JPH06269631A - Removal of gaseous silicon compound, and removing agent and its prep aration - Google Patents

Removal of gaseous silicon compound, and removing agent and its prep aration

Info

Publication number
JPH06269631A
JPH06269631A JP5056654A JP5665493A JPH06269631A JP H06269631 A JPH06269631 A JP H06269631A JP 5056654 A JP5056654 A JP 5056654A JP 5665493 A JP5665493 A JP 5665493A JP H06269631 A JPH06269631 A JP H06269631A
Authority
JP
Japan
Prior art keywords
aluminum oxide
silicon compound
gaseous silicon
activated alumina
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5056654A
Other languages
Japanese (ja)
Inventor
Hiroaki Imai
宏明 今井
Takuya Ikeda
拓也 池田
Akio Tomimoto
昭雄 富本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP5056654A priority Critical patent/JPH06269631A/en
Publication of JPH06269631A publication Critical patent/JPH06269631A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the repeatability of a removal capability of a gaseous silicon compound using aluminum oxide to a maximum possible extent by allowing vapor to come in contact with aluminum oxide under specific temperature conditions, and then gas containing a gaseous silicon compound to come in contact with the aluminum oxide. CONSTITUTION:Aluminum oxide which is in a state that a physically adsorbed water is not present, is allowed to come in contact with vapor under 100 to 200 deg.C temperature conditions. Then the aluminum oxide is activated, and the capability of removing the gaseous silicon compound is maximized. Consequently, if gas containing the gaseous silicon compound is allowed to come in contact with the activated aluminum oxide, the silicon oxide in the gas is adsorbed onto the surface of the aluminum oxide and removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス状珪素化合物の除
去方法及び除去剤並びにその製造方法に関し、詳しく
は、シラン等のガス状珪素化合物の除去に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing a gaseous silicon compound, a removing agent and a method for producing the same, and more particularly to removal of a gaseous silicon compound such as silane.

【0002】[0002]

【従来の技術】例えば、半導体製造工程から排出される
排ガス中には、有害成分としてシラン等のガス状珪素化
合物が含まれている。このため、排ガス中のガス状珪素
化合物を除去してから排ガスを大気に放出することが必
要である。
2. Description of the Related Art For example, exhaust gas discharged from a semiconductor manufacturing process contains a gaseous silicon compound such as silane as a harmful component. Therefore, it is necessary to remove the gaseous silicon compound in the exhaust gas and then release the exhaust gas to the atmosphere.

【0003】ガス状珪素化合物の除去方法として、例え
ば、特公平4−19886号公報には、ガス状珪素化合
物を含む排ガスを酸化アルミニウム(Al2 3 )に接
触させることが提案されている。
As a method of removing a gaseous silicon compound, for example, Japanese Patent Publication No. 4-19886 proposes contacting an exhaust gas containing the gaseous silicon compound with aluminum oxide (Al 2 O 3 ).

【0004】[0004]

【発明が解決しようとする課題】しかし、本発明者等が
市販の酸化アルミニウムを用いて試験したところ、同じ
酸化アルミニウムでもシランを除去できないものがあっ
た。また、シランを除去できたものでも、メーカー毎に
除去処理能力が異なり、同一メーカー品であっても除去
処理能力が異なり、同一の容器内に保存した酸化アルミ
ニウムであっても、購入直後に使用した場合と数日後に
残りを使用した場合とで、除去処理能力に違いが生ずる
こと等が判明した。すなわち、製造メーカー毎の酸化ア
ルミニウム製造方法の違い、製造した酸化アルミニウム
を容器に詰めるまでの工程の違い、更には、製造後に販
売されるまでの酸化アルミニウムの変化、酸化アルミニ
ウム購入後に使用する迄の保管状態等の履歴に応じて酸
化アルミニウムのシランに対する除去処理能力が異なる
ことが判った。
However, when the present inventors tested using commercially available aluminum oxide, it was found that some of the same aluminum oxides could not remove silane. In addition, even if silane can be removed, each manufacturer has different removal processing capacities. Even if it is the same manufacturer, it has different removal processing capacities. Even if aluminum oxide stored in the same container is used immediately after purchase. It was found that there was a difference in the removal treatment capacity between the case of doing and the case of using the rest after several days. That is, the difference in the manufacturing method of aluminum oxide by each manufacturer, the difference in the process of filling the manufactured aluminum oxide into a container, the change of aluminum oxide until it is sold after manufacturing, It was found that the removal treatment capacity of aluminum oxide for silane differs depending on the history of storage conditions and the like.

