JP2006314905A - Method and apparatus for treating gas containing fluorine compound - Google Patents

Method and apparatus for treating gas containing fluorine compound Download PDF

Info

Publication number
JP2006314905A
JP2006314905A JP2005139230A JP2005139230A JP2006314905A JP 2006314905 A JP2006314905 A JP 2006314905A JP 2005139230 A JP2005139230 A JP 2005139230A JP 2005139230 A JP2005139230 A JP 2005139230A JP 2006314905 A JP2006314905 A JP 2006314905A
Authority
JP
Japan
Prior art keywords
compound
fluorine compound
fluorine
silicon compound
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005139230A
Other languages
Japanese (ja)
Other versions
JP4675148B2 (en
Inventor
Takashi Sasaki
崇 佐々木
Shuichi Sugano
周一 菅野
Akio Honchi
章夫 本地
Shin Tamada
慎 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005139230A priority Critical patent/JP4675148B2/en
Publication of JP2006314905A publication Critical patent/JP2006314905A/en
Application granted granted Critical
Publication of JP4675148B2 publication Critical patent/JP4675148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Abstract

<P>PROBLEM TO BE SOLVED: To remove fluorine compounds from a gas containing silicon compounds and fluorine compounds with a high decomposition rate by the use of a fluorine compound decomposition catalyst. <P>SOLUTION: A gas to-be-treated containing fluorine compounds and silicon compounds is wet-treated with water or an aqueous solution to dissolve and remove most of the silicon compounds. Since part of the silicon compounds are entrained with the gas in mist form and discharged, the silicon compounds are removed before treatment with a fluorine compound decomposition catalyst. They are typically removed by absorption decomposition with a basic oxide or hydrolytic decomposition removal with a capturing material based on activated alumina. The gas after removal of silicon compounds is passed through a fluorine compound decomposition catalyst to decompose the fluorine compounds. The method enables control of catalyst poisoning by silicon compounds and retention of the decomposition performance of the catalyst for fluorine compounds. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、排ガス処理方法と処理装置に関し、詳しくは、半導体や液晶製造工場から排出されるフッ素化合物と珪素化合物を含むガスを処理するための処理方法と処理装置に関する。   The present invention relates to an exhaust gas treatment method and a treatment apparatus, and more particularly to a treatment method and a treatment apparatus for treating a gas containing a fluorine compound and a silicon compound discharged from a semiconductor or liquid crystal manufacturing factory.

半導体或いは液晶の製造プロセスでは、エッチング或いはクリーニングを行うにあたり、通常、フッ素化合物ガス、特にパーフルオロコンパウンド(Perfluorocoupound、以下
PFCという)を用いる。PFCの一例を示すと、CF4,C26,C38,CHF3
48,SF6 、及びNF3等がある。PFCは二酸化炭素(CO2)の数千倍から数万倍の赤外線吸収度を持つ地球温暖化ガスであり、世界温暖化会議(COP3)で排出削減が決定している。エッチング或いはクリーニング工程では、導入したPFCの一部しか使用されず、大部分は排ガスとして排出される。したがって、PFCを除去或いは分解してから排気することが必要になる。
In a semiconductor or liquid crystal manufacturing process, a fluorine compound gas, particularly a perfluoro compound (hereinafter referred to as PFC) is usually used for etching or cleaning. An example of a PFC is CF 4 , C 2 F 6 , C 3 F 8 , CHF 3 ,
There are C 4 F 8 , SF 6 , NF 3 and the like. PFC is a global warming gas that has an infrared absorptivity several thousand to several tens of thousands times that of carbon dioxide (CO 2 ), and its emission reduction has been determined by the World Warming Conference (COP3). In the etching or cleaning process, only a part of the introduced PFC is used, and most of the PFC is discharged as exhaust gas. Therefore, it is necessary to remove or decompose the PFC before exhausting.

PFCの処理方法としては、触媒法,燃焼法,プラズマ法,薬剤法等が知られている。現在は簡便なメンテナンス,低ランニングコスト,高PFC分解率の面から、触媒法を用いたPFC分解方法が普及している。触媒による処理方法を半導体或いは液晶製造プロセスで使用されたPFC含有ガスに対して適用する場合、ガス中にはPFC以外にガス状或いは固形物の珪素化合物が含まれており、これらにより触媒が被毒されることから、この対策も必要になる。したがって、触媒反応器の前に水スクラバを設けて珪素化合物を除去することが検討されている(特許文献1等)。   As a PFC treatment method, a catalyst method, a combustion method, a plasma method, a drug method, and the like are known. Currently, a PFC decomposition method using a catalytic method is widespread in terms of simple maintenance, low running cost, and high PFC decomposition rate. When the treatment method using a catalyst is applied to a PFC-containing gas used in a semiconductor or liquid crystal manufacturing process, the gas contains a gaseous or solid silicon compound in addition to the PFC. This measure is necessary because it is poisoned. Therefore, it has been studied to provide a water scrubber in front of the catalytic reactor to remove the silicon compound (Patent Document 1, etc.).

特許第3269456号公報(段落番号0036)Japanese Patent No. 3269456 (paragraph number 0036)

本発明の課題は、水スクラバ,スプレー塔或いは充填塔のように湿式の処理装置を設けて珪素化合物を事前に除去するようにしたフッ素化合物含有ガス処理方法において、フッ素化合物の分解率を更に高めることにある。   An object of the present invention is to further increase the decomposition rate of a fluorine compound in a fluorine compound-containing gas treatment method in which a silicon compound is removed in advance by providing a wet treatment apparatus such as a water scrubber, a spray tower or a packed tower. There is.

上記課題を解決する本発明の特徴は、フッ素化合物と珪素化合物を含むガスを湿式処理して珪素化合物を溶解除去する湿式処理工程と、その後、フッ素化合物分解触媒と接触させてフッ素化合物を分解するフッ素化合物分解工程とを有するフッ素化合物含有ガスの処理方法において、前記湿式処理工程での処理を終えたガスに同伴して排出される珪素化合物をガス中から除去する珪素化合物除去工程を含み、前記珪素化合物除去工程での処理を終えたガスを前記フッ素化合物分解工程にて処理するようにしたことを特徴とするフッ素化合物含有ガスの処理方法にある。   A feature of the present invention that solves the above-described problems is that a wet treatment process in which a gas containing a fluorine compound and a silicon compound is wet treated to dissolve and remove the silicon compound, and then the fluorine compound is decomposed by contacting with a fluorine compound decomposition catalyst. A fluorine compound-containing gas treatment method having a fluorine compound decomposition step, comprising: a silicon compound removal step of removing from the gas a silicon compound discharged together with the gas after the treatment in the wet treatment step; In the method for treating a fluorine compound-containing gas, the gas that has undergone the treatment in the silicon compound removal step is treated in the fluorine compound decomposition step.

また、珪素化合物とフッ素化合物を含むガスを水または水溶液と接触させて、珪素化合物を溶解除去する湿式処理装置と、フッ素化合物を触媒と接触させて分解する触媒式反応装置とを備え、前記湿式処理装置で処理されたガスが前記触媒式反応装置で処理されるようにしたフッ素化合物含有ガス処理装置において、前記湿式処理装置での処理を終えたガスに同伴する珪素化合物を除去するための珪素化合物除去装置を備え、前記珪素化合物除去装置で除去されたガスが前記触媒式反応装置で処理されるようにしたことを特徴とするフッ素化合物含有ガス処理装置にある。   The wet process apparatus includes a wet processing apparatus that contacts a gas containing a silicon compound and a fluorine compound with water or an aqueous solution to dissolve and remove the silicon compound, and a catalytic reaction apparatus that decomposes the fluorine compound by contacting with a catalyst. In the fluorine compound-containing gas processing apparatus in which the gas processed in the processing apparatus is processed in the catalytic reactor, silicon for removing silicon compounds accompanying the gas that has been processed in the wet processing apparatus A fluorine compound-containing gas processing apparatus comprising a compound removing apparatus, wherein the gas removed by the silicon compound removing apparatus is treated by the catalytic reactor.

