JPH04169807A - Inspecting apparatus of surface flaw - Google Patents

Inspecting apparatus of surface flaw

Info

Publication number
JPH04169807A
JPH04169807A JP29372490A JP29372490A JPH04169807A JP H04169807 A JPH04169807 A JP H04169807A JP 29372490 A JP29372490 A JP 29372490A JP 29372490 A JP29372490 A JP 29372490A JP H04169807 A JPH04169807 A JP H04169807A
Authority
JP
Japan
Prior art keywords
area
flaw
threshold
signal
binary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29372490A
Other languages
Japanese (ja)
Other versions
JP2890801B2 (en
Inventor
Ayumi Hirono
広野 歩
Maki Yamada
真樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2293724A priority Critical patent/JP2890801B2/en
Publication of JPH04169807A publication Critical patent/JPH04169807A/en
Application granted granted Critical
Publication of JP2890801B2 publication Critical patent/JP2890801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To improve the precision in determination of good and bad articles by providing a signal level threshold and an area threshold corresponding to the kind of a surface flaw of a test specimen and by determining the surface flaw on the basis of the two thresholds. CONSTITUTION:When it is assumed that there are a dint, a short transverse line flaw and a long transverse line flaw in the surface of a test specimen, a comparator 13a compares output signals 10 thereof with a threshold 11 and detects all the flaws, and a binary-coded image memory 14a stores binary-coded signals thereof. Meanwhile, a comparator 13b compares them with a threshold 12 and detects only a bruise flaw having a high peak value, and a memory 14b stores a binary-coded signal thereof. Area computing elements 15a and 15b compute the area of the flaw from these binary- coded signals and comparators 17a and 17b compare it with area thresholds 16a and 16b. For the threshold 16a, herein, a value smaller than an area S3 and larger than S4 is selected, while a value smaller than an area S2 is selected for the threshold 16b. As the result, the comparators 17a and 17b judge only the long transverse line flaw and the bruise flaw as flaws affecting the quality of a picture respectively, while they do not judge the short traverse line flaw as such a flaw as the above. Accordingly, the possibility of determining a good article as a bad one is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は表面傷検査gt置に関し、特に被検査体が良
品であるか不良品であるかの判別を精度よくできるよう
にした表面傷検査装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a surface flaw inspection device, and in particular to a surface flaw inspection device that can accurately determine whether an object to be inspected is a good product or a defective product. Regarding equipment.

(従来の技術) 複写機の円筒体ドラム等の被検査体においては、その表
面に形成された傷は大きな問題となる。そこで、従来か
ら、このような被検査体の表面傷検査装置が開発されて
いる。
(Prior Art) Scratches formed on the surface of an object to be inspected, such as a cylindrical drum of a copying machine, pose a serious problem. Therefore, apparatuses for inspecting such surface flaws on objects to be inspected have been developed.

従来の表面傷検査装置は、被検査体の表面に、例えばハ
ロゲン光源のスリット光を投光し、被検査体の表面に存
在する傷からの散乱光をラインセンサで受光し、信号処
理回路で処理して、傷の有り無しの判定を行うようにし
ている。
Conventional surface flaw inspection equipment projects a slit light from, for example, a halogen light source onto the surface of an object to be inspected, uses a line sensor to receive scattered light from flaws on the surface of the object to be inspected, and uses a signal processing circuit to detect the scattered light. It is processed to determine whether there are any scratches or not.

前記信号処理回路は、高速で連続した検査工程に利用で
きるように、判定が簡単な2値化処理を用いるのが一般
的である。
The signal processing circuit generally uses binarization processing, which allows easy determination, so that it can be used for high-speed, continuous inspection processes.

従来の信号処理回路の一例を、第5図を参照して説明す
る。
An example of a conventional signal processing circuit will be explained with reference to FIG.

図において、29はラインセンサてあり、前述のように
、被検査体の表面に存在する傷からの散乱光を受光する
。例えば、ラインセンサ29は、第6図(1)のような
波形の信号aを出力する。図において、周辺部の信号出
力が小さく中央部か大きいのは、前記散乱光をラインセ
ン−Fj−29に集光するレンズの収差によるものであ
り、急便なパルスは傷を示しでいる。
In the figure, the line sensor 29 receives scattered light from scratches on the surface of the object to be inspected, as described above. For example, the line sensor 29 outputs a signal a having a waveform as shown in FIG. 6(1). In the figure, the reason why the signal output is small at the periphery and large at the center is due to the aberration of the lens that focuses the scattered light onto the Linesen-Fj-29, and the urgent pulses indicate scratches.

