JP2006308641A - 画像表示装置及びプロジェクタ - Google Patents
画像表示装置及びプロジェクタ Download PDFInfo
- Publication number
- JP2006308641A JP2006308641A JP2005127596A JP2005127596A JP2006308641A JP 2006308641 A JP2006308641 A JP 2006308641A JP 2005127596 A JP2005127596 A JP 2005127596A JP 2005127596 A JP2005127596 A JP 2005127596A JP 2006308641 A JP2006308641 A JP 2006308641A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- light
- group
- imaging
- liquid crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Projection Apparatus (AREA)
- Lenses (AREA)
- Liquid Crystal (AREA)
Abstract
【課題】 リレーレンズの製造誤差等から生じるモアレの発生を防止する画像表示装置及びプロジェクタを提供する。
【解決手段】 本発明は、光源からの光を変調する第1光変調手段60と、第1光変調手段60からの光を入射しかつ光を変調する第2光変調手段100と、第1光変調手段60と第2光変調手段100との間の光路上に設けられ、第1光変調手段60の光学像を第2光変調手段100の受光面に結像する結像光学手段90とを備え、結像光学手段が複数のレンズ群70,72,74を有し、複数のレンズ群70,72,74のうち少なくとも1つのレンズ群が光軸上を移動可能とされ、結像光学手段90の結像倍率が可変であることを特徴とする。
【選択図】 図3
Description
本発明は、画像表示装置及びプロジェクタに関する。特に表示輝度のダイナミックレンジの拡大と高階調化を実現するのに適した光学構成に関する。
近年、LCD(Liquid Crystal Display)、EL(Electro-luminescence)ディスプレイ、プラズマディスプレイ、CRT(Cathode Ray Tube)、プロジェクタ等の電子ディスプレイ装置における画質改善は目覚しく、解像度、色域については人間の視覚特性にほぼ匹敵する性能を有する装置が実現されつつある。しかし、輝度ダイナミックレンジについてみると、その再現範囲は1〜102[nit]程度の範囲であり、また階調数は8ビットが一般的である。一方、人間の視覚は、一度に知覚し得る輝度ダイナミックレンジの範囲が10−2〜104[nit]程度あり、また輝度弁別能力は0.2[nit]でこれを階調数に換算すると12ビット相当といわれている。このような視覚特性を経由して現在のディスプレイ装置の表示画像を見ると、輝度ダイナミックレンジの狭さが目立ち、加えてシャドウ部やハイライト部の階調が不足しているため、表示画像のリアリティや迫力に対して物足りなさを感じることになる。
また、映画やゲーム等で使用されるCG(Computer Graphics)では、人間の視覚に近い輝度ダイナミックレンジや階調特性を表示データ(以下、HDR(High Dynamic Range)表示データという。)に持たせて描写のリアリティを追求する動きが主流になりつつある。しかしそれを表示するディスプレイ装置の性能が不足しているために、CGコンテンツが本来有する表現力を充分に発揮できないという課題がある。
さらに、次期OS(Operating System)においては、16ビット色空間の採用が予定されており、現在の8ビット色空間と比較してダイナミックレンジや階調数が飛躍的に増大する。そのため、16ビット色空間を生かすことができる高ダイナミックレンジ・高階調の電子ディスプレイ装置実現への要求が高まると予想される。
ディスプレイ装置の中でも、液晶プロジェクタや、DLP(Digital Light Processing、商標)プロジェクタといった投写型表示装置(プロジェクタ)は、大画面表示が可能であり、表示画像のリアリティや迫力を再現する上で効果的なディスプレイ装置である。この分野では上記の課題を解決するために、以下に述べる提案がなされている。
高ダイナミックレンジのディスプレイ装置としては、例えば、特許文献1に開示されている技術があり、光源と、光の全波長領域の輝度を変調する第2光変調素子と、光の波長領域のうちRGB3原色の各波長領域についてその波長領域の輝度を変調する第1光変調素子とを備え、光源からの光を第1光変調素子で変調して所望の輝度分布を形成し、その光学像を第2光変調素子の表示面に結像して色変調し、2次変調した光を投写するというものである。第2光変調素子及び第1光変調素子の各画素は、HDR表示データから決定される第1制御値及び第2制御値に基づいてそれぞれ別個に制御される。光変調素子としては、透過率が独立に制御可能な画素構造又はセグメント構造を有し、二次元的な透過率分布を制御し得る透過型変調素子が用いられる。その代表例としては、液晶ライトバルブがあげられる。また、透過型変調素子の代わりに反射型変調素子を用いてもよく、その代表例としては、DMD(Digital Micromirror Device)素子があげられる。
いま、暗表示の透過率が0.2%、明表示の透過率が60%の光変調素子を使用する場合を考える。光変調素子単体では、輝度ダイナミックレンジは、60/0.2=300となる。上記ディスプレイ装置は、輝度ダイナミックレンジが300の光変調素子を光学的に直列に配置することに相当するので、300×300=90000の輝度ダイナミックレンジを実現することができる。また、階調数についてもこれと同等の考えが成り立ち、8ビット階調の光変調素子を光学的に直列に配置することにより、8ビットを超える階調数を得ることができる。
特表2004−523001号公報
ところで、第1光変調素子の光学像を第2光変調素子の画素面に結像する手段としてリレーレンズが用いられる。第1光変調素子および第2光変調素子として液晶ライトバルブを用いた場合、このリレーレンズは液晶ライトバルブの視角特性を考慮して両側テレセントリック特性を有することが望ましい。このテレセントリック結像レンズの結像倍率は、物体距離及び像距離を変更しても常に一定に保持され、使用する個々のレンズの焦点距離の組み合わせによって決定されるという特性を有する。このため、上述したリレーレンズの結像倍率は、製造工程における製造誤差、組み立て誤差、その他の誤差原因の影響を受けやすく、所望の結像倍率を得られない場合があった。
一方、透過型液晶ライトバルブは、格子状の光遮光部を有するため、第2の透過型液晶ライトバルブに結像される第1の透過型液晶ライトバルブの光学像は、格子状の暗部を有する。このような照度分布の光束で、同様に格子状の光遮光部を有する第2の透過型液晶ライトバルブを照明すると、わずかなアライメントのズレ又は結像倍率誤差によりモアレが発生し、表示画質が劣化するという課題がある。