更に、珪素化合物とフッ素化合物を含むガスを水または水溶液と接触させて珪素化合物を溶解させて除去する湿式処理装置と、フッ素化合物を触媒と接触させて分解する触媒式反応装置とを備え、前記湿式処理装置で処理されたガスが前記触媒式反応装置にて処理されるようにしたフッ素化合物含有ガス処理装置において、前記触媒式反応装置の内部に珪素化合物の捕捉材を備え、前記捕捉材を通過したガスが前記触媒に接触するようにしたことを特徴とするフッ素化合物含有ガスの処理装置にある。   And a wet processing apparatus for dissolving and removing the silicon compound by bringing the gas containing the silicon compound and the fluorine compound into contact with water or an aqueous solution, and a catalytic reactor for decomposing the fluorine compound by contacting with the catalyst, In the fluorine compound-containing gas processing apparatus in which the gas processed by the wet processing apparatus is processed by the catalytic reaction apparatus, a silicon compound capturing material is provided inside the catalytic reaction apparatus, and the capturing material is provided. In the apparatus for treating a fluorine compound-containing gas, the gas that has passed is in contact with the catalyst.

更に、珪素化合物とフッ素化合物を含むガスを水または水溶液と接触させて珪素化合物を溶解させて除去する湿式処理装置と、湿式処理装置から排出されたガスを所定温度まで加熱する予熱装置と、フッ素化合物を触媒と接触させて分解する触媒式反応装置とを備え、前記湿式処理装置で処理されたガスが前記触媒式反応装置にて処理されるようにしたフッ素化合物含有ガス処理装置において、予熱装置の内面に捕捉材を塗布し、珪素化合物とフッ素化合物含有ガスが捕捉材に接触することで除去されることを特徴とするフッ素化合物含有ガスの処理装置にある。   Furthermore, a wet processing apparatus that dissolves and removes the silicon compound by bringing a gas containing a silicon compound and a fluorine compound into contact with water or an aqueous solution, a preheating apparatus that heats the gas discharged from the wet processing apparatus to a predetermined temperature, and fluorine In a fluorine compound-containing gas processing apparatus, comprising a catalytic reactor for decomposing a compound in contact with a catalyst, wherein the gas processed by the wet processing apparatus is processed by the catalytic reactor, An apparatus for treating a fluorine compound-containing gas is characterized in that a capturing material is applied to the inner surface of the substrate and the silicon compound and the fluorine compound-containing gas are removed by contact with the capturing material.

本発明によれば、珪素化合物の除去性能が高められ、フッ素化合物分解触媒の性能低下を抑制でき、フッ素化合物の分解率を高められる。   ADVANTAGE OF THE INVENTION According to this invention, the removal performance of a silicon compound is improved, the performance fall of a fluorine compound decomposition catalyst can be suppressed, and the decomposition rate of a fluorine compound can be raised.

半導体或いは液晶製造プロセスで使用されたフッ素化合物含有排ガスには、通常、珪素化合物としてSiF4が含まれている。SiF4は湿式処理工程で水または水溶液と反応して最終的には(式1)の反応によりSiO2 として水に溶解する。しかし、(式1)の反応の中間生成物あるH2SiF6,Si(OH)4,H2SiO3 のいくらかはフッ素化合物含有ガスとともにミストとして湿式処理工程から排出される。湿式処理工程から排出された珪素化合物は後段の触媒式反応装置上部の予熱槽内で加熱分解及びガス中のHFと反応してSiF4を生成する。その後、生成したSiF4が触媒上で加水分解を起こし、触媒上にSiO2として付着する。
SiF4+2H2O → SiO2+4HF (式1)
The fluorine compound-containing exhaust gas used in the semiconductor or liquid crystal manufacturing process usually contains SiF 4 as a silicon compound. SiF 4 reacts with water or an aqueous solution in the wet processing step, and finally dissolves in water as SiO 2 by the reaction of (Formula 1). However, some of H 2 SiF 6 , Si (OH) 4 , and H 2 SiO 3 which are intermediate products of the reaction of (Formula 1) are discharged from the wet processing step as mist together with the fluorine compound-containing gas. The silicon compound discharged from the wet processing step undergoes thermal decomposition and reacts with HF in the gas in a preheating tank at the upper part of the subsequent catalytic reactor to produce SiF 4 . Thereafter, the produced SiF 4 undergoes hydrolysis on the catalyst and adheres as SiO 2 on the catalyst.
SiF 4 + 2H 2 O → SiO 2 + 4HF (Formula 1)

予熱槽内で生成したガス状のSiF4を、PFC分解触媒と接触する前に捕捉除去することが可能であれば、SiO2によって触媒が被毒することが抑制され、PFCの分解率が高められる。 If the gaseous SiF 4 generated in the preheating tank can be captured and removed before contacting the PFC decomposition catalyst, the catalyst is prevented from being poisoned by SiO 2 and the PFC decomposition rate is increased. It is done.

珪素化合物除去工程では、捕捉材を用いて珪素化合物を除去することが望ましい。捕捉方法としては、酸性ガスであるSiF4 を塩基性物質により吸収除去する方法か、加水分解によりSiO2として除去する方法がある。 In the silicon compound removal step, it is desirable to remove the silicon compound using a trapping material. As a capturing method, there is a method of absorbing and removing SiF 4 which is an acidic gas with a basic substance, or a method of removing it as SiO 2 by hydrolysis.

吸収除去が可能な捕捉材としてはアルカリ金属或いはアルカリ土類金属の酸化物がよい。例えば、酸化カルシウム,酸化ストロンチウム,酸化マグネシウム,酸化銅,酸化ナトリウムなどがある。これらの物質のうち、酸化カルシウムとSiF4 の反応は(式2)のようになる。また、処理ガス中に存在するHFも捕捉材である酸化カルシウムと(式3)の反応を起こしてフッ化カルシウムを生成する。したがって、吸収除去を目的として、上記に示した捕捉材を用いる場合は、被処理ガス中の酸性ガス量が少ない場合が適している。
2CaO+SiF4 → SiO2+CaF2 (式2)
CaO+2HF → H2O+CaF2 (式3)
The capture material that can be absorbed and removed is preferably an oxide of alkali metal or alkaline earth metal. Examples include calcium oxide, strontium oxide, magnesium oxide, copper oxide, and sodium oxide. Among these substances, the reaction between calcium oxide and SiF 4 is as shown in (Formula 2). In addition, HF present in the processing gas also reacts with calcium oxide as a capturing material (Formula 3) to generate calcium fluoride. Therefore, when the above-described trapping material is used for the purpose of absorption removal, it is suitable that the amount of acidic gas in the gas to be treated is small.
2CaO + SiF 4 → SiO 2 + CaF 2 (Formula 2)
CaO + 2HF → H 2 O + CaF 2 (Formula 3)

加水分解によってSiF4をSiO2として除去する捕捉材としては、高比表面積を有し、高加水分解性能を有するものがよい。高比表面積を有する材料としてはアルミナ,シリカ,カーボンなどがある。アルミナのうち、活性アルミナであるγ形態のものは、高比表面積を有し、他成分との混合により、高加水分解性能を持つ為、極めて好適な材料である。活性アルミナに混合する他成分としては、捕捉材の固体酸性質を向上させるものがよく、例えばジルコニウム,コバルト,鉄,チタン,ニッケル,セリウム,スズ,銅,マグネシウム,タングステンなどがある。これらのうち、少なくとも1種をアルミナと混合したものを捕捉材として推奨する。 As a capturing material for removing SiF 4 as SiO 2 by hydrolysis, a material having a high specific surface area and high hydrolysis performance is preferable. Examples of the material having a high specific surface area include alumina, silica, and carbon. Among the aluminas, the γ-form activated alumina is a very suitable material because it has a high specific surface area and has a high hydrolysis performance when mixed with other components. As other components to be mixed with the activated alumina, those which improve the solid acid property of the trapping material are good, for example, zirconium, cobalt, iron, titanium, nickel, cerium, tin, copper, magnesium, tungsten and the like. Of these, a mixture of at least one with alumina is recommended as a capture material.

