JP2988059B2 - Circular container inner surface inspection device - Google Patents

Circular container inner surface inspection device

Info

Publication number
JP2988059B2
JP2988059B2 JP3265134A JP26513491A JP2988059B2 JP 2988059 B2 JP2988059 B2 JP 2988059B2 JP 3265134 A JP3265134 A JP 3265134A JP 26513491 A JP26513491 A JP 26513491A JP 2988059 B2 JP2988059 B2 JP 2988059B2
Authority
JP
Japan
Prior art keywords
circular container
predetermined
pixel
threshold value
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3265134A
Other languages
Japanese (ja)
Other versions
JPH05107200A (en
Inventor
公一 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3265134A priority Critical patent/JP2988059B2/en
Priority to US07/914,332 priority patent/US5233199A/en
Priority to EP97106885A priority patent/EP0791822A3/en
Priority to EP19920112088 priority patent/EP0523664A3/en
Publication of JPH05107200A publication Critical patent/JPH05107200A/en
Priority to US08/157,908 priority patent/US5412203A/en
Application granted granted Critical
Publication of JP2988059B2 publication Critical patent/JP2988059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は例えばコンベアなどで搬
送されるビール缶などの円形容器内面を検査し、異物・
ゴミ・傷などを検出する画像処理装置としての円形容器
内面検査装置に関する。なお以下各図において同一の符
号は同一もしくは相当部分を示す。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention inspects the inner surface of a circular container such as a beer can conveyed by a conveyor or the like, and detects foreign matter or foreign matter.
The present invention relates to a circular container inner surface inspection device as an image processing device for detecting dust and scratches. In the drawings, the same reference numerals indicate the same or corresponding parts.

【0002】[0002]

【従来の技術】図8は一例としてのビール用アルミ缶の
容器を上面より観測した場合の高輝度部の説明図で、同
図(A)は缶容器の上面(画像)図、同図(B)は側断
面図である。そして102は容器、101はこの容器1
02を上方から照らすリング状の照明器、103は口部
の高輝度部、104は底部の高輝度部である。このよう
にリング照明器101を用いて容器102の内面に光線
を照射することにより、容器内面の口部と底部に夫々1
03,104のような高輝度部が発生する。特に缶など
のように容器内面に金属光沢のある場合は顕著である。
2. Description of the Related Art FIG. 8 is an explanatory view of a high-brightness portion when an aluminum can container for beer as an example is observed from above, and FIG. 8A is a top (image) view of the can container, and FIG. (B) is a side sectional view. And 102 is a container, 101 is this container 1
A ring-shaped illuminator illuminating 02 from above, 103 is a high-brightness portion at the mouth, and 104 is a high-brightness portion at the bottom. By irradiating the inner surface of the container 102 with a light beam using the ring illuminator 101 in this manner, the mouth and the bottom of the inner surface of the container 1
High luminance portions such as 03 and 104 occur. This is particularly noticeable when the inner surface of the container has a metallic luster such as a can.

【0003】図9(B)は容器102の上面画像(図1
3(A))に対する走査線Q−Q1上の濃度変化を示し
たものであるが、濃度変化の特徴よりW1〜W5の5つ
の領域に分類される。第1の領域W1は口部高輝度部1
03であり、第2の領域W2は濃度変化が比較的小さい
容器側面上中部であり、第3の領域W3は図12で述べ
た照明101による光線があまり届かないため、他の領
域より暗い容器側面下部であり、第4の領域W4は底部
高輝度部104であり、第5の領域W5は底部である。
FIG. 9B is a top view image of the container 102 (FIG. 1).
3A shows the density change on the scanning line Q-Q1 with respect to 3 (A), and is classified into five regions W1 to W5 according to the characteristic of the density change. The first region W1 is the high-brightness portion 1 of the mouth.
03, the second area W2 is the upper middle part of the side of the container where the density change is relatively small, and the third area W3 is a container darker than the other areas because the light beam by the illumination 101 described in FIG. The fourth region W4 is the bottom high brightness part 104, and the fifth region W5 is the bottom.

【0004】従来はこれらの領域W1〜W5にそれぞれ
ウィンドウを設け、領域の光学的な特性に応じて黒汚れ
(黒点)や白汚れ(白点)の不良を検出するたそのしき
い値を設定していた。不良検出の方法としては例えば対
象画像の走査によって得られたアナログのビデオ信号
(アナログ濃淡画像信号)をA/D変換してなる8ビッ
トなどの多値の濃淡画像信号を所定のしきい値で2値化
する方法や、前記のビデオ信号を図10に示すような微
分回路を介し微分して欠陥信号を抽出する微分法などが
知られている。この微分法の場合、対象物の外形の輪郭
部でも微分信号が出るが輪郭部では微分によって正方向
パルス,負方向パルスのいずれか一方が発生するのに対
し、微小欠陥部では正方向パルスと負方向パルスが同時
に発生することを利用して欠陥部を抽出することができ
る。
Conventionally, a window is provided in each of these areas W1 to W5, and a threshold value for detecting a defect of black stain (black point) or white stain (white point) is set according to the optical characteristics of the area. Was. As a method of detecting a defect, for example, a multi-valued grayscale image signal such as 8 bits obtained by A / D conversion of an analog video signal (analog grayscale image signal) obtained by scanning a target image is converted to a predetermined threshold value. There are known a binarizing method, a differentiating method for extracting the defective signal by differentiating the video signal through a differentiating circuit as shown in FIG. In the case of this differentiation method, a differential signal is also output at the contour of the outer shape of the object, but either one of a positive pulse or a negative pulse is generated by the differentiation at the contour, whereas a positive pulse is generated at a minute defect portion. A defect can be extracted by utilizing the simultaneous occurrence of negative pulses.

【0005】即ちラスタ走査に基づくアナログ濃淡画像
信号を微分してなる信号P(x,y)についての着目点
(座標値x=i,y=j)における値P(i,j)と、
この着目点よりx方向走査線上の前,後に夫々所定の微
小のα画素,β画素だけ離れた点における値P(i−
α,j)、P(i+β,j)との間に, P(i,j)−P(i−α,j)>TH1 であって
且つ、 P(i+β,j)−P(i,j)>TH1 の関係が
あれば、 (但しTH1は所定のしきい値(正値)とする) 着目点における不良検出のための二値化関数値PD
(i,j)=1としてこの着目点を黒レベル不良の点と
し、それ以外の場合はPD(i,j)=0としてこの着
目点を正常の点とするものである。
That is, a value P (i, j) at a point of interest (coordinate values x = i, y = j) for a signal P (x, y) obtained by differentiating an analog grayscale image signal based on raster scanning,
The value P (i−i) at a point separated from the point of interest by a predetermined minute α pixel and β pixel before and after the x-direction scanning line, respectively.
α, j) and P (i + β, j), P (i, j) −P (i−α, j)> TH1 and P (i + β, j) −P (i, j) )> TH1 (where TH1 is a predetermined threshold value (positive value)) Binarization function value PD for detecting a defect at a point of interest
If (i, j) = 1, this point of interest is regarded as a black level defect point; otherwise, PD (i, j) = 0 and this point of interest is regarded as a normal point.

【0006】[0006]

【発明が解決しようとする課題】図11は微分法に基づ
く従来の不良検出方法の問題点の説明図で、同図(A)
は走査線Q−Q1上の濃度変化(アナログ濃淡画像信
号)の例を、同図(B)は同図(A)に対応するアナロ
グ微分信号を、同図(C)は同じく同図(A)に対応す
るデジタル微分信号の例を夫々示す。そしてこの各図
(A)〜(C)中BDは黒汚れ(谷)不良箇所である。
即ち従来の不良検出方法においては図11(A)のよう
に濃度変化の傾斜のある部分においてBDのような黒レ
ベル不良が信号として存在しても、アナログ微分法によ
れば同図(B)に示すようにフィルタ回路の時定数によ
り基底となる濃淡微分信号上に小さな不良箇所の微分信
号が重畳するのみとなり、またデジタル微分法によれば
同図(C)のように信号が安定せず、ノイズ成分の中に
不良箇所の微分信号が埋もれてしまい、或るしきい値を
利用して不良信号を検出するのは極めて困難である。
FIG. 11 is a diagram for explaining the problem of the conventional defect detection method based on the differentiation method.
5A shows an example of a density change (analog grayscale image signal) on the scanning line Q-Q1, FIG. 4B shows an analog differential signal corresponding to FIG. 4A, and FIG. 3) shows examples of digital differential signals corresponding to the above. In these figures (A) to (C), BD is a black dirt (valley) defective portion.
That is, in the conventional defect detection method, even if a black level defect such as a BD exists as a signal in a portion having a gradient of density change as shown in FIG. As shown in (1), only the differential signal of a small defective portion is superimposed on the gray-scale differential signal serving as the base due to the time constant of the filter circuit. According to the digital differentiation method, the signal is not stabilized as shown in FIG. In addition, the differential signal of the defective portion is buried in the noise component, and it is extremely difficult to detect the defective signal using a certain threshold value.

