストグラム分析部7で行う。
The spatial averaging unit 5 performs spatial averaging, that is, 2
Since the three-dimensional low-pass filter is multiplied by the image signal, the fixed pattern noise included in the image signal is removed, and the image signal output by the spatial averaging unit 5 is (FIG. 2) C. It will be in the state shown. Further, in order to detect the fixed pattern noise of the solid-state image pickup device, the spatial averaging unit 5 converts the image signal output from the inter-frame averaging unit 4 from the image signal.
The inter-frame difference of the image signal output in (3) is performed by the inter-frame difference unit 6, and the image signal is in the state shown by D in FIG. Due to the fact that pixel pattern is included in the fixed pattern noise due to a well-known fact in pixel defect detection,
Generally, as a method of detecting a pixel defect, a histogram analysis of fixed pattern noise is performed and a pixel pattern having a large absolute value level of fixed pattern noise is detected as a pixel defect. Therefore, the histogram analysis unit 7 performs the histogram analysis of the image signal output by the inter-frame difference unit 6.

【0013】ヒストグラム分析結果は(図3)で示され
ており、固定パタ−ンノイズのレベルの大きさの傾向が
つかめる。本実施例では、(図3)のヒストグラム分析
結果において、レベルがaより大きいものを画素欠陥と
して取り扱う。画素欠陥検出部8では、フレ−ム間差分
部6で出力される画像信号の内でレベルがaより大きい
ものを検出するため、出力される画像信号は白欠陥のみ
となり、(図2)Eで示される状態となる。画素欠陥検
出部8で出力された画素信号((図2)E)は、白欠陥
を表しているが、空間的に連続していても1個のグル−
プとは認識されていない。
The result of the histogram analysis is shown in FIG. 3 and the tendency of the magnitude of the level of the fixed pattern noise can be grasped. In the present embodiment, in the histogram analysis result of (FIG. 3), a pixel whose level is larger than a is treated as a pixel defect. Since the pixel defect detection unit 8 detects one of the image signals output by the inter-frame difference unit 6 that has a level higher than a, the output image signal is only a white defect (see FIG. 2E). The state is indicated by. The pixel signal ((FIG. 2) E) output from the pixel defect detection unit 8 represents a white defect, but even if it is spatially continuous, one group
Is not recognized.

【0014】そこで、グループ分けを画素欠陥位置記憶
部9と画素欠陥グル−プ分け部10を用いて行う。画素
欠陥位置記憶部9には(図2)Eで示される1フレ−ム
領域内の白欠陥画素の位置と信号値が記憶されている。
前記記憶内容は画素欠陥位置記憶部9から1フレ−ム領
域分のメモリを持つ画素欠陥グル−プ分け部10に取り
込まれ、画素欠陥グル−プ分け部10にて白欠損画素の
グル−プ分けと前記グル−プ分けした1個のグル−プの
白欠陥画素の信号値を加算し、前記加算和と一定光量の
チャ−トを固体撮像素子で撮像したときに出力される信
号値の比率を算出する。前記一定光量のチャ−トを固体
撮像素子で撮像したときに出力される前記信号値は、信
号値入力部11で外部入力される。画素欠陥グル−プ分
け部10の動作を(図4)から(図6)を用いて説明す
る。
Therefore, grouping is performed using the pixel defect position storage unit 9 and the pixel defect group dividing unit 10. The pixel defect position storage unit 9 stores the position and signal value of the white defective pixel in one frame area indicated by E (FIG. 2).
The stored contents are fetched from the pixel defect position storage unit 9 into a pixel defect group dividing unit 10 having a memory for one frame area, and the pixel defect group dividing unit 10 groups the white defective pixels. Division and the signal values of the white defect pixels of one group divided by the group are added, and the sum of the signal value and the signal value output when the chart of a constant light amount is imaged by the solid-state image sensor Calculate the ratio. The signal value output when the chart of the constant light amount is imaged by the solid-state image sensor is externally input by the signal value input unit 11. The operation of the pixel defect group dividing unit 10 will be described with reference to (FIG. 4) to (FIG. 6).