珪素化合物除去装置或いは触媒式反応装置の内部に設置する捕捉材の形状は、粒状,押し出し成型した棒状,ペレット状,ハニカム状などのように種々の形状でよい。しかし、湿式処理装置後のガス中にはSiO2 の水和物であるH2SiO3も含まれており、捕捉材の粒径が細かいと目詰まりを起こす可能性がある。したがって、粒状,棒状,ペレット状の捕捉材は粒径が1.0mm〜5.0mmのものがよく、さらに望ましくは2.8mm〜4.0mmのものがよい。また、ハニカム状の捕捉材も同様に目が細かいと詰まる可能性があるため、ハニカムのセルサイズが400cpsi以下のものが望ましい。 The shape of the trapping material installed inside the silicon compound removing device or the catalytic reactor may be various shapes such as granular, extruded rod, pellet, and honeycomb. However, H 2 SiO 3 which is a hydrate of SiO 2 is also included in the gas after the wet processing apparatus, and clogging may occur if the particle size of the trapping material is small. Accordingly, the granular, rod-shaped, and pellet-shaped trapping material preferably has a particle size of 1.0 mm to 5.0 mm, and more preferably 2.8 mm to 4.0 mm. Similarly, a honeycomb-shaped trapping material may be clogged if it is fine, so that a honeycomb cell size of 400 cpsi or less is desirable.

また、珪素化合物の捕捉材を触媒式反応装置の上部に設置した予熱装置の内面に塗布してもよい。これにより、湿式処理装置から排出された珪素化合物含有ガスを捕捉材が塗布された予熱装置中で加熱すると同時に珪素化合物を除去することができる。湿式処理装置から排出された珪素化合物含有ガスと予熱装置の内面に塗布された捕捉材の接触を促進させることが望ましい。例えば、予熱装置内に導入された珪素化合物含有ガスが旋回流を起こすように、予熱装置の側面からガスを導入する方法がある。この方法以外でも、珪素化合物含有ガスと予熱装置の内面に塗布した捕捉材の接触が促進されるような方法であればよい。   Alternatively, a silicon compound scavenger may be applied to the inner surface of a preheating device installed at the top of the catalytic reactor. Accordingly, the silicon compound-containing gas discharged from the wet processing apparatus can be heated in the preheating apparatus coated with the trapping material, and at the same time, the silicon compound can be removed. It is desirable to promote the contact between the silicon compound-containing gas discharged from the wet processing apparatus and the trapping material applied to the inner surface of the preheating apparatus. For example, there is a method of introducing gas from the side of the preheating device so that the silicon compound-containing gas introduced into the preheating device causes a swirling flow. Other than this method, any method may be used as long as the contact between the silicon compound-containing gas and the capturing material applied to the inner surface of the preheating device is promoted.

本発明の処理方法および処理装置は、PFCの処理に限らず、広くフッ素化合物含有ガスの処理に適用できる。   The treatment method and treatment apparatus of the present invention are not limited to PFC treatment and can be widely applied to treatment of fluorine compound-containing gas.

図1は、本発明の処理方法の一例を示したシステムフローである。本システムは湿式処理工程,珪素化合物除去工程,フッ素化合物分解工程,酸性ガス除去工程から構成される。半導体或いは液晶の製造プロセスから排出されたフッ素化合物含有ガス中のSiF4 等の珪素化合物,固形物,酸性ガスを湿式処理工程で除去する。湿式処理工程で処理されたガス中にはPFC等のフッ素化合物とミスト状の珪素化合物が含まれる。この排ガスを珪素化合物除去工程に導入し、加熱条件下で捕捉材等によって排ガス中の珪素化合物を除去する。 FIG. 1 is a system flow showing an example of the processing method of the present invention. This system consists of a wet treatment process, a silicon compound removal process, a fluorine compound decomposition process, and an acid gas removal process. Silicon compounds such as SiF 4 , solids, and acid gases in the fluorine compound-containing gas discharged from the semiconductor or liquid crystal manufacturing process are removed in a wet processing step. The gas processed in the wet processing step includes a fluorine compound such as PFC and a mist-like silicon compound. This exhaust gas is introduced into the silicon compound removal step, and the silicon compound in the exhaust gas is removed by a capturing material or the like under heating conditions.

珪素化合物除去工程後の排ガスはフッ素化合物分解工程にて加水分解によってフッ素化合物が分解される。フッ素化合物が加水分解されると酸性ガスであるフッ化水素やSOx,NOxが生成する。生成した酸性ガスはフッ素化合物分解工程の後段の酸性ガス除去工程に送られて除去される。   In the exhaust gas after the silicon compound removal step, the fluorine compound is decomposed by hydrolysis in the fluorine compound decomposition step. When the fluorine compound is hydrolyzed, acid fluorides such as hydrogen fluoride, SOx, and NOx are generated. The generated acidic gas is sent to an acidic gas removing step after the fluorine compound decomposition step to be removed.

フッ素化合物であるPFCの加水分解反応における代表的な反応式を以下に示す。
CF4+2H2O → CO2+4HF (式4)
26+3H2O → CO+CO2+6HF (式5)
CHF3+H2O → CO+3HF (式6)
SF6+3H2O → SO3+6HF (式7)
2NF3+3H2O → NO+NO2+6HF (式8)
A typical reaction formula in the hydrolysis reaction of PFC which is a fluorine compound is shown below.
CF 4 + 2H 2 O → CO 2 + 4HF (Formula 4)
C 2 F 6 + 3H 2 O → CO + CO 2 + 6HF (Formula 5)
CHF 3 + H 2 O → CO + 3HF (Formula 6)
SF 6 + 3H 2 O → SO 3 + 6HF (Formula 7)
2NF 3 + 3H 2 O → NO + NO 2 + 6HF (Formula 8)

図2に本発明の処理装置の一例を示す。本例では湿式処理装置として充填塔120を用いている。また、予熱装置130を備えた触媒式反応装置として反応塔140を設置し、反応塔140は外側からヒータ150によって加熱する。反応塔140の下部にはフッ素化合物分解触媒141を設置し、その上部に珪素化合物の捕捉材131を設置している。反応塔140の下流には冷却室160を設置している。その下流に酸性ガス除去装置としてスプレー塔170を設置し、酸性ガス除去後のガスはエジェクタまたはブロア等の排気装置180を用いて排出する。   FIG. 2 shows an example of the processing apparatus of the present invention. In this example, a packed tower 120 is used as a wet processing apparatus. Moreover, the reaction tower 140 is installed as a catalytic reaction apparatus provided with the preheating apparatus 130, and the reaction tower 140 is heated by the heater 150 from the outside. A fluorine compound decomposition catalyst 141 is installed in the lower part of the reaction tower 140, and a silicon compound trap 131 is installed in the upper part thereof. A cooling chamber 160 is installed downstream of the reaction tower 140. A spray tower 170 is installed as an acidic gas removal device downstream thereof, and the gas after removal of the acidic gas is discharged using an exhaust device 180 such as an ejector or a blower.