【0007】図12は底部に角張った突出部102aを
持つ容器102の上面観測図の例を示すが、他方では、
このように容器内面は底部形状や側面部の光線の反射の
程度により同図104−1,104−2のような高輝度
部が幾重にも発生してしまい、特に金属容器の場合など
は内面が鏡面状である場合が多く、この傾向が顕著であ
る。このような高輝度部は照明の工夫等では除去が難し
く、容器内面の検査を行う場合は、本質的に高輝度部に
よる、容器内面の照度ムラに対応した不良検出方法を採
用する必要があったが、従来の方法によってはこの不良
検出を行うのは困難であった。そこで本発明は、容器内
面に照度ムラがある場合においても、安定かつ高精度に
て不良箇所を検出することができる円形容器内面検査装
置を提供することを課題とする。
FIG. 12 shows an example of a top view of a container 102 having an angular projection 102a at the bottom. On the other hand, FIG.
As described above, the inner surface of the container has many high brightness portions as shown in FIGS. 104-1 and 104-2 due to the shape of the bottom portion and the degree of reflection of light rays on the side portions. Are often mirror-like, and this tendency is remarkable. It is difficult to remove such a high-brightness portion by contriving lighting or the like, and when inspecting the inner surface of the container, it is necessary to employ a defect detection method that essentially responds to uneven illuminance on the inner surface of the container due to the high-brightness portion. However, it has been difficult to detect this defect by a conventional method. Therefore, an object of the present invention is to provide a circular container inner surface inspection apparatus that can detect a defective portion stably and with high accuracy even when there is uneven illuminance on the inner surface of the container.

【0008】[0008]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明においては、軸対称の円形容器(102な
ど)の前記軸方向から(リング照明器101などを介
し)この円形容器の内面側を照明したうえ、TVカメラ
を介しこの軸方向からこの円形容器の照明面を撮像し、
この撮像された画像を解析して前記円形容器の内面の黒
汚れおよび白汚れを検査する円形容器内面検査装置を、
前記撮像の画面走査によって得られる濃淡画像信号(検
査領域濃淡画像信号23aなど)についての同一の画面
走査線上における着目画素の値(PO(i,j)など)
を、この着目画素の前,後に夫々所定の同数(αなど)
の画素(以下α画素という)だけ離れた背景画素(以下
夫々前方背景画素,後方背景画素という)の値(PO
(i+α,j),PO(i−α,j)など)から減じた
2つの差が同極性であって、この2つの差の所定の一方
の絶対値が前記極性に対応する所定の第1のしきい値
(THDなど)より大きく、かつ前記差の他方の絶対値
が前記極性に対応する所定の第2のしきい値(THDな
ど)より大きいとき当該の着目画素を不良と判定する山
・谷不良判定手段(山・谷検出2値化回路24中のAN
Dゲート39の前段部など)と、前記照明に基づく円形
容器内面の光学的特性に応じて、前記山・谷不良判定手
段の対象とする画像の検査領域を(Z1〜Z4,Za〜
Zcなどに)分割する手段と、前記分割された検査領域
ごとに前記α画素の数,第1のしきい値,第2のしきい
値の少なくとも1つを可変する手段とから構成するもの
とし、
In order to solve the above-mentioned problems, in the present invention, an axially symmetric circular container (such as 102) is formed from the axial direction (via a ring illuminator 101 or the like). After illuminating the inner surface side, image the illumination surface of this circular container from this axial direction via a TV camera,
A circular container inner surface inspection device that analyzes this captured image and inspects black dirt and white dirt on the inner surface of the circular container,
The value of the pixel of interest (such as PO (i, j)) on the same screen scanning line for the gray image signal (such as the inspection area gray image signal 23a) obtained by the image scanning screen scanning
Is the same number as the predetermined number (such as α) before and after the pixel of interest.
(Hereinafter referred to as a front background pixel and a rear background pixel, respectively) separated by a pixel (hereinafter referred to as an α pixel)
(I + α, j), PO (i−α, j), etc.) and the two differences are of the same polarity, and the absolute value of one of the predetermined two differences is a predetermined first value corresponding to the polarity. When the other absolute value of the difference is larger than a predetermined second threshold value (THD, etc.) corresponding to the polarity, the target pixel is determined to be defective. Valley failure determination means (AN in the valley / valley detection binarization circuit 24)
According to the optical characteristics of the inner surface of the circular container based on the illumination and the optical characteristics of the inner surface of the circular container based on the illumination, the inspection area of the image to be subjected to the peak / valley defect determination means is set to (Z1 to Z4, Za to
Zc) and means for varying at least one of the number of α pixels, a first threshold value, and a second threshold value for each of the divided inspection areas. ,

【0009】とくに、請求項1の円形容器内面検査装置
では、前記検査領域の1つについて前記α画素の数を変
えて前記山・谷不良判定手段の処理を繰返し行わせる手
段を備えたものとし、
In particular, the circular container inner surface inspection apparatus according to the first aspect is provided with means for changing the number of the α pixels for one of the inspection areas and repeatedly performing the processing of the peak / valley defect determination means. ,

【0010】請求項2の円形容器内面検査装置は、請求
項1に記載の円形容器内面検査装置において、前記濃淡
画像信号の値が前記検査領域ごとに定められた所定の第
3のしきい値(黒レベルしきい値THBなど)より小さ
い画素を不良と判定する黒レベル不良判定手段(比較器
37−3など)を備えたものとし、
According to a second aspect of the present invention, in the circular container inner surface inspection device according to the first aspect, the value of the grayscale image signal is a predetermined third threshold value determined for each inspection region. Black level failure determining means (comparator 37-3, etc.) for determining a pixel smaller than the black level threshold value (THB, etc.) as defective;

【0011】請求項3の円形容器内面検査装置は、請求
項1に記載の円形容器内面検査装置において、前記濃淡
画像信号の値が前記検査領域ごとに定められた所定の第
4のしきい値(白レベルしきい値THWなど)より大き
い画素を不良と判定する白レベル不良判定手段(比較器
37−4など)を備えたものとし、
According to a third aspect of the present invention, in the circular container inner surface inspection device according to the first aspect, the value of the grayscale image signal is a predetermined fourth threshold value determined for each inspection region. It is provided with a white level failure judging means (comparator 37-4, etc.) for judging a pixel larger than the white level threshold value THW, etc.

【0012】請求項4の円形容器内面検査装置は、前記
濃淡画像信号についての1または2の補数を求めて反転
濃淡画像信号を得、該信号を前記濃淡画像信号に代えて
前記山・谷不良判定手段に与える手段を備え、前記極性
の反転なしに山・谷不良の画素を検出するようにするも
のとし、
According to a fourth aspect of the present invention, there is provided a circular container inner surface inspection apparatus which obtains an inverted grayscale image signal by obtaining a one or two's complement of the grayscale image signal, and replaces the signal with the grayscale image signal to obtain the peak / valley defect. Means for providing to the determination means, to detect the pixel of the peak and valley failure without inversion of the polarity,

【0013】請求項5の円形容器内面検査装置は、前記
濃淡画像信号の値が前記検査領域ごとに定められた所定
の第3のしきい値(黒レベルしきい値THBなど)より
小さい画素を不良と判定する黒レベル不良判定手段(比
較器37−3など)と、前記濃淡画像信号についての1
または2の補数を求めて反転濃淡画像信号を得、該信号
を前記濃淡画像信号に代えて前記黒レベル不良判定手段
に与える手段を備え、前記黒レベル不良判定手段を用い
て白レベル不良の画素も検出するようにするものとし、
According to a fifth aspect of the present invention, there is provided the circular container inner surface inspection apparatus, wherein a pixel whose value of the grayscale image signal is smaller than a predetermined third threshold value (eg, a black level threshold value THB) determined for each of the inspection areas. Black level failure determination means (comparator 37-3 or the like) for determining failure,
Or a means for obtaining an inverted gray level image signal by obtaining a two's complement, and providing the inverted gray level image signal to the black level defect determining means in place of the gray level image signal. Should also be detected,

【0014】請求項6の円形容器内面検査装置は、前記
検査領域ごとに、前記画像の走査方向として水平方向,
垂直方向,斜め方向などの所定の複数の方向のうち前記
濃淡画像信号の変化が最も低周波となる方向(ARな
ど)を選択する手段を備えたものとし、
According to a sixth aspect of the present invention, in the circular container inner surface inspection apparatus, the scanning direction of the image is set in a horizontal direction for each of the inspection areas.
Means for selecting a direction (AR or the like) in which a change in the grayscale image signal is the lowest frequency among a plurality of predetermined directions such as a vertical direction and an oblique direction;

【0015】請求項7の円形容器内面検査装置は、前記
前方背景画素の値として当該の前記画面走査線上におけ
る該画素を含む所定の第1の画素数(nなど)からなる
区間における画素値の平均値を出力する手段(平滑化回
路41−1など)と、前記後方背景画素の値として当該
の前記画面走査線上における該画素を含む所定の第2の
画素数(nなど)からなる区間における画素値の平均値
を出力する手段(平滑化回路41−2など)とを備えた
ものとし、また
According to a seventh aspect of the present invention, in the circular container inner surface inspection apparatus, the value of the pixel value in the section consisting of the first predetermined number of pixels (n or the like) including the pixel on the screen scanning line is determined as the value of the front background pixel. Means for outputting an average value (e.g., a smoothing circuit 41-1) and a section including a predetermined second number of pixels (e.g., n) including the pixel on the screen scanning line as the value of the rear background pixel. Means for outputting an average pixel value (e.g., a smoothing circuit 41-2);

【0016】請求項8の円形容器内面検査装置は、請求
項7に記載の円形容器内面検査装置において、前記2つ
の出力手段を、前記平均値に代えて夫々対応する区間の
画素値のメディアンを出力する手段とするものとする。
According to an eighth aspect of the present invention, there is provided the circular container inner surface inspection apparatus according to the seventh aspect, wherein the two output means output a median of a pixel value of a corresponding section instead of the average value. It shall be output means.