信号aはA/D変換器30で、例えば8ビツト・のディ
ジタル信号に変換される。A/D変換器30の出力信号
すの波形図は、第6図(2)のbに示すようになる。第
5図では、8ビット、すなわち256階調で表された各
画素毎の信号出力を符号31の(Do 、 Di 、D
2 、□−==、Dn)で表している。32は前記信号
出力の各画素毎に対応した閾値である。この閾値(TO
、Tl 、T2、・・・・・・、Tn)は、前記レンズ
の収差による信号出力の高低に合わせて各画素毎に決め
られている。
Signal a is converted by an A/D converter 30 into, for example, an 8-bit digital signal. The waveform diagram of the output signal of the A/D converter 30 is as shown in FIG. 6(2) (b). In FIG. 5, the signal output for each pixel expressed in 8 bits, that is, 256 gradations is expressed as (Do, Di, D
2, □-==, Dn). 32 is a threshold value corresponding to each pixel of the signal output. This threshold (TO
, Tl, T2, . . . , Tn) are determined for each pixel according to the level of signal output due to the aberration of the lens.

前記信号出力31と閾値32とは比較器33て比較され
、2値化される。2値化信号Cは第6図に示すような波
形Cとなり、散乱光の大きな市か検出される。
The signal output 31 and the threshold value 32 are compared by a comparator 33 and binarized. The binarized signal C has a waveform C as shown in FIG. 6, and a city with a large amount of scattered light is detected.

34は2値化画像メモリであり、比較器33による比較
結果が順次記憶される。この2値化画像メモリ34には
、前記ラインセンサ29によって読取られた被検査体の
表面の多数のラインの情報を多値化[7たデータ31と
、前記閾値32との比較結果が記憶される。このため、
2値化画像メモリ34には、被検査体の表面の所定面積
の前記2値化信号が記憶されることになる。
34 is a binarized image memory, in which the comparison results by the comparator 33 are sequentially stored. This binarized image memory 34 stores the comparison result between the data 31 obtained by converting information of a large number of lines on the surface of the object to be inspected read by the line sensor 29 into multivalued data and the threshold value 32. Ru. For this reason,
The binarized image memory 34 stores the binarized signal of a predetermined area of the surface of the object to be inspected.

35は面積計算部であり、前記2値化画像メモリ34に
記憶されている傷を表す信号から、個々の傷の面積を求
める。求められた傷の面積は、予め定められている面積
閾値36と比較器37て比較され、この面積閾値を越え
る傷は表示部38に表示され、面積閾値を越えない傷は
無視される。
Reference numeral 35 denotes an area calculating section, which calculates the area of each scratch from the signal representing the scratches stored in the binarized image memory 34. The area of the determined scratch is compared with a predetermined area threshold 36 by a comparator 37, and scratches exceeding this area threshold are displayed on the display section 38, while scratches not exceeding the area threshold are ignored.

以上のようにして、ある面積より大きい傷をもつ被検査
体は不良品と判断下さ、小さな傷をもつ被検査体は良品
とすることができる。
As described above, an object to be inspected with a flaw larger than a certain area can be determined to be a defective product, and an object to be inspected with a small flaw can be determined to be a good product.

例えば、複写機の感光体ドラムの場合には、不良品か否
かの判断は、複写された画像の画質に問題が生ずるかど
うかであり、この画質の問題は傷の面積でほぼ決まるこ
とになる。上記の従来装置は、傷の面積が予定の閾値よ
り小さい場合には良品と判断するようにしているので、
この閾値を画質に影響を及ぼすと考えられる面積の最小
値に選ぶことにより、複写機の感光体ドラムの傷の検査
に使用することができる。
For example, in the case of a photoconductor drum for a copying machine, the determination as to whether it is a defective product is based on whether or not there is a problem with the quality of the copied image, and the problem with the image quality is almost determined by the area of the scratch. Become. The conventional device described above determines that the product is good if the scratch area is smaller than a predetermined threshold.
By selecting this threshold value to be the minimum value of the area that is considered to affect the image quality, it can be used to inspect for scratches on the photoreceptor drum of a copying machine.