半導体或いは液晶製造工場から排出されたフッ素化合物含有ガス100は充填塔120によってガス中に含まれる固形物やSiF4などの珪素化合物の一部、BCl3,S2Cl2,WF6 のような酸性ガスが除去される。湿式処理後のガスは予熱装置130で所定の温度まで加熱される。湿式処理後のガス中にはPFCなどのフッ素化合物のほか、充填塔
120で除去できなかったミスト状の珪素化合物が含まれる。予熱装置130内でH2SiF6
はSiF4となり、固形状のSi(OH)4,H2SiO3は脱水反応によってSiO2 となる。生成したSiO2は珪素化合物捕捉材131上に堆積し、ガス状のSiF4は吸収除去あるいは加水分解除去によって捕捉材131で除去される。珪素化合物が除去されたガス中のフッ素化合物はフッ素化合物分解触媒141で分解される。珪素化合物除去およびフッ素化合物分解反応は加水分解であるため、反応水102を予熱装置内で気化させて、水蒸気としてフッ素化合物分解触媒141に通気させ、(式4)〜(式8)の反応によって分解する。なお、(式5)および(式6)の反応ではCOが生成するため、空気101を流入させることによってCOをCO2 にすることができる。また、CO酸化触媒をフッ素化合物分解触媒の後段に設置すれば、反応塔内でCOをCO2 に酸化できる。PFCなどのフッ素化合物を加水分解すると酸性ガスであるフッ化水素,SOx,NOxが生成する。これらの酸性ガスは酸性ガス除去装置であるスプレー塔170で除去して排気する。
The fluorine compound-containing gas 100 discharged from the semiconductor or liquid crystal manufacturing plant is a part of a solid compound or silicon compound such as SiF 4 contained in the gas by the packed tower 120, such as BCl 3 , S 2 Cl 2 , and WF 6 . Acid gas is removed. The gas after the wet processing is heated to a predetermined temperature by the preheating device 130. The gas after the wet treatment contains a mist-like silicon compound that could not be removed by the packed tower 120 in addition to a fluorine compound such as PFC. H 2 SiF 6 in the preheater 130
Becomes SiF 4 , and solid Si (OH) 4 and H 2 SiO 3 become SiO 2 by a dehydration reaction. The generated SiO 2 is deposited on the silicon compound trap 131 and the gaseous SiF 4 is removed by the trap 131 by absorption or hydrolysis removal. The fluorine compound in the gas from which the silicon compound has been removed is decomposed by the fluorine compound decomposition catalyst 141. Since the removal of the silicon compound and the decomposition reaction of the fluorine compound are hydrolysis, the reaction water 102 is vaporized in the preheating device and is passed through the fluorine compound decomposition catalyst 141 as water vapor, and the reaction of (Expression 4) to (Expression 8) is performed. Decompose. Since CO is generated in the reactions of (Equation 5) and (Equation 6), CO can be changed to CO 2 by flowing in air 101. Further, if the CO oxidation catalyst is installed at the subsequent stage of the fluorine compound decomposition catalyst, CO can be oxidized to CO 2 in the reaction tower. Hydrolysis of fluorine compounds such as PFC generates acidic gases such as hydrogen fluoride, SOx, and NOx. These acid gases are removed and exhausted by a spray tower 170 which is an acid gas removing device.

充填塔以外の湿式処理装置として、スプレー塔,棚段型気液接触装置,スクラバなどがある。いずれも気液の接触が十分であることが望ましい。また、装置の内径が小さいと、装置内のガス線速度が大きくなり、ガスに同伴するミスト量も多くなる。したがって、装置内のガス流速が18m/min 以下となるように設計することが望ましい。また、湿式処理装置への流入水として、水道水或いは装置内の循環水を使用することができるが、循環水のみを使用すると、循環水に溶解した珪素化合物がミストとして多く排出される可能性がある。したがって、充填塔やスプレー塔に設置する最上段のノズルからは水道水を流入し、棚段,スクラバからの流入水には水道水も流入させ、流入水中の珪素化合物濃度を低くすることが望ましい。また、流入水としては、水道水,循環水以外に、アルカリ水溶液等を用いてもよい。   As a wet processing apparatus other than the packed tower, there are a spray tower, a shelf type gas-liquid contact apparatus, a scrubber and the like. In any case, it is desirable that gas-liquid contact is sufficient. Further, when the inner diameter of the apparatus is small, the gas linear velocity in the apparatus increases, and the amount of mist accompanying the gas increases. Therefore, it is desirable to design the gas flow rate in the apparatus to be 18 m / min or less. In addition, tap water or circulating water in the apparatus can be used as inflow water to the wet treatment apparatus, but if only circulating water is used, a large amount of silicon compound dissolved in the circulating water may be discharged as mist. There is. Therefore, it is desirable to make tap water flow from the uppermost nozzle installed in the packed tower and the spray tower, and also make tap water flow into the inflow water from the shelf and the scrubber so that the silicon compound concentration in the inflow water is lowered. . Moreover, as inflow water, you may use alkaline aqueous solution etc. other than a tap water and circulating water.

フッ素化合物の分解に使用される触媒は、加水分解用あるいは酸化分解用の触媒であり、例えばAlとZn,Ni,Ti,Fe,Sn,Co,Zr,Ce,Si,W,Pt,
Pdから選ばれた少なくとも1種を含む触媒である。触媒成分は酸化物,金属,複合酸化物などの形で含まれる。特にAlとNi,Zn,Ti,Wから選ばれた少なくとも1種との触媒が高いPFC分解性能を持つので好ましい。
The catalyst used for the decomposition of the fluorine compound is a catalyst for hydrolysis or oxidative decomposition. For example, Al and Zn, Ni, Ti, Fe, Sn, Co, Zr, Ce, Si, W, Pt,
A catalyst containing at least one selected from Pd. The catalyst component is included in the form of an oxide, metal, composite oxide or the like. In particular, a catalyst of Al and at least one selected from Ni, Zn, Ti, and W is preferable because it has high PFC decomposition performance.

フッ素化合物の加水分解に際して反応塔に添加される水蒸気の量は、加水分解に必要とされる理論水蒸気量の2〜50倍、通常は3〜30倍が好ましい。また、捕捉剤により珪素化合物を加水分解除去する場合は、フッ素化合物の加水分解に必要とされる理論水蒸気量よりも多く供給することが望ましく、2〜60倍、通常は5〜50倍が好ましい。   The amount of water vapor added to the reaction tower during the hydrolysis of the fluorine compound is preferably 2 to 50 times the theoretical amount of water vapor required for hydrolysis, usually 3 to 30 times. When the silicon compound is hydrolyzed and removed by the scavenger, it is desirable to supply more than the theoretical water vapor amount required for hydrolysis of the fluorine compound, preferably 2 to 60 times, usually 5 to 50 times. .

フッ素化合物,珪素化合物の加水分解温度は500〜850℃が好ましい。フッ素化合物濃度が高い場合には反応温度を高めにし、フッ素化合物濃度が1%以下の場合には反応温度を低めにするのがよい。反応温度が850℃よりも高くなると触媒が劣化しやすくなり、反応塔材料も腐食しやすくなる。反対に反応温度が500℃よりも低くなるとフッ素化合物の分解率が低下する。   The hydrolysis temperature of the fluorine compound and silicon compound is preferably 500 to 850 ° C. When the fluorine compound concentration is high, the reaction temperature is raised, and when the fluorine compound concentration is 1% or less, the reaction temperature is preferably lowered. When the reaction temperature is higher than 850 ° C., the catalyst tends to deteriorate and the reaction tower material also tends to corrode. On the other hand, when the reaction temperature is lower than 500 ° C., the decomposition rate of the fluorine compound decreases.