【0005】このように、酸化アルミニウムを用いたガ
ス状珪素化合物の除去においては、使用する酸化アルミ
ニウムの履歴に応じて除去処理能力が異なるため、プロ
セスに組み込んで使用した場合に均一な性能が得られず
安定性が悪いという不都合が生ずる。
As described above, in the removal of gaseous silicon compounds using aluminum oxide, since the removal treatment capacity varies depending on the history of aluminum oxide used, uniform performance is obtained when it is used by incorporating it into the process. However, the inconvenience that the stability is poor occurs.

【0006】そこで本発明は、酸化アルミニウムによる
ガス状珪素化合物の除去能力を再現性良く、かつ、最大
限に向上させることができる手段を提供することを目的
としている。
Therefore, an object of the present invention is to provide a means capable of improving the removal ability of gaseous silicon compounds by aluminum oxide with good reproducibility and maximally.

【0007】[0007]

【課題を解決するための手段】上記した目的を達成する
ため、本発明のガス状珪素化合物の除去方法は、必要に
応じて物理吸着水を除去した酸化アルミニウムに、10
0〜200℃の温度条件下で水蒸気を接触させ、次い
で、ガス状珪素化合物を含むガスを接触させることを特
徴としている。
In order to achieve the above object, the method for removing a gaseous silicon compound according to the present invention uses aluminum oxide from which physically adsorbed water has been removed, if necessary.
It is characterized in that water vapor is brought into contact under a temperature condition of 0 to 200 ° C. and then a gas containing a gaseous silicon compound is brought into contact therewith.

【0008】また、本発明のガス状珪素化合物の除去剤
は、必要に応じて物理吸着水を除去した酸化アルミニウ
ムを、100〜200℃の温度条件下で水蒸気と接触さ
せて得たことを特徴とし、さらに、本発明のガス状珪素
化合物の除去剤の製造方法は、必要に応じて物理吸着水
を除去した酸化アルミニウムを、100〜200℃の温
度条件下で水蒸気と接触させることを特徴としている。
The gaseous silicon compound removing agent of the present invention is characterized in that it is obtained by contacting aluminum oxide, from which physically adsorbed water has been removed, if necessary, with steam under a temperature condition of 100 to 200 ° C. Further, the method for producing a gaseous silicon compound removing agent of the present invention is characterized in that aluminum oxide from which physically adsorbed water is removed as necessary is brought into contact with water vapor under a temperature condition of 100 to 200 ° C. There is.

【0009】[0009]

【作 用】物理吸着水が存在しない状態の酸化アルミニ
ウムを、100〜200℃の温度条件下で水蒸気に接触
させると、酸化アルミニウムは賦活され、ガス状珪素化
合物に対する除去処理能力が最大限に高まる。したがっ
て、ガス状珪素化合物を含むガスを、前記賦活された酸
化アルミニウムに接触させると、該ガス中のガス状珪素
化合物は、賦活された酸化アルミニウムの表面に吸着さ
れ除去される。
[Operation] When aluminum oxide in the absence of physically adsorbed water is brought into contact with water vapor under a temperature condition of 100 to 200 ° C, aluminum oxide is activated and the removal treatment capacity for gaseous silicon compounds is maximized. . Therefore, when a gas containing a gaseous silicon compound is brought into contact with the activated aluminum oxide, the gaseous silicon compound in the gas is adsorbed on the surface of the activated aluminum oxide and removed.