【0015】まず、注目する白欠陥画素が周辺の白欠損
画素と空間的に連続であるかを認識するための周辺画素
について説明する。(図4)において格子は、画素単位
を示し、斜線で示されたSは注目する白欠損画素を示
し、点線で囲まれた格子領域は周辺画素を示す。次に、
前記の周辺画素を用いて空間的に連続であれば、1個の
グル−プであると認識するグル−プ分けについて(図
5)と(図6)を用いて説明する。
First, the peripheral pixels for recognizing whether the target white defective pixel is spatially continuous with the peripheral white defective pixel will be described. In FIG. 4, a lattice represents a pixel unit, S indicated by diagonal lines represents a target white defective pixel, and a lattice region surrounded by a dotted line represents peripheral pixels. next,
Group division for recognizing one group if it is spatially continuous using the peripheral pixels will be described with reference to FIGS. 5 and 6.

【0016】(図5)は、グル−プ分けの動作をアルゴ
リズムで示し、(図6)は(図5)のアルゴリズムが白
欠損画素をグル−プ分けして行く白欠陥画素の様子を示
す。(図5)において、周辺画素認識Iは、(図4)で
説明した周辺画素を観測し、Sの周辺画素に白欠損画素
があるか判断し、前記判断後、同じグループ内の白欠陥
画素に共通の認識が得られるようラベルを付けていく。
(図5)において、新ラベル付けKは、(図4)で説明
した周辺画素に白欠損画素が無い場合において,注目す
べき前記Sがラベル付けされていない場合にk1 ,k2
と記すようなkなる係数でラベル付けし、小ラベル付け
Jは(図4)で説明した周辺画素に白欠損画素が存在す
る場合において動作し、前記Sおよび既に前記周辺画素
内でラベル付けされているkなる係数のラベルを、周辺
画素内でラベル付けしている内のkに付随する係数の一
番小さなラベルに置き換える。1フレ−ム終了Lは、前
記説明したラベル付けが1フレ−ム領域内で完了したか
前記Sの画素位置を確認して判断する。
FIG. 5 shows the operation of group division by an algorithm, and FIG. 6 shows the state of white defective pixels in which the algorithm of FIG. 5 divides white defective pixels into groups. .. In (FIG. 5), the peripheral pixel recognition I observes the peripheral pixels described in (FIG. 4), determines whether there are white defective pixels in the peripheral pixels of S, and after the determination, the white defective pixels in the same group. Label them so that they can have a common recognition.
In FIG. 5, the new labeling K is k1, k2 when there is no white defect pixel in the surrounding pixels described in (FIG. 4) and when the noted S is not labeled.
Labeling with a coefficient k as described below, the sub-labeling J operates when there is a white defective pixel in the peripheral pixels described in (FIG. 4), and the small labeling J is labeled in the S and already in the peripheral pixels. Replace the label of the coefficient with k with the smallest label of the coefficient associated with k in the labeling in the surrounding pixels. The 1-frame end L is determined by checking the pixel position of S to see if the labeling described above is completed within the 1-frame area.

【0017】アルゴリズム動作を実施例を用いて説明す
る。(図6)Aは周辺画素内に白欠損画素が存在しない
ため、(図5)の周辺画素認識Iにより新ラベル付けK
に進むと判断され、新ラベル付けKを経て(図6)Bと
なり、前記Sにはk1 なるラベルが与えられる。(図
6)Cは周辺画素内に白欠損画素が存在するため、小ラ
ベル付けJに進み、小ラベル付けJを経て(図6)Dと
なり、周辺画素内に既にk1 なるラベルが与えているた
め、前記Sにはk1 なるラベルが与えられる。
The algorithm operation will be described using an embodiment. (FIG. 6) A has no white defective pixels in the peripheral pixels, so a new labeling K is performed by the peripheral pixel recognition I in (FIG. 5).
It is determined that the process proceeds to step (4), and the new label K is passed (FIG. 6) to become B, and the label S is given to S. (FIG. 6) C has a white defective pixel in its peripheral pixels, so it proceeds to the small labeling J, passes through the small labeling J and becomes (FIG. 6) D, and the label of k1 has already been given in the peripheral pixels. Therefore, a label k1 is given to the S.