(発明が解決しようとする課題) しかしながら、本発明者が前記傷検査装置を用いて、複
写機の感光体ドラムの良品と不良品の判定をしたところ
、不良品と判定されたものの中に、複写された画像の画
質に影響を与えない良品か混じっていることがわかった
(Problem to be Solved by the Invention) However, when the inventor of the present invention used the flaw inspection device to determine whether the photoreceptor drums of a copying machine were good or defective, some of the products determined to be defective were: It was found that there was a mix of non-defective products that did not affect the quality of the copied images.

したがって、従来の傷判定装置を用いると、良品を不良
品と誤判定するので、得率向上のためには、不良品と判
定された被検査体をさらに目視により検査し、良品を選
び出さなれけばならず、再検査工程が必要になるという
問題があった。
Therefore, when conventional flaw detection devices are used, good products are mistakenly judged as defective, so in order to improve the yield rate, it is necessary to further visually inspect the inspected objects that have been judged as defective to select good products. There was a problem in that the film had to be stained and a re-inspection process was required.

本発明の目的は、前記従来装置の問題点を除去I2、良
品と不良品の判定精度を高めた表面傷検査装置を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a surface flaw inspection device that eliminates the problems of the conventional device and improves the accuracy of determining good and defective products.

(課題を解決するための手段および作用)前記目的を達
成するために、本発明は、表面傷の種類に応じて設けら
れた複数の信号レベル閾値と、被検査体の表面からの散
乱光を光電変換するラインセンサ出力と前記信号レベル
閾値の各々とを比較して2値化信号を出力する複数の2
値化手段と、前記2値化信号から表面傷の面積を計算す
る複数の面積計算部と、前記表面傷の種類に応し。
(Means and Effects for Solving the Problems) In order to achieve the above object, the present invention provides a plurality of signal level thresholds set depending on the type of surface flaw, and a method for detecting scattered light from the surface of an object to be inspected. A plurality of two-channel sensors that compare the line sensor output to be photoelectrically converted with each of the signal level thresholds and output a binary signal.
a digitization means, a plurality of area calculation units that calculate an area of a surface flaw from the binarized signal, and a plurality of area calculation units according to the type of the surface flaw.

て設けられた複数の面積閾値と、前記面積計算部によっ
て計算された複数の面積と前記面積閾値の各々とを比較
I、て良品、不良品の判定を行う判定手段とを具61.
た点に特徴がある。
a plurality of area thresholds provided in the area calculation section, a plurality of areas calculated by the area calculation section and each of the area thresholds, and a determination means for determining whether the product is good or defective;
It is characterized by the fact that

本発明によれば、被検査体の表面傷の種類に応じた信号
レベル閾値と面積閾値が設けられ、両方の閾値で表面傷
の判定を行うことができるので、多種類の表面傷の属性
に従って被検査体の良品、不良品の判定を行うことがで
きる。
According to the present invention, a signal level threshold and an area threshold are provided according to the types of surface flaws on the object to be inspected, and surface flaws can be determined using both thresholds. It is possible to determine whether the inspected object is good or defective.

よって、被検査体の良品、不良品の判定の正確度を向上
することかできる。
Therefore, it is possible to improve the accuracy of determining whether the inspected object is a good product or a defective product.

(実施例) 以下に、図面を参照して、本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

まず、本発明の詳細な説明する。First, the present invention will be explained in detail.

複写機の感光体ドラム等の被検査体の表面に生ずる傷は
、大別すると、打痕傷と横線傷とに分けることができる
。第7図(a)はラインセンサて打痕傷を検出した時の
信号出力波形を示し、同図(b)は横線傷を検出した時
の信号出力波形を示す。
Scratches that occur on the surface of an object to be inspected, such as a photoreceptor drum of a copying machine, can be broadly classified into dent scratches and horizontal line scratches. FIG. 7(a) shows a signal output waveform when a line sensor detects a dent, and FIG. 7(b) shows a signal output waveform when a horizontal line flaw is detected.

また、(a)図の51は信号出力レベルa1における打
痕傷の断面の面積、S2は信号出力レベルa2における
打痕傷の断面の面積を示す。また、(b)図の53は信
号出力レベルa1における横線傷の断面の面積を示す。
In addition, 51 in the figure (a) indicates the area of the cross section of the dent at the signal output level a1, and S2 indicates the area of the cross section of the dent at the signal output level a2. Further, 53 in the diagram (b) indicates the cross-sectional area of the horizontal line flaw at the signal output level a1.