従って、上述したような製造工程において製造誤差が発生したリレーレンズを投写型示装置に用いた場合、第1の透過型液晶ライトバルブを透過した光学像がリレーレンズを透過すると、リレーレンズの製造誤差により第2の透過型液晶ライトバルブに結像する光学像が所望の結像倍率と異なった倍率となる。これにより、リレーレンズの倍率にわずかでも誤差が生じるとモアレが発生し、表示画質が劣化するという問題が発生した。リレーレンズの加工精度を向上させることも当然考えられるが、加工精度の観点から製造誤差を0%とすることは困難である。
一方、透過型液晶ライトバルブは、格子状の光遮光部を有するため、第2の透過型液晶ライトバルブに結像される第1の透過型液晶ライトバルブの光学像は、格子状の暗部を有する。このような照度分布の光束で、同様に格子状の光遮光部を有する第2の透過型液晶ライトバルブを照明すると、わずかなアライメントのズレ又は結像倍率誤差によりモアレが発生し、表示画質が劣化するという課題がある。
従って、上述したような製造工程において製造誤差が発生したリレーレンズを投写型示装置に用いた場合、第1の透過型液晶ライトバルブを透過した光学像がリレーレンズを透過すると、リレーレンズの製造誤差により第2の透過型液晶ライトバルブに結像する光学像が所望の結像倍率と異なった倍率となる。これにより、リレーレンズの倍率にわずかでも誤差が生じるとモアレが発生し、表示画質が劣化するという問題が発生した。リレーレンズの加工精度を向上させることも当然考えられるが、加工精度の観点から製造誤差を0%とすることは困難である。
本発明は、上記の課題を解決するためになされたものであって、リレーレンズの製造誤差等から生じるモアレの発生を防止する画像表示装置及びプロジェクタを提供することを目的とする。
本発明は、上記課題を解決するために、光源と、前記光源から出射される光を変調する第1光変調手段と、前記第1光変調手段からの光を入射しかつ光を変調する第2光変調手段と、前記第1光変調手段と前記第2光変調手段との間の光路上に設けられ、前記第1光変調手段の光学像を前記第2光変調手段の受光面に結像する結像光学手段とを備え、前記結像光学手段が複数のレンズ群を有し、前記複数のレンズ群のうち少なくとも1つのレンズ群が前記光軸上を移動可能とされ、前記結像光学手段の結像倍率が可変であることを特徴とする。
この構成によれば、結像光学手段を構成する複数のレンズ群のうち少なくとも1群のレンズが移動可能とされる。これにより、各レンズ群間の合成焦点距離が変動され、それにともなって結像光学手段の結像倍率が変更される。従って、結像光学手段の製造の際に、製造誤差,組み立て誤差が発生したとしても、所望の結像倍率に結像光学手段を可変可能であるため、モアレの発生を少なして高精細な画質を実現することができる。なお、レンズ群は単体のレンズから構成されていても良い。
また本発明の画像表示装置は、前記複数のレンズ群が、第1群レンズと第3群レンズと、前記第1群レンズと前記第3群レンズとの間に配置された第2群レンズとを有し、
前記第1群レンズ、前記第2群レンズ及び前記第3群レンズの少なくとも1以上が前記光軸上を移動可能とされたことも好ましい。
前記第1群レンズ、前記第2群レンズ及び前記第3群レンズの少なくとも1以上が前記光軸上を移動可能とされたことも好ましい。
この構成によれば、結像光学手段の第1レンズ群、第2レンズ群又は第3レンズ群の各々が独立して移動可能とされる。これにより、各レンズ群が移動することにより、各レンズ群間の合成焦点距離が変動され、それにともなって結像光学手段の結像倍率が変更される。従って、結像光学手段の製造の際に、製造誤差,組み立て誤差が発生したとしても、所望の結像倍率に結像光学手段を可変可能であるため、モアレの発生を少なして高精細な画質を実現することができる。
また本発明の画像表示装置は、前記結像光学手段の結像倍率がM、倍率可変範囲がMmin〜Mmax(但し、Mmin<Mmax)としたときに、Mmin<M<Mmaxとなるように前記結像光学手段の結像倍率が設定されていることも好ましい。
この構成によれば、結像倍率誤差の範囲が正負のいずれにふれても、結像光学手段の結像倍率MをMmin<M<Mmaxに設定することにより、結像倍率誤差を吸収することが可能となる。ここで、結像倍率Mは、設計段階において設定した結像光学手段の結像倍率である。また、「倍率可変範囲」とは、リレーレンズの結像倍率の可変範囲であり、本来所望の結像倍率Mを中心として設定される。この「倍率可変範囲」は、レンズ群の移動量に対応して可変する。さらに、「Mmin」は、本来所望の結像倍率Mよりも小さい結像倍率を意味し、「Mmax」は本来所望の結像倍率Mよりも大きい結像倍率を意味する。
また本発明の画像表示装置は、前記結像光学手段の結像倍率がMにおける結像倍率の製造誤差範囲を±T%としたときに、Mmin≦(1/(1+T/100))Mであり、Mmax≧(1/(1−T/100))Mとなるように前記結像光学手段の結像倍率が設定されていることも好ましい。
この構成によれば、製造誤差範囲に基づいて結像倍率を設定することにより、無闇に可変倍率範囲を広くすることなく結像倍率の製造誤差範囲をカバーすることができる。従って、結像光学手段の製造コストを抑えることが可能となる。
また本発明の画像表示装置は、前記結像光学手段の結像倍率がM、倍率可変範囲がMmin〜Mmax(但し、Mmin<Mmax)としたときに、Mmin≦0.90Mであり、Mmax≧1.11Mとなるように前記結像光学手段の結像倍率が設定されていることも好ましい。
この構成によれば、予め結像光学手段の製造誤差を予測して結像光学手段の結像倍率を設定することにより、一般的な結像光学手段を構成するレンズ群の製造誤差範囲をカバーすることができる。ここで、結像光学手段の結像倍率は、結像光学手段の製造誤差が約10%である場合を想定したものである。
また本発明の画像表示装置は、前記第1光変調手段を固定し、前記結像光学手段の複数のレンズ群のうち少なくとも1つのレンズ群の移動に伴って、前記第2光変調手段が前記光路上を移動可能であることも好ましい。
結像光学手段を移動させることにより結像倍率を可変させた場合、第1光変調手段と第2光変調手段との距離(物−像)、ワーキングディスタンス(結像光学手段の最も第1光変調手段側のレンズ面と第1光変調手段との距離)、バックフォーカス(結像光学手段の最も第2光変調手段側のレンズ面から第2光変調手段までの距離)等の変化が生じる。これに対応して結像光学手段とともに第1光変調手段を移動させると、これに伴って照明光学系も移動させる必要がある。そのため、結像光学手段の結像倍率の修正には、照明光学系も含めた大規模な移動機構の構築が必要となってしまう。そこで本発明では、第1光変調手段を固定させて、結像光学手段の複数のレンズ群のうち少なくとも1つのレンズ群の移動に伴って第1光変調手段と結像光学手段との距離、第2光変調手段と結像光学手段との距離とを互いに独立に移動させて調整する。これにより、簡素な構成で装置全体の複雑化を最小限に抑えるながらリレーレンズの倍率変更が可能となり、装置全体低コスト化を図ることが可能となる。