【0017】[0017]

【作用】ラスタ走査に基づく多値濃淡画像信号PO
(x,y)についての着目点(座標値x=i,y=j)
における値(着目画素値)PO(i,j)と、この着目
点よりx方向走査線上の前,後に夫々所定の微小のα画
素だけ離れた2点(背景点)における値(背景画素値)
PO(i+α,j),PO(i−α,j)とを抽出し、
それら3点の関係が黒レベル検出においては谷形とな
り、白レベル検出においては山形となるべき濃度関係
(つまり背景画素値と着目画素値との濃度差)を検出
し、該濃度差の絶対値が或るしきい値THDを越える場
合について着目画素値PO(i,j)を不良画素とする
ものである。
The multi-level grayscale image signal PO based on raster scanning
Point of interest for (x, y) (coordinate values x = i, y = j)
And the value (background pixel value) at two points (background point) separated by a predetermined minute α pixel before and after the point of interest on the x-direction scanning line, respectively, PO (i, j)
PO (i + α, j) and PO (i−α, j) are extracted,
The relationship between these three points becomes a valley in the black level detection, and a density relationship (that is, a density difference between the background pixel value and the pixel value of interest) to be a mountain shape in the white level detection, and the absolute value of the density difference is detected. Is more than a certain threshold value THD, the pixel value of interest PO (i, j) is regarded as a defective pixel.

【0018】即ち図1は本発明の核心となる谷検出2値
化方法の原理説明図で、同図(A)は走査線(y=j)
Q−Q1上の多値濃淡画像信号PO(x,y)の例を示
す。ここで51は良品部分における着目点、52と53
は夫々この着目点51に対し走査線上で、前と後に画素
数αだけ離れた背景点としての良品部前方背景点と良品
部後方背景点である。同様に54は不良部分における着
目点、55と56は夫々この着目点54に対し走査線上
で前と後に画素数αだけ離れた背景点としての不良部前
方背景点と不良部後方背景点である。
FIG. 1 is a diagram for explaining the principle of a valley detection binarization method which is the core of the present invention. FIG. 1A shows a scanning line (y = j).
An example of a multi-valued grayscale image signal PO (x, y) on QQ1 is shown. Here, 51 is the point of interest in the non-defective part, and 52 and 53
Are the background part of the non-defective part and the background point of the non-defective part as background points separated by the number of pixels α on the scanning line with respect to the point of interest 51, respectively. Similarly, reference numeral 54 denotes a point of interest in the defective portion, and reference numerals 55 and 56 denote a background point in front of the defective portion and a background point behind the defective portion as background points separated from the point of interest 54 by a number of pixels α before and after the scanning line. .

【0019】本発明では着目点の座標をx=i,y=j
としたとき、 PO(i−α,j)−PO(i,j)>THD ……(1) であって且つ、 PO(i+α,j)−PO(i,j)>THD ……(2) (但しTHDは所定のしきい値(正値)とする)の関係
があれば、着目点における不良検出のための2値化関数
値(山・谷不良二値化画像信号という)POD(i,
j)=1として、この着目点を谷(不良)とするもので
あるが、図1の良品部分では、上記の式(2)が成立せ
ず不良は検知されないが、図1の不良部分では上記
(1),(2)か成立し谷不良を検知することができ
る。なお図1(B)は同図(A)に対応する不良判定出
力としての前記山・谷二値化画像信号POD(x,j)
を示す。
In the present invention, the coordinates of the point of interest are x = i, y = j
Where PO (i−α, j) −PO (i, j)> THD (1), and PO (i + α, j) −PO (i, j)> THD (2) (Where THD is a predetermined threshold value (positive value)), a binarization function value (referred to as a peak / valley defect binarized image signal) POD ( i,
j) = 1, this point of interest is defined as a valley (defective). In the non-defective part in FIG. 1, the above equation (2) does not hold, and no defect is detected. The above conditions (1) and (2) are satisfied, and a valley defect can be detected. FIG. 1B shows the peak / valley binarized image signal POD (x, j) as a defect determination output corresponding to FIG.
Is shown.

【0020】このようにして図1(A)の波形を小領域
に分割し、それら小領域ごとに(1)(2)式における
画素数α,しきい値THDの値を適宜与えることによ
り、最適な検出性能を得ることができる。また本発明で
は山(不良)検出の場合には、前記(1),(2)式に
おける差分項の位置を逆転し、 PO(i,j)−PO(i−α,j)>THD ……(1A) であって且つ、 PO(i,j)−PO(i+α,j)>THD ……(2A) の関係があれば、着目点における山・谷二値化画像信号
POD(i,j)=1としてこの着目点を山不良とする
ものである。
In this manner, the waveform of FIG. 1A is divided into small areas, and the values of the number of pixels α and the threshold value THD in the equations (1) and (2) are appropriately given for each of the small areas. Optimum detection performance can be obtained. Further, in the present invention, in the case of detecting a mountain (defective), the position of the difference term in the equations (1) and (2) is reversed, and PO (i, j) −PO (i−α, j)> THD (1A) and PO (i, j) −PO (i + α, j)> THD (2A), the peak / valley binary image signal POD (i, j) = 1, and this point of interest is regarded as a mountain failure.

【0021】[0021]

【実施例】以下図1ないし図8に基づいて本発明の実施
例を説明する。図2は本発明の一実施例としてのハード
ウェアのブロック図である。同図においてPOは図外の
TVカメラの面をラスタ走査して得られるビデオ信号を
AD変換してなる前述の多値(例えば8ビット)の濃淡
画像信号、1はこの多値濃淡画像信号POを入力し、多
値画面データとして記憶するフレームメモリ、3はこの
フレームメモリに対するアドレス発生回路である。2は
ウィンドウ別のマスクパターンが格納されているウィン
ドウメモリ、4はこのウィンドウメモリに対するアドレ
ス発生回路である。5Eはウィンドウゲート回路で、多
値濃淡画像信号POまたはフレームメモリ1から読出さ
れた画像信号1aをウィンドウメモリ2からのマスクパ
ターンデータ2aでマスクし、指定されたウィンドウ領
域のみの画像信号POまたは1aを通過させるウィンド
ウゲート回路である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 2 is a block diagram of hardware as one embodiment of the present invention. In the figure, PO denotes the above-mentioned multi-valued (for example, 8-bit) gray-scale image signal obtained by AD-converting a video signal obtained by raster-scanning the surface of a TV camera (not shown). , And an address generation circuit 3 for this frame memory. Reference numeral 2 denotes a window memory in which a mask pattern for each window is stored, and 4 denotes an address generation circuit for the window memory. Reference numeral 5E denotes a window gate circuit which masks the multi-valued gray-scale image signal PO or the image signal 1a read from the frame memory 1 with the mask pattern data 2a from the window memory 2, and outputs the image signal PO or 1a only for the designated window area. Is a window gate circuit that passes through.

【0022】6−1,6−2は画像エッジ検出回路で、
画像のエッジ、具体的にはリング状の高輝度部の外端
(外周点)と内端(内周点)を検出する機能を持ち、こ
の場合、入力した画像信号を対象画像の位置検出や円形
性検査のための所定のしきい値で2値化したうえ、画像
エッジとしてのこの2値化信号の立上り点の座標と立下
り点の座標とを自身内のメモリに格納する。11はこの
画像エッジ検出回路6−1によって検出された外周点ま
たは内周点の座標値に対し円形性検査を行う回路であ
る。13は対象画像に対して正しい位置にウィンドウが
発生するように、画像エッジ検出回路6−2が最新の多
値濃淡画像信号POを入力して検出した現実の対象画像
の中心の位置と予め設定されているウィンドウの中心の
位置とのズレを検出する回路である。
Reference numerals 6-1 and 6-2 denote image edge detection circuits.
It has a function of detecting an edge of an image, specifically, an outer end (outer peripheral point) and an inner end (inner peripheral point) of a ring-shaped high-brightness portion. After binarization with a predetermined threshold value for circularity inspection, the coordinates of the rising point and the coordinates of the falling point of this binarized signal as an image edge are stored in its own memory. Reference numeral 11 denotes a circuit for performing a circularity test on the coordinate values of the outer peripheral point or the inner peripheral point detected by the image edge detection circuit 6-1. Reference numeral 13 denotes a center position of the actual target image detected by inputting the latest multi-valued gray image signal PO by the image edge detection circuit 6-2 and preset so that a window is generated at a correct position with respect to the target image. This is a circuit for detecting a deviation from the center position of the window being set.