【0010】酸化アルミニウムの表面に吸着されたガス
状珪素化合物は、その後の温度変化や圧力変化により離
脱することはなく、したがってガス状珪素化合物を吸着
した酸化アルミニウムは再生不能であるが、一旦除去さ
れたガス状珪素化合物は確実に除去される。
The gaseous silicon compound adsorbed on the surface of aluminum oxide does not separate due to the subsequent temperature change and pressure change. Therefore, although the aluminum oxide adsorbing the gaseous silicon compound cannot be regenerated, it is once removed. The generated gaseous silicon compound is surely removed.

【0011】本発明により除去可能なガス状珪素化合物
としては、モノシラン,ジシラン,トリシラン等のシラ
ン類、即ち珪素の水素化物及びジクロクルラン,トリク
ロルシラン等の珪素のハロゲン化物であり、その他、酸
化アルミニウムで除去可能な全ての物質を含む。
The gaseous silicon compounds which can be removed according to the present invention include silanes such as monosilane, disilane and trisilane, that is, hydrides of silicon and halides of silicon such as diclocurlan and trichlorosilane, and aluminum oxide. Includes all removable substances.

【0012】[0012]

【実施例】上記したように、物理吸着水が存在しない状
態の酸化アルミニウムに所定の温度で水蒸気を接触させ
ると、酸化アルミニウムは賦活されるが、これは、発明
者等が種々考究した結果得た知見である。以下これを実
施例に基づいて詳述する。
Example As described above, when aluminum oxide in the absence of physically adsorbed water is contacted with water vapor at a predetermined temperature, aluminum oxide is activated, which is obtained as a result of various studies by the inventors. It is the knowledge. This will be described in detail below based on examples.

【0013】まず、市販の5種類の酸化アルミニウム
(瓶内に収納されている)を入手し、そのままの状態で
シランに対する除去能力を試験した。入手した5種類の
酸化アルミニウムは、いずれも結晶構造がγアルミナの
もので、通常、活性アルミナと称されているものであ
る。
First, five types of commercially available aluminum oxide (stored in a bottle) were obtained, and the ability to remove silane was tested as it was. All of the five types of aluminum oxide obtained have a crystal structure of γ-alumina and are usually called activated alumina.

【0014】図1は、試験装置のフローシートを示すも
ので、ガス導入管1とガス導出管2とを有する内径43
mm、長さ600mmのステンレス管でなる充填筒3に
は、筒内を所定の温度に制御するための加熱手段4が設
けられ、ガス導入管1には弁5を介して窒素ガス中にモ
ノシラン1%を含む試料ガスを充填した試料ガス充填容
器6と、弁7を備えた純水タンク8及び該純水タンク8
をバイパスするバイパス弁9を備えたバイパス経路10
を介して乾燥度の高い窒素ガスを充填したパージガス充
填容器11とが接続されている。また、ガス導出管2に
は、テープ式水素化物検知器(日本酸素製AD−10分
析計)でなる分析計12が設けられ、充填筒3には、温
度計13と該温度計13の検出値により前記加熱手段4
を制御する温度制御手段14とが設けられている。
FIG. 1 shows a flow sheet of the test apparatus, which has an inner diameter 43 having a gas inlet pipe 1 and a gas outlet pipe 2.
A filling cylinder 3 made of a stainless steel tube having a length of 600 mm and a length of 600 mm is provided with heating means 4 for controlling the inside of the cylinder to a predetermined temperature, and the gas introduction pipe 1 is provided with monosilane in nitrogen gas through a valve 5. A sample gas filling container 6 filled with a sample gas containing 1%, a pure water tank 8 equipped with a valve 7, and the pure water tank 8
Bypass path 10 having a bypass valve 9 for bypassing
The purge gas filling container 11 filled with nitrogen gas having high dryness is connected via the. Further, the gas outlet pipe 2 is provided with an analyzer 12 which is a tape-type hydride detector (AD-10 analyzer manufactured by Nippon Oxygen), and the filling cylinder 3 is provided with a thermometer 13 and the detection of the thermometer 13. The heating means 4 depending on the value
And a temperature control means 14 for controlling the temperature.