第7図(a)から明らかなように、打痕傷の特徴は、信
号出力のビークp1は高いが、傷の面積は小さいことで
ある。例えば、信号出力のビークp1は256階調に対
して200以上となり、面積s1は1画素の一辺を約6
0μmとして、50画素程度である。
As is clear from FIG. 7(a), the characteristics of the dents are that the peak p1 of the signal output is high, but the area of the scratches is small. For example, the peak p1 of the signal output is 200 or more for 256 gradations, and the area s1 is approximately 6 pixels on one side of one pixel.
Assuming 0 μm, there are approximately 50 pixels.

これに対して、表面傷の特徴は、同図(b)から明らか
なように、信号出力のビークp2は低いが、傷の面積は
大きいことである。例えば、信号出力p2のビークは2
56階調に対して40〜50程度となり、面積S3は1
00画素以上である。
On the other hand, the characteristic of surface scratches is that the peak p2 of the signal output is low, but the area of the scratches is large, as is clear from FIG. 2(b). For example, the peak of signal output p2 is 2
It is about 40 to 50 for 56 gradations, and the area S3 is 1
00 pixels or more.

本発明者の杜々の実験の結果、複写画像の画質に影響を
及はすのは打痕傷のような信号出力のビークp1か高く
、信号出力レベルa2においである程度の面積S2をも
つ傷、および長い横線傷のように信号出力レベルa1に
おいて大きな面積s3  (s3 >sl )をもつも
のであることかわかった。また、面Rs1以上の横線傷
であっても、傷の面積か53未満のものは画質に大きな
影響を及ぼさず、良品と判定できることがわかった。
As a result of the experiments conducted by the inventor Mori, the things that affect the image quality of the copied image are scratches such as dents, which have a high signal output peak p1 and have a certain area S2 at the signal output level a2. It was also found that the scratches had a large area s3 (s3 > sl) at the signal output level a1, like long horizontal line scratches. Furthermore, it was found that even if there is a horizontal line scratch on the surface Rs1 or more, if the scratch area is less than 53, it does not significantly affect the image quality and can be determined to be a good product.

本発明は以上の実験結果に基づいてなされたものであり
、以下に一実施例を詳細に説明する。
The present invention has been made based on the above experimental results, and one embodiment will be described in detail below.

第2図は、本実施例の装置全体の概念図であり、1は被
検査体の支持部、2は支持部1を回動させるモータ、3
はスリット光を生成する光源装置、4はラインセンサ、
5は前記被検査体からの散乱光をラインセンサ4上に集
光する集光レンズ、6はラインセンサ4の出力信号を例
えば8ビツトのディジタル信号に変換するA/D変換器
である。
FIG. 2 is a conceptual diagram of the entire apparatus of this embodiment, in which 1 is a support section for the object to be inspected, 2 is a motor that rotates the support section 1, and 3 is a conceptual diagram of the entire device.
4 is a light source device that generates slit light; 4 is a line sensor;
5 is a condensing lens that focuses the scattered light from the object to be inspected onto the line sensor 4, and 6 is an A/D converter that converts the output signal of the line sensor 4 into, for example, an 8-bit digital signal.

A/D変換器6の出力は、被検査体の表向にある傷が複
写画像の画質に影響を及ぼす傷であるか否かを判別する
表面傷判定回路に導かれる。
The output of the A/D converter 6 is led to a surface flaw determination circuit that determines whether a flaw on the surface of the object to be inspected is a flaw that affects the quality of the copied image.

第1図は、この表面傷判定回路の一実施例の回路図であ
る。
FIG. 1 is a circuit diagram of one embodiment of this surface flaw determination circuit.

図において、10は前記A/D変換器6によって例えば
8ビツトの256階調に変換された散乱光の信号出力で
ある。また、11は第5図の閾値32と同じレベルであ
り、端部の値TI 、T2、・・・、および・・・・・
・、Tnは20程度で、その中央部の値は40程度、す
なわち、20〜40程度になされている。このレベルは
、マスタードラムと呼ばれる表面に傷のない感光体ドラ
ムの散乱光を測定して、その測定値のn倍(例えば、2
〜3倍)を閾値としたものである。なお、このnは、検
出する傷の種類により変化する。
In the figure, 10 is a signal output of scattered light converted by the A/D converter 6 into, for example, 8 bits and 256 gradations. Further, 11 is the same level as the threshold value 32 in FIG. 5, and the end values TI, T2, . . .
・Tn is about 20, and the value at the center is about 40, that is, about 20 to 40. This level is determined by measuring the scattered light of a photoreceptor drum with no scratches on its surface, called the master drum, and multiplying the measured value by n times (for example, 2
~3 times) as the threshold value. Note that this n changes depending on the type of flaw to be detected.