【0023】21はフレームメモリ1からウィンドウゲ
ート回路5Eを通過した多値濃淡画像信号1aを入力し
て不良画素を検出するために1水平走査ラインごとの不
良検査対象領域(換言すれば対象容器の外形で区切られ
る領域)を定める信号としての領域信号21aを出力す
る領域検出回路、22はこの領域検出回路21と同期し
て同じ同じ1水平走査ライン分づつの画像信号1aを入
力して一時記憶するラインメモリであり、23は領域信
号21aと、これに対応する1水平走査ライン分ごとの
画像信号としての、ラインメモリ22から出力される濃
淡画像信号22aとのAND条件を取り、不良検査対象
領域のみの濃淡画像信号(検査領域濃淡画像信号とい
う)23aを出力するANDゲートである。24は画像
信号23aから図1で述べた山・谷不良を含む不良画素
を検出する山・谷検出2値化回路で本発明の核心となる
部分である。
Reference numeral 21 denotes a defect inspection target area for each horizontal scanning line (in other words, a target container) in order to input the multi-valued grayscale image signal 1a passed through the window gate circuit 5E from the frame memory 1 and detect defective pixels. An area detection circuit 22 outputs an area signal 21a as a signal for determining an area divided by an outer shape. The area detection circuit 22 receives the same image signal 1a for the same one horizontal scanning line in synchronization with the area detection circuit 21 and temporarily stores the same. 23 is a line memory which takes an AND condition between the area signal 21a and the corresponding grayscale image signal 22a output from the line memory 22 as an image signal for each horizontal scanning line, and An AND gate that outputs a gray image signal (referred to as an inspection region gray image signal) 23a of only the area. Numeral 24 denotes a peak / valley detection binarization circuit for detecting a defective pixel including the peak / trough defect described in FIG. 1 from the image signal 23a, and is a core part of the present invention.

【0024】次に9はウィンドウゲート回路5Eを通過
した多値画像信号POを用いて対象画像のX方向投影パ
ターンを求めるX投影回路、10は同じく対象画像のY
方向投影パターンを求めるY投影回路、14はこの2つ
の投影回路9,10の出力データを用いて他の容器画像
と連接していない対象容器画像の領域のみを求める回路
である。また15は高輝度部判定回路11および山・谷
検出2値化回路24の判定結果を入力し総合的な判定を
行う回路、16はこの総合判定回路15の出力判定信号
によって良否の出力を行う出力回路である。
Next, 9 is an X projection circuit for obtaining an X-direction projection pattern of the target image using the multi-valued image signal PO passed through the window gate circuit 5E.
A Y projection circuit 14 for obtaining a direction projection pattern is a circuit for obtaining only an area of a target container image which is not connected to another container image by using output data of the two projection circuits 9 and 10. Reference numeral 15 denotes a circuit for inputting the judgment results of the high-luminance portion judgment circuit 11 and the peak / valley detection binarization circuit 24 to make a comprehensive judgment. Reference numeral 16 denotes a pass / fail output based on the output judgment signal of the general judgment circuit 15. Output circuit.

【0025】図3は図1の山・谷検出2値化回路24の
詳細構成の実施例を示すブロック図である。但し、この
構成は谷(不良)検出の場合を示し、山(不良)検出の
場合は後述の減算回路36−1,36−2の減算の極性
が反転されるか、又はこの山・谷検出2値化回路24へ
の入力画像信号23aが反転される。なおこの後者の場
合、比較器37−3の機能(固定二値化による黒レベル
判定)と比較器37−4の機能(固定二値化による白レ
ベル判定)とは入れ替わることになる。
FIG. 3 is a block diagram showing an embodiment of the detailed configuration of the peak / valley detection binarization circuit 24 of FIG. However, this configuration shows the case of valley (defective) detection, and in the case of ridge (defective) detection, the polarity of the subtraction of the subtraction circuits 36-1 and 36-2 described later is inverted or the ridge / valley detection is performed. The input image signal 23a to the binarization circuit 24 is inverted. In the latter case, the function of the comparator 37-3 (black level determination by fixed binarization) and the function of the comparator 37-4 (white level determination by fixed binarization) are interchanged.

【0026】次に図3の機能を説明する。なおこの図3
は図1の原理を実施するものである。図3において32
−1,32−2は入力画像信号(つまり図2で述べたA
NDゲート23の出力としての検査領域濃淡画像信号)
23aに対して順次α画素だけ走査方向に遅延を加える
+α画素ディレイ回路である。41−1,41−2は後
述のように画像信号を必要に応じて平滑化し雑音の影響
を低下させるための平滑化回路で、42はこの平滑化を
行うか否かを切換える平滑化回路オン/オフスイッチで
ある。ここで平滑化回路41−1は後述する前方背景点
検出回路33に対応して設けられ、また平滑化回路41
−2は同じく後述する後方背景点検出回路35に対応し
て設けられている。なお後述する着目点検出回路34に
対応する平滑化回路が無いのは着目点の不良検出感度
(つまり低い山・谷、薄い濃淡、更に換言すれば小さい
しきい値で検出される不良画素を検出する能力)を高め
るためである。
Next, the function of FIG. 3 will be described. FIG. 3
Implements the principle of FIG. In FIG. 3, 32
-1, 32-2 are input image signals (that is, A
Inspection area grayscale image signal as output of ND gate 23)
This is a + α pixel delay circuit for sequentially adding a delay in the scanning direction by α pixels to 23a. Reference numerals 41-1 and 41-2 denote a smoothing circuit for smoothing the image signal as required to reduce the influence of noise, as will be described later. / Off switch. Here, the smoothing circuit 41-1 is provided corresponding to a front background point detection circuit 33 described later.
-2 is provided corresponding to a rear background point detection circuit 35 also described later. It should be noted that there is no smoothing circuit corresponding to the point of interest detection circuit 34 to be described later. Ability to do so).

【0027】さて前方背景点検出回路33は元の入力画
像信号としての検査領域濃淡画像信号23a、またはそ
の平滑化信号を入力して前方背景点を検出する回路、着
目点検出回路34は+α画素ディレイ回路32−1の出
力画像信号を入力して着目点を検出する回路、後方背景
点検出回路35は+α画素ディレイ回路32−2の出力
画像信号又はその平滑化信号を入力して後方背景点を検
出する回路であり、前記したディレイ回路32−1,3
2−2の働きによって各検出回路33,34,35は平
滑化回路41−1,41−2を用いない(つまりスイッ
チ42でこの平滑化回路を短絡した)場合、夫々図1で
述べた画素値PO(i+α,j),PO(i,j),P
O(i−α,j)を同時にラッチする。
The front background point detection circuit 33 receives the inspection area gray image signal 23a as the original input image signal or a circuit for inputting the smoothed signal to detect the front background point, and the point of interest detection circuit 34 detects the + α pixel. A circuit for inputting an output image signal of the delay circuit 32-1 to detect a point of interest, and a rear background point detection circuit 35 receives the output image signal of the + α pixel delay circuit 32-2 or a smoothed signal thereof to input a rear background point. In the delay circuits 32-1 and 32-3.
When the detection circuits 33, 34, and 35 do not use the smoothing circuits 41-1 and 41-2 due to the operation of 2-2 (that is, the smoothing circuits are short-circuited by the switch 42), the pixels described in FIG. Values PO (i + α, j), PO (i, j), P
O (i-α, j) are latched simultaneously.

【0028】但し平滑化回路41−1,41−2を用い
た場合、上記画素値PO(i+α,j),PO(i−
α,j)は夫々下記(3),(4)式の値に置換わる。 PO(i+α,j)={k=0 Σn-1 PO(i+α+k,j)}/n…(3) PO(i−α,j)={k=0 Σn-1 PO(i−α−k,j)}/n…(4) 即ち平滑化回路41−1は当該の前方背景点の画素値P
O(i+α,j)を含むその前方側計n個の画素値の平
均を求めて当該前方背景点の画素値に置換えるものであ
り、同様に平滑化回路41−2は当該の後方背景点の画
素値PO(i−α,j)を含むその後方側計n個の画素
値の平均を求めて当該後方背景点の画素値に置換えるも
のである。なおここで当該画素値を中心とする平均値を
求めないのは着目点の画素値PO(i,j)がこの平均
値の演算に巻込まれる惧れがないようにするためであ
る。また上記(3),(4)式のような平均値を求める
代りに当該のn個の画素値のメディアン(つまりこのn
個の値を大きさの順に並べたときの中央の順番に位する
値)を抽出するようにしてもよい。
However, when the smoothing circuits 41-1 and 41-2 are used, the pixel values PO (i + α, j) and PO (i−
α, j) are replaced by the values of the following equations (3) and (4), respectively. PO (i + α, j) = { k = 0 Σ n−1 PO (i + α + k, j)} / n (3) PO (i−α, j) = { k = 0 Σ n−1 PO (i-α −k, j)} / n (4) That is, the smoothing circuit 41-1 calculates the pixel value P of the front background point in question.
The average of n pixel values on the front side including O (i + α, j) is calculated and replaced with the pixel value of the front background point. Similarly, the smoothing circuit 41-2 performs the processing on the rear background point. The average value of a total of n pixel values on the rear side including the pixel value PO (i-α, j) is calculated and replaced with the pixel value of the rear background point. The reason why the average value centered on the pixel value is not determined here is to prevent the pixel value PO (i, j) at the point of interest from being involved in the calculation of the average value. Also, instead of calculating the average value as in the above equations (3) and (4), the median of the n pixel values (that is, the n
(A value in the center order when the values are arranged in the order of magnitude) may be extracted.