【0018】(図6)Eも前記(図6)Cと同様に小ラ
ベル付けJを経て(図6)Fとなり、前記Sにはk1 な
るラベルが与えられ、既に与えられているk2 なるラベ
ルは、k1 なるラベルに置き変わる。前記のアルゴリズ
ム動作は前記Sが1フレ−ム領域内の最終画素に到達す
るまで行われ、前記のアルゴリズム動作終了確認は、1
フレ−ム終了Lで前記Sの画素位置を判断することで行
われる。前記アルゴリズム動作により白欠損画素のラベ
ル付けつまりグル−プ分けが終了する。
Similarly to (C) of FIG. 6, (E) of FIG. 6 becomes (F) of FIG. 6 through the small labeling J, and the label of S is given to the S, and the label of k2 already given is given. Replaces the label k1. The algorithm operation is performed until the S reaches the final pixel in one frame area, and the algorithm operation end confirmation is 1
This is performed by determining the pixel position of S at the frame end L. By the algorithm operation, labeling of white defective pixels, that is, grouping is completed.

【0019】次に、グル−プ分けした1個の白欠陥画素
のかたまりが、一定光量のチャ−トを固体撮像素子で撮
像したときに出力される信号に対する比率を算出するた
め、前記グル−プ分けしたとき白欠陥画素に与えたkな
るラベルの等しいものを加算し、前記加算和を信号値入
力部11から与えられる外部入力値で割り算する。
Next, in order to calculate the ratio of the group of one white defective pixel divided into groups to the signal output when the chart of a constant light quantity is imaged by the solid-state image pickup device, the group is calculated. When the pixels are divided into groups, those having the same label k given to the white defective pixels are added, and the addition sum is divided by the external input value given from the signal value input unit 11.

【0020】白欠陥画素の測定値の特性としては、位置
と信号レベルが必要であるが、位置として前記1個の白
欠陥画素のかたまりの内で前記kなるラベル付けした一
番最初の位置が与えられ、信号レベルとして前記割り算
した商とする。この構成は、計算機を用いて構成すれば
簡単に実現できるものであり、正確で信頼性の高い測定
が実現できる。
The characteristic of the measurement value of the white defective pixel is that the position and the signal level are required. However, the first position labeled as k in the cluster of the one white defective pixel is the position. The quotient obtained by the division is given as a signal level. This structure can be easily realized by using a computer, and accurate and highly reliable measurement can be realized.

【0021】[0021]

【発明の効果】以上のように、本発明によれば次のよう
な効果を奏でることができる。 (a)画素欠陥が空間的に連続していれば1個の画素欠
陥画素として判断するため、従来の固体撮像素子の画素
欠陥目視検査との整合性がとれる。 (b)フレ−ムメモリを用いているため高速に1フレ−
ム領域内の画素欠陥測定が行える。
As described above, according to the present invention, the following effects can be obtained. (A) If the pixel defects are spatially continuous, it is judged as one pixel defective pixel, and therefore it is compatible with the conventional visual inspection for pixel defects of the solid-state image sensor. (B) 1 frame at high speed because frame memory is used
Pixel defects in the pixel area can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の固体撮像素子の画素欠陥測定
装置の概略構成図
FIG. 1 is a schematic configuration diagram of a pixel defect measuring device for a solid-state image sensor according to an embodiment of the present invention.

【図2】同固体撮像素子の画素欠陥測定装置の動作を示
す画素信号を示す概略図
FIG. 2 is a schematic diagram showing a pixel signal indicating an operation of the pixel defect measuring device of the solid-state image sensor.

【図3】同固体撮像素子の画素欠陥測定装置内のヒスト
グラム分析部の出力信号波形図
FIG. 3 is an output signal waveform diagram of a histogram analysis unit in the pixel defect measuring device of the solid-state image sensor.

【図4】グル−プ分けに用いる周辺画素と注目画素を説
明する図
FIG. 4 is a diagram illustrating peripheral pixels and a target pixel used for grouping.

【図5】グル−プ分けの動作を説明するフローチャートFIG. 5 is a flowchart illustrating a grouping operation.

【図6】ラベル付けの動作を説明する図FIG. 6 is a diagram for explaining the labeling operation.