一方、12は閾値11より高いレベルの閾値である。閾
値12は、例えば閾値11の2倍程度に設定されている
On the other hand, 12 is a threshold value higher than the threshold value 11. The threshold value 12 is set, for example, to about twice the threshold value 11.

第3図は前記閾値11.12の概念を示す図である。こ
の図では、alか前記閾値11を示し、a2か閾値12
を示している。
FIG. 3 is a diagram showing the concept of the threshold value 11.12. In this figure, al indicates the threshold value 11, and a2 indicates the threshold value 12.
It shows.

図に示されているように、被検査体の表面に、打痕傷、
短い横線傷、長い横線傷かあったとすると、第1の比較
器13aはこれらの傷を全て検出し、その2値化信号は
第1の2値化画像メモリ14aに格納される。一方、第
2の比較器13bはピーク値の高い打痕傷のみを検出し
、その2値化信号は第1の2値化画像メモリ14bに格
納される。これらの2値化画像メモリ14a、14bに
は、前記スリット光を被検査体に照射することにより得
られた1ラインずつの散乱光を前記閾値11.12で2
値化した信号が順次蓄積されるので、2値化画像メモリ
14a、14bには、被検査体の全表面の傷のデータが
蓄積されることになる。なお、被検査体の全表面の面積
が大きくて全表面の傷のデータが2値化画像メモリ14
a、14bに収まらない場合には、複数回に分けて検査
をすればよい。
As shown in the figure, there are dents and scratches on the surface of the object to be inspected.
If there are short horizontal line scratches or long horizontal line scratches, the first comparator 13a detects all of these scratches, and the binarized signals thereof are stored in the first binarized image memory 14a. On the other hand, the second comparator 13b detects only the dents with high peak values, and the binarized signal thereof is stored in the first binarized image memory 14b. These binarized image memories 14a and 14b store the scattered light of each line obtained by irradiating the object to be inspected with the slit light.
Since the digitized signals are sequentially accumulated, data of flaws on the entire surface of the object to be inspected is accumulated in the binary image memories 14a and 14b. Note that since the total surface area of the object to be inspected is large, the data of scratches on the entire surface is stored in the binarized image memory 14.
If it does not fall within the ranges a and 14b, the test may be conducted in multiple batches.

前記第1、第2の2値化メモリ14a、14bに格納さ
れた2値化信号は、第1、第2の面積計算部15a、1
5bにより、傷の面積の計算をされる。そして、比較器
17a、17bにより、第1の面積閾値16a1第2の
面積閾値16bと比較される。
The binarized signals stored in the first and second binarized memories 14a and 14b are stored in the first and second area calculation units 15a and 1.
5b, the area of the scratch is calculated. Then, the comparators 17a and 17b compare the first area threshold 16a1 with the second area threshold 16b.

ここに、第1の面積閾値16aは面積S3より小さく、
s4より大きな値が選ばれる。また、第2の面積閾値1
6bとしては、面積S2より少【2小さい値が選ばれる
Here, the first area threshold 16a is smaller than the area S3,
A value larger than s4 is selected. In addition, the second area threshold 1
As 6b, a value smaller than the area S2 by [2] is selected.

この結果、第1の比較517aにより、画質に影響を与
える傷として判断されるのは、第3図の長い横線傷とな
り、打痕傷および短い横線傷は検出されなくなる。一方
、第2の比較器17bにより、画質に影響を与える傷と
しで判断されるのは、第3図の打痕傷となり、長い横線
傷および短い横線傷は検出されなくなる。
As a result, according to the first comparison 517a, it is the long horizontal line flaw in FIG. 3 that is determined to be a flaw that affects image quality, and the dent flaw and short horizontal line flaw are no longer detected. On the other hand, the second comparator 17b determines that the scratches that affect image quality are the dents shown in FIG. 3, and long horizontal line scratches and short horizontal line scratches are not detected.