【0029】さて図3の検出回路33,34,35にラ
ッチされた上記の各画像データは減算回路36−1,3
6−2に入力され、それぞれ図1で述べた(1),
(2)式の内容に従って差分が算出される。この差分は
夫々比較器37−1,37−2によりしきい値設定回路
38−1,38−2に夫々設定された山・谷しきい値T
HDと比較され、この比較器37−1,37−2のAN
D条件を求めるANDゲート39の出力として図1で述
べた(この例では谷不良の)山・谷二値化画像信号PO
Dが得られる。一方比較器37−3,37−4は比較的
大きな面積の不良画素を検出するためのもので、比較器
37−3は平滑化画像信号を入力しない着目点検出回路
34より着目画素の画像データ出力を受け、しきい値設
定回路38−3に設定された黒レベルしきい値THBと
比較し、黒レベル不良画素を示す黒レベル二値化画像信
号37Bを検出出力する。また同様に比較器37−4は
着目画素の画素データ出力を受け、しきい値設定回路3
8−4に設定された白レベルしきい値THWと比較し、
白レベル不良画素を示す白レベル二値化画像信号37W
を検出出力する。
The image data latched by the detection circuits 33, 34 and 35 in FIG.
6-2, and are respectively described in FIG.
The difference is calculated according to the content of the equation (2). The difference is calculated by comparing the peak and valley threshold values T set in the threshold setting circuits 38-1 and 38-2 by the comparators 37-1 and 37-2, respectively.
HD and the comparators 37-1 and 37-2.
The output of the AND gate 39 for obtaining the D condition described above with reference to FIG.
D is obtained. On the other hand, the comparators 37-3 and 37-4 are for detecting a defective pixel having a relatively large area, and the comparator 37-3 outputs the image data of the pixel of interest from the point-of-interest detection circuit 34 which does not input the smoothed image signal. The output is compared with a black level threshold value THB set in the threshold value setting circuit 38-3, and a black level binarized image signal 37B indicating a black level defective pixel is detected and output. Similarly, the comparator 37-4 receives the pixel data output of the pixel of interest, and sets the threshold value setting circuit 3
Compare with the white level threshold value THW set at 8-4,
White level binarized image signal 37W indicating a white level defective pixel
Is detected and output.

【0030】ORゲート40はこのようにして検出され
た各不良画素検出信号としての山・谷二値化画像信号P
OD,黒レベル二値化画像信号37B,白レベル二値化
画像信号37WのOR条件を求め、不良2値化画像信号
40aを出力するなお黒レベル不良画素を検出する手段
(比較器37−3等)と白レベル不良画素を検出する手
段(比較器37−4等)は図3の例では山・谷検出2値
化手段(ANDゲート39等)と同時並列的に処理して
いるが、もちろんこれらの手段は個別に画像の検査を行
い最終的に各演算を合成し、判定出力を行う方法を用い
ても本発明の範囲に含まれる。
The OR gate 40 outputs a peak / valley binarized image signal P as each defective pixel detection signal detected in this manner.
Means for determining the OR condition of the OD, the black level binarized image signal 37B, and the white level binarized image signal 37W, and detecting a black level defective pixel that outputs the defective binarized image signal 40a (comparator 37-3) 3) and means for detecting a white level defective pixel (such as the comparator 37-4) are processed in parallel with peak / valley detection binarization means (such as the AND gate 39) in the example of FIG. Of course, these means are also included in the scope of the present invention even if a method of individually inspecting an image, finally synthesizing each operation, and outputting a judgment is used.

【0031】次に画像走査方法について説明する。図1
(A)は容器内面の或る断面Q−Q1における画像の濃
淡を示したものであるが、式(1),(2)あるいは式
(1A),(2A)における画素数αとは不良箇所部分
の画像信号の周波数(換言すれば山や谷の巾)を与える
パラメータである。しかし図1(A)のように容器内面
での良品時の濃淡画像信号は、何種もの周波数成分を含
み複雑であり、前述のように状況によって容器内面を分
割し、それぞれに最適なパラメータを与える必要があ
る。しかし画像の走査方向を工夫することによりさらに
背景画素の濃淡変化を減少させ検出の精度を向上するこ
とができる。
Next, an image scanning method will be described. FIG.
(A) shows the density of the image at a certain cross section QQ1 of the inner surface of the container, and the number of pixels α in the formulas (1) and (2) or the formulas (1A) and (2A) is a defective portion. It is a parameter that gives the frequency of the image signal of the part (in other words, the width of the peak or valley). However, as shown in FIG. 1A, the density image signal at the time of a non-defective product on the inner surface of the container is complicated because it contains various kinds of frequency components. Need to give. However, by devising the scanning direction of the image, it is possible to further reduce the change in density of the background pixel and improve the detection accuracy.

【0032】図4はこのような画像走査方法の一実施例
の説明図であり、この図4(A)においてWBは不良検
出対象領域を選択するウィンドウ、Z1,Z2,Z3,
Z4は夫々上円領域,下円領域,左円領域,右円領域で
ある。即ち図4では容器102の濃淡変化が多い底部高
輝度部104をウィンドウWBで選択して谷検出2値化
を試みるものである。ここでウィンドウWBの領域につ
いて例えば水平走査方向に濃淡変化を調べると左円領域
Z3では図4(C)のHFのような濃淡が高周波にて変
化している部分が発生し、検出感度に影響を与えるが、
図4(A)の左円領域Z3を走査方向矢印ARの方向に
走査を行えば、図4(B)のように背景として低周波の
濃淡変化が得られ、これに対して不良箇所は充分に高周
波であるため、検出の精度を上げることができる。
FIG. 4 is an explanatory diagram of one embodiment of such an image scanning method. In FIG. 4A, WB denotes a window for selecting a defect detection target area, and Z1, Z2, Z3,
Z4 is an upper circle area, a lower circle area, a left circle area, and a right circle area, respectively. That is, in FIG. 4, the bottom high-brightness portion 104 where the shading of the container 102 changes a lot is selected in the window WB, and valley detection binarization is attempted. Here, for example, when examining the gray level change in the horizontal scanning direction in the area of the window WB, a portion where the gray level changes at a high frequency, such as HF in FIG. 4C, occurs in the left circular area Z3, which affects the detection sensitivity. Gives
By scanning the left circular area Z3 in FIG. 4A in the direction of the scanning direction arrow AR, a low-frequency shading change is obtained as a background as shown in FIG. Since the frequency is high, the accuracy of detection can be increased.

【0033】図5は簡易的な画像走査方法の実施例説明
図である。同図においては走査方向を矢印ARのように
水平方向としたまま、走査領域としてはウィンドウWB
をZa,Zb,Zcの3領域に分割するもので、この場
合Za,Zcの領域の山・谷検出のためのしきい値設定
と、Zbの領域の山・谷検出のためのしきい値設定とを
別々に行い、それぞれ背景の濃淡の周波数に応じて最適
な検出を行うものである。なおこの場合、領域Zbにお
ける不良検出感度は低いが、領域Za,Zcの検出感度
は高めることができる。
FIG. 5 is an explanatory view of an embodiment of a simple image scanning method. In the same figure, while the scanning direction is horizontal as indicated by the arrow AR, the scanning area is a window WB
Is divided into three regions of Za, Zb, and Zc. In this case, a threshold value is set for detecting the peaks and valleys of the regions of Za and Zc, and a threshold value is set for detecting the peaks and valleys of the region of Zb. The setting is performed separately, and the optimum detection is performed in accordance with the density of the background. In this case, the defect detection sensitivity in the region Zb is low, but the detection sensitivity in the regions Za and Zc can be increased.

【0034】図6は図4の変形実施例を示し、図4では
走査領域を容器中心を巡る4つの扇形領域に等分割した
ものを、図6では8つの扇形領域に等分割し、それぞれ
の領域に最適な走査方向ARを与えたものであり、図4
の場合よりも検出感度を高めることができる。
FIG. 6 shows a modified embodiment of FIG. 4. In FIG. 4, the scanning area is equally divided into four fan-shaped areas around the center of the container. In FIG. 6, the scanning area is equally divided into eight fan-shaped areas. FIG. 4 shows an example in which an optimal scanning direction AR is given to an area.
The detection sensitivity can be increased as compared with the case of.

【0035】図7は本発明に基づく不良検出方法と不良
箇所の形状との関係の説明図である。同図(A)におい
て71〜73は容器102の画像に表れた不良箇所を示
す。同図(B)は同図(A)の走査断面QA−QA1に
おける濃淡変化を示すが、長円状の不良箇所71,72
の長(短)径の方向によって濃淡変化の周波数が異な
る。従って同一検査領域において前記の式(1),
(2)の画素数αに相当する量を何種か選択し、検査を
繰り返すことにより不良検出能力を改善することができ
る。
FIG. 7 is an explanatory diagram showing the relationship between the defect detection method according to the present invention and the shape of the defective portion. In FIG. 7A, reference numerals 71 to 73 indicate defective portions appearing in the image of the container 102. FIG. 6B shows the change in shading in the scanning section QA-QA1 of FIG.
The frequency of the shading change differs depending on the direction of the long (short) diameter. Therefore, in the same inspection area, the above-mentioned formula (1),
The defect detection capability can be improved by selecting several types of the amount corresponding to the pixel number α in (2) and repeating the inspection.