また本発明の画像表示装置は、前記第1群レンズと前記第2群レンズの距離を縮めるとともに、前記第2群レンズと前記第3群レンズとの距離を長くし、かつ、前記第1光変調手段と第1群レンズとの距離を縮めるとともに、前記第3群レンズ群と前記第2光変調手段との距離を長くすることにより、前記結像光学手段の結像倍率を大きくすることも好ましい。
また本発明の画像表示装置は、前記第1群レンズと前記第2群レンズの距離を長くするとともに、前記第2群レンズと前記第3群レンズとの距離を縮め、かつ、前記第1光変調手段と第1群レンズとの距離を長くするとともに、前記第3群レンズ群と前記第2光変調手段との距離を縮めることにより、前記結像光学手段の結像倍率を小さくすることも好ましい。
また本発明の画像表示装置は、前記第1群レンズと前記第2群レンズの距離を長くするとともに、前記第2群レンズと前記第3群レンズとの距離を縮め、かつ、前記第1光変調手段と第1群レンズとの距離を長くするとともに、前記第3群レンズ群と前記第2光変調手段との距離を縮めることにより、前記結像光学手段の結像倍率を小さくすることも好ましい。
この構成によれば、結像光学手段の第1群レンズ、第2群レンズ又は第3群レンズの各々が独立して移動可能とされる。これにより、各レンズ群が移動することにより、各レンズ群間の焦点距離が変動され、結像光学手段の結像倍率が変更される。従って、結像光学手段の製造の際に、製造誤差,組み立て誤差が発生したとしても、所望の結像倍率に結像光学手段を可変することができモアレの発生を少なくすることができる。
本発明のプロジェクタは、上記画像表示装置と、この画像表示装置から射出された光を投射する投射手段とを備えることを特徴とする。
本発明に係るプロジェクタでは、画像表示装置により射出された画像が、投射手段によって投影される。従って、本発明の画像表示装置を用いることにより、モアレの発生を少なして高精細な画質を実現することができる。
本発明に係るプロジェクタでは、画像表示装置により射出された画像が、投射手段によって投影される。従って、本発明の画像表示装置を用いることにより、モアレの発生を少なして高精細な画質を実現することができる。
以下、本発明の一実施の形態を図1〜図4を参照して説明する。
なお、本実施の形態では、第1光変調手段としてR(赤)、G(緑)、B(青)の異なる色光毎に透過型液晶ライトバルブを備え、第2光変調手段として1枚の透過型液晶ライトバルブを用いた投写型液晶表示装置の例を挙げて説明する。また、以下の説明においては、第1光変調手段を色変調用液晶ライトバルブ、第2光変調手段を輝度変調用液晶ライトバルブと称する。さらに、以下の説明に用いる各図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。
なお、本実施の形態では、第1光変調手段としてR(赤)、G(緑)、B(青)の異なる色光毎に透過型液晶ライトバルブを備え、第2光変調手段として1枚の透過型液晶ライトバルブを用いた投写型液晶表示装置の例を挙げて説明する。また、以下の説明においては、第1光変調手段を色変調用液晶ライトバルブ、第2光変調手段を輝度変調用液晶ライトバルブと称する。さらに、以下の説明に用いる各図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。
図1は、プロジェクタPJ1(投写型表示装置)の主たる光学構成を示す図である。
プロジェクタPJ1は、光源10と、光源10から入射した光の輝度分布を均一化する均一照明系20と、均一照明系20から入射した光の波長領域のうちのRGB3原色の輝度をそれぞれ変調する色変調部25(第1変調素子として青色光用透過型液晶ライトバルブ60B,緑色光用透過型液晶ライトバルブ60G,赤色光用透過型液晶ライトバルブ60Rの3つの透過型液晶ライトバルブを含む)と、色変調部25から入射した光をリレーするリレーレンズ90(結像光学手段)と、リレーレンズ90から入射した光の全波長領域の輝度を変調する第2光変調手段としての透過型液晶ライトバルブ100と、液晶ライトバルブ100から入射した光をスクリーン120に投写する投写レンズ110とを備えて構成されている。
また、光源10は、超高圧水銀ランプやキセノンランプ等からなるランプ11と、ランプ11からの射出光を反射・集光するリフレクタ12とを備えている。
プロジェクタPJ1は、光源10と、光源10から入射した光の輝度分布を均一化する均一照明系20と、均一照明系20から入射した光の波長領域のうちのRGB3原色の輝度をそれぞれ変調する色変調部25(第1変調素子として青色光用透過型液晶ライトバルブ60B,緑色光用透過型液晶ライトバルブ60G,赤色光用透過型液晶ライトバルブ60Rの3つの透過型液晶ライトバルブを含む)と、色変調部25から入射した光をリレーするリレーレンズ90(結像光学手段)と、リレーレンズ90から入射した光の全波長領域の輝度を変調する第2光変調手段としての透過型液晶ライトバルブ100と、液晶ライトバルブ100から入射した光をスクリーン120に投写する投写レンズ110とを備えて構成されている。
また、光源10は、超高圧水銀ランプやキセノンランプ等からなるランプ11と、ランプ11からの射出光を反射・集光するリフレクタ12とを備えている。
均一照明系20は、フライアイレンズ等からなる第1,第2のレンズアレイ21,22と、偏光変換素子23と、集光レンズ24とを含んで構成されている。そして、光源10から射出された光の輝度分布を第1,第2のレンズアレイ21,22により均一化し、第1,第2のレンズアレイ21,22を通過した光を偏光変換素子23により色変調部の入射可能偏光方向に偏光し、偏光した光を集光レンズ24により集光して色変調部25に射出する。なお、偏光変換素子23は、例えば、PBSアレイと、1/2波長板とで構成されており、ランダム偏光を特定の直線偏光に変換するものである。
色変調部25は、光分離手段としての2つのダイクロイックミラー30,35と、3つのミラー(反射ミラー36,45,46)と、5つのフィールドレンズ(レンズ41、リレーレンズ42、平行化レンズ50B,50G,50R)と、3つの液晶ライトバルブ60B,60G,60Rと、クロスダイクロイックプリズム80と、を含んで構成されている。
ダイクロイックミラー30,35は、光源10からの光(白色光)を、赤(R)、緑(G)、青(B)のRGB3原色光に分離(分光)するものである。ダイクロイックミラー30は、ガラス板等にB光及びG光を反射し、R光を透過する性質のダイクロイック膜を形成したもので、光源10からの白色光に対して、当該白色光に含まれるB光及びG光を反射し、R光を透過する。ダイクロイックミラー35は、ガラス板等にG光を反射し、B光を透過する性質のダイクロイック膜を形成したもので、ダイクロイックミラー30を透過したG光及びB光のうち、G光を反射して平行化レンズ50Gに伝達し、青色光を透過してレンズ41に伝達する。
リレーレンズ42はレンズ41近傍の光(光強度分布)を平行化レンズ50B近傍に伝達するもので、レンズ41はリレーレンズ42に光を効率よく入射させる機能を有する。
また、レンズ41に入射したB光は、その強度分布をほぼ保存された状態で、かつ光損失を殆ど伴うことなく空間的に離れた液晶ライトバルブ60Bに伝達される。
また、レンズ41に入射したB光は、その強度分布をほぼ保存された状態で、かつ光損失を殆ど伴うことなく空間的に離れた液晶ライトバルブ60Bに伝達される。
平行化レンズ50B,50G,50Rは対応する液晶ライトバルブ60B,60G,60Rに入射する各色光を略平行化して、液晶ライトバルブ60B,60G,60Rを透過した光を効率よくリレーレンズ90に入射させる機能を有している。そして、ダイクロイックミラー30,35で分光されたRGB3原色の光は、上述したミラー(反射ミラー36,45,46)及びレンズ(レンズ41、リレーレンズ42、平行化レンズ50B,50G,50R)を介して液晶ライトバルブ60B,60G,60Rに入射する。
液晶ライトバルブ60B,60G,60Rは、画素電極及びこれを駆動するための薄膜トランジスタ素子や薄膜ダイオード等のスイッチング素子がマトリクス状に形成されたガラス基板と、全面にわたって共通電極が形成されたガラス基板との間にTN型液晶を挟み込むとともに、外面に偏光板を配置したアクティブマトリクス型の液晶表示素子である。
また、液晶ライトバルブ60B,60G,60Rは、電圧非印加状態で白/明(透過)状態、電圧印加状態で黒/暗(非透過)状態となるノーマリーホワイトモード又はその逆のノーマリーブラックモードで駆動され、与えられた制御値に応じて明暗間の階調がアナログ制御される。液晶ライトバルブ60Bは、入射されたB光を表示画像データに基づいて光変調し、光学像を内包した変調光を射出する。液晶ライトバルブ60Gは、入射されたG光を表示画像データに基づいて光変調し、光学像を内包した変調光を射出する。液晶ライトバルブ60Rは、入射されたR光を表示画像データに基づいて光変調し、光学像を内包した変調光を射出する。
クロスダイクロイックプリズム80は、4つの直角プリズムが貼り合わされた構造からなり、その内部には、B光を反射する誘電体多層膜(B光反射ダイクロイック膜81)及びR光を反射する誘電体多層膜(R光反射ダイクロイック膜82)が断面X字状に形成されている。そして、液晶ライトバルブ60GからのG光を透過し、液晶ライトバルブ60RからのR光と液晶ライトバルブ60BからのB光とを折り曲げてこれらの3色の光を合成し、カラー画像を形成する。
リレーレンズ90は、クロスダイクロイックプリズム80で合成された液晶ライトバルブ60B,60G,60Rからの光学像(光強度分布)を輝度変調用液晶ライトバルブ100(第2光変調手段)の画素面(受光面)に結像するものであり、その詳細は後述する。
リレーレンズ90を出射した光束は、輝度変調用液晶ライトバルブ100に入射し、第2の変調を受ける。輝度変調用液晶ライトバルブ100は、上述した色変調用液晶ライトバルブ60と同等のもので、入射した光の全波長領域の輝度を変調して出射する。輝度変調用液晶ライトバルブ100を出射した光束は、投写レンズ110に入射し、投写レンズ110によってスクリーン120に投影される。なお、本実施形態においては、投射レンズ110及びスクリーン120を除いた構成を画像表示装置と定義している。
リレーレンズ90を出射した光束は、輝度変調用液晶ライトバルブ100に入射し、第2の変調を受ける。輝度変調用液晶ライトバルブ100は、上述した色変調用液晶ライトバルブ60と同等のもので、入射した光の全波長領域の輝度を変調して出射する。輝度変調用液晶ライトバルブ100を出射した光束は、投写レンズ110に入射し、投写レンズ110によってスクリーン120に投影される。なお、本実施形態においては、投射レンズ110及びスクリーン120を除いた構成を画像表示装置と定義している。
ここで、従来のプロジェクタのリレーレンズについて図4を参照して説明する。
図4は、リレーレンズ130の概略構成を示す断面図である。なお、図4は説明を簡素にするために、色変調用液晶ライトバルブ60とリレーレンズ130との間にあるクロスダイクロイックプリズムを省略して描いてあり、かつR,G,Bそれぞれの色変調用液晶ライトバルブ60R,60G,60Bを1枚の色変調用液晶ライトバルブ60で代表して描いてあるが、光学的には図1の実際の構成と等価なものである。
図4は、リレーレンズ130の概略構成を示す断面図である。なお、図4は説明を簡素にするために、色変調用液晶ライトバルブ60とリレーレンズ130との間にあるクロスダイクロイックプリズムを省略して描いてあり、かつR,G,Bそれぞれの色変調用液晶ライトバルブ60R,60G,60Bを1枚の色変調用液晶ライトバルブ60で代表して描いてあるが、光学的には図1の実際の構成と等価なものである。
リレーレンズ130は、色変調用液晶ライトバルブ60の光学像を輝度変調用液晶ライトバルブ100の画素面に結像するものであって、液晶ライトバルブの視角特性を考慮して両側テレセントリック特性を有することが望ましい。
この種の特性を有するリレーレンズ130は、図4に示すように、色変調用液晶ライトバルブ60側から順に、前段レンズ群131、開口絞り132、後段レンズ群133が光軸上に配置された光学系となっている。また、前段レンズ群131の焦点位置と開口絞り132の位置と後段レンズ群133の物体側焦点位置とを一致させている。さらに、前段レンズ群131の物体側焦点位置に色変調用液晶ライトバルブ60を配置し、かつ、後段レンズ群133の像側焦点位置に輝度変調用液晶ライトバルブ100の画素面を配置することにより構成されている。
この種の特性を有するリレーレンズ130は、図4に示すように、色変調用液晶ライトバルブ60側から順に、前段レンズ群131、開口絞り132、後段レンズ群133が光軸上に配置された光学系となっている。また、前段レンズ群131の焦点位置と開口絞り132の位置と後段レンズ群133の物体側焦点位置とを一致させている。さらに、前段レンズ群131の物体側焦点位置に色変調用液晶ライトバルブ60を配置し、かつ、後段レンズ群133の像側焦点位置に輝度変調用液晶ライトバルブ100の画素面を配置することにより構成されている。
前段レンズ群131及び後段レンズ群133は、複数の凸レンズ及び凹レンズを含んで構成されている。ただし、レンズの形状、大きさ、配置間隔及び枚数、テレセントリック性、倍率その他のレンズ特性は、要求される特性によって適宜変更され得るものであり、図4の例に限定されるものではない。
ところで、このようなテレセントリック結像レンズの結像倍率は、物体距離(色変調用液晶ライトバルブとレンズ(第1群レンズ)との距離)及び像距離(レンズ(第3群レンズ)と輝度変調用液晶ライトバルブとの距離)を変更しても常に一定に保持され、使用する個々のレンズの焦点距離の組み合わせのみによって決定される。このため、レンズの製造誤差、組み立て誤差、その他の原因によって所望の結像倍率と異なった倍率になった場合には、レンズの結像倍率を修正することは困難である。この場合、レンズの製造工程の際の製造誤差により発生した結像倍率誤差により以下のような問題が発生する。
図2は、液晶ライトバルブの画素構造とプロジェクタにおけるモアレの発生原因を概念的に示した説明図である。図2(a)は液晶ライトバルブの単位画素の概略図であり、(b)は上記色変調用液晶ライトバルブ60の光学像の概略図である。
図2(a)に示すように、液晶ライトバルブの各画素62は、開口部38と開口部38を区画する遮光部34とからなり、遮光部34は例えば画素配線、TFT、ブラックストライプにより形成される。本実施形態では、このような単位画素62の繰り返して構成される色変調用液晶ライトバルブ60の表示面をリレーレンズ90を介して輝度変調用液晶ライトバルブ100に結像する。輝度変調用液晶ライトバルブ100に結像される色変調用液晶ライトバルブ60の光学像は、図2(b)のように、格子状の暗部40と窓状の明部44の繰り返し周期構造を有する。一方、輝度変調用液晶ライトバルブ100の画素面も図2(a)に示す単位画素62の繰り返しで構成されている。従って、この画素面に図2(b)に示す格子状の明暗が結像される際、リレーレンズ90にわずかでも結像倍率誤差があると、モアレが発生し表示画像の画質が著しく低下する。
図2(a)に示すように、液晶ライトバルブの各画素62は、開口部38と開口部38を区画する遮光部34とからなり、遮光部34は例えば画素配線、TFT、ブラックストライプにより形成される。本実施形態では、このような単位画素62の繰り返して構成される色変調用液晶ライトバルブ60の表示面をリレーレンズ90を介して輝度変調用液晶ライトバルブ100に結像する。輝度変調用液晶ライトバルブ100に結像される色変調用液晶ライトバルブ60の光学像は、図2(b)のように、格子状の暗部40と窓状の明部44の繰り返し周期構造を有する。一方、輝度変調用液晶ライトバルブ100の画素面も図2(a)に示す単位画素62の繰り返しで構成されている。従って、この画素面に図2(b)に示す格子状の明暗が結像される際、リレーレンズ90にわずかでも結像倍率誤差があると、モアレが発生し表示画像の画質が著しく低下する。
結像倍率誤差の一例について説明すると、色変調用液晶ライトバルブ60と輝度変調用液晶ライトバルブ100とを同一の液晶ライトバルブで構成した場合、リレーレンズの結像倍率Mは1.0に設定される。しかし、上述したように、レンズの製造工程の際の製造誤差により結像倍率が0.1%程度変化しても、顕著なモアレが発生し表示画像の画質が低下する。翻って、図4に示すようなテレセントリックレンズにおいて結像倍率の製造誤差は一般的に5%程度である。従って、このような設計段階の値と異なる結像倍率を有するリレーレンズを使用している限り、モアレの発生は避けられない。
本実施形態のプロジェクタではこの問題を解決するために、可変倍率機能を有するリレーレンズ90(結像光学手段)が用いられる。以下、本実施形態のリレーレンズ90の一例について説明する。
図3は、本実施形態のリレーレンズ90の概略構成を示した模式図である。
リレーレンズ90は、それぞれ正の焦点距離を有する第1群レンズ70、第2群レンズ72及び第3群レンズ74の3群のレンズ群から構成される。このリレーレンズ90は、第1群レンズ70の後側焦点位置と第3群レンズ74の前側焦点位置とをほぼ合致させて、レンズ全体のテレセントリック性を確保している。このとき、第2群レンズ72は、第1群レンズ70と第3群レンズ74との焦点合致位置の光軸上に配置される。また、第1群レンズ70の図3中左側の光軸上には、色変調用液晶ライトバルブ60が配置され、第3群レンズ74の図3中右側の光軸上には輝度変調用液晶ライトバルブ100が配置される。言い換えれば、色変調用液晶ライトバルブ60側の主光線が光軸と平行となるように色変調用液晶ライトバルブと第1群レンズ70及び第2群レンズ72とが配置されるとともに、輝度変調用液晶ライトバルブ100側の主光線が光軸と平行となるように輝度変調用液晶ライトバルブ100と第2群レンズ72及び第3群レンズ74とが配置される。これにより、リレーレンズ90のテレセントリック性が確保される。
リレーレンズ90は、それぞれ正の焦点距離を有する第1群レンズ70、第2群レンズ72及び第3群レンズ74の3群のレンズ群から構成される。このリレーレンズ90は、第1群レンズ70の後側焦点位置と第3群レンズ74の前側焦点位置とをほぼ合致させて、レンズ全体のテレセントリック性を確保している。このとき、第2群レンズ72は、第1群レンズ70と第3群レンズ74との焦点合致位置の光軸上に配置される。また、第1群レンズ70の図3中左側の光軸上には、色変調用液晶ライトバルブ60が配置され、第3群レンズ74の図3中右側の光軸上には輝度変調用液晶ライトバルブ100が配置される。言い換えれば、色変調用液晶ライトバルブ60側の主光線が光軸と平行となるように色変調用液晶ライトバルブと第1群レンズ70及び第2群レンズ72とが配置されるとともに、輝度変調用液晶ライトバルブ100側の主光線が光軸と平行となるように輝度変調用液晶ライトバルブ100と第2群レンズ72及び第3群レンズ74とが配置される。これにより、リレーレンズ90のテレセントリック性が確保される。
また、第1群レンズ70、第2群レンズ72及び第3群レンズ74は、複数の凸レンズ及び凹レンズが組み合わされて構成されている。なお、レンズの形状、大きさ、配置間隔及び枚数、テレセントリック性、倍率の可変量その他のレンズ特性は、要求される特性によって適宜変更され得るものであり、図3の例に限定されるものではない。
本実施形態のリレーレンズ90を構成する第1群レンズ70、第2群レンズ72及び第3群レンズ74は、互いが独立して光軸方向d1,d2に移動可能となっている。さらに、本実施形態では、輝度変調用液晶ライトバルブ100が、上記レンズ群の移動に伴って光軸方向d1,d2に移動可能となっている。上記レンズ群70,72,74及び輝度変調用液晶ライトバルブ100を移動させる手段としては、種々の移動手段を採用することが可能である。なお、図3において、図中左側方向を光軸方向d1とし、図中右側方向を光軸方向d2とする。
次に、リレーレンズ90の結像倍率Mを可変する動作について説明する。
まず、リレーレンズ90の結像倍率Mが製造誤差により小さくなった場合について説明する。この場合、第2群レンズ72は、第1群レンズ70の後側焦点位置よりも光軸方向d2にずれたことに等しいため、結像倍率Mが小さくなるとともに、レンズ群のテレセントリック性が確保されていない。従って、リレーレンズ90の結像倍率Mを大きくし、かつ、テレセントリック性を確保するためには、第1群レンズ70と第2群レンズ72との距離を縮める。その際、第2群レンズ72を移動すると第2群レンズ72と第3群レンズ74との合成焦点距離が変動するので、その変動量に応じてテレセントリック性を維持するため、第2群レンズ72と第3群レンズ74との距離を相対的に長くする。さらに、物−像距離、ワーキングディスタンス、バックフォーカス等を維持するため、色変調用液晶ライトバルブ60と第1群レンズ70との距離を縮めるとともに、第3群レンズ群と輝度変調用液晶ライトバルブ100との距離を相対的に長くする。ここで、色変調用液晶ライトバルブ60と第1群レンズ70との距離を移動させるために色変調用液晶ライトバルブ60を移動させると、色変調用液晶ライトバルブ60の光源10側に配置される照明光学系も移動させる必要がある。そのため、照明光学系も含めた移動機構の構築は大規模なものとなってしまう。そこで、本実施形態では、色変調用液晶ライトバルブ60と第1群レンズ70との距離を伸縮移動させる場合には、色変調用液晶ライトバルブ60(照明光学系を含む)を固定し、第1群レンズ70、第2群レンズ72及び第3群レンズ74(以下、これらをレンズ群76と称する。)と輝度変調用液晶ライトバルブ100とを伸縮移動させて、色変調用液晶ライトバルブ60と第1群レンズ70との距離の伸縮を図る。従って、色変調用液晶ライトバルブ60と第1群レンズ70との距離を縮める場合には、レンズ群76及び輝度変調用液晶ライトバルブ100を移動機構により光軸方向d1に移動させる。
まず、リレーレンズ90の結像倍率Mが製造誤差により小さくなった場合について説明する。この場合、第2群レンズ72は、第1群レンズ70の後側焦点位置よりも光軸方向d2にずれたことに等しいため、結像倍率Mが小さくなるとともに、レンズ群のテレセントリック性が確保されていない。従って、リレーレンズ90の結像倍率Mを大きくし、かつ、テレセントリック性を確保するためには、第1群レンズ70と第2群レンズ72との距離を縮める。その際、第2群レンズ72を移動すると第2群レンズ72と第3群レンズ74との合成焦点距離が変動するので、その変動量に応じてテレセントリック性を維持するため、第2群レンズ72と第3群レンズ74との距離を相対的に長くする。さらに、物−像距離、ワーキングディスタンス、バックフォーカス等を維持するため、色変調用液晶ライトバルブ60と第1群レンズ70との距離を縮めるとともに、第3群レンズ群と輝度変調用液晶ライトバルブ100との距離を相対的に長くする。ここで、色変調用液晶ライトバルブ60と第1群レンズ70との距離を移動させるために色変調用液晶ライトバルブ60を移動させると、色変調用液晶ライトバルブ60の光源10側に配置される照明光学系も移動させる必要がある。そのため、照明光学系も含めた移動機構の構築は大規模なものとなってしまう。そこで、本実施形態では、色変調用液晶ライトバルブ60と第1群レンズ70との距離を伸縮移動させる場合には、色変調用液晶ライトバルブ60(照明光学系を含む)を固定し、第1群レンズ70、第2群レンズ72及び第3群レンズ74(以下、これらをレンズ群76と称する。)と輝度変調用液晶ライトバルブ100とを伸縮移動させて、色変調用液晶ライトバルブ60と第1群レンズ70との距離の伸縮を図る。従って、色変調用液晶ライトバルブ60と第1群レンズ70との距離を縮める場合には、レンズ群76及び輝度変調用液晶ライトバルブ100を移動機構により光軸方向d1に移動させる。
次に、リレーレンズ90の結像倍率Mが製造誤差により大きくなった場合について説明する。この場合、第2群レンズ72は、第1群レンズ70の後側焦点位置よりも光軸方向d1にずれたことに等しいため、結像倍率Mが大きくなるとともに、レンズ群のテレセントリック性が確保されていない。従って、リレーレンズ90の結像倍率Mを小さくし、かつ、テレセントリック性を確保するためには、第1群レンズ70と第2群レンズ72の距離を長くする。その際、第2群レンズ72を移動すると第1及び第2群レンズ72の合成焦点距離が変動するので、その変動量に応じてテレセントリック性を維持するために第2群レンズ72と第3群レンズ74との距離を相対的に縮める。さらに、色変調用液晶ライトバルブ60と第1群レンズ70との距離を長くするとともに、第3群レンズ群と輝度変調用液晶ライトバルブ100との距離を縮める。このとき、色変調用液晶ライトバルブ60と第1群レンズ70との距離を長くする際には、色変調用液晶ライトバルブ60(照明光学系を含む)を固定し、レンズ群76及び輝度変調用液晶ライトバルブ100を移動機構により光軸方向d2に移動させる。
本発明のプロジェクタにおいてリレーレンズ90の結像倍率を可変とする主目的は、リレーレンズ90に製造誤差が生じても本来所望とする結像倍率を確保してモアレの発生を無くすことにある。従って、倍率可変範囲を目的を達成するための最小範囲に限定することで、レンズの設計難度の増加や変倍機構の複雑さ等を最小限に抑えてリレーレンズ90のコストを抑制することが可能となる。ここで、「倍率可変範囲」とは、リレーレンズ90の結像倍率の可変範囲であり、本来所望の結像倍率Mを中心として設定される。この「倍率可変範囲」は、レンズ群及び液晶ライトバルブの移動量に対応して可変する。
リレーレンズ90の倍率可変範囲は、本来所望の結像倍率をM、倍率可変範囲をMmin〜Mmax(但し、Mmin<Mmax)としたときに、Mmin<M<Mmaxを満足するものとする。ここで、「Mmin」は、本来所望の結像倍率Mよりも小さい結像倍率を意味し、「Mmax」は本来所望の結像倍率Mよりも大きい結像倍率を意味する。このように本来所望の結像倍率Mを上記範囲に設定することで、製造誤差による結像倍率の誤差が結像倍率Mの正負のいずれにふれても本来所望の結像倍率Mを確保することができる。
また、レンズ群の間隔等を本来所望の結像倍率Mを得るための条件に設定した場合における結像倍率の製造誤差範囲を±T%とした場合、Mmin≦(1/(1+T/100))Mであり、Mmax≧(1/(1−T/100))Mの条件を満足するものとする。これにより、製造誤差範囲から実際の結像倍率を算出することができる。従って、レンズの結像倍率の倍率可変範囲を最小とすることができ、リレーレンズ90のコストを抑制することが可能となる。ここで、「製造誤差範囲」とは、各レンズの製造の際に生じる誤差であり、例えば個々のレンズ面の研磨段階で生じる曲率半径の誤差や各レンズ群の組立て時に生じるレンズ間距離の誤差等が挙げられる。これらは各レンズ群の焦点距離の誤差となり、ひいてはリレーレンズ90全体の倍率の誤差につながる。
また、上述したMmin及びMmaxの範囲は、一般的なレンズの製造誤差を考慮し、Mmin≦0.90MでありMmax≧1.11Mであり、望ましくはMmin≦0.95MでありMmax≧1.053Mを満足するものとする。前者のリレーレンズ90の結像倍率の条件は、リレーレンズ90の製造誤差が約10%である場合を想定したものである。この想定誤差は一般的なレンズの製造誤差を十分にカバーするものであり、これにより製造歩留りを向上させることが可能となる。また、後者のリレーレンズ90の結像倍率の条件は、一般的なレンズの製造誤差(約5%)とほぼ一致するものであり、前者の条件に比べて、倍率可変範囲を小さくすることができ、リレーレンズ90のコストを抑制することができる。
本実施形態によれば、リレーレンズ90の第1群レンズ70、第2群レンズ72又は第3群レンズ74の各々が独立して光軸に沿って可変可能とされる。これにより、各レンズ群70,72,74間の焦点距離が変動され、リレーレンズ90の結像倍率が可変される。従って、リレーレンズ90の製造の際に、製造誤差,組み立て誤差が発生したとしても、所望の結像倍率にリレーレンズ90を可変することができモアレの発生を少なくすることができる。
上述したように、リレーレンズ90の各レンズ群70,72,74を移動させることによって結像倍率を可変させた場合、色変調用液晶ライトバルブ60と輝度変調用液晶ライトバルブ100との距離(物−像)、ワーキングディスタンス(レンズ群70のレンズの先端と色変調用液晶ライトバルブ60との距離)、バックフォーカス(レンズ群74のレンズの最後部から輝度変調液晶ライトバルブ100までの距離)等の変化が生じる。これに対し、本実施形態によれば、各レンズ群70,72,74の移動に伴って色変調用液晶ライトバルブ60と第1群レンズ70との距離、輝度変調用液晶ライトバルブ100と第3群レンズ74との距離とを互いに独立に移動させて調整する。これにより、簡素な構成でリレーレンズ90の結像倍率の変更が可能となり、プロジェクタPJ1全体の複雑化を最小限に抑えることができる。
上述したように、リレーレンズ90の各レンズ群70,72,74を移動させることによって結像倍率を可変させた場合、色変調用液晶ライトバルブ60と輝度変調用液晶ライトバルブ100との距離(物−像)、ワーキングディスタンス(レンズ群70のレンズの先端と色変調用液晶ライトバルブ60との距離)、バックフォーカス(レンズ群74のレンズの最後部から輝度変調液晶ライトバルブ100までの距離)等の変化が生じる。これに対し、本実施形態によれば、各レンズ群70,72,74の移動に伴って色変調用液晶ライトバルブ60と第1群レンズ70との距離、輝度変調用液晶ライトバルブ100と第3群レンズ74との距離とを互いに独立に移動させて調整する。これにより、簡素な構成でリレーレンズ90の結像倍率の変更が可能となり、プロジェクタPJ1全体の複雑化を最小限に抑えることができる。
本実施形態によれば、リレーレンズ90の第1群レンズ70、第2群レンズ72又は第3群レンズ74の各々が独立して光軸に沿って可変可能とされる。これにより、各レンズ群70,72,74間の焦点距離が変動され、リレーレンズ90の結像倍率が可変される。従って、リレーレンズ90の製造の際に、製造誤差,組み立て誤差が発生したとしても、所望の結像倍率にリレーレンズ90を可変することができモアレの発生を少なくすることができる。
上述したように、リレーレンズ90の各レンズ群70,72,74を移動させることによって結像倍率を可変させた場合、色変調用液晶ライトバルブ60と輝度変調用液晶ライトバルブ100との距離(物−像)、ワーキングディスタンス(各レンズ群70,72,74のレンズの先端と色変調用液晶ライトバルブ60又は輝度変調液晶ライトバルブとの距離)、バックフォーカス(各レンズ群70,72,74のレンズの最後部から各焦点位置までの距離)等の変化が生じる。これに対し、本実施形態によれば、各レンズ群70,72,74の移動に伴って色変調用液晶ライトバルブ60と第1群レンズ70との距離、輝度変調用液晶ライトバルブ100と第3群レンズ74との距離とを互いに独立に移動させて調整する。これにより、簡素な構成でリレーレンズ90の結像倍率の変更が可能となり、プロジェクタPJ1全体の複雑化を最小限に抑えることができる。
上述したように、リレーレンズ90の各レンズ群70,72,74を移動させることによって結像倍率を可変させた場合、色変調用液晶ライトバルブ60と輝度変調用液晶ライトバルブ100との距離(物−像)、ワーキングディスタンス(各レンズ群70,72,74のレンズの先端と色変調用液晶ライトバルブ60又は輝度変調液晶ライトバルブとの距離)、バックフォーカス(各レンズ群70,72,74のレンズの最後部から各焦点位置までの距離)等の変化が生じる。これに対し、本実施形態によれば、各レンズ群70,72,74の移動に伴って色変調用液晶ライトバルブ60と第1群レンズ70との距離、輝度変調用液晶ライトバルブ100と第3群レンズ74との距離とを互いに独立に移動させて調整する。これにより、簡素な構成でリレーレンズ90の結像倍率の変更が可能となり、プロジェクタPJ1全体の複雑化を最小限に抑えることができる。
なお、本発明の技術範囲は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。
例えば、上記実施形態では、リレーレンズ90が3群のレンズ群70,72,74から構成された場合について説明したが、これに限定されることはない。リレーレンズ90が2群のレンズから構成されていても良いし、3群以上の4群、5群…のレンズ群から構成されていても良い。つまり、リレーレンズ90のテレセントリック性が確保されていれば良い。
また、上記実施形態では、光源側に色変調用液晶ライトバルブ60を配置し、出射側(スクリーン側)に輝度変調用液晶ライトバルブ100を配置した。これに対し、光源側に輝度変調用液晶ライトバルブ100を配置し、出射側に色変調用液晶ライトバルブ60を配置することも可能である。このような構成とした場合、リレーレンズ90は、輝度変調用液晶ライトバルブ100と色変調用液晶ライトバルブ60との間の光軸上に配置する。
例えば、上記実施形態では、リレーレンズ90が3群のレンズ群70,72,74から構成された場合について説明したが、これに限定されることはない。リレーレンズ90が2群のレンズから構成されていても良いし、3群以上の4群、5群…のレンズ群から構成されていても良い。つまり、リレーレンズ90のテレセントリック性が確保されていれば良い。
また、上記実施形態では、光源側に色変調用液晶ライトバルブ60を配置し、出射側(スクリーン側)に輝度変調用液晶ライトバルブ100を配置した。これに対し、光源側に輝度変調用液晶ライトバルブ100を配置し、出射側に色変調用液晶ライトバルブ60を配置することも可能である。このような構成とした場合、リレーレンズ90は、輝度変調用液晶ライトバルブ100と色変調用液晶ライトバルブ60との間の光軸上に配置する。
60…色変調用液晶ライトバルブ(第1光変調手段)、 70…第1群レンズ、 72…第2群レンズ、 74…第3群レンズ、 76…レンズ群、 90…リレーレンズ(結像光学手段)、 100…輝度変調用液晶ライトバルブ(第2光変調手段)、 PJ1…プロジェクタ
Claims (9)
- 光源と、前記光源から出射される光を変調する第1光変調手段と、前記第1光変調手段からの光を入射しかつ光を変調する第2光変調手段と、前記第1光変調手段と前記第2光変調手段との間の光路上に設けられ、前記第1光変調手段の光学像を前記第2光変調手段の受光面に結像する結像光学手段とを備え、
前記結像光学手段が複数のレンズ群を有し、
前記複数のレンズ群のうち少なくとも1つのレンズ群が前記光軸上を移動可能とされ、前記結像光学手段の結像倍率が可変であることを特徴とする画像表示装置。 - 前記複数のレンズ群が、第1群レンズと第3群レンズと、前記第1群レンズと前記第3群レンズとの間に配置された第2群レンズとを有し、
前記第1群レンズ、前記第2群レンズ及び前記第3群レンズの少なくとも1以上が前記光軸上を移動可能とされたことを特徴とする請求項1に記載の画像表示装置。 - 前記結像光学手段の結像倍率がM、倍率可変範囲がMmin〜Mmax(但し、Mmin<Mmax)としたときに、
Mmin<M<Mmaxとなるように前記結像光学手段の結像倍率が設定されていることを特徴とする請求項1又は請求項2に記載の画像表示装置。 - 前記結像光学手段の結像倍率がMにおける結像倍率の製造誤差範囲を±T%としたときに、
Mmin≦(1/(1+T/100))Mであり、Mmax≧(1/(1−T/100))Mとなるように前記結像光学手段の結像倍率が設定されていることを特徴とする請求項3に記載の画像表示装置。 - 前記結像光学手段の結像倍率がM、倍率可変範囲がMmin〜Mmax(但し、Mmin<Mmax)としたときに、
Mmin≦0.90Mであり、Mmax≧1.11Mとなるように前記結像光学手段の結像倍率が設定されていること特徴とする請求項4に記載の画像表示装置。 - 前記第1光変調手段を固定し、前記結像光学手段の複数のレンズ群のうち少なくとも1つのレンズ群の移動に伴って、前記第2光変調手段が前記光路上を移動可能であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の画像表示装置。
- 前記第1群レンズと前記第2群レンズとの距離を縮めるとともに、前記第2群レンズと前記第3群レンズとの距離を長くし、かつ、前記第1光変調手段と第1群レンズとの距離を縮めるとともに、前記第3群レンズ群と前記第2光変調手段との距離を長くすることにより、前記結像光学手段の結像倍率を大きくすることを特徴とする請求項1乃至請求項6のいずれか1項に記載の画像表示装置。
- 前記第1群レンズと前記第2群レンズとの距離を長くするとともに、前記第2群レンズと前記第3群レンズとの距離を縮め、かつ、前記第1光変調手段と第1群レンズとの距離を長くするとともに、前記第3群レンズ群と前記第2光変調手段との距離を縮めることにより、前記結像光学手段の結像倍率を小さくすることを特徴とする請求項1乃至請求項6のいずれか1項に記載の画像表示装置。
- 請求項1から請求項8のいずれか1項に記載の画像表示装置と、
前記画像表示装置から射出された光を投射する投射手段とを備えることを特徴とするプロジェクタ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005127596A JP2006308641A (ja) | 2005-04-26 | 2005-04-26 | 画像表示装置及びプロジェクタ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005127596A JP2006308641A (ja) | 2005-04-26 | 2005-04-26 | 画像表示装置及びプロジェクタ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006308641A true JP2006308641A (ja) | 2006-11-09 |
Family
ID=37475640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005127596A Withdrawn JP2006308641A (ja) | 2005-04-26 | 2005-04-26 | 画像表示装置及びプロジェクタ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006308641A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7575327B2 (en) | 2007-02-13 | 2009-08-18 | Seiko Epson Corporation | Image display apparatus |
JP2015145934A (ja) * | 2014-02-03 | 2015-08-13 | セイコーエプソン株式会社 | プロジェクター |
WO2019188018A1 (ja) * | 2018-03-26 | 2019-10-03 | ソニー株式会社 | 撮像光学系、および撮像装置 |
-
2005
- 2005-04-26 JP JP2005127596A patent/JP2006308641A/ja not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7575327B2 (en) | 2007-02-13 | 2009-08-18 | Seiko Epson Corporation | Image display apparatus |
JP2015145934A (ja) * | 2014-02-03 | 2015-08-13 | セイコーエプソン株式会社 | プロジェクター |
WO2019188018A1 (ja) * | 2018-03-26 | 2019-10-03 | ソニー株式会社 | 撮像光学系、および撮像装置 |
JPWO2019188018A1 (ja) * | 2018-03-26 | 2021-03-11 | ソニー株式会社 | 撮像光学系、および撮像装置 |
JP7248014B2 (ja) | 2018-03-26 | 2023-03-29 | ソニーグループ株式会社 | 撮像光学系、および撮像装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4301304B2 (ja) | 画像表示装置 | |
JP4893004B2 (ja) | プロジェクタ | |
US7841725B2 (en) | Image display device and projector | |
JP4158776B2 (ja) | 画像表示装置及びプロジェクタ | |
WO1994022042A1 (en) | Projection type display device | |
JP2007206343A (ja) | 光学表示装置及びその方法 | |
JP4285425B2 (ja) | 画像表示装置及びプロジェクタ | |
JP2010210985A (ja) | プロジェクター | |
JP2005345864A (ja) | 画像表示装置、プロジェクタ、偏光補償光学系 | |
WO2015075945A1 (ja) | 表示装置 | |
JP2006243477A (ja) | 画像表示装置及びプロジェクタ | |
US8567956B2 (en) | Projector | |
JP2006308641A (ja) | 画像表示装置及びプロジェクタ | |
JP2007264339A (ja) | 変調装置及びプロジェクタ | |
JP2007293033A (ja) | プロジェクタ | |
JP2007212716A (ja) | 画像表示装置およびプロジェクタ | |
JP4241872B2 (ja) | 画像表示装置、プロジェクタ、偏光補償光学系 | |
JP2011095291A (ja) | プロジェクター | |
JP2016099585A (ja) | 光学装置および画像投射装置 | |
JP3613256B2 (ja) | 投写型表示装置 | |
JP2007225970A (ja) | 画像表示装置およびプロジェクタ | |
JP2009156900A (ja) | 画質変換ユニット | |
JP3486608B2 (ja) | 投写型表示装置 | |
JP2007218946A (ja) | 画像表示装置およびプロジェクタ | |
JP3365412B2 (ja) | 投写型表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080701 |