本装置例では反応塔140の下流に冷却室160を設置している。冷却室160ではノズル161により例えば水を噴霧してガス温度を所定温度に下げる。水冷方式あるいはガス冷却方式の一般的な熱交換器を使用してもよい。また、ガス中に圧縮空気などを導入して所定温度に制御してもよい。   In this apparatus example, a cooling chamber 160 is installed downstream of the reaction tower 140. In the cooling chamber 160, for example, water is sprayed by the nozzle 161 to lower the gas temperature to a predetermined temperature. A general heat exchanger of water cooling type or gas cooling type may be used. Further, compressed air or the like may be introduced into the gas and controlled to a predetermined temperature.

酸性ガス除去装置としては一般的な湿式及び乾式除去装置を使用することができる。湿式の例としてはスプレー塔のほか、充填塔,スクラバ,棚段型気液接触装置がある。また、乾式の例として、酸性ガス除去剤による固定層,移動層,流動層型乾式除去装置がある。また、バグフィルタ方式もよい。酸性ガス除去剤としては、アルカリ金属,アルカリ土類金属の塩基性塩、例えば水酸化カルシウム,水酸化ナトリウム,水酸化カリウム,水酸化マグネシウム,炭酸水素ナトリウム,炭酸ナトリウム,炭酸カルシウム,酸化カルシウムが使用できる。   As the acid gas removing device, general wet and dry removing devices can be used. Examples of wet methods include spray towers, packed towers, scrubbers, and shelf-type gas-liquid contact devices. Examples of the dry type include a fixed bed, a moving bed, and a fluidized bed type dry removal apparatus using an acid gas remover. Also, a bug filter method is good. As acid gas removal agent, basic salts of alkali metals and alkaline earth metals such as calcium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, sodium hydrogen carbonate, sodium carbonate, calcium carbonate, calcium oxide are used. it can.

図3は、本発明による処理装置の別の例を示したものである。本例ではフッ素化合物分解触媒141の上流部に珪素化合物の捕捉剤131を設置するのではなく、予熱装置の内面に捕捉剤を塗布し、湿式処理装置210からの処理ガスを予熱装置130内に塗布した捕捉剤131と接触させることによって処理ガス中の珪素化合物を除去する。また、本例では、湿式処理装置210からの処理ガスと捕捉剤131を効率良く接触させることが望ましく、例えば、処理ガスを予熱装置130の側面から導入し、予熱装置内で旋回流を形成することにより処理ガスと捕捉剤の接触を促進させる方法がある。また、予熱装置内に整流板等を設置して、ガス流れを制御してもよい。   FIG. 3 shows another example of the processing apparatus according to the present invention. In this example, the silicon compound scavenger 131 is not installed upstream of the fluorine compound decomposition catalyst 141, but the scavenger is applied to the inner surface of the preheating device, and the processing gas from the wet processing device 210 enters the preheating device 130. The silicon compound in the processing gas is removed by contacting with the applied scavenger 131. In this example, it is desirable that the processing gas from the wet processing apparatus 210 and the scavenger 131 are efficiently contacted. For example, the processing gas is introduced from the side surface of the preheating apparatus 130 to form a swirl flow in the preheating apparatus. There is a method for promoting the contact between the processing gas and the scavenger. Moreover, you may install a baffle plate etc. in a preheating apparatus, and may control a gas flow.

本実施例では、SiF4 を水にバブリングさせ、珪素化合物含有水溶液を調製し、その水溶液をフッ素化合物分解触媒を充填した反応管に流入させ、珪素化合物の捕捉剤25をフッ素化合物分解触媒24の上部に設置し、共存ガス中のPFCの分解率を測定した。試験装置の構成を図4に示す。 In this example, SiF 4 was bubbled into water to prepare an aqueous solution containing a silicon compound, and the aqueous solution was allowed to flow into a reaction tube filled with a fluorine compound decomposition catalyst. It installed in the upper part and measured the decomposition rate of PFC in coexisting gas. The configuration of the test apparatus is shown in FIG.

2,Air,PFCとしてCF4をマスフローコントローラーで調節して反応管20に供給した。供給量は、CF4を約0.48vol%とし、AirはO2濃度が約2.12vol%となるようにした。また、珪素化合物含有水溶液を反応管20の上部へマイクロチューブポンプを用いて供給し、ガス化させた。珪素化合物含有水溶液は流入Si量が3.6mg/minとなるように供給した。尚、この条件での水蒸気量はCF4 加水分解反応当量比の25倍であった。この反応ガスをフッ素化合物分解触媒24と空間速度1230毎時で接触させた。反応管20は電気炉21により捕捉材25,フッ素化合物分解触媒24が約700℃となるように加熱した。反応管20は内径32mmのインコネル製である。珪素化合物の捕捉剤25としては酸化カルシウムを用いた。捕捉材は粒状のものを使用し、粒径は2.0〜4.5mm とした。また、充填量はフッ素化合物分解触媒充填量の25%とした。フッ素化合物分解触媒によって分解されたガス中にはフッ化水素が含まれるため、水800mlを入れた排ガス洗浄槽40によってフッ化水素を除去したのち、ミストキャッチャ50を通過させてミスト分を除去した。ミストキャッチャ50の後段にガス採取口60を設け、排ガスの一部を採取し、排ガス中のCF4量を測定した。CF4の分解率はTCDガスクロマトグラフにより次式で求めた。
分解率(%)=(1−(出口のCF4量/供給したCF4量))×100
5時間連続通気した後のCF4分解率は90.75%であった。また、試験後の珪素化合物捕捉材に含有するSi量を分析したところ、捕捉材に流入Si量の約20%が付着していた。
CF 4 as N 2 , Air, and PFC was adjusted with a mass flow controller and supplied to the reaction tube 20. The supply amount was such that CF 4 was about 0.48 vol%, and Air was such that the O 2 concentration was about 2.12 vol%. Moreover, the silicon compound containing aqueous solution was supplied to the upper part of the reaction tube 20 using the microtube pump, and was gasified. The silicon compound-containing aqueous solution was supplied so that the inflow Si amount was 3.6 mg / min. The water vapor amount under these conditions was 25 times the CF 4 hydrolysis reaction equivalent ratio. This reaction gas was brought into contact with the fluorine compound decomposition catalyst 24 at a space velocity of 1230 per hour. The reaction tube 20 was heated by an electric furnace 21 so that the trapping material 25 and the fluorine compound decomposition catalyst 24 became about 700 ° C. The reaction tube 20 is made of Inconel having an inner diameter of 32 mm. Calcium oxide was used as the silicon compound scavenger 25. The trapping material was granular and the particle size was 2.0-4.5 mm. The filling amount was 25% of the filling amount of the fluorine compound decomposition catalyst. Since hydrogen fluoride is contained in the gas decomposed by the fluorine compound decomposition catalyst, after removing hydrogen fluoride by the exhaust gas cleaning tank 40 containing 800 ml of water, the mist is removed by passing through the mist catcher 50. . A gas sampling port 60 was provided after the mist catcher 50, a part of the exhaust gas was sampled, and the amount of CF 4 in the exhaust gas was measured. The decomposition rate of CF 4 was determined by the following equation using a TCD gas chromatograph.
Decomposition rate (%) = (1- (CF 4 weight / the supplied CF 4 of the outlet)) × 100
The CF 4 decomposition rate after continuous aeration for 5 hours was 90.75%. Further, when the amount of Si contained in the silicon compound trapping material after the test was analyzed, about 20% of the inflowing Si amount was adhered to the trapping material.