【0036】一方図7(C)は図7(A)の走査断面Q
B−QB1における濃淡の変化を示すが、この断面上の
不良箇所73は大きく、濃淡画像信号の変化は低周波で
あるが背景に対して充分黒いと仮定する。この場合、不
良箇所73は低周波であるため、谷検出2値化において
は前記画素数αの値を極めて大きくしなければ検出でき
ず、実用的ではない。このような場合は、図3で述べた
固定2値化の方式を用いTHBなる黒レベルしきい値を
図3のしきい値設定回路38−3に設定して図7(C)
のように不良箇所73を黒レベルとして分離して検出
し、谷検出2値化の検出能力を補うようにする。黒レベ
ルしきい値THBの決定の方法としては、例として図7
(A)の74のような円周(照度計測円)上の画素の濃
度データの平均を求め、同図(C)に示すようにこの平
均値よりある設定量σを減じてしきい値THBとするな
どの方法がある。
On the other hand, FIG. 7C shows the scanning section Q of FIG.
The change in density in B-QB1 is shown. It is assumed that the defective portion 73 on this cross section is large, and the change in the density image signal is low in frequency but sufficiently black with respect to the background. In this case, since the defective portion 73 has a low frequency, it cannot be detected in the valley detection binarization unless the value of the number of pixels α is extremely large, which is not practical. In such a case, the black level threshold value THB is set in the threshold value setting circuit 38-3 in FIG. 3 by using the fixed binarization method described in FIG.
As described above, the defective portion 73 is separated and detected as a black level to supplement the detection capability of valley detection binarization. As a method of determining the black level threshold THB, for example, FIG.
The average of the density data of the pixels on the circumference (illuminance measurement circle) such as 74 in (A) is obtained, and as shown in FIG. And so on.

【0037】[0037]

【発明の効果】以上の説明から明らかなとおり、各請求
項に係る発明によれば、軸対称の円形容器の前記軸方向
からこの円形容器の内面側を照明したうえ、TVカメラ
を介しこの軸方向からこの円形容器の照明面を撮像し、
この撮像された画像を解析して前記円形容器の内面の黒
汚れおよび白汚れを検査する円形容器内面検査装置にお
いて、照明により発生する高輝度部等による円形容器内
面の照度ムラがある場合であっても、不良箇所を的確に
検出することができる。
As is apparent from the above description, according to the invention of each claim, the inner side of the axisymmetric circular container is illuminated from the axial direction of the circular container, and then this axis is illuminated via the TV camera. Image the illumination surface of this circular container from the direction,
In a circular container inner surface inspection device that analyzes the captured image to inspect black and white stains on the inner surface of the circular container, there is a case where there is uneven illuminance on the inner surface of the circular container due to a high luminance portion or the like generated by illumination. However, a defective portion can be accurately detected.

【0038】[0038]

【0039】[0039]

【0040】[0040]

【0041】[0041]

【0042】[0042]

【0043】[0043]

【0044】[0044]

【0045】[0045]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づく谷検出2値化方法の原理説明図FIG. 1 is a diagram illustrating the principle of a valley detection binarization method according to the present invention.

【図2】本発明の一実施例としてのハードウェア構成を
示すブロック図
FIG. 2 is a block diagram showing a hardware configuration as one embodiment of the present invention;

【図3】本発明の一実施例としての山・谷検出回路の詳
細構成を示すブロック図
FIG. 3 is a block diagram showing a detailed configuration of a peak / valley detection circuit as one embodiment of the present invention;

【図4】本発明に基づく画面走査方法の第1の実施例の
説明図
FIG. 4 is an explanatory diagram of a first embodiment of a screen scanning method according to the present invention.

【図5】本発明に基づく画面走査方法の第2の実施例の
説明図
FIG. 5 is an explanatory diagram of a second embodiment of the screen scanning method according to the present invention.

【図6】本発明に基づく画面走査方法の第3の実施例の
説明図
FIG. 6 is an explanatory diagram of a third embodiment of the screen scanning method according to the present invention.

【図7】本発明に基づく不良検出方法と不良箇所の形状
との関係の説明図
FIG. 7 is an explanatory diagram of a relationship between a defect detection method according to the present invention and a shape of a defective portion.

【図8】円形容器内面の高輝度部を示す図FIG. 8 is a diagram showing a high-luminance portion on the inner surface of a circular container.

【図9】円形容器内面の濃度変化と従来のウィンドウ分
割との関係を示す図
FIG. 9 is a diagram showing a relationship between a change in density on the inner surface of a circular container and a conventional window division.

【図10】アナログ微分回路の例を示す図FIG. 10 is a diagram illustrating an example of an analog differentiating circuit;

【図11】従来の不良検出方法の説明図FIG. 11 is an explanatory diagram of a conventional failure detection method.

【図12】円形容器の底面形状が異なる場合の容器内面
の高輝度部を示す図
FIG. 12 is a diagram showing a high-luminance portion on the inner surface of the circular container when the bottom shape of the circular container is different.

【符号の説明】[Explanation of symbols]

PO 多値濃淡画像信号 1 フレームメモリ 1a フレームメモリ出力画像信号 2 ウィンドウメモリ 2a マスクパターンデータ 3 画像アドレス発生回路 4 ウィンドウアドレス発生回路 5E ウィンドウゲート回路 6−1 画像エッジ検出回路 6−2 画像エッジ検出回路 9 X投影回路 10 Y投影回路 11 高輝度部判定回路 13 位置ズレ量決定回路 14 処理領域決定回路 15 総合判定回路 16 出力回路 WB ウィンドウ 21 領域検出回路 22 ラインメモリ 23 ANDゲート 23a 検査領域濃淡画像信号 24 山・谷検出2値化回路 32−1 +α画素ディレイ回路 32−2 +α画素ディレイ回路 33 前方背景点検出回路 34 着目点検出回路 35 後方背景点検出回路 36−1 減算回路 36−2 減算回路 37−1 比較器 37−2 比較器 37−3 比較器 37−4 比較器 37B 黒レベル二値化画像信号 37W 白レベル二値化画像信号 38−1 しきい値設定回路 38−2 しきい値設定回路 38−3 しきい値設定回路 38−4 しきい値設定回路 39 ANDゲート 40 ORゲート 40a 不良2値化画像信号 51 良品部着目点 52 良品部前方背景点 53 良品部後方背景点 54 不良部着目点 55 不良部前方背景点 56 不良部後方背景点 Z1 上円領域 Z2 下円領域 Z3 左円領域 Z4 右円領域 Za 領域 Zb 領域 Zc 領域 101 リング照明器 102 容器 103 口部高輝度部 104 底部高輝度部 104−1 底部高輝度部 104−2 底部高輝度部 PO(i−α,j) 後方背景点の画素値 PO(i,j) 着目点の画素値 PO(i+α,j) 前方背景点の画素値 POD 山・谷二値化画像信号 THD 山・谷しきい値 THB 黒レベルしきい値 THW 白レベルしきい値 PO Multi-level grayscale image signal 1 Frame memory 1a Frame memory output image signal 2 Window memory 2a Mask pattern data 3 Image address generation circuit 4 Window address generation circuit 5E Window gate circuit 6-1 Image edge detection circuit 6-2 Image edge detection circuit Reference Signs List 9 X projection circuit 10 Y projection circuit 11 High-brightness part determination circuit 13 Position shift amount determination circuit 14 Processing area determination circuit 15 Total determination circuit 16 Output circuit WB window 21 Area detection circuit 22 Line memory 23 AND gate 23a Inspection area grayscale image signal 24 Peak and valley detection binarization circuit 32-1 + α pixel delay circuit 32-2 + α pixel delay circuit 33 Front background point detection circuit 34 Point of interest detection circuit 35 Rear background point detection circuit 36-1 Subtraction circuit 36-2 Subtraction circuit 37-1 Comparator 37 2 Comparator 37-3 Comparator 37-4 Comparator 37B Black level binarized image signal 37W White level binarized image signal 38-1 Threshold setting circuit 38-2 Threshold setting circuit 38-3 Threshold Value setting circuit 38-4 threshold value setting circuit 39 AND gate 40 OR gate 40a defective binarized image signal 51 non-defective part attention point 52 non-defective part front background point 53 non-defective part rear background point 54 defective part notice point 55 defective part front Background point 56 Bad part rear background point Z1 Upper circle area Z2 Lower circle area Z3 Left circle area Z4 Right circle area Za area Zb area Zc area 101 Ring illuminator 102 Container 103 Mouth high brightness section 104 Bottom high brightness section 104-1 Bottom high-luminance part 104-2 Bottom high-luminance part PO (i-α, j) Pixel value PO (i, j) of the background point PO Pixel value PO (i + α, j) of the point of interest Front back Spectral pixel value POD Peak / valley binarized image signal THD Peak / valley threshold THB Black level threshold THW White level threshold