【符号の説明】[Explanation of symbols]

1 固体撮像素子 2 A/D変換器 3 フレ−ムメモリ 4 フレ−ム間平均化部 5 空間平均化部 6 フレ−ム間差分部 7 ヒストグラム分析部 8 画素欠陥検出部 9 画素欠陥位置記憶部 10 画素欠陥グル−プ分け部 11 信号値入力部 12 固体撮像素子の画素欠陥測定装置 1 Solid-state image sensor 2 A / D converter 3 Frame memory 4 Inter-frame averaging unit 5 Spatial averaging unit 6 Inter-frame difference unit 7 Histogram analysis unit 8 Pixel defect detection unit 9 Pixel defect position storage unit 10 Pixel defect grouping unit 11 Signal value input unit 12 Pixel defect measuring device for solid-state imaging device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久我 龍一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Ryuichiro Kuga 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固体撮像素子の信号を量子化するA/D
変換器と、前記A/D変換器のディジタル出力信号を蓄
積するフレ−ムメモリと、前記フレ−ムメモリのディジ
タル出力信号を演算処理して画素欠陥を算出する演算処
理装置を備えて成り、前記演算処理装置は、フレ−ムメ
モリのディジタル出力信号を任意回数のフレ−ム間平均
を行い、固体撮像素子の信号に含まれるランダムノイズ
を軽減するフレ−ム間平均化手段と、前記フレ−ム間平
均化手段から得られた画像信号を空間的に平均化して画
像のシェ−ディング成分を検出する空間平均化手段と、
前記フレ−ム間平均化手段から得られた画像信号と前記
空間平均化手段から得られた画像信号の差分信号を検出
するフレ−ム間差分手段と、前記フレ−ム間差分手段か
ら得られた画像信号のヒストグラム分析を行うヒストグ
ラム分析手段と、前記フレ−ム間差分手段から得られた
画像信号を1画素毎に前記ヒストグラム分析手段から得
られた任意のレベルと比較し画素欠陥画素と判断する画
素欠陥検出手段と、前記画素欠陥画素の画素の位置と画
素の信号値を記憶する画素欠陥位置記憶手段と、前記画
素欠陥画素の周辺画素に画素欠陥が存在するならば空間
的に連続であると認識し、1個のグル−プと判断する画
素欠陥グル−プ分け手段と、一定光量のチャ−トを固体
撮像素子で撮像したときに出力される信号値を外部入力
で与える信号値入力手段からなることを特徴とする固体
撮像素子の画素欠陥測定装置。
1. An A / D for quantizing a signal of a solid-state image sensor.
The calculation includes a converter, a frame memory for accumulating the digital output signal of the A / D converter, and an arithmetic processing unit for arithmetically processing the digital output signal of the frame memory to calculate a pixel defect. The processing unit averages the digital output signal of the frame memory between frames at an arbitrary number of times to reduce random noise contained in the signal of the solid-state image pickup device, and an inter-frame averaging means. Spatial averaging means for spatially averaging the image signals obtained from the averaging means to detect the shading component of the image,
An inter-frame difference means for detecting a difference signal between the image signal obtained by the inter-frame averaging means and the image signal obtained by the spatial averaging means, and the inter-frame difference means. Histogram analysis means for performing a histogram analysis of the image signal, and the image signal obtained by the inter-frame difference means is compared pixel by pixel with an arbitrary level obtained by the histogram analysis means to determine a pixel defective pixel. Pixel defect detection means, pixel defect position storage means for storing the pixel position of the pixel defective pixel and the signal value of the pixel, and spatially continuous if a pixel defect exists in the peripheral pixels of the pixel defective pixel. A pixel defect group dividing means for recognizing that there is one group, and a signal value given by an external input as a signal value output when a chart of a constant light amount is imaged by the solid-state image sensor Entering Pixel defect measuring apparatus of the solid-state imaging device which comprises a means.
【請求項2】 画素欠陥画素の周辺画素は、前記画素欠
陥画素の1画素前の画素と、前記画素欠陥画素の1走査
線前の画素と、前記画素欠陥画素の1走査線前の画素の
1画素前の画素と、前記画素欠陥画素の1走査線前の画
素の1画素後の画素であることを特徴とする請求項1記
載の固体撮像素子の画素欠陥測定装置。
2. A peripheral pixel of the pixel defective pixel includes a pixel one pixel before the pixel defective pixel, a pixel one scanning line before the pixel defective pixel, and a pixel one scanning line before the pixel defective pixel. The pixel defect measuring device for a solid-state image sensor according to claim 1, wherein the pixel is a pixel one pixel before and a pixel one pixel after the pixel one scanning line before the pixel defective pixel.
JP3287470A 1991-11-01 1991-11-01 Picture element defect measuring instrument for solid-state image pickup element Pending JPH05130512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3287470A JPH05130512A (en) 1991-11-01 1991-11-01 Picture element defect measuring instrument for solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3287470A JPH05130512A (en) 1991-11-01 1991-11-01 Picture element defect measuring instrument for solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPH05130512A true JPH05130512A (en) 1993-05-25