比較例として、珪素化合物捕捉材25を設置しなかった場合のCF4 分解率を測定した。供給ガス,珪素化合物,水量及びフッ素化合物分解触媒,珪素化合物捕捉材の充填量は上記と同様とした。5時間連続通気した後のCF4分解率は86.55%となり、珪素化合物捕捉材として酸化カルシウムを設置した場合に比べて分解率が低下した。 As a comparative example, the CF 4 decomposition rate was measured when the silicon compound capturing material 25 was not installed. The supply gas, the silicon compound, the amount of water, the fluorine compound decomposition catalyst, and the filling amount of the silicon compound trapping material were the same as described above. The CF 4 decomposition rate after continuous aeration for 5 hours was 86.55%, and the decomposition rate was lower than when calcium oxide was installed as the silicon compound-trapping material.

本実施例では、活性アルミナであるγAl23にTiO2 を混合した珪素化合物捕捉材を用いた。捕捉材の調整方法は次の通りである。住友化学工業製のγAl23100gに石原産業製の30wt%TiO2 ゾルをAl:Tiのモル比が9:1になるように混合して混練した。混練後、120℃で2時間乾燥した。乾燥後の粉末を700℃で2時間焼成した。焼成後は成型,破砕、分級して2.0〜4.5mmの粒径とし調整を終えた。試験装置構成,ガス,珪素化合物,水供給量及びフッ素化合物分解触媒,珪素化合物捕捉材の充填量は実施例1と同じにした。5時間連続通気した後のCF4分解率は95.12%であった。また、実施例1と同様に、試験後の珪素化合物捕捉材に含有するSi量を分析したところ、流入Si量の約73%が捕捉材に付着しており、高いSi捕捉性能を示した。 In this embodiment, a silicon compound trapping material in which TiO 2 is mixed with γAl 2 O 3 which is activated alumina is used. The adjustment method of the capturing material is as follows. A 30 wt% TiO 2 sol manufactured by Ishihara Sangyo Co., Ltd. was mixed with 100 g of γAl 2 O 3 manufactured by Sumitomo Chemical Co., Ltd. so that the molar ratio of Al: Ti was 9: 1 and kneaded. After kneading, it was dried at 120 ° C. for 2 hours. The dried powder was fired at 700 ° C. for 2 hours. After firing, the adjustment was completed by forming, crushing, and classifying to a particle size of 2.0 to 4.5 mm. The test apparatus configuration, gas, silicon compound, water supply amount, fluorine compound decomposition catalyst, and filling amount of the silicon compound trapping material were the same as in Example 1. The CF 4 decomposition rate after continuous aeration for 5 hours was 95.12%. Moreover, when the amount of Si contained in the silicon compound trapping material after the test was analyzed in the same manner as in Example 1, about 73% of the inflowing Si amount was adhered to the trapping material, indicating high Si trapping performance.

本実施例は、実施例2で調整した珪素化合物捕捉材であるγAl23−TiO2 に更にもう1成分を添加して性能向上を図った例である。第3成分として捕捉材の固体酸性質を向上させるため、タングステンを添加した。調整方法は次の通りである。γAl23100gにTiO2ゾルと市販のWO3水溶液をAl:Ti:Wのモル比が8:1:1になるように混合して混練した。混練後の調製方法は実施例2と同じである。調製した捕捉材を図4の試験装置に設置してCF4 分解率を評価した。試験装置構成,ガス,珪素化合物,水供給量及びフッ素化合物分解触媒,珪素化合物捕捉材の充填量は実施例1と同じにした。5時間連続通気した後のCF4分解率は96.41%であり高いCF4 分解率を示した。また、試験後の珪素化合物捕捉材に含有するSi量を分析したところ、流入Si量の約85%が捕捉材に付着しており、極めて高いSi捕捉性能を示した。 In this example, another component was added to γAl 2 O 3 —TiO 2 which is the silicon compound trapping material prepared in Example 2 to improve performance. Tungsten was added as a third component to improve the solid acid properties of the capture material. The adjustment method is as follows. TiO 2 sol and a commercially available WO 3 aqueous solution were mixed and kneaded with 100 g of γAl 2 O 3 so that the molar ratio of Al: Ti: W was 8: 1: 1. The preparation method after kneading is the same as in Example 2. The prepared capture material was installed in the test apparatus of FIG. 4 to evaluate the CF 4 decomposition rate. The test apparatus configuration, gas, silicon compound, water supply amount, fluorine compound decomposition catalyst, and filling amount of the silicon compound trapping material were the same as in Example 1. The CF 4 decomposition rate after continuous aeration for 5 hours was 96.41%, indicating a high CF 4 decomposition rate. Further, when the amount of Si contained in the silicon compound trapping material after the test was analyzed, about 85% of the inflowing Si amount was adhered to the trapping material, and extremely high Si trapping performance was shown.

実施例1〜3で使用した珪素化合物捕捉材の5時間連続通気試験の結果を比較例として捕捉材を設置しない場合と併せて図5に示す。   The result of the 5-hour continuous ventilation test of the silicon compound trapping material used in Examples 1 to 3 is shown in FIG. 5 together with the case where the trapping material is not installed as a comparative example.

本発明により、半導体あるいは液晶製造プロセスのエッチング工程或いはクリーニング工程で使用された排ガスに含まれるフッ素化合物を高い分解率で処理することが可能になった。   According to the present invention, it has become possible to treat the fluorine compound contained in the exhaust gas used in the etching process or cleaning process of the semiconductor or liquid crystal manufacturing process at a high decomposition rate.

本発明の処理方法の一例を示すシステムフロー図である。It is a system flow figure showing an example of the processing method of the present invention. 本発明の処理装置の一例を示すシステム構成図である。It is a system configuration figure showing an example of a processing device of the present invention. 本発明による処理装置の他の例を示すシステム構成図である。It is a system block diagram which shows the other example of the processing apparatus by this invention. 実験に使用した装置の概略図である。It is the schematic of the apparatus used for experiment. 捕捉材の設置効果を示す試験結果図である。It is a test result figure which shows the installation effect of a capturing material.

符号の説明Explanation of symbols

13…マスフローコントローラ、30…珪素化合物含有水溶液、31…マイクロチューブポンプ、40…排ガス洗浄槽、50…ミストキャッチャ、120…充填塔、130…予熱装置、131…珪素化合物捕捉材、140…反応塔、141…フッ素化合物分解触媒、150…ヒータ、160…冷却室、210…湿式処理装置、211…スプレーノズル。   DESCRIPTION OF SYMBOLS 13 ... Mass flow controller, 30 ... Silicon compound containing aqueous solution, 31 ... Microtube pump, 40 ... Exhaust gas washing tank, 50 ... Mist catcher, 120 ... Packing tower, 130 ... Preheating apparatus, 131 ... Silicon compound trapping material, 140 ... Reaction tower 141 ... Fluorine compound decomposition catalyst, 150 ... Heater, 160 ... Cooling chamber, 210 ... Wet processing device, 211 ... Spray nozzle.