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】軸対称の円形容器の前記軸方向からこの円
形容器の内面側を照明したうえ、TVカメラを介しこの
軸方向からこの円形容器の照明面を撮像し、この撮像さ
れた画像を解析して前記円形容器の内面の黒汚れおよび
白汚れを検査する円形容器内面検査装置において、 前記撮像の画面走査によって得られる濃淡画像信号につ
いての同一の画面走査線上における着目画素の値を、こ
の着目画素の前,後に夫々所定の同数の画素(以下α画
素という)だけ離れた背景画素(以下夫々前方背景画
素,後方背景画素という)の値から減じた2つの差が同
極性であって、この2つの差の所定の一方の絶対値が前
記極性に対応する所定の第1のしきい値より大きく、か
つ前記差の所定の一方の絶対値が前記極性に対応する所
定の第1のしきい値より大きく、かつ前記差の他方の絶
対値が前記極性に対応する所定の第2のしきい値より大
きいとき当該の着目画素を不良と判定する山・谷不良判
定手段と、 前記照明に基づく円形容器内面の光学的特性に応じて、
前記山・谷不良判定手段の対象とする画像の検査領域を
分割する手段と、 前記分割された検査領域ごとに前記α画素の数,第1の
しきい値,第2のしきい値の少なくとも1つを可変する
手段と、 前記検査領域の1つについて前記α画素の数を変えて前
記山・谷不良判定手段の処理を繰返し行わせる手段とを
備えたことを特徴とする円形容器内面検査装置。
1. An inner surface side of an axially symmetric circular container is illuminated from the axial direction of the circular container, and an illumination surface of the circular container is imaged from the axial direction via a TV camera. In the circular container inner surface inspection device that analyzes and inspects black stains and white stains on the inner surface of the circular container, the value of the pixel of interest on the same screen scanning line for the grayscale image signal obtained by the screen scanning of the imaging is calculated as Two differences subtracted from the values of background pixels (hereinafter referred to as front background pixels and rear background pixels, respectively) separated by a predetermined same number of pixels (hereinafter referred to as α pixels) before and after the pixel of interest have the same polarity, The predetermined one absolute value of the two differences is larger than a predetermined first threshold value corresponding to the polarity, and the predetermined one absolute value of the difference is a predetermined first threshold value corresponding to the polarity. Than the threshold Peak and valley defect determining means for determining the pixel of interest as defective when the absolute value of the difference is greater than a second predetermined threshold value corresponding to the polarity; and a circular container based on the illumination. Depending on the optical properties of the inner surface,
Means for dividing an inspection area of an image to be subjected to the peak / valley defect determination means; and at least one of the number of α pixels, a first threshold value, and a second threshold value for each of the divided inspection areas. A circular container inner surface inspection, comprising: means for changing one of the inspection areas; and means for changing the number of the α pixels for one of the inspection areas to repeat the processing of the peak / valley defect determination means. apparatus.
【請求項2】請求項1に記載の円形容器内面検査装置に
おいて、前記濃淡画像信号の値が前記検査領域ごとに定
められた所定の第3のしきい値より小さい画素を不良と
判定する黒レベル不良判定手段を備えたことを特徴とす
る円形容器内面検査装置。
2. A circular container inner surface inspection apparatus according to claim 1, wherein a pixel whose value of the grayscale image signal is smaller than a third threshold value determined for each inspection area is determined to be defective. An inner surface inspection device for a circular container, comprising a level failure judging means.
【請求項3】請求項1に記載の円形容器内面検査装置に
おいて、前記濃淡画像信号の値が前記検査領域ごとに定
められた所定の第4のしきい値より大きい画素を不良と
判定する白レベル不良判定手段を備えたことを特徴とす
る円形容器内面検査装置。
3. The circular container inner surface inspection apparatus according to claim 1, wherein a pixel whose value of the grayscale image signal is larger than a predetermined fourth threshold value determined for each inspection area is determined to be defective. An inner surface inspection device for a circular container, comprising a level failure judging means.
【請求項4】軸対称の円形容器の前記軸方向からこの円
形容器の内面側を照明したうえ、TVカメラを介しこの
軸方向からこの円形容器の照明面を撮像し、この撮像さ
れた画像を解析して前記円形容器の内面の黒汚れおよび
白汚れを検査する円形容器内面検査装置において、 前記撮像の画面走査によって得られる濃淡画像信号につ
いての同一の画面走査線上における着目画素の値を、こ
の着目画素の前,後に夫々所定の同数の画素(以下α画
素という)だけ離れた背景画素(以下夫々前方背景画
素,後方背景画素という)の値から減じた2つの差が同
極性であって、この2つの差の所定の一方の絶対値が前
記極性に対応する所定の第1のしきい値より大きく、か
つ前記差の所定の一方の絶対値が前記極性に対応する所
定の第1のしきい値より大きく、かつ前記差の他方の絶
対値が前記極性に対応する所定の第2のしきい値より大
きいとき当該の着目画素を不良と判定する山・谷不良判
定手段と、 前記照明に基づく円形容器内面の光学的特性に応じて、
前記山・谷不良判定手段の対象とする画像の検査領域を
分割する手段と、 前記分割された検査領域ごとに前記α画素の数,第1の
しきい値,第2のしきい値の少なくとも1つを可変する
手段と、 前記濃淡画像信号についての1または2の補数を求めて
反転濃淡画像信号を得、該信号を前記濃淡画像信号に代
えて前記山・谷不良判定手段に与える手段とを備え、 前記極性の反転なしに山・谷不良の画素を検出するよう
にしたことを特徴とする円形容器内面検査装置。
4. An inner surface side of the circular container is illuminated from the axial direction of the axially symmetric circular container, and an illumination surface of the circular container is imaged from the axial direction via a TV camera. In the circular container inner surface inspection device that analyzes and inspects black stains and white stains on the inner surface of the circular container, the value of the pixel of interest on the same screen scanning line for the grayscale image signal obtained by the screen scanning of the imaging is calculated as Two differences subtracted from the values of background pixels (hereinafter referred to as front background pixels and rear background pixels, respectively) separated by a predetermined same number of pixels (hereinafter referred to as α pixels) before and after the pixel of interest have the same polarity, The predetermined one absolute value of the two differences is larger than a predetermined first threshold value corresponding to the polarity, and the predetermined one absolute value of the difference is a predetermined first threshold value corresponding to the polarity. Than the threshold Peak and valley defect determining means for determining the pixel of interest as defective when the absolute value of the difference is greater than a second predetermined threshold value corresponding to the polarity; and a circular container based on the illumination. Depending on the optical properties of the inner surface,
Means for dividing an inspection area of an image to be subjected to the peak / valley defect determination means; and at least one of the number of α pixels, a first threshold value, and a second threshold value for each of the divided inspection areas. Means for changing one, means for obtaining a 1 or 2's complement of the grayscale image signal to obtain an inverted grayscale image signal, and providing the signal to the peak / valley defect determining means in place of the grayscale image signal Wherein a pixel having a peak / trough defect is detected without reversing the polarity.
【請求項5】軸対称の円形容器の前記軸方向からこの円
形容器の内面側を照明したうえ、TVカメラを介しこの
軸方向からこの円形容器の照明面を撮像し、この撮像さ
れた画像を解析して前記円形容器の内面の黒汚れおよび
白汚れを検査する円形容器内面検査装置において、 前記撮像の画面走査によって得られる濃淡画像信号につ
いての同一の画面走査線上における着目画素の値を、こ
の着目画素の前,後に夫々所定の同数の画素(以下α画
素という)だけ離れた背景画素(以下夫々前方背景画
素,後方背景画素という)の値から減じた2つの差が同
極性であって、この2つの差の所定の一方の絶対値が前
記極性に対応する所定の第1のしきい値より大きく、か
つ前記差の所定の一方の絶対値が前記極性に対応する所
定の第1のしきい値より大きく、かつ前記差の他方の絶
対値が前記極性に対応する所定の第2のしきい値より大
きいとき当該の着目画素を不良と判定する山・谷不良判
定手段と、 前記照明に基づく円形容器内面の光学的特性に応じて、
前記山・谷不良判定手段の対象とする画像の検査領域を
分割する手段と、 前記分割された検査領域ごとに前記α画素の数,第1の
しきい値,第2のしきい値の少なくとも1つを可変する
手段と、 前記濃淡画像信号の値が前記検査領域ごとに定められた
所定の第3のしきい値より小さい画素を不良と判定する
黒レベル不良判定手段と、 前記濃淡画像信号についての1または2の補数を求めて
反転濃淡画像信号を得、該信号を前記濃淡画像信号に代
えて前記黒レベル不良判定手段に与える手段とを備え、 前記黒レベル不良判定手段を用いて白レベル不良の画素
も検出するようにしたことを特徴とする円形容器内面検
査装置。
5. An inner surface side of the circular container is illuminated from the axial direction of the axially symmetric circular container, and an illumination surface of the circular container is imaged from the axial direction via a TV camera. In the circular container inner surface inspection device that analyzes and inspects black stains and white stains on the inner surface of the circular container, the value of the pixel of interest on the same screen scanning line for the grayscale image signal obtained by the screen scanning of the imaging is calculated as Two differences subtracted from the values of background pixels (hereinafter referred to as front background pixels and rear background pixels, respectively) separated by a predetermined same number of pixels (hereinafter referred to as α pixels) before and after the pixel of interest have the same polarity, The predetermined one absolute value of the two differences is larger than a predetermined first threshold value corresponding to the polarity, and the predetermined one absolute value of the difference is a predetermined first threshold value corresponding to the polarity. Than the threshold Peak and valley defect determining means for determining the pixel of interest as defective when the absolute value of the difference is greater than a second predetermined threshold value corresponding to the polarity; and a circular container based on the illumination. Depending on the optical properties of the inner surface,
Means for dividing an inspection area of an image to be subjected to the peak / valley defect determination means; and at least one of the number of α pixels, a first threshold value, and a second threshold value for each of the divided inspection areas. Means for varying one of them; black level failure determination means for determining a pixel whose value of the grayscale image signal is smaller than a predetermined third threshold value determined for each inspection area as defective; Means for obtaining an inverted grayscale image signal by obtaining a 1's or 2's complement of the above, and providing the signal to the black level defect determining means in place of the grayscale image signal. An inner surface inspection device for a circular container, wherein a pixel having a level defect is also detected.
【請求項6】軸対称の円形容器の前記軸方向からこの円
形容器の内面側を照明したうえ、TVカメラを介しこの
軸方向からこの円形容器の照明面を撮像し、この撮像さ
れた画像を解析して前記円形容器の内面の黒汚れおよび
白汚れを検査する円形容器内面検査装置において、 前記撮像の画面走査によって得られる濃淡画像信号につ
いての同一の画面走査線上における着目画素の値を、こ
の着目画素の前,後に夫々所定の同数の画素(以下α画
素という)だけ離れた背景画素(以下夫々前方背景画
素,後方背景画素という)の値から減じた2つの差が同
極性であって、この2つの差の所定の一方の絶対値が前
記極性に対応する所定の第1のしきい値より大きく、か
つ前記差の所定の一方の絶対値が前記極性に対応する所
定の第1のしきい値より大きく、かつ前記差の他方の絶
対値が前記極性に対応する所定の第2のしきい値より大
きいとき当該の着目画素を不良と判定する山・谷不良判
定手段と、 前記照明に基づく円形容器内面の光学的特性に応じて、
前記山・谷不良判定手段の対象とする画像の検査領域を
分割する手段と、 前記分割された検査領域ごとに前記α画素の数,第1の
しきい値,第2のしきい値の少なくとも1つを可変する
手段と、 前記検査領域ごとに、前記画像の走査方向として水平方
向,垂直方向,斜め方向などの所定の複数の方向のうち
前記濃淡画像信号の変化が最も低周波となる方向を選択
する手段とを備えたことを特徴とする円形容器内面検査
装置。
6. An inner surface of the circular container is illuminated from the axial direction of the axially symmetric circular container, and an illumination surface of the circular container is imaged from the axial direction via a TV camera. In the circular container inner surface inspection device that analyzes and inspects black stains and white stains on the inner surface of the circular container, the value of the pixel of interest on the same screen scanning line for the grayscale image signal obtained by the screen scanning of the imaging is calculated as Two differences subtracted from the values of background pixels (hereinafter referred to as front background pixels and rear background pixels, respectively) separated by a predetermined same number of pixels (hereinafter referred to as α pixels) before and after the pixel of interest have the same polarity, The predetermined one absolute value of the two differences is larger than a predetermined first threshold value corresponding to the polarity, and the predetermined one absolute value of the difference is a predetermined first threshold value corresponding to the polarity. Than the threshold Peak and valley defect determining means for determining the pixel of interest as defective when the absolute value of the difference is greater than a second predetermined threshold value corresponding to the polarity; and a circular container based on the illumination. Depending on the optical properties of the inner surface,
Means for dividing an inspection area of an image to be subjected to the peak / valley defect determination means; and at least one of the number of α pixels, a first threshold value, and a second threshold value for each of the divided inspection areas. A means for changing one of the plurality of predetermined directions such as a horizontal direction, a vertical direction, and an oblique direction as a scanning direction of the image, for each of the inspection areas, a direction in which a change in the grayscale image signal is the lowest frequency. Means for selecting the inner surface of the circular container.
【請求項7】軸対称の円形容器の前記軸方向からこの円
形容器の内面側を照明したうえ、TVカメラを介しこの
軸方向からこの円形容器の照明面を撮像し、この撮像さ
れた画像を解析して前記円形容器の内面の黒汚れおよび
白汚れを検査する円形容器内面検査装置において、 前記撮像の画面走査によって得られる濃淡画像信号につ
いての同一の画面走査線上における着目画素の値を、こ
の着目画素の前,後に夫々所定の同数の画素(以下α画
素という)だけ離れた背景画素(以下夫々前方背景画
素,後方背景画素という)の値から減じた2つの差が同
極性であって、この2つの差の所定の一方の絶対値が前
記極性に対応する所定の第1のしきい値より大きく、か
つ前記差の所定の一方の絶対値が前記極性に対応する所
定の第1のしきい値より大きく、かつ前記差の他方の絶
対値が前記極性に対応する所定の第2のしきい値より大
きいとき当該の着目画素を不良と判定する山・谷不良判
定手段と、 前記照明に基づく円形容器内面の光学的特性に応じて、
前記山・谷不良判定手段の対象とする画像の検査領域を
分割する手段と、 前記分割された検査領域ごとに前記α画素の数,第1の
しきい値,第2のしきい値の少なくとも1つを可変する
手段と、 前記前方背景画素の値として当該の前記画面走査線上に
おける該画素を含む所定の第1の画素数からなる区間に
おける画素値の平均値を出力する手段と、 前記後方背景画素の値として当該の前記画面走査線上に
おける該画素を含む所定の第2の画素数からなる区間に
おける画素値の平均値を出力する手段とを備えたことを
特徴とする円形容器内面検査装置。
7. An inner surface side of the circular container is illuminated from the axial direction of the axially symmetric circular container, and an illuminated surface of the circular container is imaged from the axial direction via a TV camera. In the circular container inner surface inspection device that analyzes and inspects black stains and white stains on the inner surface of the circular container, the value of the pixel of interest on the same screen scanning line for the grayscale image signal obtained by the screen scanning of the imaging is calculated as Two differences subtracted from the values of background pixels (hereinafter referred to as front background pixels and rear background pixels, respectively) separated by a predetermined same number of pixels (hereinafter referred to as α pixels) before and after the pixel of interest have the same polarity, The predetermined one absolute value of the two differences is larger than a predetermined first threshold value corresponding to the polarity, and the predetermined one absolute value of the difference is a predetermined first threshold value corresponding to the polarity. Than the threshold Peak and valley defect determining means for determining the pixel of interest as defective when the absolute value of the difference is greater than a second predetermined threshold value corresponding to the polarity; and a circular container based on the illumination. Depending on the optical properties of the inner surface,
Means for dividing an inspection area of an image to be subjected to the peak / valley defect determination means; and at least one of the number of α pixels, a first threshold value, and a second threshold value for each of the divided inspection areas. Means for varying one, means for outputting, as the value of the front background pixel, an average value of pixel values in a section having a predetermined first number of pixels including the pixel on the screen scanning line, and Means for outputting, as the value of the background pixel, an average value of the pixel values in a section consisting of the predetermined second number of pixels including the pixel on the screen scanning line. .
【請求項8】請求項7に記載の円形容器内面検査装置に
おいて、前記2つの出力手段を、前記平均値に代えて夫
々対応する区間の画素値のメディアンを出力する手段と
したことを特徴とする円形容器内面検査装置。
8. A circular container inner surface inspection apparatus according to claim 7, wherein said two output means are means for outputting a median of a pixel value of a corresponding section instead of said average value. To inspect the inner surface of a circular container.
JP3265134A 1991-07-15 1991-10-15 Circular container inner surface inspection device Expired - Fee Related JP2988059B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3265134A JP2988059B2 (en) 1991-10-15 1991-10-15 Circular container inner surface inspection device
US07/914,332 US5233199A (en) 1991-07-15 1992-07-15 Cylindrical container's inner surface tester
EP97106885A EP0791822A3 (en) 1991-07-15 1992-07-15 A cylindrical Containers inner surface tester
EP19920112088 EP0523664A3 (en) 1991-07-15 1992-07-15 A cylindrical container's inner surface tester
US08/157,908 US5412203A (en) 1991-07-15 1993-11-24 Cylindrical container inner surface tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3265134A JP2988059B2 (en) 1991-10-15 1991-10-15 Circular container inner surface inspection device