Family

ID=17717756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3287470A Pending JPH05130512A (en) 1991-11-01 1991-11-01 Picture element defect measuring instrument for solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPH05130512A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109067A (en) * 2004-10-05 2006-04-20 Ikegami Tsushinki Co Ltd Defective pixel processing apparatus and method
JP2006304839A (en) * 2005-04-26 2006-11-09 Shimadzu Corp Optical or radiation imaging apparatus
JP2006319602A (en) * 2005-05-12 2006-11-24 Mitsubishi Electric Corp Solid-state image pickup apparatus and method for detecting flicker defect
US7676111B2 (en) 2005-02-28 2010-03-09 Kabushiki Kaisha Toshiba Image processing device and image processing method to detect and remove image noises
US7916191B2 (en) 2006-07-26 2011-03-29 Sony Corporation Image processing apparatus, method, program, and recording medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109067A (en) * 2004-10-05 2006-04-20 Ikegami Tsushinki Co Ltd Defective pixel processing apparatus and method
US7676111B2 (en) 2005-02-28 2010-03-09 Kabushiki Kaisha Toshiba Image processing device and image processing method to detect and remove image noises
JP2006304839A (en) * 2005-04-26 2006-11-09 Shimadzu Corp Optical or radiation imaging apparatus
JP4617987B2 (en) * 2005-04-26 2011-01-26 株式会社島津製作所 Light or radiation imaging device
JP2006319602A (en) * 2005-05-12 2006-11-24 Mitsubishi Electric Corp Solid-state image pickup apparatus and method for detecting flicker defect
JP4544027B2 (en) * 2005-05-12 2010-09-15 三菱電機株式会社 Solid-state imaging device and blinking defect detection method
US7916191B2 (en) 2006-07-26 2011-03-29 Sony Corporation Image processing apparatus, method, program, and recording medium

Similar Documents

Publication Publication Date Title
JP2000036044A (en) Defect integrating processor and defect integrating processing method
JPH05130512A (en) Picture element defect measuring instrument for solid-state image pickup element
JPH08145907A (en) Inspection equipment of defect
JPH04169807A (en) Inspecting apparatus of surface flaw
JP2007081513A (en) Blot defect detecting method for solid-state imaging element
JP2008244637A (en) Inspection device, solid-state imaging apparatus, and inspection method
JP2730806B2 (en) Evaluation method of solid-state imaging device
JP3012295B2 (en) Image processing apparatus and method
JP2004045052A (en) Apparatus and method for inspecting image data
KR101076478B1 (en) Method of detecting the picture defect of flat display panel using stretching technique and recording medium
JP2803388B2 (en) Parts inspection equipment
US20230419529A1 (en) Method and apparatus for acquiring master data of an object
JP2727797B2 (en) Solid-state imaging device inspection device
JP2756738B2 (en) Apparatus for visual inspection of semiconductor devices
JPH04364446A (en) Defect inspecting apparatus
JPH10239027A (en) Film thickness measuring device
JP3022627B2 (en) Defect inspection equipment
EP3751447A1 (en) Methods of determining a classification of a signal and of determining an artefact in an image
JP3474619B2 (en) Double reflection inspection method
JP3785693B2 (en) Image processing inspection equipment
JPH07128249A (en) Ic foreign matter inspection device
TWI495862B (en) Method of testing image sensor and realted apparatus thereof
KR100520054B1 (en) Hard disk inspection device and method
EP0428626A1 (en) Automated system for testing an imaging sensor.
JPH02260880A (en) Check device for solid-state image pickup device