Claims (16)

フッ素化合物と珪素化合物を含むガスを水または水溶液と接触させて珪素化合物を除去する湿式処理工程と、フッ素化合物を分解するフッ素化合物分解工程とを有し、
前記湿式処理工程後であって前記フッ素化合物分解工程前に、珪素化合物をガス中から除去する珪素化合物除去工程を有することを特徴とするフッ素化合物含有ガスの処理方法。
A wet treatment step of removing a silicon compound by contacting a gas containing a fluorine compound and a silicon compound with water or an aqueous solution, and a fluorine compound decomposition step of decomposing the fluorine compound,
A method for treating a fluorine compound-containing gas, comprising a silicon compound removal step of removing a silicon compound from a gas after the wet treatment step and before the fluorine compound decomposition step.
請求項1に記載されたフッ素化合物含有ガスの処理方法において、前記珪素化合物除去工程は、珪素化合物捕捉材を用いて珪素化合物を除去する工程であることを特徴とするフッ素化合物含有ガスの処理方法。   The method for treating a fluorine compound-containing gas according to claim 1, wherein the silicon compound removing step is a step of removing the silicon compound using a silicon compound-trapping material. . 請求項2に記載されたフッ素化合物含有ガスの処理方法において、前記捕捉材はジルコニウム,コバルト,鉄,チタン,ニッケル,セリウム,スズ,銅,マグネシウム,タングステンのうち少なくとも1種と、アルミナとの混合物であることを特徴とするフッ素化合物含有ガスの処理方法。   3. The method for treating a fluorine compound-containing gas according to claim 2, wherein the trapping material is a mixture of at least one of zirconium, cobalt, iron, titanium, nickel, cerium, tin, copper, magnesium, tungsten and alumina. The processing method of the fluorine compound containing gas characterized by these. 請求項2または3に記載されたフッ素化合物含有ガスの処理方法において、前記捕捉材を管状部品の壁面に層状に付着させ使用することを特徴とするフッ素化合物含有ガスの処理方法。   4. The method for treating a fluorine compound-containing gas according to claim 2, wherein the trapping material is used in a layered manner on the wall surface of the tubular part. 請求項1ないし4のいずれかに記載されたフッ素化合物含有ガスの処理方法において、前記珪素化合物除去工程を加熱下で行うことを特徴とするフッ素化合物含有ガスの処理方法。   The method for treating a fluorine compound-containing gas according to any one of claims 1 to 4, wherein the silicon compound removing step is performed under heating. 請求項1に記載されたフッ素化合物含有ガスの処理方法において、前記フッ素化合物としてPFCを含むことを特徴とするフッ素化合物含有ガスの処理方法。   2. The method for treating a fluorine compound-containing gas according to claim 1, wherein the fluorine compound contains PFC as the fluorine compound. 請求項1に記載されたフッ素化合物含有ガスの処理方法において、前記フッ素化合物分解工程が触媒式分解工程であるフッ素化合物含有ガスの処理方法。   2. The method for treating a fluorine compound-containing gas according to claim 1, wherein the fluorine compound decomposition step is a catalytic decomposition step. 珪素化合物とフッ素化合物を含む被処理ガスを水または水溶液と接触させて前記珪素化合物を除去する湿式処理装置と、前記湿式処理装置から排出されたガスを所定温度まで加熱する予熱装置と、前記フッ素化合物を触媒と接触させて分解する触媒式反応装置と、前記触媒式反応装置の前段かつ前記湿式処理装置の後段に設置された珪素化合物を除去する珪素化合物除去装置とを備え、
前記被処理ガスが前記湿式処理装置,前記珪素化合物除去装置,前記触媒式反応装置の順に通過するよう配置されていることを特徴とするフッ素化合物含有ガスの処理装置。
A wet processing apparatus that removes the silicon compound by bringing a gas to be processed containing a silicon compound and a fluorine compound into contact with water or an aqueous solution, a preheating apparatus that heats the gas discharged from the wet processing apparatus to a predetermined temperature, and the fluorine A catalytic reactor that decomposes the compound by contacting it with a catalyst; and a silicon compound removing device that removes a silicon compound that is installed upstream of the catalytic reactor and downstream of the wet processing apparatus,
An apparatus for processing a fluorine compound-containing gas, wherein the gas to be processed passes through the wet processing apparatus, the silicon compound removing apparatus, and the catalytic reaction apparatus in this order.
珪素化合物とフッ素化合物を含む被処理ガスを水または水溶液と接触させて前記珪素化合物を除去する湿式処理装置と、前記湿式処理装置から排出されたガスを所定温度まで加熱する予熱装置と、前記フッ素化合物を触媒と接触させて分解する触媒式反応装置とを備えるフッ素化合物含有ガスの処理装置であって、
前記触媒式反応装置の内部に珪素化合物を除去する珪素化合物捕捉材を有し、前記捕捉材を通過したガスが前記触媒に接触するよう配置されていることを特徴とするフッ素化合物含有ガスの処理装置。
A wet processing apparatus that removes the silicon compound by bringing a gas to be processed containing a silicon compound and a fluorine compound into contact with water or an aqueous solution, a preheating apparatus that heats the gas discharged from the wet processing apparatus to a predetermined temperature, and the fluorine A treatment apparatus for a fluorine compound-containing gas, comprising a catalytic reactor for decomposing a compound in contact with a catalyst,
A treatment of a fluorine compound-containing gas having a silicon compound scavenger for removing a silicon compound inside the catalytic reactor and arranged so that a gas that has passed through the scavenger contacts the catalyst apparatus.
珪素化合物とフッ素化合物を含む被処理ガスを水または水溶液と接触させて前記珪素化合物を除去する湿式処理装置と、前記湿式処理装置から排出されたガスを所定温度まで加熱する予熱装置と、前記フッ素化合物を触媒と接触させて分解する触媒式反応装置とを備えるフッ素化合物含有ガスの処理装置であって、
前記予熱装置の内部に珪素化合物を除去する珪素化合物捕捉材を有することを特徴とするフッ素化合物含有ガスの処理装置。
A wet processing apparatus that removes the silicon compound by bringing a gas to be processed containing a silicon compound and a fluorine compound into contact with water or an aqueous solution, a preheating apparatus that heats the gas discharged from the wet processing apparatus to a predetermined temperature, and the fluorine A treatment apparatus for a fluorine compound-containing gas, comprising a catalytic reactor for decomposing a compound in contact with a catalyst,
An apparatus for treating a fluorine compound-containing gas, comprising a silicon compound trapping material for removing a silicon compound inside the preheating device.
請求項8に記載されたフッ素化合物含有ガスの処理装置であって、
前記珪素化合物除去装置は珪素化合物を捕捉材によって除去するものであることを特徴とするフッ素化合物処理装置。
The apparatus for treating a fluorine compound-containing gas according to claim 8,
The fluorine compound processing apparatus is characterized in that the silicon compound removing apparatus removes a silicon compound with a trapping material.
請求項8に記載されたフッ素化合物含有ガスの処理装置であって、
前記珪素化合物除去装置は、珪素化合物を加熱下で捕捉材によって除去するものであることを特徴とするフッ素化合物処理装置。
The apparatus for treating a fluorine compound-containing gas according to claim 8,
The fluorine compound treatment apparatus is characterized in that the silicon compound removal apparatus removes a silicon compound with a capturing material under heating.
請求項9ないし12のいずれかに記載されたフッ素化合物含有ガスの処理装置であって、
前記捕捉材はジルコニウム,コバルト,鉄,チタン,ニッケル,セリウム,スズ,銅,マグネシウム,タングステンのうち少なくとも1種とアルミナとの混合物であることを特徴とするフッ素化合物含有ガスの処理装置。
The apparatus for treating a fluorine compound-containing gas according to any one of claims 9 to 12,
An apparatus for treating a fluorine compound-containing gas, wherein the trapping material is a mixture of at least one of zirconium, cobalt, iron, titanium, nickel, cerium, tin, copper, magnesium, and tungsten and alumina.
請求項10に記載されたフッ素化合物含有ガスの処理装置であって、
前記捕捉材は前記予熱装置の内壁面に層状に付されていることを特徴とするフッ素化合物含有ガスの処理装置。
The apparatus for treating a fluorine compound-containing gas according to claim 10,
The apparatus for treating a fluorine compound-containing gas, wherein the capturing material is layered on an inner wall surface of the preheating device.
請求項8ないし14のいずれかに記載されたフッ素化合物含有ガスの処理装置であって、
前記触媒式反応装置の後段に、フッ化水素をガス中から除去する排ガス洗浄装置を備えたことを特徴とするフッ素化合物含有ガスの処理装置。
The apparatus for treating a fluorine compound-containing gas according to any one of claims 8 to 14,
An apparatus for treating a fluorine compound-containing gas, comprising an exhaust gas cleaning device for removing hydrogen fluoride from the gas at a subsequent stage of the catalytic reactor.
請求項13に記載されたフッ素化合物含有ガスの処理装置であって、
前記捕捉材はチタンと、タングステンとを含むアルミナの混合物であることを特徴とするフッ素化合物含有ガスの処理装置。

The apparatus for treating a fluorine compound-containing gas according to claim 13,
An apparatus for treating a fluorine compound-containing gas, wherein the capturing material is a mixture of alumina containing titanium and tungsten.

JP2005139230A 2005-05-12 2005-05-12 Method and apparatus for treating fluorine compound-containing gas Active JP4675148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005139230A JP4675148B2 (en) 2005-05-12 2005-05-12 Method and apparatus for treating fluorine compound-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005139230A JP4675148B2 (en) 2005-05-12 2005-05-12 Method and apparatus for treating fluorine compound-containing gas

Publications (2)

Publication Number Publication Date
JP2006314905A true JP2006314905A (en) 2006-11-24
JP4675148B2 JP4675148B2 (en) 2011-04-20

Family

ID=37536036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005139230A Active JP4675148B2 (en) 2005-05-12 2005-05-12 Method and apparatus for treating fluorine compound-containing gas

Country Status (1)

Country Link
JP (1) JP4675148B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000728A (en) * 2006-06-26 2008-01-10 Hitachi Ltd Treatment method and treatment apparatus for perfluoride
JP2008207139A (en) * 2007-02-28 2008-09-11 Hitachi Ltd Exhaust gas treating method and device
JP2009136815A (en) * 2007-12-10 2009-06-25 Hitachi Ltd Exhaust gas treatment apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621439A (en) * 1985-06-25 1987-01-07 Nippon Paionikusu Kk Removal of noxious component
JPH03202128A (en) * 1989-12-28 1991-09-03 Ebara Res Co Ltd Removal of nf3
JPH06269631A (en) * 1993-03-17 1994-09-27 Nippon Sanso Kk Removal of gaseous silicon compound, and removing agent and its prep aration
JPH07275646A (en) * 1994-04-06 1995-10-24 Japan Pionics Co Ltd Harmful gas purifying agent
JPH09878A (en) * 1995-06-23 1997-01-07 Niigata Eng Co Ltd Exhaust gas treatment agent
JPH10249144A (en) * 1997-03-10 1998-09-22 Japan Pionics Co Ltd Method of purifying harmful gas
JP2001137659A (en) * 1999-11-18 2001-05-22 Ebara Corp Method and device for treating waste gas containing fluorine-containing compound
JP2003080029A (en) * 2001-09-14 2003-03-18 Babcock Hitachi Kk Exhaust gas cleaning system and method for cleaning exhaust gas
JP2003088727A (en) * 2001-09-20 2003-03-25 Hitachi Ltd Perfluoride treatment method
JP2003117350A (en) * 2001-10-10 2003-04-22 Ebara Corp Method and device for treating waste gas containing fluorine-containing compound
JP2005111423A (en) * 2003-10-10 2005-04-28 Hitachi Ltd Method and apparatus for catalytic pfc decomposition processing

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621439A (en) * 1985-06-25 1987-01-07 Nippon Paionikusu Kk Removal of noxious component
JPH03202128A (en) * 1989-12-28 1991-09-03 Ebara Res Co Ltd Removal of nf3
JPH06269631A (en) * 1993-03-17 1994-09-27 Nippon Sanso Kk Removal of gaseous silicon compound, and removing agent and its prep aration
JPH07275646A (en) * 1994-04-06 1995-10-24 Japan Pionics Co Ltd Harmful gas purifying agent
JPH09878A (en) * 1995-06-23 1997-01-07 Niigata Eng Co Ltd Exhaust gas treatment agent
JPH10249144A (en) * 1997-03-10 1998-09-22 Japan Pionics Co Ltd Method of purifying harmful gas
JP2001137659A (en) * 1999-11-18 2001-05-22 Ebara Corp Method and device for treating waste gas containing fluorine-containing compound
JP2003080029A (en) * 2001-09-14 2003-03-18 Babcock Hitachi Kk Exhaust gas cleaning system and method for cleaning exhaust gas
JP2003088727A (en) * 2001-09-20 2003-03-25 Hitachi Ltd Perfluoride treatment method
JP2003117350A (en) * 2001-10-10 2003-04-22 Ebara Corp Method and device for treating waste gas containing fluorine-containing compound
JP2005111423A (en) * 2003-10-10 2005-04-28 Hitachi Ltd Method and apparatus for catalytic pfc decomposition processing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000728A (en) * 2006-06-26 2008-01-10 Hitachi Ltd Treatment method and treatment apparatus for perfluoride
JP2008207139A (en) * 2007-02-28 2008-09-11 Hitachi Ltd Exhaust gas treating method and device
JP2009136815A (en) * 2007-12-10 2009-06-25 Hitachi Ltd Exhaust gas treatment apparatus

Also Published As

Publication number Publication date
JP4675148B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
KR100637884B1 (en) Method and apparatus for treating waste gas containing fluorochemical
CN105477995B (en) A kind of method of sulfur trioxide in removing coal-fired flue-gas
JP2008000748A (en) Regeneration of nt-scr catalyst
JP5017071B2 (en) Exhaust gas treatment equipment
JP4675148B2 (en) Method and apparatus for treating fluorine compound-containing gas
KR100746528B1 (en) Process and Catalyst for Decomposing Perfluoro Compound, and Apparatus for Treating Perfluoro Compound
CN110180389A (en) Flue gas treating process and its device in waste alumina regenerative process
JP5318333B2 (en) Method and apparatus for treating fluorine compound-containing gas
JP6343120B2 (en) Perfluoride treatment apparatus, perfluoride treatment method and program
JP4394555B2 (en) Method and apparatus for treating fluorine compound-containing gas
JP4831924B2 (en) HF-containing gas dry processing apparatus and processing method
JPH11244656A (en) Treatment of fluorine compound-containing gas and catalyst
JP2009078237A (en) Treating method for exhaust gas from semiconductor and liquid crystal manufacturing apparatus
JP4596432B2 (en) Method and apparatus for decomposing fluorine-containing compounds
JP3931563B2 (en) Method and apparatus for decomposing fluorine-containing compounds
CN109499307A (en) The desulfurization denitration method of pelletizing flue gas
JP2009028647A (en) Exhaust gas treating method and device
JP4188815B2 (en) Perfluorocompound decomposition method and apparatus
JP2005319401A (en) Method and apparatus for pfc decomposition treatment and system therefor
JP5170040B2 (en) HF-containing gas dry processing apparatus and processing method
JP3630615B2 (en) Hypofluorite removal method
JP2009279497A (en) Method of treating exhaust gas
CN105903328A (en) Gas discharge pre-oxidation coupling chemical absorption and denitration method and system
JP2008006352A (en) Treatment method and treatment apparatus of fluorine-compound containing gas
JP6085203B2 (en) Perfluoride treatment apparatus and perfluoride treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4675148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350