【0015】そして、前記充填筒3内に、前述の市販の
各活性アルミナを充填高さ300mmになるように充填
した後、試料ガスを流して各活性アルミナにおけるモノ
シラン除去能力を測定した。なお、試料ガスの流量は、
毎分1リットルとし、以下の試験でも同一量とした。ま
た、ガス導出管2に設けた分析計12でのモノシラン濃
度が5ppmになった時点を除去剤の使用限界とし、使
用限界に至った時間と試料ガスの流量とから除去処理量
を計算した。
Then, the above-mentioned commercially available activated alumina was filled in the filling cylinder 3 so as to have a filling height of 300 mm, and then a sample gas was caused to flow to measure the monosilane removal ability of each activated alumina. The flow rate of the sample gas is
The volume was 1 liter / minute, and the same amount was used in the following tests. Further, when the monosilane concentration in the analyzer 12 provided in the gas outlet pipe 2 became 5 ppm, the usage limit of the remover was set, and the removal treatment amount was calculated from the time when the usage limit was reached and the flow rate of the sample gas.

【0016】この結果を表1に示す。なお、表中A,
B,C,D,Eは、前記市販の5種類の活性アルミナを
示し、モノシランに対する除去処理量順に並べたもので
ある。また、表1中、AとCは、同一の活性アルミナ
(水沢化学製 ネオビードGB)で、Aは入手後10日
間に亙り瓶の蓋を開けた状態にして水分を吸着させたも
の、Cは入手後乾燥状態で保管したものである。また、
B,D,Eは、入手後乾燥状態で保管して試験したもの
である。
The results are shown in Table 1. In the table, A,
B, C, D, and E represent the above-mentioned commercially available five types of activated alumina, and are arranged in the order of the removal treatment amount for monosilane. Further, in Table 1, A and C are the same activated alumina (Neobead GB manufactured by Mizusawa Chemical Co., Ltd.), A is the one in which the lid of the bottle has been opened for 10 days to obtain water, and C is the same. It was stored in a dry state after it was obtained. Also,
Samples B, D, and E were tested after being stored in a dry state after being obtained.

【0017】[0017]

【表1】 [Table 1]

【0018】表1から、個々の活性アルミナは、履歴に
よってモノシランに対する除去処理量が異なることが判
る。
It can be seen from Table 1 that the amount of monosilane removal treatment for each activated alumina varies depending on the history.

【0019】次に、前記Aの活性アルミナを用い、これ
を単に乾燥処理して同様の試験を行った。具体的には、
充填筒3の加熱手段4を作動させ、充填筒3内の活性ア
ルミナに、30℃,80℃,110℃,200℃,30
0℃の状態で、パージガス充填容器11からバイパス経
路10を経た乾燥窒素ガスと各1時間接触させて乾燥処
理を行い、充填筒3内を25℃まで自然冷却した後、試
料ガスを流して試験を行った。なお、充填筒3内の活性
アルミナは、試験が終わる毎に入換えた。以下の試験で
も同様である。この結果を表2に示す。
Next, the activated alumina of the above A was used, and this was simply dried and subjected to the same test. In particular,
The heating means 4 of the filling cylinder 3 is operated, and the activated alumina in the filling cylinder 3 is filled with 30 ° C., 80 ° C., 110 ° C., 200 ° C., 30 ° C.
In the state of 0 ° C., the dry gas is brought into contact with the dry nitrogen gas passing through the bypass path 10 from the purge gas filling container 11 for 1 hour each to perform the drying treatment, and the filling cylinder 3 is naturally cooled to 25 ° C., and then the sample gas is flowed to perform the test. I went. The activated alumina in the filling cylinder 3 was replaced after each test. The same applies to the following tests. The results are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】表2から明らかなように、未処理の場合
は、前記同様にモノシランの除去処理量は0であった
が、活性アルミナと窒素ガスとの接触温度を、30℃,
80℃,110℃と高めていくに従い,除去処理量は増
加した。これは、活性アルミナの表面に付着していた物
理吸着水が乾燥により除去されたことが原因と思われ
る。このことから、未処理の活性アルミナの場合には、
酸化アルミニウムの表面に多量に付着していた物理吸着
水がモノシラン除去に有害な作用をし、結局のところモ
ノシランを全く除去できない状態にしていたものと考え
られる。
As is clear from Table 2, in the case of no treatment, the amount of monosilane removed was similar to the above, but the contact temperature between activated alumina and nitrogen gas was 30 ° C.
The removal treatment amount increased as the temperature increased to 80 ° C and 110 ° C. This is probably because the physically adsorbed water adhering to the surface of the activated alumina was removed by drying. From this, in the case of untreated activated alumina,
It is probable that the physically adsorbed water that had adhered to the surface of the aluminum oxide in a large amount had a detrimental effect on the removal of monosilane, and eventually the monosilane could not be removed at all.

【0022】上記のように、活性アルミナの乾燥度が高
まるにつれてモノシラン除去処理量は増加していくが、
活性アルミナと窒素ガスとの接触温度が200℃を超え
ると、むしろモノシランの除去処理量は減少する。この
ことから、活性アルミナの表面に付着している物理吸着
水はモノシランの除去に有害だが、単に物理吸着水を減
らしただけではモノシランの除去処理量を増加させるこ
とはできない。
As described above, the monosilane removal treatment amount increases as the dryness of activated alumina increases,
If the contact temperature between the activated alumina and the nitrogen gas exceeds 200 ° C., the monosilane removal treatment amount decreases rather. From this, the physically adsorbed water adhering to the surface of the activated alumina is harmful to the removal of monosilane, but the amount of monosilane removal treatment cannot be increased simply by reducing the amount of physically adsorbed water.

【0023】上記の事実を確認するため、活性アルミナ
と窒素ガスとの接触温度を200℃とし、接触時間を、
それぞれ1時間,5時間,16時間,48時間とした場
合におけるモノシランの除去処理量を試験した。この結
果を表3に示す。
In order to confirm the above facts, the contact temperature between activated alumina and nitrogen gas was set to 200 ° C., and the contact time was
The amount of monosilane removal treatment was tested at 1 hour, 5 hours, 16 hours, and 48 hours, respectively. The results are shown in Table 3.

【0024】[0024]

【表3】 [Table 3]

【0025】表3から明らかなように、活性アルミナの
乾燥度がある限度を超えて高くなると、モノシランの除
去処理量が減少していくことが判る。
As is clear from Table 3, when the dryness of the activated alumina becomes higher than a certain limit, the monosilane removal treatment amount decreases.

【0026】次に、充填筒3内の活性アルミナを乾燥処
理し、物理吸着水を除去した後、乾燥させた活性アルミ
ナに、80℃,110℃,200℃,250℃,300
℃の温度の状態で水蒸気を接触させて試験を行った。
Next, the activated alumina in the packing cylinder 3 is dried to remove the physically adsorbed water, and then the dried activated alumina is added to 80 ° C., 110 ° C., 200 ° C., 250 ° C., 300 ° C.
The test was conducted by contacting with steam at a temperature of ° C.

【0027】具体的には、充填筒3内を200℃に保持
し、活性アルミナに乾燥窒素ガスを10時間接触させて
活性アルミナを十分に乾燥し、次いで、窒素ガスを流し
ながら充填筒3を前記所定の温度にした後、窒素ガスを
純水タンク8内でバブリングさせ、水蒸気を同伴させて
充填筒3内に導入した。したがって、水蒸気は、最初か
ら前記各温度で活性アルミナに接触することになる。活
性アルミナと水蒸気とをそれぞれの温度で各1時間接触
させた後、充填筒3内を25℃に自然冷却し、次いで試
料ガスを流して試験を行った。この結果を表4に示す。
Specifically, the inside of the filling cylinder 3 is maintained at 200 ° C., dry nitrogen gas is contacted with the activated alumina for 10 hours to sufficiently dry the activated alumina, and then the filling cylinder 3 is flowed while flowing the nitrogen gas. After the temperature was adjusted to the predetermined temperature, nitrogen gas was bubbled in the deionized water tank 8 to introduce water vapor into the filling cylinder 3. Therefore, the water vapor comes into contact with the activated alumina at each of the above temperatures from the beginning. After contacting activated alumina and water vapor at each temperature for 1 hour, the inside of the filling cylinder 3 was naturally cooled to 25 ° C., and then a sample gas was flowed to perform the test. The results are shown in Table 4.

【0028】[0028]

【表4】 [Table 4]

【0029】表4から明らかなように、乾燥させた活性
アルミナに、80℃の温度で水蒸気を接触させたので
は、モノシランを除去することができない。これは、前
記同様に活性アルミナの表面に物理吸着水が付着したた
めと思われる。しかし、乾燥させた活性アルミナに11
0℃,200℃の温度下で水蒸気を接触させると、モノ
シランの除去能力が急上昇する。これは、活性アルミナ
の表面に化学吸着水が付着したためと思われる。但し、
活性アルミナと水蒸気の接触温度が250℃以上ではモ
ノシラン除去能力が急減するが、これは、このような温
度では、活性アルミナに化学吸着水が付着しにくいため
と思われる。
As is clear from Table 4, the monosilane cannot be removed by contacting the dried activated alumina with water vapor at a temperature of 80 ° C. This is probably because the physically adsorbed water adhered to the surface of the activated alumina as described above. However, 11
When steam is contacted at temperatures of 0 ° C. and 200 ° C., the ability to remove monosilane sharply increases. This is probably because the chemisorbed water adhered to the surface of the activated alumina. However,
When the contact temperature between activated alumina and water vapor is 250 ° C. or higher, the ability to remove monosilane sharply decreases. This is probably because chemisorbed water does not easily adhere to activated alumina at such temperatures.

【0030】表4の結果から、物理吸着水を除去した活
性アルミナに、100〜200℃の温度条件下で水蒸気
を接触させると、これによって活性アルミナが賦活さ
れ、ガス状珪素化合物の除去に有効であることが知見さ
れた。したがって、ガス状珪素化合物の除去剤として、
必要に応じて物理吸着水を除去した後に、100〜20
0℃の温度条件下で水蒸気を接触させて得た活性アルミ
ナを用いることにより、ガス状珪素化合物を効率よく除
去できることが判る。
From the results shown in Table 4, when the activated alumina from which the physically adsorbed water has been removed is brought into contact with water vapor under the temperature condition of 100 to 200 ° C., the activated alumina is activated thereby, which is effective in removing the gaseous silicon compound. Was found. Therefore, as a removing agent for the gaseous silicon compound,
After removing the physically adsorbed water as needed, 100 to 20
It can be seen that the gaseous silicon compound can be efficiently removed by using activated alumina obtained by contacting water vapor under the temperature condition of 0 ° C.

【0031】なお、上記試験例では、活性アルミナと水
蒸気との接触時間を1時間としたが、乾燥した活性アル
ミナと水蒸気とを接触させると発熱し、該発熱が充填筒
3の入口から出口側に順次移動するので、充填筒3の側
面の流れ方向に複数の測温体を配置し、ガス導出管2側
で一旦温度が上昇した後、温度が低下した時点で充填筒
3内の活性アルミナの全量に水が化学吸着したものと判
断し、水蒸気との接触処理を終了するようにしても良
い。
In the above test example, the contact time between activated alumina and water vapor was set to 1 hour, but when dry activated alumina and water vapor are contacted with each other, heat is generated, and the heat generated from the inlet side to the outlet side of the filling cylinder 3. Since a plurality of temperature measuring elements are arranged in the flow direction on the side surface of the filling cylinder 3, the temperature rises once on the gas outlet pipe 2 side, and when the temperature decreases, the activated alumina in the filling cylinder 3 It may be determined that water has been chemically adsorbed to all of the above, and the contact treatment with water vapor may be terminated.

【0032】また、上記試験例では、活性アルミナに水
蒸気を接触させる前に、該活性アルミナを乾燥させて物
理吸着水を除去しているが、これは、使用する活性アル
ミナの乾燥状態が十分でないと判断されるときだけ行え
ば良く、十分に乾燥された状態の場合には、直ちに前記
所定の温度で水蒸気を接触させて賦活させても良い。す
なわち、物理吸着水の除去は、必要に応じて行えば良
い。
In the above test example, the activated alumina is dried to remove the physically adsorbed water before the activated alumina is contacted with water vapor. However, the activated alumina used is not sufficiently dried. It may be carried out only when it is judged that it is sufficient. If it is in a sufficiently dried state, it may be activated immediately by contacting it with steam at the predetermined temperature. That is, the physically adsorbed water may be removed as necessary.

【0033】また、物理吸着水を除去する場合、上記試
験例では、乾燥窒素ガスを接触させたが、乾燥空気等、
任意の流体が利用でき、さらに、接触乾燥だけでなく減
圧乾燥等、他の適宜な乾燥手段を用いても良い。
Further, in the case of removing the physically adsorbed water, dry nitrogen gas was contacted in the above test example.
Any fluid can be used, and other appropriate drying means such as not only contact drying but also reduced pressure drying may be used.

【0034】なお、以上の試験は活性アルミナ(γアル
ミナ)についてのものであるが、他のαアルミナ,βア
ルミナの場合でも同様の効果が得られる。但し、除害剤
として用いる場合には表面積が大きい方が当然有利であ
るからγアルミナを用いることが好ましい。また、活性
アルミナ以外の任意の酸化アルミニウムでも同様の結果
が得られる。これは、物質中のアルミニウムがガス状珪
素化合物の除去に大きな影響を与えているためであろう
と考えられる。
Although the above test is for activated alumina (γ alumina), the same effect can be obtained for other α alumina and β alumina. However, it is preferable to use γ-alumina because it is naturally advantageous that the surface area is large when it is used as a harmful agent. Similar results can be obtained with any aluminum oxide other than activated alumina. It is considered that this is because aluminum in the substance has a great influence on the removal of the gaseous silicon compound.

【0035】以上は、排ガス中のガス状珪素化合物の除
去による排ガスの安全化の点で説明したが、本発明は、
これに限定されるものではなく、アルシンやホスフィン
中に不純物として含まれるガス状珪素化合物の除去等の
精製操作にも用いることができる。
The above has been described in terms of the safety of the exhaust gas by removing the gaseous silicon compound in the exhaust gas, but the present invention is
The present invention is not limited to this, and can also be used for purification operations such as removal of gaseous silicon compounds contained as impurities in arsine or phosphine.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
必要に応じ物理吸着水を除去した酸化アルミニウムに1
00〜200℃の温度条件下で水蒸気と接触させること
により、酸化アルミニウムを賦活できるので、酸化アル
ミニウムによるガス状珪素化合物の除去能力を再現性良
く、かつ、最大限に向上させることができる。
As described above, according to the present invention,
Aluminum oxide from which physically adsorbed water has been removed if necessary 1
Since aluminum oxide can be activated by contacting with water vapor under a temperature condition of 00 to 200 ° C., the ability of aluminum oxide to remove a gaseous silicon compound can be reproducibly and maximally improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例で用いた試験装置の系統図で
ある。
FIG. 1 is a system diagram of a test apparatus used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1…ガス導入管、2…ガス導出管、3…充填筒、4…加
熱手段、6…試料ガス充填容器、8…純水タンク、10
…バイパス経路、11…パージガス充填容器、12…分
析計、13…温度計、14…温度制御手段
DESCRIPTION OF SYMBOLS 1 ... Gas inlet pipe, 2 ... Gas outlet pipe, 3 ... Filling cylinder, 4 ... Heating means, 6 ... Sample gas filling container, 8 ... Pure water tank, 10
... Bypass path, 11 ... Purge gas filling container, 12 ... Analyzer, 13 ... Thermometer, 14 ... Temperature control means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01J 20/08 ZAB A 7202−4G H01L 21/205 ZAB ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location B01J 20/08 ZAB A 7202-4G H01L 21/205 ZAB

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化アルミニウムに、100〜200℃
の温度条件下で水蒸気を接触させ、次いで、ガス状珪素
化合物を含むガスを接触させることを特徴とするガス状
珪素化合物の除去方法。
1. Aluminum oxide at 100 to 200 ° C.
A method for removing a gaseous silicon compound, comprising contacting water vapor under the temperature condition of 1, and then contacting a gas containing a gaseous silicon compound.
【請求項2】 酸化アルミニウムを、100〜200℃
の温度条件下で水蒸気と接触させて得たことを特徴とす
るガス状珪素化合物の除去剤。
2. Aluminum oxide at 100 to 200 ° C.
A removing agent for a gaseous silicon compound, which is obtained by contacting with steam under the temperature condition of.
【請求項3】 酸化アルミニウムを、100〜200℃
の温度条件下で水蒸気と接触させることを特徴とするガ
ス状珪素化合物除去剤の製造方法。
3. Aluminum oxide at 100 to 200 ° C.
A method for producing a gaseous silicon compound removing agent, which comprises contacting with steam under the temperature condition of.
JP5056654A 1993-03-17 1993-03-17 Removal of gaseous silicon compound, and removing agent and its prep aration Pending JPH06269631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5056654A JPH06269631A (en) 1993-03-17 1993-03-17 Removal of gaseous silicon compound, and removing agent and its prep aration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5056654A JPH06269631A (en) 1993-03-17 1993-03-17 Removal of gaseous silicon compound, and removing agent and its prep aration

Publications (1)

Publication Number Publication Date
JPH06269631A true JPH06269631A (en) 1994-09-27

Family

ID=13033365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5056654A Pending JPH06269631A (en) 1993-03-17 1993-03-17 Removal of gaseous silicon compound, and removing agent and its prep aration

Country Status (1)

Country Link
JP (1) JPH06269631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314905A (en) * 2005-05-12 2006-11-24 Hitachi Ltd Method and apparatus for treating gas containing fluorine compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314905A (en) * 2005-05-12 2006-11-24 Hitachi Ltd Method and apparatus for treating gas containing fluorine compound

Similar Documents

Publication Publication Date Title
US6461411B1 (en) Method and materials for purifying hydride gases, inert gases, and non-reactive gases
US5385689A (en) Process and composition for purifying semiconductor process gases to remove Lewis acid and oxidant impurities therefrom
US4734273A (en) Process for the selective removal of trace amounts of oxygen from gases
US6720282B2 (en) Method for producing a preconditioned ultra-low emission carbon material
KR100846408B1 (en) System and method comprising same for measurement and/or analysis of particles in gas stream
US20070137676A1 (en) Method for the removal of airborne molecular contaminants using extra clean dry air
US5952557A (en) Apparatus for analyzing a silicon compound gas for siloxane content
US7572419B2 (en) Apparatus and methods for removing mercury from fluid streams
JP4271894B2 (en) Gas purification device, valve assembly including the same, and liquefied gas container system
JPH06269631A (en) Removal of gaseous silicon compound, and removing agent and its prep aration
JPH11139805A (en) Composition and method for removing water content from hydrogen halide
EP1076633B1 (en) Reactive matrix for removing moisture from a fluorine containing gas and process
US4509727A (en) Off-gas monitor for steel processes
JP3051231B2 (en) Method and apparatus for analyzing oxygen in hydride gas-containing gas
JP3825522B2 (en) Method and apparatus for removing siloxane in silicon compound gas
JP2002068717A (en) Method of refining nitrogen trifluoride
JP3208673B2 (en) Gas purification method and apparatus
JPH1183806A (en) Water concentration in gas measuring method and apparatus
JPH0654309B2 (en) Detection agent
JP2709792B2 (en) High activation and stabilization of hydrogen storage metal
JP2000169138A (en) Purification of ammonia
JPH11142359A (en) Ammonia removal device and nox sensor using it
JP2001353423A (en) Gas detoxifying system and operation method thereof
WO2004112117A1 (en) Method for the removal of airborne molecular contaminants using oxygen and/or water gas mixtures
JPH10277360A (en) Method for treating volatile inorganic hydride