前記第1、第2の比較器17a、17bの信号出力は論
理和回路18を経て、表示部19に送られ、表示される
The signal outputs of the first and second comparators 17a and 17b are sent to a display section 19 via an OR circuit 18 and displayed.

以上の説明から明らかなように、本実施例によれば、画
質に影響を及はさない短い横線傷を傷と判断しなくなる
ので、良品を不良品と判定される可能性を低減させるこ
とができる。
As is clear from the above description, according to this embodiment, short horizontal scratches that do not affect image quality are not judged as scratches, so it is possible to reduce the possibility that a non-defective product will be judged as a defective product. can.

次に、本発明の第2実施例を説明する。Next, a second embodiment of the present invention will be described.

この実施例は前記とは別の種類の傷である感材ぬけを検
出できるようにしたものである。感材ぬけは、感光体ド
ラム表面に塗布されている感光体がスポット状に抜けて
いるものであり、投光された光は鏡面仕上げされたドラ
ム母材(例えば、アルミバイブ)により正反射され、散
乱光は殆ど発生しない。
In this embodiment, it is possible to detect a peeling of the sensitive material, which is a different type of flaw from the above. A photoreceptor dropout is a spot of the photoreceptor coated on the photoreceptor drum surface, and the projected light is regularly reflected by the mirror-finished drum base material (for example, an aluminum vibrator). , almost no scattered light is generated.

第4図はその様子を示1.た図である。図において、4
1.41aは傷により発生した散乱光の信号出力を示し
、42は傷のない表面の信号出力を示す。また、43.
43aは前記感材ぬけの部分のiN号出力、44は信号
出力42より若干低いレベルの感材ぬけ検出用閾値、4
5は第1実施例の閾値11と同様の表面傷検出用の閾値
を示す。
Figure 4 shows the situation.1. This is a diagram. In the figure, 4
1.41a shows the signal output of scattered light generated by a scratch, and 42 shows the signal output of a surface without scratches. Also, 43.
43a is the iN output of the portion where the photosensitive material is removed; 44 is a threshold for detecting the removal of the photosensitive material at a level slightly lower than the signal output 42;
5 indicates a threshold for surface flaw detection similar to the threshold 11 of the first embodiment.

本実施例では、第1図の閾値11と1.て閾値45を用
い、閾値12として、前記閾値44を用い、比較器13
bの十と−を逆にする。また、閾値44の系列の回路の
面積閾値16b、!:、l、では感材ぬけにより画質に
影響が出る面積の最小値を設定する。
In this embodiment, threshold values 11 and 1. of FIG. The threshold value 45 is used as the threshold value 12, the threshold value 44 is used as the threshold value 12, and the comparator 13
Reverse the tens and - in b. Also, the area threshold 16b of the circuit of the series of thresholds 44,! :, l sets the minimum value of the area where the image quality is affected by the removal of the sensitive material.

このようにすることにより、閾値11の系列の回路によ
り、表面傷の検出が行われ、閾値12の系列の回路で感
材ぬけの検出を行うことができる。
By doing so, the circuit having the threshold value 11 can detect surface flaws, and the circuit having the threshold value 12 can detect the removal of the sensitive material.

なお、感材ぬけは小ざくても画質の悪化をもたらすので
、比較器13bで感材ぬけと判定されれば、面積閾値と
の比較を行わずに不良品と判定するようにしてもよい。
Incidentally, since even a small omission of the sensitive material causes a deterioration in image quality, if the comparator 13b determines that there is a omission of the sensitive material, it may be determined that the product is defective without comparing with the area threshold value.

また、第1図の回路に、前記感材ぬけの検出回路を追加
するようにしてもよい。
Furthermore, a circuit for detecting the omission of the sensitive material may be added to the circuit shown in FIG.

(発明の効果) 以上の説明から明らかなように、本発明によれば、実使
用において問題にならない小さな傷を検出1−なくなる
ので、良品を不良品と誤判定する虚報率を低減すること
ができる。
(Effects of the Invention) As is clear from the above description, according to the present invention, small scratches that are not a problem in actual use can be detected and eliminated, so that the false alarm rate of erroneously determining good products as defective products can be reduced. can.

また、被検査体が複写機の感光体ドラムのような場合に
は、感祠ぬけを検出することかでき、不良品を良品と誤
判定することがなくなり、感材ぬけを検査するための工
程を削減することができる。
In addition, when the object to be inspected is a photoreceptor drum of a copying machine, it is possible to detect the dropout of the photoreceptor, eliminating the possibility of incorrectly determining a defective product as a good product, and improving the process for inspecting the photoreceptor dropout. can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック図、第2図は本実
施例の装置の外観斜視図、第3図は被検査体の表面傷の
種類に応じた信号出力レベルと断面積を説明する図、第
4図は感材ぬけを有する感光体ドラムの信号出力波形図
、第5図は従来装置のブロック図、第6図は第5図の主
要部の信号の波形図、第7図は被検査体の表面傷の種類
に応じた信号出力レベルと断面積を説明する図である。 10・・・被検査体からの信号出力、11.12・・・
閾値、13a、13b−・・比較器、14a114b・
・・2値化画像メモリ、15a、15b・・・面積計算
部、16a、16b・・・面積閾値、17a、17b・
・・比較器、19・・・表示部。 代理人 弁理士 平木送入 外1名 第2図 第3図
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is an external perspective view of the device of this embodiment, and Fig. 3 shows the signal output level and cross-sectional area according to the type of surface flaw on the object to be inspected. 4 is a signal output waveform diagram of a photoreceptor drum having a photosensitive material dropout, FIG. 5 is a block diagram of a conventional device, FIG. 6 is a signal waveform diagram of the main part of FIG. 5, and FIG. The figure is a diagram illustrating the signal output level and cross-sectional area depending on the type of surface flaw on the object to be inspected. 10...Signal output from the inspected object, 11.12...
Threshold value, 13a, 13b--Comparator, 14a114b-
...Binarized image memory, 15a, 15b...Area calculation section, 16a, 16b...Area threshold, 17a, 17b.
... Comparator, 19... Display section. Agent: Patent attorney Hiraki and 1 other person Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)被検査体の表面に光を投射し、該表面からの散乱
光を集光してラインセンサで光電変換後、表面傷の有無
の検査を行う表面傷検査装置であって、前記表面傷の種
類に応じて設けられた複数の信号レベル閾値と、 前記ラインセンサ出力と前記信号レベル閾値の各々とを
比較して2値化信号を出力する複数の2値化手段と、 前記2値化信号から表面傷の面積を計算する複数の面積
計算部と、 前記表面傷の種類に応じて設けられた複数の面積閾値と
、 前記面積計算部によって計算された複数の面積と前記面
積閾値の各々とを比較して良品、不良品の判定を行う判
定手段とを具備したことを特徴とする表面傷検査装置。
(1) A surface flaw inspection device that projects light onto the surface of an object to be inspected, collects scattered light from the surface, performs photoelectric conversion using a line sensor, and then tests the presence or absence of surface flaws on the surface. a plurality of signal level thresholds provided according to the type of scratch; a plurality of binarization means that compares the line sensor output with each of the signal level thresholds and outputs a binarized signal; and the binary signal. a plurality of area calculation units that calculate the area of a surface flaw from a surface flaw signal, a plurality of area thresholds provided according to the type of the surface flaw, and a plurality of areas calculated by the area calculation unit and the area threshold value. 1. A surface flaw inspection device characterized by comprising a determination means for comparing each product and determining whether the product is good or defective.
JP2293724A 1990-11-01 1990-11-01 Surface scratch inspection device Expired - Lifetime JP2890801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2293724A JP2890801B2 (en) 1990-11-01 1990-11-01 Surface scratch inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2293724A JP2890801B2 (en) 1990-11-01 1990-11-01 Surface scratch inspection device

Publications (2)

Publication Number Publication Date
JPH04169807A true JPH04169807A (en) 1992-06-17
JP2890801B2 JP2890801B2 (en) 1999-05-17

Family

ID=17798422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2293724A Expired - Lifetime JP2890801B2 (en) 1990-11-01 1990-11-01 Surface scratch inspection device

Country Status (1)

Country Link
JP (1) JP2890801B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123066A (en) * 1996-10-17 1998-05-15 Asahi Glass Co Ltd Apparatus and method for detection of singularity point
JP2002116015A (en) * 2000-10-05 2002-04-19 Mitsubishi Rayon Co Ltd Apparatus and method for detection of defect
JP2007114073A (en) * 2005-10-21 2007-05-10 Dainippon Screen Mfg Co Ltd Stylus trace detecting device and method
WO2015015945A1 (en) * 2013-07-30 2015-02-05 シャープ株式会社 Defect candidate specification device, defect candidate specification method, defect determination device, defect inspection device, defect candidate specification program, and recording medium
JP2015187578A (en) * 2014-03-27 2015-10-29 福井県 Surface shape evaluation method and device of saw wire
WO2016006039A1 (en) * 2014-07-08 2016-01-14 日産自動車株式会社 Defect detection device and production system
JP2020204598A (en) * 2019-06-19 2020-12-24 フロイント産業株式会社 Teaching device in solid preparation appearance inspection and teaching method in solid preparation appearance inspection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160645A (en) * 1980-05-16 1981-12-10 Hitachi Ltd Detecting method for surface defect of body
JPS62229050A (en) * 1986-03-31 1987-10-07 Mitsubishi Metal Corp Surface detect inspection of object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160645A (en) * 1980-05-16 1981-12-10 Hitachi Ltd Detecting method for surface defect of body
JPS62229050A (en) * 1986-03-31 1987-10-07 Mitsubishi Metal Corp Surface detect inspection of object

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123066A (en) * 1996-10-17 1998-05-15 Asahi Glass Co Ltd Apparatus and method for detection of singularity point
JP2002116015A (en) * 2000-10-05 2002-04-19 Mitsubishi Rayon Co Ltd Apparatus and method for detection of defect
JP2007114073A (en) * 2005-10-21 2007-05-10 Dainippon Screen Mfg Co Ltd Stylus trace detecting device and method
WO2015015945A1 (en) * 2013-07-30 2015-02-05 シャープ株式会社 Defect candidate specification device, defect candidate specification method, defect determination device, defect inspection device, defect candidate specification program, and recording medium
JP2015187578A (en) * 2014-03-27 2015-10-29 福井県 Surface shape evaluation method and device of saw wire
WO2016006039A1 (en) * 2014-07-08 2016-01-14 日産自動車株式会社 Defect detection device and production system
CN106471333A (en) * 2014-07-08 2017-03-01 日产自动车株式会社 Flaw detection apparatus and production system
JPWO2016006039A1 (en) * 2014-07-08 2017-04-27 日産自動車株式会社 Defect inspection equipment and production system
US9805457B2 (en) 2014-07-08 2017-10-31 Nissan Motor Co., Ltd. Defect detection device and production system
CN106471333B (en) * 2014-07-08 2018-01-23 日产自动车株式会社 Flaw detection apparatus and production system
US10339645B2 (en) 2014-07-08 2019-07-02 Nissan Motor Co., Ltd. Defect detection device and production system
JP2020204598A (en) * 2019-06-19 2020-12-24 フロイント産業株式会社 Teaching device in solid preparation appearance inspection and teaching method in solid preparation appearance inspection

Also Published As

Publication number Publication date
JP2890801B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
JPH04169807A (en) Inspecting apparatus of surface flaw
JP2007081513A (en) Blot defect detecting method for solid-state imaging element
JPH08145907A (en) Inspection equipment of defect
JPS6347642A (en) Method for discriminating kind of flaw in surface flaw detection
JPH03194454A (en) Container internal surface inspection device
JPH05130512A (en) Picture element defect measuring instrument for solid-state image pickup element
JP2988059B2 (en) Circular container inner surface inspection device
JP2638121B2 (en) Surface defect inspection equipment
JPH02253109A (en) Defect discriminating device
JPH0827181B2 (en) Automatic coating skin inspection device
JP2756738B2 (en) Apparatus for visual inspection of semiconductor devices
JPH0679862A (en) Method for inspecting quality of printing paper surface and apparatus therefor
JPH01262447A (en) Periodic defect discriminating processing circuit
JPH01253641A (en) Circuit for discriminating streak-like defect
JPH08193959A (en) Device and method for detecting surface scratch of inspection object
JPH05332950A (en) Defect inspection instrument
JPH04364446A (en) Defect inspecting apparatus
JPH04286944A (en) Flaw detector
JPH07128249A (en) Ic foreign matter inspection device
JPS6216372B2 (en)
JPH03221849A (en) Method for detecting defect
JPS62157499A (en) Scratch inspection method for image sensor
JPS6216373B2 (en)
JP2000186975A (en) Lens-inspecting method and device
JPH0786477B2 (en) Surface inspection device