Publications (2)

Publication Number Publication Date
JPH05107200A JPH05107200A (en) 1993-04-27
JP2988059B2 true JP2988059B2 (en) 1999-12-06

Family

ID=17413096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3265134A Expired - Fee Related JP2988059B2 (en) 1991-07-15 1991-10-15 Circular container inner surface inspection device

Country Status (1)

Country Link
JP (1) JP2988059B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145192A (en) * 2006-12-07 2008-06-26 Toshiba Corp Inspection device and method, and inspection information registering method
US20080239904A1 (en) * 2007-03-28 2008-10-02 Minoru Yoshida Method and apparatus for inspecting a surface of a specimen
JP6662126B2 (en) * 2016-03-14 2020-03-11 富士通株式会社 Detecting device, method and program

Also Published As

Publication number Publication date
JPH05107200A (en) 1993-04-27

Similar Documents

Publication Publication Date Title
JP4707605B2 (en) Image inspection method and image inspection apparatus using the method
US5233199A (en) Cylindrical container's inner surface tester
JP4244046B2 (en) Image processing method and image processing apparatus
JP3357001B2 (en) Pattern inspection apparatus and pattern inspection method for semiconductor integrated device
JP2988059B2 (en) Circular container inner surface inspection device
JPH05126750A (en) Apparatus for inspecting inner surface of circular
JP3044951B2 (en) Circular container inner surface inspection device
JP2007081513A (en) Blot defect detecting method for solid-state imaging element
JPH03194454A (en) Container internal surface inspection device
US6335982B1 (en) Method and apparatus for inspecting streak
JP3055322B2 (en) Circular container inner surface inspection device
US5412203A (en) Cylindrical container inner surface tester
JP3044961B2 (en) Circular container inner surface inspection device
JP3055323B2 (en) Circular container inner surface inspection device
JP2634064B2 (en) Binarization device
JP2756738B2 (en) Apparatus for visual inspection of semiconductor devices
JP2874402B2 (en) Circular container inner surface inspection device
JPS62212506A (en) Method for detecting flaw
JPS6373139A (en) Surface inspecting system
JP3391163B2 (en) Circular container inner surface inspection device
US5338000A (en) Cylindrical container inner surface tester based on an image processing technology
JPH10123064A (en) Visual inspection
JPH0572141A (en) Circular container inside surface inspecting device
JPH0319990B2 (en)
JP2008014907A (en) Surface evaluation device and painting sample

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees