JP2006308561A - バイオセンサ - Google Patents

バイオセンサ Download PDF

Info

Publication number
JP2006308561A
JP2006308561A JP2006063791A JP2006063791A JP2006308561A JP 2006308561 A JP2006308561 A JP 2006308561A JP 2006063791 A JP2006063791 A JP 2006063791A JP 2006063791 A JP2006063791 A JP 2006063791A JP 2006308561 A JP2006308561 A JP 2006308561A
Authority
JP
Japan
Prior art keywords
biosensor
cavity
blood
sample
suction cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006063791A
Other languages
English (en)
Other versions
JP4693657B2 (ja
Inventor
Shiyunji Egawa
柄川  俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2006063791A priority Critical patent/JP4693657B2/ja
Priority to US11/390,476 priority patent/US8128795B2/en
Publication of JP2006308561A publication Critical patent/JP2006308561A/ja
Application granted granted Critical
Publication of JP4693657B2 publication Critical patent/JP4693657B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels

Abstract

【課題】簡易な構成で血液の成分分析を行う。
【解決手段】毛細管現象によって一定量の試料を吸い上げる吸引空洞を備えたバイオセンサであり、吸引空洞と試薬を備える分析空洞とを繋ぐ流路を有し、この流路は、流路面積を狭めた隙間を備えた狭窄部を有する。狭窄部は、吸引空洞に試料を吸い上げるときには試料を吸引空洞に保持する機能と、吸引空洞に試料を保持した状態において、外部から遠心力が加わるときには、吸引空洞に貯められた試料を、隙間を通して分析空洞に流通させる機能を備える。狭窄部が有する2つの機能によって、血液試料の簡易な採取を可能とし、採取した血液試料の遠心力によって、分析領域への簡易な移動を可能とする他、成分抽出を簡易に行う。
【選択図】図1

Description

本発明は、試料の採取と採取した試料を分析部分に移動する構造を備えたバイオセンサに関する。
近年、ライフスタイルの変化により高血圧、糖尿病、高脂血症患者が増えてきた。これらは生活習慣病と呼ばれ、動脈硬化の危険因子である。国や自治体では、生活習慣を修正して、脳卒中死亡率、虚血性心疾患死亡率、総循環器疾患死亡率を低下させることを目指している。
生活習慣病では生活管理が重要な治療方法であり、医師、看護師、薬剤師などの医療従事者は、治療のためのさまざまな指導も行っている。
しかし、実際には日常生活での忙しさや怠慢で、これを十分に自己管理できないことが多い。患者自身は、健康診断によりこれらの疾病が見つかったとしても、自覚症状がないために治療を怠り、病状を悪化させてしまうことが少なくない。さらに、医療従事者が患者の日常生活の中で、実際に指導内容を実施しているかを確認することは、極めて困難であり不可能である。
このような背景から、患者は本人の強い意志で、薬物療法、食事療法、運動療法を継続して実践していく必要がある。そのために、医療機関で行われる検査に加えて、在宅でも自らの手で病態を把握することは、患者自身による健康管理にとって有効であると期待されている。なぜならば、患者が、患者自身を検査し、その検査結果に基づいて、自ら生活習慣の改善点と今後の課題を再考することや、治療の目標を達成したときに充実感を感じることは、自己管理行動を強化するからである。
そして、この自己管理は、治療意識の維持や向上に繋がり、生活習慣病の治療と予防に大きな成果があると期待されている。そこで、患者が自ら在宅で検査を行えるように、在宅用の検査機器の開発が盛んに行われている。
臨床診断分野の血液検査では、採血した血液から血液中の特定成分を分析することによって、被検者の疾病状態や治療回復状態などを把握している。この検査では、採血した血液を成分別に分離し、被分析物を含む試料だけを分析するのが普通である。血液の生化学検査の項目では血清成分を対象とすることが多い。
在宅検査に使用される検査機器の代表例としては、血液中のグルコース濃度(血糖値)を測定する自己血糖測定機がある。現在広く用いられている自己血糖測定機を用いた検査においては、被検者自身が指先や腕に穿刺針を刺して、出血した少量の血液サンプルを利用する。
血糖値とは、正確に言えば、血清中のグルコース濃度のことである。最も一般的なグルコース濃度の計測法は、酵素電極を用いた方法である。この計測方法では、採血した全ての血液サンプルをバイオセンサに供給して測定している。バイオセンサは、内部に酵素反応層を有する。アンペロメトリ法による測定では、酵素反応層は血球を溶血させることなく、血清中のグルコース濃度に応じた電流を測定する。この測定方法では、血球成分を分離せずに、血清中の特定成分の濃度を測定している。
患者自らが在宅で採血する方法は、自己血糖測定機の場合のように、指先や腕を穿刺して微量な血液を得る方法に限られる。この方法で得られる血液は、一般に50マイクロリットル以下である。
特許文献1には、ヒトの採血した全ての血液サンプルからグルコース濃度を測定する電気化学のバイオセンサが簡易血糖値計として開示されている。このバイオセンサは試料の吸引口を有し、検査試料である全血液サンプルをこの吸引口に加えると、全血液サンプルは毛細管現象により毛細管状充填室と呼ばれる吸引空洞に引き込まれる。この吸引空洞への引き込みは、吸引空洞の奥に形成された空気口から吸引空洞内の空気を逃がすことによって行われる。
この吸引空洞には作用電極と対向電極が配置されている。この電極は、血球成分を含む全血液サンプルの状態でグルコース濃度に相関した電流測定値を取得する。この電流測定値によって、簡易的に血糖値を測定できる。
特許文献2には、遠心操作により血漿分離する血液分析のバイオセンサが開示されている。血液分析のバイオセンサの流路には、遠心分離時の遠心方向に血球成分が溜まる部分が配置されている。遠心分離は、血球成分を底部に集積させ、血漿成分を上清みとして分離する。このバイオセンサでは、試料となる、被検査者から採取した血液サンプルの全てを導入するために、排出口に外部ポンプを取り付けて、血液吸引口から吸引負圧によって全血液サンプルを引き込んでいる。また、遠心分離後の血漿成分の移動も、同様にして、外部ポンプによる吸引負圧によって分析位置に導く構造である。
特開2002−310973号公報(第6−8頁) 特開2004−109082号公報(第6−9頁)
特許文献1に示すバイオセンサは、血液中のグルコース濃度を簡易な構成で測定する。このバイオセンサは、血漿または血清成分を抽出せずに、血球成分を含む全血状態で分析し、血清中のグルコース濃度と十分に相関した電流測定値を得る。
しかし、グルコース以外の検査項目を分析する場合には、一般的には血球成分を分離して、血漿または血清成分のみを抽出してから分析する必要がある。仮に血球成分を含む全血の状態で検査すると、血球成分は溶血して血漿成分と混ざり合ってしまうために、正確に濃度測定することは不可能であるという問題があった。
また、吸引口から空気口までの毛細管現象によって試料を吸引空洞に吸い上げる構造のバイオセンサに対して、強引に遠心操作を行なった場合には、吸引口または空気口から血液試料が飛び散ってしまうという問題がある。
特許文献2は遠心分離に対応したバイオセンサの構造が開示されている。このバイオセンサでは、試料となる全血をバイオセンサに導く操作や、遠心分離後に血漿または血清成分を分析位置に導く操作のために、外部ポンプを取り付けて吸引するための負圧を作り出さなければならない。このために、周辺装置が大型化して在宅機器としては適さないという問題がある。
在宅での血液の検査項目を血糖値だけでなく他の検査項目に拡大するためには、簡単な血漿または血清成分の抽出技術が望まれているが、上記した従来技術では、簡易な構成で血液の成分分析を行うことが困難であるという問題がある。
そこで、本発明は上記の課題を解決して、簡易な構成で血液の成分分析を行うことを目的とする。
本発明のバイオセンサは、毛細管現象によって一定量の試料を吸い上げる吸引空洞を備えたバイオセンサであり、吸引空洞と試薬を備える分析空洞とを繋ぐ流路を有し、この流路は、流路面積を狭めた隙間を備えた狭窄部を有する。本発明のバイオセンサが流路に有する狭窄部は、吸引空洞に試料を吸い上げるときに試料を吸引空洞に保持する機能と、吸引空洞に試料を保持した状態において、外部から遠心力が加わるときには、吸引空洞に貯められた試料を、隙間を通して分析空洞に流通させる機能を備える。
本発明のバイオセンサは、上記した狭窄部が有する2つの機能によって、血液試料の簡易な採取を可能とし、採取した血液試料の遠心力によって、分析領域への簡易な移動を可能とする他、成分抽出を簡易に行うことができる。本発明のバイオセンサは、流路内に設けた狭窄部を通して、吸引空洞内に吸い上げた試料を分析空洞に移動させることによって、遠心動作時において、吸引空洞内に吸い上げた試料の全てを分析空洞に移動させて、分析対象となる試料の減少を防ぐ他、試料が外部に飛び散ることによる外部の汚染を防ぐことができる。
本発明のバイオセンサは、分析空洞には、電気化学測定のための酵素反応層を有することが望ましい。アンペロメトリ法によれば、酵素反応層は血球を溶血させることなく、血清中のグルコース濃度に応じた電流を測定することができ、血球成分を分離せずに、血清中の特定成分の濃度を測定することができる。
また、本発明のバイオセンサの分析空洞は、複数の酵素反応層を遠心力が加わる方向に分離して配置し、分離される試料の成分を測定することができる。
本発明のバイオセンサの吸引空洞は、遠心力が加わる方向に対して直交する方向に並列する2つの開口部と、前記流路と連通する結合部とを有する。結合部において、各開口部と結合部とを結ぶ方向は、遠心力が加わる方向に対して鈍角で交わる配置関係とする。なお、この鈍角は90度以上の任意の角度とすることができる。
ここで、一方の開口部は、試料を吸引空洞内に吸い上げる吸い上げ口として作用し、他方の開口部は、試料を吸引空洞内に吸い上げる際に、吸引空洞内に存在する空気を排気する排気口として作用する。
この吸引空洞の配置により、吸引空洞内の試料は、遠心力により吸引空洞から流路方向に向かう力を受け、流路内に導入される。また、上記した、2つの開口部の位置関係と、結合部における角度関係とすることによって、吸引空洞内に保持される試料に遠心力が加わった際に、何れの開口部からも外部に試料が飛び出さないようにすると共に、流路内に向かって試料を導入することができる。
また、吸引空洞内には、試料を前処理するための試薬を設けてもよい。
本発明のバイオセンサは、吸引空洞、流路、および分析空洞を、一方又は両方の対向面に凹凸部が形成された2枚の板状部材を対向して貼り合わせることで形成する。さらに、2枚の板状部材の間に電極基板を挟む構成とし、この電極基板が備える電極は、分析空洞内に露出する構成とすることができる。この電極は、分析空洞内に導入された試料の成分濃度に応じた測定電流を検出する。
板状部材の少なくとも一方は、電極基板の電極と電気的に接続される外部接続用コネクタを外部回路と電気的に接続するための窓部を備える。したがって、この窓部を通して、外部回路をコネクタに電気的に接続することによって、分析空洞内の電極で検出した測定電流を外部回路に導出することができる。
また、板状部材は、窓部の周囲を囲むOリング又はパッキング部材等の漏れ防止部材を備えることができる。仮に試料が分析空洞から漏れ出たとしても、この漏れ防止部材によって、窓部内の外部接続用コネクタが試料と接触することを防ぐことができる。この漏れ防止部材は、複数の窓部を一括して囲む構成とする他に、複数の窓部をそれぞれ個別に囲む構成としてもよい。
また、外部接続用コネクタは、遠心力が加わる方向において、少なくとも分析空洞よりも遠心力の中心に近い位置に配置する。この配置によって、遠心力作用時には、分析空洞内の試料は、遠心力の作用によって外部接続用コネクタから離れる方向の力を受けるため、外部接続用コネクタと試料との接触を避けることができる。
本発明のバイオセンサは、吸引空洞、流路、分析空洞の外周部分を超音波溶着する。この超音波溶着によって、バイオセンサ内に導入された試料が、外部に漏れ出ることを防ぐことができる。さらに、板状部材の最外周部分を超音波溶着してもよい。
本発明のバイオセンサの吸引空洞の壁面に親水性コーティングを施す構成とすることができ、これによって、外部から吸引空洞内への試料の吸い上げを容易とすることができる。この親水性コーティングは界面活性剤の塗布により形成することができる。
また、本発明のバイオセンサが、流路内に備える狭窄部は疎水性とすることができ、これによって、遠心力を作用しない状態で吸引空洞内に試料を吸い上げる際に、吸い上げた試料がそのまま流路内に導入されることを防ぐことができ、これによって、一定量の試料を吸引空洞内に吸い上げることができる。また、この狭窄部の疎水性は、狭窄部を疎水性の合成樹脂で形成することで取得することができる。また、狭窄部の疎水性は、狭窄部に撥水処理を施すことによっても形成してもよい。
本発明のバイオセンサが備える狭窄部は、例えば、吸引空洞側において流路面積が漸減する第1の部分と、吸引空洞側と流路側との間において、所定距離の間、流路面積を狭める第2の部分とを備えた構成とし、第2の部分の後方において、狭めた流路面積から流路の流路面積に増大する形状によって形成することができる。この構成によって、吸引空洞に試料を吸い上げるときに、試料を吸引空洞に保持し、外部から遠心力が加わるときに、吸引空洞に貯められた試料を、隙間を通して前記分析空洞に流通させることができる。
バイオセンサは、吸引口から毛細管現象により血液試料を吸引空洞に吸い上げる。吸引空洞内に血液試料を吸い上げたバイオセンサを回転台に取り付ける。回転台はバイオセンサを回転して遠心力を加える。遠心力が加えられたバイオセンサは、吸引空洞内に保持する全ての血液試料は、狭窄部を通過して分析空洞に導かれる。遠心力を受けた血液試料は、分析空洞内においてその比重に応じた位置に分離される。分離された位置と血液試料の成分とは対応している。分離した位置から血液試料の成分を識別することができる。その位置に対応して電極を配置することにより、その電極の測定電流により血液試料の成分の濃度を測定することができる。
本発明のバイオセンサは、指先や腕に穿刺針を刺して、出血した少量の血液を吸い上げる。その後に、バイオセンサに遠心力を加えることによって、試料血液は分析空洞内に移動する。さらに、試料血液は、遠心分離によって成分別に分離する。分離した成分から被分析物を含む成分を分析する。
この構成により、血漿成分または血清成分の抽出を必要とする血液検査に適応できるバイオセンサを提供することができる。
本発明のバイオセンサは、分析装置が遠心力を加えるだけの単純な機構であり、外部ポンプなど大掛かりな周辺装置を不要とすることができるため、在宅機器に適した構造にすることができる。
本発明のバイオセンサは、血液試料の分析位置への移動と、血液の成分別の分離という二つの動作を、ひとつの回転モーターで実現することで、極めて単純な機構とすることができる。
はじめに、本発明のバイオセンサの第1の実施形態について説明する。図2は、本発明のバイオセンサの一実施形態を示す外観図である。バイオセンサ1は、下板20、電極基板10を貼り合わせた構造になっている。図2(A)はバイオセンサを電極基板10側から見た図を示し、図2(B)はバイオセンサを下板20側から見た図を示している。
バイオセンサ1の一方の側面には吸引口21があり、他方の側面には空気口22がある。その吸引口21と空気口22の間には、下板20と電極基板10に挟まれた部分によって形成される隙間が設けられている。この隙間は吸引空洞23であり、一定量の血液等の試料を吸い上げ、一時的に貯める空間である。試料となる血液は吸引口21から毛細管現象により吸い上げられ、吸引空洞23内の空気は空気口22から抜け出る構造になっている。吸引後は、吸引空洞23内は血液によって満たされる。なお、何れの開口部を吸引口あるいは空気口22とするかは任意に定めることができ、符号21の開口部分を空気口とし、符号22の開口部分を吸引口としてもよい。
吸引口21に繋がる吸引空洞部分と、空気口22に繋がる吸引空洞部分は、バイオセンサ1の内部において結合し、分析空洞(図2では示していない)に向かう流路25に繋がっている。
バイオセンサ1の裏面にはコネクタ窓29がある。なお、ここでは、電極基板10側を表側とし、下板20側を裏面として取り扱うが、表裏は便宜的に定めたに過ぎず、表裏の関係は反対に定めても良い。
図2において、コネクタ窓29の奥には、コネクタ端子12(図示していない)が配置されている。コネクタ端子12は、電極基板10に設けられた接点端子であり、分析空洞内に設けた電極と配線によって電気的に接続されている。コネクタ端子12は、外部の分析装置と電気的に接続することによって、電気化学測定を行う。
なお、電極基板10は、後述する電極を配設する基板を構成する他、下板20に対する上板を兼ねている。
図1は、バイオセンサ1の分解斜視図である。下板20は透明プラスチックで形成され、吸引空洞23、分析空洞24および流路25の試料運搬用の溝が形成されている。一定量の血液3が吸引空洞23に吸い上げられた状態を示している。流路25の一部には、狭窄部26を形成する壁部が接合される箇所が設けられている。吸引空洞23に一定量の検査試料となる血液を吸い上げるときには、血液3は狭窄部26の壁部によってせき止められ、吸引空洞23に保持される。これは流路25、分析空洞24には空気抜きの構造がないためである。単に毛細管現象によって分析空洞24内に吸い上げられた状態の血液3は、狭窄部26の壁部の途中まで入ることはあっても、決して狭窄部26を越えて流路25に流れ込むことはない。血液3が狭窄部26を超えて流路25および分析空洞24内へ侵入しるには、後述する遠心力による作用が必要である。
流路25は、吸引空洞23と分析空洞24とを繋ぐ溝である。狭窄部26は、吸引空洞23に隣接した位置の流路25の一部分であり、遠心力を加えた場合に吸引空洞23内の血液3を分析空洞24に流通させることができる狭い隙間を備えている。分析空洞24は下板20に掘られた溝と電極基板10に挟まれた空間である。分析空洞24の上下面は、電極基板10と下板20とによって塞がれ、側面は下板20の壁部によって塞がれる。分析空洞24の側面の一部は、流路25と連通する開口部を有し、この開口部を通して流路25から血液3を流し込む構造になっている。
そして、分析空洞24は、血液を分析するための試薬を備える。血液3は外部から一定以上の大きさの遠心力が印加されると、せき止められていた狭窄部26の壁部を乗り越えて流路25に流れ込み、さらに、流路25を経由して分析空洞24に導かれる。このとき、分析空洞24にあった一部の空気は、流路25および吸引空洞23を通って、分析空洞24の外側に逃がされる。分析空洞24内に流入した血液は、試薬と反応して分析が行われる。
ここで、吸引空洞23、狭窄部26、流路25の配置および方向の関係について説明を加える。遠心力が加えられる方向をアナログ式時計の6時の方向とした場合、血液試料の入口である吸引口21は10時の方向、空気の出口である空気口22は2時の方向にあり、血液試料を分析空洞24に導く流路25は6時方向にある。つまり、吸引空洞23が有する2つの開口部(吸引口21および空気口22)は、遠心力が加わる方向に対して直交する方向で並び、吸引空洞23が流路25と連通する結合部において、各開口部21,22と結合部とを結ぶ方向が、遠心力が加わる方向と成す角度は鈍角である。バイオセンサ1を平面方向から見たとき、吸引空洞23と、流路25及び分析空洞24は、Y字形状を形成する。
この配置および方向の関係により、吸引空洞内の試料は遠心力により流路方向に向かう力を受ける。遠心力が加えられたときに、吸引空洞23に貯めた血液3は、吸引口21と空気口22から漏れることなく、すべて狭窄部26を乗り越えて流路25を通って、分析空洞24に導かれる。
いま便宜上、吸引口21と空気口22を分けて説明したが、ふたつの出入り口は同一形状をしていて、逆の用途でも使用可能であり、2時方向の出入り口から試料を吸い上げることもできる。また、遠心力の方向を6時の方向としたとき、開口部の方向を2時の方向および10時の方向で説明したが、結合部における角度関係が前記した鈍角の関係を形成するのであれば、開口部の方向は上記方向に限られるものではない。
吸引空洞23の断面の一例は、1.5mm(幅)×0.3mm(深さ)程度であり、断面積は0.45mm2 である。狭窄部26の隙間の断面は、1mm(幅)×0.1mm(深さ)程度であり、断面積は0.1mm2と極めて細い隙間とし、狭窄部26の壁部の長さは3mmと比較的長く形成することが望ましい。この数値例は一例であり、狭窄部26の寸法は、所定の遠心力が印加されるまでは血液を吸引空洞23内に止め、所定の大きさ以上の遠心力が印加されたときに、血液を流路25側に流す程度の抵抗を生成する寸法であれば、上記数値に限るものではない。
さらに、下板20の裏面には、コネクタ端子12(図1,図2には示していない)と電気的に接続するためのコネクタ窓29があけられている。電極基板10は、例えばPETのポリエステルフィルムによるFPCであり、コネクタ窓29の上面位置にコネクタ端子12が配置され、分析空洞24の上面位置に電気化学測定のための電極11が配置されている。この電極11は、作用極、対極、参照極を有する。
電極11の作用極はカーボン電極であり、作用極の表面には試薬である酸化還元酵素と電子メディエータを含む酵素反応層11aが形成されている。電極11の対極と参照極は銀−塩化銀電極である。例えば、グルコースを測定するバイオセンサの場合には、酸化還元酵素にはグルコースオキシダーゼが、また電子メディエータにはフェリシアン化カリウムなどがそれぞれ用いられる。
図4は、バイオセンサ1の断面図である。図4の(A)は、血液3を吸引する前の状態を示し、図4の(B)は、血液3が吸引空洞23に吸い上げられた状態を示している。狭窄部26は吸引空洞23に隣接した位置の流路25の一部分に形成される。遠心力を印加することなく、単に毛細管現象によって吸引空洞23に一定量の検査試料となる血液を吸い上げるときには、血液3は狭窄部26の隙間を通過せず、流路25及び分析空洞24に流れ込むことはない。つまり、血液3は隔壁26によってせき止められ、吸引空洞23に保持される。
図4の(C)は、血液が血球成分31と血漿成分32に成分別に遠心分離された状態を示している。外部から遠心力を加えることで、吸引空洞23に貯められた試料である血液3は、狭窄部26の隙間を通過して流路25に流れ出る。そしてさらに、試料である血液は、試薬を備えた酵素反応層11aが形成された分析空洞24に導かれる。分析空洞24内に導入された血液は、外部から印加された遠心力によって血球成分31と血漿成分32に成分別に遠心分離される。複数の酵素反応層11aを遠心力の方向に沿って配置し、各酵素反応層を遠心分離した試料の成分に対応づけることができる。
次に、図2及び図1を用いて、バイオセンサ1の動作について説明する。ここでは、穿刺で得られた血液を吸引してから、遠心機能を備えた分析装置2で分析するまでの動作について説明する。
まず、採血部位である指先に穿刺針を刺して、分析に必要な血液量以上の血液を出す。分析に必要な血液量は例えば約10μLであり、この必要な血液量を吸い上げるために、吸引空洞23の容積はこの必要な血液量と同量になっている。そして、血液(全血)をバイオセンサ1の吸引口21に接触させる。血液3は毛細管現象によって吸引されて、吸引口21から空気口22までの吸引空洞23を満たす。吸引空洞23は、壁面に界面活性剤等の親水性のコーティングを施す等によって親水性として血液を吸い込み易くすることができる。また、メンブレン等を配置する構成としてもよい。
このとき、血液3は狭窄部26の途中まで入ることはあっても、決して狭窄部26の隙間を通過して流路25側に流れ込むことはない。これは、狭窄部26に形成された隙間によって流れの抵抗が高められていることや、狭窄部26よって下流側の空気の排出が制限されているからである。流路25および分析空洞24によって形成される空間は、内部の空気が抜け出る場所がない閉じた空間になっている。そのために、流路25および分析空洞24の内部の空気は抜け出ない構造になっているために、血液3は流路25の方向には流れ込むことはない。
なお、吸引された血液3は、透明プラスチックの下板20の裏面から確認することができる。もしも、血液が十分に吸引されず、吸引空洞23を満たしていない場合には、再度、指先の穿刺部位から血液を出し、血液を吸引口21から追加して吸い上げる。これによって、吸引空洞23は一定量の検査試料である血液を吸い上げることができる。
さらに、前処理反応を必要とする分析では、吸引空洞に試薬を配置することによって、全血を吸引した状態で全血を対象とした前処理を実施することか可能である。例えば、前処理がプロテアーゼ処理のときには、吸引空洞23にプロテアーゼ処理のための試薬であるプロテアーゼを予め配置しておくことによって、血漿タンパク質をアミノ酸にプロテアーゼ処理することができる。この試薬は、例えば、吸引空洞23の内壁に塗布した後に乾燥させておく他に、メンブレンに設けるようにしてもよい。
次に、図5を用いて、バイオセンサ1を取り付ける遠心機能付きの分析装置2の構造について簡単に説明する。ただし、図5は分析装置2の遠心機構部の概略構造だけを示すものであり、電気化学測定部、表示部及び操作スイッチ部などは省略している。
分析装置2の遠心機構部は、回転台40、モーター41、スプリングコネクタ42から構成されている。回転台40は、バイオセンサ1を取り付けて、高速回転する取り付け台である。モーター41は、回転台40及びバイオセンサ1を回転させるための駆動モーターであり、例えば直流モーターであり、回転速度は5000回/分である。スプリングコネクタ42は、バイオセンサ1のコネクタ端子12(図5には示していない)と、分析装置の電気化学測定部とを電気的に接続する。ここで、バイオセンサ1を分析するときには、遠心機能付き分析装置2の回転台40に、吸引空洞23が回転中心側、分析空洞24が回転外周側となるように取り付ける。分析装置2の操作スイッチを押すと、回転台40が回転を始める。回転速度は徐々に上がり、最高回転速度は、例えば5000回/分で、5分間継続する。バイオセンサ1は外部の分析装置2から一定の遠心力を加えられたことになる。回転中心から分析空洞24の先端までの回転半径が7cmの場合には、分析空洞24の先端での遠心力は、重力のおよそ2000倍になる。
図3はバイオセンサ1を遠心分離した状態を示す分解斜視図である。図3を用いて、バイオセンサ1の内部にある血液3の移動過程について説明する。まず、血液3を採取して遠心力を加える前の状態では、図1に示すように、血液3は吸引空洞23を満たしている。このとき血液3は、狭窄部26によってせき止められている。
その後、図5に示すように、バイオセンサ1を取り付けた回転台40を回転させる。すると、バイオセンサ1は、遠心方向、言い換えればアナログ式時計の6時方向に遠心力が加えられる。そうすると、吸引空洞23に貯められた血液3は、10時方向と2時方向の吸引口21と空気口22から漏れることなく、遠心力によってすべての6時方向にある狭窄部26の隙間を通過し、流路25を通って分析空洞24に導かれる。
その後さらに回転台40の回転運動を継続して、外部から一定の遠心力を加えると、血液3は比重によって血球成分31と血漿成分32に遠心分離を始める。例えば回転台40を回転速度5000回/分で、5分間継続して回転すると、血漿成分32の比重は血球成分31に比べて小さいために、分析空洞24では回転半径の遠い方から、血球成分31、血漿成分32の順番に並ぶ。なお、酵素反応層11aは、分析空洞24の血漿成分32が抽出される位置に配置されている(図4参照)。
次に血球成分31と血漿成分32の成分別の分離が終ると、バイオセンサ1を取り付けた回転台40は回転停止する。分析装置2のスプリングコネクタ42は、バイオセンサ1のコネクタ端子12(図3には示していない)に接続している。血漿成分32が位置する分析空洞24の上面位置には、分析するための試薬を備えた酵素反応層11aの作用極が配置されている。これにより、分析空洞24にある酵素反応層11では酵素反応が起こり、バイオセンサ1の電気化学測定を行うことができる。
以上のように、バイオセンサ1は、毛細管現象によって一定量の血液を吸引空洞23に吸い上げる。その後、遠心力を加えると、血液3はせき止めていた狭窄部26の隙間と通過して、試薬を配置した分析空洞24に導かれる。このバイオセンサに遠心力を印加し、遠心分離によって試料血液3から血漿成分32または血清成分が抽出する。これにより、簡便な方法で血液成分を分析することができる。
次に、本発明のバイオセンサが備える狭窄部26について、図6〜図9を用いて説明する。図6,図9は狭窄部の斜視図を示し、図7,図8は狭窄部の断面を示している。
図6は狭窄部の一構成例を示し、図7はこの狭窄部の断面を示している。なお、図6では、下板20側に形成した溝部分を示し、電極基板10等の上側の板状部材は省略している。
図6,7に示す狭窄部26は、下板20から壁部26aを突出させて、電極基板10との間の隙間の間隔を狭めた構成である。壁部26aは、吸引空洞23側において流路面積が漸減する第1の部分26bと、吸引空洞23側と流路25側との間において、所定距離の間、流路面積を狭める第2の部分26cとを備え、この第2の部分26cの下流側において、狭めた流路面積を流路の流路面積に増大する第3の部分26dを備える。狭窄部26の断面形状は、第1の部分26bにおいて緩い傾斜面を形成し、第2の部分26cにおいて所定距離の間平面を形成し、第3の部分26dにおいて第2の部分26cから流路25の面に変化する(図7(A))。
図7(B)は、吸引空洞23に血液3が吸い上げられた状態を示している。毛細管現象によって吸い上げられた血液3は、狭窄部26の第1の部分26bあるいは第2の部分26cの一部まで到達するが、その先までは侵入せずに保持される。
図7(C)、図7(D)は遠心力が印加された状態を示している。遠心力を受けた血液3は、狭窄部26の第2の部分26cの狭い隙間を通過した後(図7(C))、狭窄部26の第3の部分26dから流路25に流入する。流路25内に流入した血液3は、狭窄部26の第3の部分26dによって、吸引空洞23側への逆流が抑制される。
図6,図7で示す構成例は、下板20側に狭窄部26の壁部26aを設けるものであるが、電極基板10(上側の板状部材)側に狭窄部26の壁部26aを設ける構成としてもよい。図8は、電極基板側に狭窄部の壁部を設ける構成例を示している。
図8に示す狭窄部26は、電極基板10から壁部26aを突出させて、下板20との間の隙間の間隔を狭めた構成である。壁部26aは、図6,7で示した構成と同様に、第1の部分26bと第2の部分26cと第3の部分26dを備える。第1の部分26bは緩い傾斜面を形成し、第2の部分26cは所定距離の間平面を形成し、第3の部分26dにおいて第2の部分26cから流路25の面に変化する(図8(A))。
図8(B)は、吸引空洞23に血液3が吸い上げられた状態を示している。毛細管現象によって吸い上げられた血液3は、狭窄部26の第1の部分26bあるいは第2の部分26cの一部まで到達するが、その先までは侵入せずに保持される。
図8(C)、図8(D)は遠心力が印加された状態を示している。遠心力を受けた血液3は、狭窄部26の第2の部分26cの狭い隙間を通過した後(図8(C))、狭窄部26の第3の部分26dから流路25に流入する。流路25内に流入した血液3は、狭窄部26の第3の部分26dによって、吸引空洞23側への逆流が抑制される。
図6〜図8に示した構成は、下板あるいは電極基板の何れか一方に設けた壁部によって狭窄部を形成しているが、下板および電極基板の両方に壁部を設けてもよい。このとき、壁部は、上板および電極基板の対向する部分に設ける構成の他に、流路25で流れる方向で位置をずらして設ける構成としてもよい。
また、狭窄部26は、上記したように、下板あるいは電極基板から対向する電極基板あるいは下板に向かって壁部を突出させる設ける構成に限らず、下板あるいは電極基板の側壁に壁部を設ける構成としてもよい。図9は、下板の側壁に壁部を設ける狭窄部の構成例を示している。
流路25の一部において、下板20の側壁部を突出させて壁部26A,26Bを形成し、この壁部26A,26Bに挟まれる部分によって隙間を形成する。この構成においても、前記した構成と同様に、壁部26A,Bは第1の部分〜第3の部分を備える。第1の部分は緩い傾斜面を形成し、第2の部分は所定距離の間平面を形成し、第3の部分において第2の部分から流路25の面に変化する。
次に、本発明のバイオセンサの他の実施形態について説明する。
図10,図11,図13は、本発明のバイオセンサの第2の実施形態を示す図であり、図10は下板部分の平面図と断面図を示している。なお、第2の実施形態は、前記した第1の実施形態とほぼ同様の構成であるため、ここでは、主に相違する構成について説明し、共通する構成については説明を省略する。
図10,図11,図13において、第2の実施形態のバイオセンサ1は、上板13と下板20との間に、電極基板10を貼り合わせる構造である。ここでは、下板20側に凹部を設けることによって、吸引空洞23、分析空洞24、および流路25を形成し、この下板20上に電極基板10を挟んで上板13を配置し、超音波溶着によって貼り合わせる例を示している。
図10、図11において、斜線を施した部分は、超音波溶着によって下板20と上板13とを貼り合わせる部分を示している。超音波溶着部17は、吸引空洞23、分析空洞24、および流路25等の、試料を内側に保持する部分を囲むように形成される。図10では、この他、バイオセンサの内周部61および外周部60についても超音波溶着によって下板20と上板13を貼り合わせている。
なお、図10、図11に示すように、外周部60の一部に開口部62を形成してもよい。この開口部62は、バイオセンサの内周部62と外周部60との間に挟まれる空間と、バイオセンサの外部と連通し、前記空間内の気体が膨張した場合に、超音波溶着部に与える損傷を防ぐことができる。
また、上記した超音波溶着部の他に、図10、図11中の符号28の部分で超音波溶着してもよい。この溶着部28は、上板13、電極基板10、および下板20の位置合わせに用いる他に、後述するOリングやパッキング部材等の漏れ防止部の弾性によって、上板13と下板20との間隔が拡がるのを押させて固定するために用いられる。なお、電極基板10には、下板20の溶着部28を通すための開口部14が形成されている。
電極基板10の一方の面には、前記した電極11と、この電極11で形成した測定電流を外部に導出するためのコネクタ端子12とが形成され、この電極11とコネクタ端子12との間は配線により接続されている。コネクタ端子12は、スプリングコネクタ42等の外部端子と接続することによって、外部の分析装置と接続される。下板20は、コネクタ端子12と対応する位置にコネクタ窓29が形成される。外部端子は、このコネクタ窓29を通してコネクタ端子12と電気的に接続することができる。
コネクタ端子12は電極11と配線を介して接続されており、また、電極11は分析空洞24内に配置されているため、分析空洞24内に導入された試料は、毛細管現象等によって、下板と電極基板との接合面や配線を介してコネクタ端子12まで浸透し、コネクタ端子12を短絡等の故障の原因となるおそれがある。
そこで、本発明のバイオセンサ1は、コネクタ端子12での短絡故障を防ぐ構成として、コネクタ端子12の配置位置を、遠心力の作用方向において、少なくとも分析空洞24よりも遠心力の中心に近い側とする。図10、図11に示す構成では、遠心力を印加したときに吸引空洞23内の血液が飛び出さないように、吸引空洞23は遠心力の中心に近い側に配置され、分析空洞24は遠心力の中心から遠い側に配置される。ここで、コネクタ端子12を少なくとも分析空洞24よりも遠心力の中心に近い側に配置することによって、遠心力を印加した際には、遠心力は、分析空洞24内の試料血液をコネクタ端子12から離す方向に作用する。これによって、分析空洞24からの試料血液がコネクタ端子12に到達することを防いでいる。
また、本発明のバイオセンサ1は、コネクタ端子12での短絡故障を防ぐ構成として、コネクタ端子12を囲むようにOリングやパッキング部材等の漏れ防止部50のシールを設ける。図10に示す漏れ防止部50は、複数のコネクタ端子12を一括して囲む構成例を示し、図11に示す漏れ防止部50は、複数のコネクタ端子12を個別に囲む構成例を示している。また、複数のコネクタをまとめて囲む構成では、コネクタの配置等に応じて一つの漏れ防止部によって任意の個数のコネクタを囲むようにしてもよい。この漏れ防止部50によって、分析空洞24から下板と電極基板との接合面や配線を介して侵入する試料血液がコネクタ端子12に到達することを防いでいる。
図12は、超音波溶着による上板と下板の結合を説明するための概略断面図である。図12(A)は超音波溶着前の状態を示し、図12(B)は超音波溶着後の状態を示している。
図12(A)において、合成樹脂製の下板20は、超音波溶着を行う部分に上板13に向かって突出する突起部27aを備える。上板13を下板20に近接させると、上板13は下板20の突出部27aに当接する。この当接した状態で、圧力を印加しながら超音波を出射すると、図12(B)に示すように、突出部27aが変形して上板13と溶着する。なお、突出変形部27bは、変形することによって上板13と下板20とで挟まれた空間部分の容積が減少する。この空間部分が密閉されている場合には、空間部分の内圧が上昇して溶着部分に変形や解離を生じさせるおそれがある。しかしながら、前記したように、バイオセンサの外周部に開口部62を設けることによって、この溶着部分の変形や解離を防止することができる。
図13は、図11に示す構成において、外周部60を除いた構成例である。分析空洞24を形成する外周部63を最外周部としている。
次に、本発明のバイオセンサの第3の実施形態について、図14〜図17を用いて説明する。第3の実施形態は、電極基板の、分析空洞24と対向する面に電極を配置し、反対側の面にコネクタを配置する。この配置構成によって、上板13に設けたコネクタ窓を介してコネクタと外部装置との接続を行う。
図14に示す構成例は、前記した図11,13の構成において、電極基板10の一方に面に電極11を設け、反対側の面にコネクタ端子12を設ける。電極11とコネクタ端子12との間は、電極基板10内に設けた配線によって電気的接続を行う。上板13には、コネクタ端子12と対応する位置にコネクタ窓15を備える。外部装置と接続されたスプリングコネクタ42は、このコネクタ窓15を通してコネクタ端子12と電気的に接触し、電極11からの測定電流を導出する。
吸引空洞23や分析空洞24からの試料血液がコネクタ端子12に侵入することを防ぐために、上板13にコネクタ端子12を囲むようにOリングやパッキング部材等の漏れ防止部16を設けてもよい。なお、図14(A),図14(B)は、上板および下板の平面図を示し、図14(C)は図14(B)中において一点鎖線で示す部分の下板の断面を示している。
図15に示す構成例は、図14の構成と同様に、電極基板10の一方に面に電極11を設け、反対側の面にコネクタ端子12を設ける。また、上板13に、コネクタ端子12と対応する位置にコネクタ窓15を設け、このコネクタ窓15を通してコネクタ端子12とスプリングコネクタ42とを電気的に接触し、電極11からの測定電流を導出する。
電極11とコネクタ端子12とが電極基板10を介して反対側の面に設ける構成では、電極11からコネクタ端子12に試料血液の伝わりは少ないと考えられる。そこで、図15に示す構成例では、図14に設けたOリングやパッキング部材等の漏れ防止部を省いた構成としている。なお、図15(A),図15(B)は、上板および下板の平面図を示し、図15(C)は図15(B)中において一点鎖線で示す部分の下板の断面を示している。
図16,図17に示す構成例は、図15の構成と同様に、電極基板10の一方に面に電極11を設け、反対側の面にコネクタ端子12を設けると共に、上板13に、コネクタ端子12と対応する位置にコネクタ窓15を設け、このコネクタ窓15を通してコネクタ端子12とスプリングコネクタ42とを電気的に接触し、電極11からの測定電流を導出する。さらに、図16,図17の構成では、電極基板10を上板13内に組み込む構成である。
図16に示す構成では、コネクタ窓15を、電極基板10を挟んで電極11と対向する位置に設ける例を示し、図17に示す構成では、コネクタ窓15を、電極11よりも遠心力の中心に近い位置に設ける例を示している。なお、図16(A),図16(B),図17(A),図17(B)は、上板および下板の平面図を示し、図16(C),図17(C)は図16(B),図17(B)中において一点鎖線で示す部分の下板の断面を示している。
また、本発明のバイオセンサへの遠心力の印加は、前記図5で示した回転台をモーター駆動する構成に限らず、バイオセンサを手動で振ることによっても行うことができる。図18は、バイオセンサに対する手動による遠心力の印加を説明するため図である。図18(A)において、バイオセンサ1の吸引空洞23が形成される端部に開口部64を設け、この開口部64に紐70の一端を結びつける。
この紐70の他端を手で持って、バイオセンサ1を回転させることによって、バイオセンサ1に遠心力を印加する。また、バイオセンサ1の吸引空洞23が形成される端部を手で持ち、バイオセンサ1を振ることによってバイオセンサ1に遠心力を印加してもよい。
なお、この手動による場合には、バイオセンサ1に印加される遠心力は、モーター駆動するよりも小さくなるため、試料血液は血球成分31と血漿成分32に成分別に遠心分離されないと予想される。
そこで、この手動によるバイオセンサへの遠心力の印加は、モーター駆動する機構が不要であるため簡易な分析が可能であり、遠心分離を要さない分析に適用することができる。
本発明のバイオセンサの分解斜視図である。 本発明のバイオセンサを斜め上方と下方から見た外観図である。 本発明のバイオセンサの遠心分離した状態を示す分解斜視図である。 本発明のバイオセンサを示す断面図である。 本発明のバイオセンサを取り付けた遠心機能の概略構造図である。 本発明のバイオセンサが備える狭窄部の斜視図である。 本発明のバイオセンサが備える狭窄部の断面図である。 本発明のバイオセンサが備える狭窄部の断面図である。 本発明のバイオセンサが備える狭窄部の斜視図である 本発明のバイオセンサの第2の実施形態の下板の平面図および断面図である。 本発明のバイオセンサの第2の実施形態を説明するための図である。 超音波溶着による上板と下板の結合を説明するための概略断面図である。 本発明のバイオセンサの第3の実施形態を説明するための図である。 本発明のバイオセンサの第3の実施形態を説明するための図である。 本発明のバイオセンサの第3の実施形態を説明するための図である。 本発明のバイオセンサの第3の実施形態を説明するための図である。 本発明のバイオセンサの第3の実施形態を説明するための図である。 バイオセンサに対する手動による遠心力の印加を説明するための図である。
符号の説明
1 バイオセンサ
2 分析装置
3 血液
10 電極基板
11 電極
11a 酵素反応層
12 コネクタ端子
13 上板
14 開口部
15 コネクタ窓部
16 漏れ防止部
20 下板
21 吸引口
22 空気口
23 吸引空洞
24 分析空洞
25 流路
26 狭窄部
26a 壁部
26b 第1の部分
26c 第2の部分
26d 第3の部分
27 溶着部
27a 突出部
27b 突出変形部
28 溶着部
29 コネクタ窓
31 血球成分
32 血漿成分
40 回転台
41 モーター
42 スプリングコネクタ
50 漏れ防止部
60 外周部
61 内周部
62 開口部
63 外周部
64 開口部
70 紐

Claims (20)

  1. 毛細管現象によって一定量の試料を吸い上げる吸引空洞を備えたバイオセンサであって、前記吸引空洞と試薬を備える分析空洞とを繋ぐ流路を有し、
    前記流路は、流路面積を狭めた隙間を備えた狭窄部を有し、
    前記狭窄部は、前記吸引空洞に試料を吸い上げるときに、前記試料を前記吸引空洞に保持し、外部から遠心力が加わるときに、前記吸引空洞に貯められた試料を、前記隙間を通して前記分析空洞に流通させることを特徴とする、バイオセンサ。
  2. 前記分析空洞は、電気化学測定のための酵素反応層を有することを特徴とする請求項1に記載のバイオセンサ。
  3. 前記分析空洞は、複数の酵素反応層を遠心力の方向に沿って配置し、各酵素反応層は遠心分離した試料の成分に対応すること特徴とする、請求項2に記載のバイオセンサ。
  4. 前記吸引空洞は、遠心力が加わる方向に対して直交する方向に並列する2つの開口部と、前記流路と連通する結合部とを有し、
    前記結合部において、各開口部と結合部とを結ぶ方向と、遠心力が加わる方向とが成す角度は鈍角であり、吸引空洞内の試料は遠心力により前記流路方向に向かう力を受けることを特徴とする請求項1から請求項3の少なくとも何れか一つに記載のバイオセンサ。
  5. 前記試料を前処理するための試薬を、前記吸引空洞に備えることを特徴とする請求項1から請求項4の少なくとも何れか一つに記載のバイオセンサ。
  6. 前記吸引空洞、流路、および分析空洞は、一方又は両方の対向面に凹凸部が形成された2枚の板状部材を対向して貼り合わせることで形成されることを特徴とする、請求項1から請求項5の少なくとも何れか一つに記載のバイオセンサ。
  7. 前記2枚の板状部材の間に、前記分析空洞内に露出する電極を有した電極基板を挟むことを特徴とする、請求項6に記載のバイオセンサ。
  8. 前記板状部材の少なくとも一方は、前記電極基板の電極と電気的に接続される外部接続用コネクタを外部回路と電気的に接続するための窓部を備えることを特徴とする、請求項7に記載のバイオセンサ。
  9. 前記板状部材は、前記窓部の周囲を囲むOリング又はパッキング部材を備えることを特徴とする、請求項8に記載のバイオセンサ。
  10. 前記板状部材は、複数の窓部を一括して囲む一つのOリング又はパッキング部材を備えることを特徴とする、請求項9に記載のバイオセンサ。
  11. 前記板状部材は、複数の窓部をそれぞれ個別に囲む複数のOリング又はパッキング部材を備えることを特徴とする、請求項9に記載のバイオセンサ。
  12. 前記外部接続用コネクタは、遠心力が加わる方向において、少なくとも分析空洞よりも遠心力の中心に近い位置に配置することを特徴とする、請求項7に記載のバイオセンサ。
  13. 前記吸引空洞、流路、分析空洞の外周部分を超音波溶着することを特徴とする、請求項1から請求項12の少なくとも何れか一つに記載のバイオセンサ。
  14. 前記板状部材の最外周部分を超音波溶着することを特徴とする、請求項1から請求項13の少なくとも何れか一つに記載のバイオセンサ。
  15. 前記吸引空洞の壁面は親水性コーティングが施されることを特徴とする、請求項1から請求項14の少なくとも何れか一つに記載のバイオセンサ。
  16. 前記親水性コーティングは界面活性剤の塗布により形成することを特徴とする、請求項15に記載のバイオセンサ。
  17. 前記狭窄部は疎水性であることを特徴とする、請求項1から請求項16の少なくとも何れか一つに記載のバイオセンサ。
  18. 前記狭窄部は疎水性の合成樹脂で形成することを特徴とする、請求項17に記載のバイオセンサ。
  19. 前記狭窄部に撥水処理を施すことを特徴とする、請求項17に記載のバイオセンサ。
  20. 前記狭窄部は、
    吸引空洞側において流路面積が漸減する第1の部分と、
    前記吸引空洞側と前記流路側との間において、所定距離の間、流路面積を狭める第2の部分とを備え、
    前記第2の部分の後方において、前記狭められた流路面積から流路の流路面積に増大することを特徴とする、請求項1から請求項19の少なくとも何れか一つに記載のバイオセンサ。
JP2006063791A 2005-03-29 2006-03-09 バイオセンサ Expired - Fee Related JP4693657B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006063791A JP4693657B2 (ja) 2005-03-29 2006-03-09 バイオセンサ
US11/390,476 US8128795B2 (en) 2005-03-29 2006-03-28 Biosensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005094089 2005-03-29
JP2005094089 2005-03-29
JP2006063791A JP4693657B2 (ja) 2005-03-29 2006-03-09 バイオセンサ

Publications (2)

Publication Number Publication Date
JP2006308561A true JP2006308561A (ja) 2006-11-09
JP4693657B2 JP4693657B2 (ja) 2011-06-01

Family

ID=37233377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063791A Expired - Fee Related JP4693657B2 (ja) 2005-03-29 2006-03-09 バイオセンサ

Country Status (2)

Country Link
US (1) US8128795B2 (ja)
JP (1) JP4693657B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171874A (ja) * 2008-01-23 2009-08-06 Citizen Holdings Co Ltd 糖化タンパク質濃度測定方法及びバイオセンサ
KR101004989B1 (ko) 2009-11-25 2010-12-29 이현정 바이오 센서
JP5068825B2 (ja) * 2007-11-05 2012-11-07 日本化薬株式会社 バイオセンサ
JPWO2012131903A1 (ja) * 2011-03-29 2014-07-24 株式会社テクノメデイカ バイオセンサ
JP2019211212A (ja) * 2018-05-31 2019-12-12 佳則 山口 マイクロサンプリングチップ及びそのマイクロサンプリングチップを用いる検査装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5604862B2 (ja) * 2009-01-09 2014-10-15 ソニー株式会社 流路デバイス、複素誘電率測定装置及び誘電サイトメトリー装置
KR101104398B1 (ko) * 2009-06-02 2012-01-16 주식회사 세라젬메디시스 생체물질을 측정하는 장치 및 그 제조 방법
KR102283738B1 (ko) * 2014-05-30 2021-08-02 마이크로플루이딕스 인터내셔날 코퍼레이션 캐비테이션이 감소되는 상호작용 챔버
WO2017122314A1 (ja) * 2016-01-14 2017-07-20 株式会社島津製作所 試料採取装置、その試料採取装置用ホルダ及びその試料採取装置を用いた試料前処理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107080A (ja) * 2001-09-30 2003-04-09 Jun Kikuchi 血液分析装置ならびに血液分析方法
WO2004062801A1 (en) * 2003-01-14 2004-07-29 Diagnoswiss S.A. Multi-layered electrochemical microfluidic sensor comprising reagent on porous layer
WO2004074846A1 (ja) * 2003-02-19 2004-09-02 Japan Science And Technology Agency 血液分析装置及び血液分析方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4618476A (en) * 1984-02-10 1986-10-21 Eastman Kodak Company Capillary transport device having speed and meniscus control means
JP2512843B2 (ja) * 1991-09-24 1996-07-03 株式会社日立製作所 炭酸ガスセンサ
US5726026A (en) * 1992-05-01 1998-03-10 Trustees Of The University Of Pennsylvania Mesoscale sample preparation device and systems for determination and processing of analytes
US20010055812A1 (en) * 1995-12-05 2001-12-27 Alec Mian Devices and method for using centripetal acceleration to drive fluid movement in a microfluidics system with on-board informatics
US6368871B1 (en) * 1997-08-13 2002-04-09 Cepheid Non-planar microstructures for manipulation of fluid samples
US5997817A (en) 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US6338790B1 (en) * 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
JP2004529312A (ja) * 1999-06-18 2004-09-24 ガメラ バイオサイエンス コーポレイション 小型化均一アッセイ用のデバイスおよび方法
JP3803078B2 (ja) 2002-09-20 2006-08-02 独立行政法人科学技術振興機構 血液分析装置及び血漿分離方法
US7125711B2 (en) * 2002-12-19 2006-10-24 Bayer Healthcare Llc Method and apparatus for splitting of specimens into multiple channels of a microfluidic device
US7347617B2 (en) * 2003-08-19 2008-03-25 Siemens Healthcare Diagnostics Inc. Mixing in microfluidic devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107080A (ja) * 2001-09-30 2003-04-09 Jun Kikuchi 血液分析装置ならびに血液分析方法
WO2004062801A1 (en) * 2003-01-14 2004-07-29 Diagnoswiss S.A. Multi-layered electrochemical microfluidic sensor comprising reagent on porous layer
WO2004074846A1 (ja) * 2003-02-19 2004-09-02 Japan Science And Technology Agency 血液分析装置及び血液分析方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5068825B2 (ja) * 2007-11-05 2012-11-07 日本化薬株式会社 バイオセンサ
US8951395B2 (en) 2007-11-05 2015-02-10 Nippon Kayaku Kabushiki Kaisha Biosensor
JP2009171874A (ja) * 2008-01-23 2009-08-06 Citizen Holdings Co Ltd 糖化タンパク質濃度測定方法及びバイオセンサ
KR101004989B1 (ko) 2009-11-25 2010-12-29 이현정 바이오 센서
WO2011065729A2 (ko) * 2009-11-25 2011-06-03 주식회사 테크넬 바이오 센서
WO2011065729A3 (ko) * 2009-11-25 2011-10-27 주식회사 테크넬 바이오 센서
JPWO2012131903A1 (ja) * 2011-03-29 2014-07-24 株式会社テクノメデイカ バイオセンサ
JP5818275B2 (ja) * 2011-03-29 2015-11-18 株式会社テクノメデイカ バイオセンサ
JP2019211212A (ja) * 2018-05-31 2019-12-12 佳則 山口 マイクロサンプリングチップ及びそのマイクロサンプリングチップを用いる検査装置

Also Published As

Publication number Publication date
US20060243590A1 (en) 2006-11-02
US8128795B2 (en) 2012-03-06
JP4693657B2 (ja) 2011-06-01

Similar Documents

Publication Publication Date Title
JP4693657B2 (ja) バイオセンサ
JP6431555B2 (ja) 生体液分離装置
US8999242B2 (en) Method and apparatus for monitoring alteration of flow characteristics in a liquid sample
JP6177996B2 (ja) 生体液収集装置および生体液分離試験システム
JP4480170B2 (ja) 血液分析装置及び血液分析方法
RU2462717C2 (ru) Устройство и способ разделения и анализа крови
CA2978737C (en) Point-of-care testing system for blood gases and co-oximetry
JP3792156B2 (ja) 液体試料において凝血を分析する装置と方法
JP4504289B2 (ja) バイオセンサ
KR102200167B1 (ko) 체액의 샘플을 분석하기 위한 테스트 시스템
JP2017516996A (ja) 臨床現場即時検査用の分光法・バイオセンサー結合型システム
KR20020087448A (ko) 유체 진단 장치의 모세관 유동 제어
WO2004027391A1 (ja) 血液分析装置及び血漿分離方法
JP2016518925A (ja) 生体液サンプリング移送装置並びに生体液分離及び検査システム
JP2008020287A (ja) バイオセンサ
CN210447020U (zh) 一种用于糖化血红蛋白分析仪自动进样的指尖采血器
Egawa et al. Biosensor
KR101915727B1 (ko) 시료 채취 기구
EP3607311B1 (en) Lab-on-a-chip diagnosis device
US11112400B2 (en) Blood characteristic measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4693657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees