JP2006303756A - 撮像装置及び撮像方法 - Google Patents

撮像装置及び撮像方法 Download PDF

Info

Publication number
JP2006303756A
JP2006303756A JP2005120647A JP2005120647A JP2006303756A JP 2006303756 A JP2006303756 A JP 2006303756A JP 2005120647 A JP2005120647 A JP 2005120647A JP 2005120647 A JP2005120647 A JP 2005120647A JP 2006303756 A JP2006303756 A JP 2006303756A
Authority
JP
Japan
Prior art keywords
incident light
imaging
region
luminance
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005120647A
Other languages
English (en)
Inventor
Sadahito Katagiri
禎人 片桐
Kiyoshi Takagi
潔 高木
Kazumasa Takahashi
一誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Photo Imaging Inc
Original Assignee
Konica Minolta Photo Imaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Photo Imaging Inc filed Critical Konica Minolta Photo Imaging Inc
Priority to JP2005120647A priority Critical patent/JP2006303756A/ja
Publication of JP2006303756A publication Critical patent/JP2006303756A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】 線形変換モードと対数変換モードとを入射光量に基づいて切り換える撮像素子を用いる場合であっても、輝度差に関らずコントラストの良い良好な画像を得る。
【解決手段】 撮像装置1は、入射光を電気信号に線形変換する線形変換モードと、対数変換する対数変換モードとを入射光量に基づいて切り換える複数の画素G11〜Gmnを有する撮像素子2と、撮像素子2を制御する制御装置46とを備える。制御装置46は、撮影領域9の輝度情報に基づいて当該撮影領域9を高輝度領域9b,低輝度領域9aに区分し、線形変換モードと対数変換モードとの境界となる変曲点Qを、高輝度領域9b,低輝度領域9aに対応する画素G11〜Gmnの間で変えて設定する。
【選択図】図2

Description

本発明は、入射光を電気信号に変換する撮像素子を有する撮像装置と、前記撮像素子を用いた撮像方法とに関する。
従来、入射光を電気信号に変換する撮像素子を用いてデジタル画像を撮影する撮像装置では、輝度差の大きいシーン(例えば、背景が明るく主被写体が暗い、いわゆる逆光シーンなど)を撮影すると、電気信号に変換可能な光量のダイナミックレンジよりも、輝度差に対応する光量の範囲が広くなってしまう結果、背景と主被写体双方に適正な露光が行えずに、背景が白とびした画像が得られたり、逆に、主被写体が黒つぶれした画像が得られたりするという問題が生じていた。
近年、このような問題を解決する手法として、2つの手法が提案されている。
即ち、第1の手法は、前記撮像素子として、入射光量に基づいて入射光を電気信号に線形変換する線形変換モードと、対数変換する対数変換モードとを切り換えるものを用いる手法である(例えば、特許文献1,2参照)。この手法によれば、線形変換モードのみを行う撮像素子を用いる場合と比較して電気信号のダイナミックレンジが広くなる分、広い輝度範囲の輝度情報が電気信号で表現されるため、輝度飽和の少ない画像を撮影することができる。
また、第2の手法は、異なる露光条件で2枚の画像を連続撮影し、輝度飽和せずに撮影された領域を各画像から抜き出して合成することで1枚の画像を得る手法である(例えば、特許文献3参照)。この手法によれば、輝度飽和のない領域同志が1枚の画像に合成されるため、輝度飽和のない画像を得ることができる。
特開2002−77733号公報 特開2004−88312号公報 特開2004−159211号公報
しかしながら、単純に上記第1の手法で画像を撮影すると、被写体の輝度差によっては輝度情報を電気信号で表現しきれず、画像のコントラストが悪くなってしまう。具体的には、例えば快晴時に屋外で撮影を行う場合には、主被写体の輝度と背景の輝度との輝度差が大きくなるため、一般的には高輝度部分の輝度飽和を防止する観点から、対数変換モードの割合が撮像素子全体で大きくなるよう撮影条件を設定して撮影する結果、線形変換モードの割合が小さくなって主被写体部分の輝度情報が電気信号で表現されにくくなり、コントラストが悪くなってしまう。
また、上記第2の手法で画像を撮影すると、1回目の撮影と2回目の撮影との間にタイムラグがあるため、この間に主被写体が移動したり輝度が変化したりすると、2枚の撮影画像間で被写体の同一性が保たれず、良好な画像を得ることができない。なお、この問題を解決するためには、露光条件の異なる複数の撮像素子を用いて2枚の画像を同時に撮影して合成することも考えられるが、この手法では正確な画像を得ることはできるものの、撮像装置が大型化してしまうため、実用性に乏しい。
本発明の課題は、線形変換モードと対数変換モードとを入射光量に基づいて切り換える撮像素子を用いる場合であっても、輝度差に関らずコントラストの良い良好な画像を得ることができる撮像装置及び撮像方法を提供することである。
請求項1記載の発明は、撮像装置において、
入射光を電気信号に線形変換する線形変換モードと、対数変換する対数変換モードとを入射光量に基づいて切り換える複数の画素を有する撮像素子と、
前記撮像素子を制御する制御装置とを備え、
前記制御装置は、
撮影領域の輝度情報に基づいて当該撮影領域を少なくとも2つの小領域に区分し、
前記線形変換モードと前記対数変換モードとの境界となる変曲点を、各小領域に対応する前記複数の画素の間で変えて設定することを特徴とする。
ここで、各小領域に対応する複数の画素の間で変曲点を変えるとは、1つの小領域に対応する画素と、他の小領域に対応する画素との間で変曲点を変えることを言う。
請求項1記載の発明によれば、輝度情報に基づいて撮影領域を少なくとも2つの小領域に区分し、各小領域に対応する画素の間で変曲点を変えて設定するので、電気信号で表現可能な輝度範囲を小領域間で変えることができる、つまり、異なる撮影条件で各小領域を同時に撮影することができる。従って、前記第1の手法を単純に用いる従来の場合と異なり、線形変換モードと対数変換モードとを入射光量に基づいて切り換える撮像素子を用いる場合であっても、被写体の輝度差に関らずコントラストの良い画像を撮影することができる。また、このように1回の撮影でコントラストの良い画像を撮影することができるため、前記第2の手法を用いる従来の場合と異なり、良好な画像を得ることができる。また、露光条件の異なる複数の撮像素子を用いて2枚の画像を同時に撮影して合成する場合と異なり、撮像装置の大型化を防止することができる。
請求項2記載の発明は、請求項1記載の撮像装置において、
前記制御装置は、予備撮影によって撮影領域で得られた輝度分布を前記輝度情報として用いることを特徴とする。
請求項2記載の発明によれば、予備撮影によって撮影領域で得られた輝度分布に基づいて撮影領域を小領域に区分するので、輝度による撮影領域の区分を正確に行うことができる。従って、区分された小領域に対応する各変曲点での撮影により、コントラストの良い画像を確実に撮影することができる。
請求項3記載の発明は、請求項1または2記載の撮像装置において、
撮影時に発光する照射装置を備え、
前記制御装置は、前記照射装置からの光を撮影領域で反射させた予備撮影によって当該撮影領域で得られた反射光分布を、前記輝度情報として用いることを特徴とする。
請求項3記載の発明によれば、照射装置からの光を撮影領域で反射させた予備撮影によって当該撮影領域で得られた反射光分布に基づいて撮影領域を小領域に区分するので、高反射率の被写体を撮影する場合であっても、輝度による撮影領域の区分を正確に行うことができる。従って、区分された小領域に対応する各変曲点での撮影により、コントラストの良い画像を確実に撮影することができる。
請求項4記載の発明は、請求項1〜3の何れか一項に記載の撮像装置において、
前記撮像素子は、前記変曲点に対応する変曲入射光量未満の入射光量で線形変換モードになるとともに、前記変曲入射光量以上の入射光量で対数変換モードとなり、
前記制御装置は、輝度値の高い前記小領域に対応する画素ほど、前記変曲入射光量が小さくなるように変曲点を設定することを特徴とする。
ここで、変曲入射光量未満の入射光量で線形変換モードを、変曲入射光量以上の入射光量で対数変換モードを用いる撮像素子により、対数変換モードで撮影する場合には、線形変換モードで撮影する場合と比較して、上述のように輝度飽和の少ない画像、特に白飛びのない画像を撮影することができるものの、高輝度領域の輝度飽和を防止すべく対数変換モードの割合を撮像素子全体で大きくするよう変曲点を設定して撮影すると、低輝度の撮影領域では輝度情報が電気信号で表現されにくくなり、コントラストが悪くなってしまう。また、線形変換モードで撮影する場合には、対数変換モードで撮影する場合と異なり、輝度差の小さい撮影領域では輝度情報を電気信号で確実に表現できるため、コントラストの良い画像、特に黒潰れのない画像を撮影することができるものの、輝度差の大きい撮影領域では画像に白飛びの生じる場合がある。
請求項4記載の発明によれば、輝度値の高い小領域に対応する画素ほど変曲入射光量が小さくなるように変曲点を設定するので、輝度値の低い小領域では、輝度値の高い小領域と比較して線形変換モードの用いられる割合が大きくなる結果、コントラストの良い画像を撮影することができる。また、輝度値の高い小領域では輝度値の低い小領域と比較して対数変換モードの用いられる割合が大きくなる結果、白飛びのない画像を撮影することができる。
請求項5記載の発明は、撮像方法において、
入射光を電気信号に線形変換する線形変換モードと、対数変換する対数変換モードとを入射光量に基づいて切り換える複数の画素を有する撮像素子を用いて、
前記線形変換モードと前記対数変換モードとの境界となる変曲点を設定する予備工程と、
前記予備工程で設定された変曲点で画像を撮影する撮影工程とを行い、
前記予備工程では、
撮影領域の輝度情報に基づいて当該撮影領域を少なくとも2つの小領域に区分した後、
前記線形変換モードと前記対数変換モードとの境界となる変曲点を、各小領域に対応する前記複数の画素の間で変えて設定することを特徴とする。
請求項5記載の発明によれば、輝度情報に基づいて撮影領域を少なくとも2つの小領域に区分し、各小領域に対応する画素の間で変曲点を変えて設定することにより、電気信号で表現可能な輝度範囲を小領域間で変えることができる、つまり、異なる撮影条件で各小領域を同時に撮影することができる。従って、前記第1の手法を単純に用いる従来の場合と異なり、線形変換モードと対数変換モードとを入射光量に基づいて切り換える撮像素子を用いる場合であっても、被写体の輝度差に関らずコントラストの良い画像を撮影することができる。また、このように1回の撮影でコントラストの良い画像を撮影することができるため、前記第2の手法を用いる従来の場合と異なり、良好な画像を得ることができる。また、露光条件の異なる複数の撮像素子を用いて2枚の画像を同時に撮影して合成する場合と異なり、撮像装置の大型化を防止することができる。
請求項6記載の発明は、請求項5記載の撮像方法において、
前記予備工程では、画像を予備撮影し、この予備撮影によって撮影領域で得られた輝度分布を前記輝度情報として用いることを特徴とする。
請求項6記載の発明によれば、予備撮影によって撮影領域で得られた輝度分布に基づいて撮影領域を小領域に区分することにより、輝度による撮影領域の区分を正確に行うことができる。従って、区分された小領域に対応する各変曲点での撮影により、コントラストの良い画像を確実に撮影することができる。
請求項7記載の発明は、請求項5または6記載の撮像方法において、
撮影時に発光する照射装置を用い、
前記予備工程では、前記照射装置からの光を撮影領域で反射させて画像を予備撮影するとともに、この予備撮影によって撮影領域で得られた反射光分布を前記輝度情報として用い、
前記撮影工程では、前記照射装置を用いて画像を撮影することを特徴とする。
請求項7記載の発明によれば、照射装置からの光を撮影領域で反射させた予備撮影によって当該撮影領域で得られた反射光分布に基づいて撮影領域を小領域に区分することにより、高反射率の被写体を撮影する場合であっても、輝度による撮影領域の区分を正確に行うことができる。従って、区分された小領域に対応する各変曲点での撮影により、コントラストの良い画像を確実に撮影することができる。
請求項8記載の発明は、請求項5〜7の何れか一項に記載の撮像方法において、
前記撮像素子として、前記変曲点に対応する変曲入射光量未満の入射光量で線形変換モードとなるとともに、前記変曲入射光量以上の入射光量で対数変換モードとなるものを用い、
前記予備工程では、輝度値の高い前記小領域に対応する画素ほど、前記変曲入射光量が小さくなるように変曲点を設定することを特徴とする。
請求項8記載の発明によれば、輝度値の高い小領域に対応する画素ほど変曲入射光量が小さくなるように変曲点を設定することにより、輝度値の低い小領域では、輝度値の高い小領域と比較して線形変換モードの用いられる割合が大きくなる結果、コントラストの良い画像を撮影することができる。また、輝度値の高い小領域では輝度値の低い小領域と比較して対数変換モードの用いられる割合が大きくなる結果、白飛びのない画像を撮影することができる。
請求項1,5記載の発明によれば、前記第1の手法を単純に用いる従来の場合と異なり、線形変換モードと対数変換モードとを入射光量に基づいて切り換える撮像素子を用いる場合であっても、被写体の輝度差に関らずコントラストの良い画像を撮影することができる。また、前記第2の手法を用いる従来の場合と異なり、良好な画像を得ることができる。
請求項2〜4,6〜8記載の発明によれば、請求項1,5記載の発明と同様の効果を得ることができるのは勿論のこと、コントラストの良い画像を確実に撮影することができる。
[実施の形態]
以下、図面を参照しつつ、本発明の実施の形態について説明する。なお、本実施の形態においては、本発明に係る撮像装置を、コンパクトタイプのデジタルカメラとして説明する。
図1(a)は、本発明に係る撮像装置1の外観を示す図である。
この図に示すように、撮像装置1が備える筐体10の前面中央部には、レンズユニット11が配設されている。
レンズユニット11は被写体からの光を所定の焦点に集光させるものであり、図2に示すように、レンズ群11a及び絞り11bを備えている。これらレンズ群11a及び絞り11bとしては、従来より公知のものが用いられている。絞り11bには、露光制御処理部47が接続されており、レンズ群11aによって集光される光の量を調整するようになっている。
レンズユニット11の上部には、図1(a)に示すように、照射装置12及び調光センサ13が配設されている。
照射装置12は、撮影時に光を発する補助光源であり、被写体の撮影時に周囲環境の輝度が不足する場合に、所定の発光タイミング及び発光量で被写体に光を照射するようになっている。このような照射装置12としてはストロボや高輝度LED等があり、本実施の形態においてはストロボが用いられている。なお、照射装置12は、筐体10に外付けされていても良い。
調光センサ13は、照射装置12の発光量を検知するものである。
また、筐体10の側面には、USB端子14が設けられている。このUSB端子14にはUSBケーブルが接続可能となっており、これにより撮像装置1はパーソナルコンピュータなどの外部機器(図示せず)と接続可能となっている。
また、筐体10の上面には、電源スイッチ15及びレリーズスイッチ16が配設されている。電源スイッチ15は撮像装置1の電源をON(起動)又はOFF(起動停止)するためのスイッチであり、レリーズスイッチ16はシャッタレリーズを行うためのスイッチである。なお、本実施の形態においては、レリーズスイッチ16は、「半押し」によって撮像装置1の各部に撮影の準備動作を開始させ、「全押し」によって撮影動作を開始させるようになっている。撮影の準備動作としては、撮影に必要なパラメータを取得するための動作があり、具体的には被写体の測距などがある。
また、筐体10の背面には、図1(b)に示すように、モニタ17が設けられている。このモニタ17は、LCD(Liquid Crystal Display)やCRT(Cathode Ray Tube)などによって構成されており、被写体のプレビュー画面や撮影画像の他、ユーザが機能選択するためのメニュー画面などを表示するようになっている。
モニタ17の近傍には、複数の操作キー18,…及び光学式ファインダ19が配設されている。
操作キー18には、操作者から各種の操作指示が入力されるようになっている。光学式ファインダ19は、筐体10の背面側から操作者に被写体を確認させるためのものである。
続いて、撮像装置1の内部構成について説明する。
図1,図2に示すように、撮像装置1は、レンズユニット11を介して入射光を受光する撮像素子2を、筐体10の内側に備えている。
撮像素子2は、図3に示すように、行列配置(マトリクス配置)された複数の画素G11〜Gmn(但し、n,mは1以上の整数)を有している。
各画素G11〜Gmnは、入射光を光電変換して電気信号を出力するものである。これら画素G11〜Gmnは、入射光量に基づいて電気信号への変換モードを切り換えるようになっており、より詳細には、図4に示すように、入射光を電気信号に線形変換する線形変換モードと、対数変換する対数変換モードとを変曲点Qを境界として切り換えるようになっている。本実施の形態においては、各画素G11〜Gmnは、変曲点Qに対応する入射光量(以下、変曲入射光量とする)th未満の入射光量に対しては線形変換モードを、変曲入射光量th以上の入射光量に対しては対数変換モードを行うようになっている。ここで、本実施の形態においては、入射光を電気信号に線形変換や対数変換するとは、光量の時間積分値を線形的な変化態様の電気信号に変換することや、対数的な変化態様の電気信号に変換することである。また、線形変換モードと対数変換モードとの境界となる変曲点Qは、撮像素子2における画素G11〜Gmnの駆動条件、例えば撮影時での露光時間や制御電圧などによって変化し、変曲点Qが変化して変曲入射光量thが大きくなると、線形変換モードの行われる割合が大きくなるようになっている。具体的には、図5に示すように、制御電圧(後述の信号φVPSの電圧値VL,VHの差)が「V1」〜「V3」の順に大きくなるほど、変曲点Qに対応する出力信号値(以下、変曲出力信号値Hとする)と変曲入射光量thとは「VI」〜「IV」の順に大きくなり、線形変換モードの行われる割合が大きくなる。なお、図5中、「a」〜「d」,「d1」〜「d3」はそれぞれ定数である。このうち、制御電圧V1〜V3の駆動条件下での対数変換モードにおける入出力特性の切片d1〜d3は、当該制御電圧V1〜V3に対して比例関係を有している。
これら画素G11〜Gmnのレンズ群11a側には、それぞれレッド(Red)、グリーン(Green)及びブルー(Blue)のうち何れか1色のフィルタ(図示せず)が配設されている。また、画素G11〜Gmnには、図3に示すように、電源ライン20や信号印加ラインLA1〜LAn,LB1〜LBn,LC1〜LCn、信号読出ラインLD1〜LDmが接続されている。なお、画素G11〜Gmnには、クロックラインやバイアス供給ライン等のラインも接続されているが、図3ではこれらの図示を省略している。
信号印加ラインLA1〜LAn,LB1〜LBn,LC1〜LCnは画素G11〜Gmnに対して信号φv,φVD,φVPS(図6,図7参照)を与えるようになっている。これら信号印加ラインLA1〜LAn,LB1〜LBn,LC1〜LCnには、垂直走査回路21が接続されている。この垂直走査回路21は、後述の信号生成部48(図2参照)からの信号に基づいて信号印加ラインLA1〜LAn,LB1〜LBn,LC1〜LCnに信号を印加するものであり、信号を印加する対象の信号印加ラインLA1〜LAn,LB1〜LBn,LC1〜LCnをX方向に順次切り換えるようになっている。
信号読出ラインLD1〜LDmには、各画素G11〜Gmnで生成された電気信号が導出されるようになっている。これら信号読出ラインLD1〜LDmには定電流源D1〜Dm及び選択回路S1〜Smが接続されている。
定電流源D1〜Dmは、画素G11〜Gmnから信号読出ラインLD1〜LDmに読み出された電気信号を増幅するものである。この定電流源D1〜Dmの一端(図中下側の端部)には、直流電圧VPSが印加されるようになっている。
選択回路S1〜Smは、各信号読出ラインLD1〜LDmを介して画素G11〜Gmnから与えられるノイズ信号と撮像時の電気信号とをサンプルホールドするものである。これら選択回路S1〜Smには、水平走査回路22及び補正回路23が接続されている。水平走査回路22は、電気信号をサンプルホールドして補正回路23に送信する選択回路S1〜Smを、Y方向に順次切り換えるものである。また、補正回路23は、選択回路S1〜Smから送信されるノイズ信号及び撮像時の電気信号に基づき、当該電気信号からノイズ信号を除去するものである。
なお、選択回路S1〜Sm及び補正回路23としては、特開平2001−223948号公報に開示のものを用いることができる。また、本実施の形態においては、選択回路S1〜Smの全体に対して補正回路23を1つのみ設けることとして説明するが、選択回路S1〜Smのそれぞれに対して補正回路23を1つずつ設けることとしても良い。
以上の撮像素子2には、図2に示すように、アンプ30及びADコンバータ31を介して、黒基準補正部32及び信号処理部33がこの順に接続されている。
黒基準補正部32は、最低輝度値となる黒レベルを基準値に補正するようになっている。これにより、撮像素子2のダイナミックレンジにより黒レベルが異なっても、A/Dコンバータ31から出力されるRGB各信号の信号レベルに対して、黒レベルとなる信号レベルが減算されて黒基準補正が行われるようになっている。
信号処理部33は、撮像素子2の各画素G11〜Gmnから対数変換モードで出力される電気信号に対して線形変換を行うことにより、撮像素子2からの出力信号を線形変換モード由来の状態に統一するようになっている。なお、この信号処理部33はルックアップテーブルを用いて変換を行うこととしてもよいし、指数変換する等の演算によって変換を行うこととしてもよい。
この信号処理部33には、画像処理部4が接続されている。
画像処理部4は、画素G11〜Gmnからの電気信号全体によって構成される画像データに対して画像処理を行うものであり、AWB(Auto White Balance)処理部40、色補間部41、色補正部42、階調変換部43及び色空間変換部44を備えている。これらAWB処理部40、色補間部41、色補正部42、階調変換部43及び色空間変換部44は、信号処理部33に対してこの順に接続されている。
AWB処理部40は画像データに対してホワイトバランス処理を行うものであり、色補間部41は、同色の前記フィルタが設けられた複数の近接画素からの電気信号に基づいて、これら近接画素間に位置する画素について、この色の電気信号を補間演算するものである。色補正部42は画像データの色合いを補正するものであり、より詳細には、各色の電気信号を他の色の電気信号に基づき画素毎に補正するものである。階調変換部43は画像データの階調変換を行うものであり、色空間変換部44はRGB信号をYCbCr信号に変換するものである。
この画像処理部4には、前記モニタ17と記憶部60とが接続されている。記憶部60は記録用のメモリであり、信号処理部33から入力された画像データを記録する画像データ記録領域を有している。この記憶部60は、例えばフラッシュメモリやハードディスク等によって内臓型に構成されていても良いし、メモリカードやメモリスティック、フロッピー(登録商標)ディスク等によって着脱可能に構成されていても良い。
また、信号処理部33には、評価値算出部5及び制御装置46がこの順に接続されている。
評価値算出部5はAWB処理部40でのホワイトバランス処理(AWB処理)に用いられるAWB評価値や、露光制御処理部47での露出制御処理(AE処理)に用いられるAE評価値を算出するものである。なお、ここで算出されるAE評価値には、被写体の輝度分布についての情報が含まれている。
制御装置46は、撮像装置1の各部を制御するものであり、上述のアンプ30、黒基準補正部32、画像処理部4、照射装置12、操作キー18,…、モニタ17及び記憶部60等と接続されている。また、制御装置46は、前記露光制御処理部47を介して絞り11bと接続され、信号生成部48を介して撮像素子2及びADコンバータ31と接続されている。更に、制御装置46は、電源部61と接続されている。
信号生成部48は、制御装置46からの撮影制御信号に基づいて所定のタイミングパルス(画素駆動信号や水平同期信号、垂直同期信号、水平走査回路駆動信号、垂直走査回路駆動信号など)を生成し、撮像素子2に出力するものである。この信号生成部48は、A/Dコンバータ31において用いられるA/D変換用のクロックも生成するようになっている。
電源部61は、制御装置46などに電力を供給するものである。
続いて、本実施の形態における画素G11〜Gmnについて説明する。
各画素G11〜Gmnは、図6に示すように、フォトダイオードP、トランジスタT1〜T6及びキャパシタCを備えている。なお、トランジスタT1〜T6は、PチャネルのMOSトランジスタである。
フォトダイオードPには、レンズ群11a及び絞り11bを通過した光が当たるようになっている。このフォトダイオードPのアノードPAには直流電圧VPDが印加されており、カソードPKにはトランジスタT1のドレインT1Dが接続されている。
トランジスタT1のゲートT1Gには信号φSが入力されるようになっており、ソースT1SにはトランジスタT2のゲートT2G及びドレインT2Dが接続されている。
このトランジスタT2のソースT2Sには信号印加ラインLC(図3のLC1〜LCnに相当)が接続されており、この信号印加ラインLCから信号φVPSが入力されるようになっている。ここで、図7に示すように、信号φVPSは2値の電圧信号であり、より詳細には、入射光量が変曲入射光量thを超えたときにトランジスタT2をサブスレッショルド領域で動作させるための電圧値VLと、トランジスタT2を導通状態にする電圧値VHとの2つの値をとるようになっている。
また、トランジスタT1のソースT1SにはトランジスタT3のゲートT3Gが接続されている。
このトランジスタT3のドレインT3Dには、直流電圧VPDが印加されるようになっている。また、トランジスタT3のソースT3Sには、キャパシタCの一端と、トランジスタT5のドレインT5Dと、トランジスタT4のゲートT4Gとが接続されている。
キャパシタCの他端には、信号印加ラインLB(図3のLB1〜LBnに相当)が接続されており、この信号印加ラインLBから信号φVDが与えられるようになっている。ここで、図7に示すように、信号φVDは3値の電圧信号であり、より詳細には、キャパシタCを積分動作させる際の電圧値Vhと、光電変換された電気信号読み出し時の電圧値Vmと、ノイズ信号読み出し時の電圧値Vlとの3つの値をとるようになっている。
トランジスタT5のソースT5Sには直流電圧VRGが、ゲートT5Gには信号φRSが入力されるようになっている。
トランジスタT4のドレインT4Dには、トランジスタT3のドレインT3Dと同様に直流電圧VPDが印加されるようになっており、ソースT4Sには、トランジスタT6のドレインT6Dが接続されている。
このトランジスタT6のソースT6Sには、信号読出ラインLD(図3のLD1〜LDmに相当)が接続されており、ゲートT6Gには、信号印加ラインLA(図3のLA1〜LAnに相当)から信号φVが入力されるようになっている。
続いて、各画素G11〜Gmn及び垂直走査回路21の動作について説明する。
まず、図7に示すように、垂直走査回路21が画素G11〜Gmnのリセット動作を行う。
具体的には、信号φSがLow、信号φVがHi、信号φVPSがVL、信号φRSがHi、信号φVDがVhとなっている状態から、垂直走査回路21が、パルス信号φVと、電圧値Vmのパルス信号φVDとを画素G11〜Gmnに与えて電気信号を信号読出ラインLDに出力させた後、信号φSをHiとしてトランジスタT1をOFFにする。
次に、垂直走査回路21が信号φVPSをVHとすることで、トランジスタT2のゲートT2G及びドレインT2D、並びにトランジスタT3のゲートT3Gに蓄積された負の電荷を速やかに再結合させる。また、垂直走査回路21が信号φRSをLowとしてトランジスタT5をONにすることにより、キャパシタCとトランジスタT4のゲートT4Gとの接続ノードの電圧を初期化する。
次に、垂直走査回路21が信号φVPSをVLとすることでトランジスタT2のポテンシャル状態を基の状態に戻した後、信号φRSをHiにして、トランジスタT5をOFFにする。次に、キャパシタCが積分動作を行う。これにより、キャパシタCとトランジスタT4のゲートT4Gとの接続ノードの電圧が、リセットされたトランジスタT2のゲート電圧に応じたものとなる。
次に、垂直走査回路21がパルス信号φVをトランジスタT6のゲートT6Gに与えることでトランジスタT6をONにするとともに、電圧値Vlのパルス信号φVDをキャパシタCに印加する。このとき、トランジスタT4がソースフォロワ型のMOSトランジスタとして動作するため、信号読出ラインLDにはノイズ信号が電圧信号として現れる。
そして、垂直走査回路21がパルス信号φRSをトランジスタT5のゲートT5Gに与えてキャパシタCとトランジスタT4のゲートT4Gとの接続ノードの電圧をリセットした後、信号φSをLowにしてトランジスタT1をONにする。これにより、リセット動作が完了し、画素G11〜Gmnが撮像可能状態となる。
次に、画素G11〜Gmnが撮像動作を行う。
具体的には、フォトダイオードPより入射光量に応じた光電荷がトランジスタT2に流れ込むと、光電荷がトランジスタT2のゲートT2Gに蓄積される。
ここで、被写体の輝度が低く、フォトダイオードPに対する入射光量が前記変曲入射光量thよりも少ない場合には、トランジスタT2はカットオフ状態であるので、トランジスタT2のゲートT2Gに蓄積された光電荷量に応じた電圧が当該ゲートT2Gに現れる。そのため、トランジスタT3のゲートT3Gには、入射光を線形変換した電圧が現れる。
一方、被写体の輝度が高く、フォトダイオードPに対する入射光量が前記変曲入射光量thよりも多い場合には、トランジスタT2がサブスレッショルド領域で動作を行う。そのため、トランジスタT3のゲートT3Gには、入射光を自然対数で対数変換した電圧が現れる。
トランジスタT3のゲートT3Gに電圧が現れると、その電圧量に応じてキャパシタCからトランジスタT3のドレインT3Dに流れる電流が増幅される。そのため、トランジスタT4のゲートT4Gには、フォトダイオードPの入射光を線形変換または対数変換した電圧が現れる。
次に、垂直走査回路21が信号φVDの電圧値をVmとするとともに、信号φVをLowとする。これにより、トランジスタT4のゲート電圧に応じたソース電流が、トランジスタT6を介して信号読出ラインLDへ流れる。このとき、トランジスタT4がソースフォロワ型のMOSトランジスタとして動作するため、信号読出ラインLDには撮像時の電気信号が電圧信号として現れる。ここで、トランジスタT4,T6を介して出力される電気信号の信号値はトランジスタT4のゲート電圧に比例した値となるため、当該信号値はフォトダイオードPの入射光を線形変換または対数変換した値となる。
そして、垂直走査回路21が信号φVDの電圧値をVhとするとともに、信号φVをHiとすることにより、撮像動作が終了する。
ここで、上述の図5で示したように撮像素子2に対する制御電圧が大きくなるほど、つまり、信号φVPSの撮像時の電圧値VLが低くなってリセット時の電圧値VHとの差が大きくなるほど、変曲入射光量thが大きくなって線形変換モードの割合が大きくなるのは、制御電圧が大きくなるほど、トランジスタT2のゲートT2GとソースT2Sとの間のポテンシャルの差が大きくなり、トランジスタT2がカットオフ状態で動作する被写体輝度の割合、つまり線形変換する被写体輝度の割合が大きくなるためである。また、図5では図示していないが、撮像素子2の露光時間が短くなる場合や、温度が低くなる場合にも、線形変換する被写体輝度の割合は大きくなる。そのため、これら制御電圧や露光時間、温度などを変化させることによって、変曲点Qをシフトさせる結果、画像信号のダイナミックレンジや、前記変曲点Qでの前記変曲入射光量th,前記変曲出力信号値Hを制御することができる。具体的には、例えば、被写体の輝度範囲が狭い場合には電圧値VLを低くし、変曲点Qの変曲入射光量thを大きくして線形変換する輝度範囲を広くする一方、被写体の輝度範囲が広い場合には電圧値VLを高くし、変曲点Qの変曲入射光量thを小さくして対数変換する輝度範囲を広くすることで、画素G11〜Gmnの光電変換特性を被写体の特性に合わせることができる。更に、電圧値VLを最小とするときには常に画素G11〜Gmnを線形変換する状態とし、電圧値VLを最大とするときには常に画素G11〜Gmnを対数変換する状態とすることもできる。
続いて、本発明に係る撮像方法について、図8を参照しながら説明する。
まず、撮像装置1が予備撮影、いわゆるプレビュー撮影を行う(ステップS1)。具体的には、まず制御装置46が、入射光量に関らず全ての画素G11〜Gmnが線形変換モードで光電変換を行うよう変曲点Qを設定する。次に、撮像素子2が各画素G11〜Gmnへの入射光を光電変換し、線形変換モードまたは対数変換モード由来の電気信号をアナログ信号として出力する。このとき、制御装置46は、撮影領域全体で白飛びが生じないよう絞り量やシャッタースピード、撮像素子2の感度を調整する。次に、撮像素子2から出力されたアナログ信号をアンプ30が増幅し、ADコンバータ31がデジタル信号に変換する。次に、黒基準補正部32が黒基準補正を行った後、当該デジタル信号を信号処理部33が線形変換モード由来の状態に統一する。次に、信号処理部33から出力される電気信号に基づいて評価値算出部5が前記AWB評価値,AE評価値を算出する。次に、AWB評価値や、前記黒基準補正部32で設定された前記最低レベル等に基づいて制御装置46がAWB処理部40を制御し、信号処理部33から出力される画像データに対してホワイトバランス処理を行わせる。そして、AWB処理部40から出力される画像データに基づいて色補間部41、色補正部42、階調変換部43及び色空間変換部44がそれぞれ画像処理を行った後、画像データをモニタ17で表示することにより、予備撮影を終了する。
次に、評価値算出部5で算出されたAE評価値に基づいて制御装置46が露光制御処理部47を制御し、撮像素子2に対する露光量を調節させる。また、図9に示すように、制御装置46が、AE評価値から撮影領域9の輝度分布を導出した後、この輝度分布に基づいて撮影領域を2つの小領域、つまり低輝度領域9a及び高輝度領域9bに分割する(ステップS2)。このように、予備撮影によって撮影領域で得られた輝度分布に基づいて撮影領域9を低輝度領域9a,高輝度領域9bに区分することにより、輝度による撮影領域9の区分を正確に行うことができる。なお、高輝度領域9bは低輝度領域9aよりも平均輝度の高い領域であり、本実施の形態においては、主被写体の背景の領域となっている。
次に、制御装置46は、予備撮影時の絞り量やシャッタースピード、撮像素子2の感度等から低輝度領域9aの平均輝度値EvAと高輝度領域9bの平均輝度値EvBとを算出し、これら平均輝度値EvA,EvBが以下の(1)式及び(2)式を満たすか否かを判別する(ステップS3)。
EvB≧13 …(1)
EvB−EvA≧6 …(2)
なお、本実施の形態においては、(1)式の右辺の値は、快晴時に屋外で撮影した場合での背景の下限輝度値となっている。但し、これら(1)式,(2)式の右辺の値は他の値としても良い。
このステップS3において平均輝度値EvA,EvBが(1)式及び(2)式を満たすとき(ステップS3;Yes)、例えばEvA=8、EvB=14のときには、制御装置46は、高輝度領域に対応する画素G11〜Gmnと、低輝度領域に対応する画素G11〜Gmnとの間で変曲点を変えて設定する(ステップS4、予備工程)。より詳細には、図10に示すように、制御装置46は、高輝度領域9bでは低輝度領域9aと比較して前記変曲入射光量thが小さくなるように変曲点Qを設定する。
このように、低輝度領域9a,高輝度領域9bに対応する画素G11〜Gmnの間で変曲点Qを変えて設定することにより、電気信号で表現可能な輝度範囲が低輝度領域9a,高輝度領域9bの間で変わる結果、後述の撮影工程では、異なる撮影条件で低輝度領域9a,高輝度領域9bが同時に撮影されることとなる。具体的には、上述のように、輝度値の高い小領域に対応する画素G11〜Gmnほど変曲入射光量thが小さくなるように変曲点Qを変えて設定することにより、図10に示すように、高輝度領域9bでは低輝度領域9aと比較して対数変換モードが多く用いられて撮影が行われ、低輝度領域9aでは高輝度領域9bと比較して線形変換モードが多く用いられて撮影が行われることとなる。なお、高輝度領域9bでは対数変換モードのみ、低輝度領域9aでは線形変換モードのみが用いられるようにしても良い。
そして、設定された変曲点Qを用いて撮像装置1が画像を撮影する(ステップS5、撮影工程)。なお、この撮影工程は、予備工程で設定された変曲点Qを用いる以外には、前記ステップS1と同様である。また、この撮影工程の後には、記憶部60が画像データを記憶することとしても良い。
一方、前記ステップS3において平均輝度値EvA,EvBが(1)式または(2)式を満たさないとき(ステップS3;No)には、制御装置46が全ての画素G11〜Gmnに対して同一の変曲点Qを設定した後、撮像装置1が画像を撮影する(ステップS5)。
以上の撮像方法によれば、平均輝度値EvA,EvBが(1)式及び(2)式を満たすときには、低輝度領域9aに対する撮影で、線形変換モードの用いられる割合を大きくすることができるため、コントラストの良い画像を撮影することができる。つまり、図9に示すように、従来の前記第1の手法を単純に用いて撮影した画像と異なり、線形変換モードと対数変換モードとを入射光量に基づいて切り換える撮像素子2を用いる場合であっても、被写体の輝度差に関らずコントラストの良い画像を撮影することができる。また、高輝度領域9bに対する撮影で、対数変換モードの用いられる割合を大きくすることができるため、白飛びのない画像を撮影することができる。
また、1回の撮影でコントラストの良い画像を撮影することができるため、前記第2の手法を用いる従来の場合と異なり、良好な画像を得ることができる。
また、露光条件の異なる複数の撮像素子を用いて2枚の画像を同時に撮影して合成する場合と異なり、撮像装置1の大型化を防止することができる。
一方、平均輝度値EvA,EvBが(1)式及び(2)式を満たさないときには、全ての画素G11〜Gmnに対して同一の変曲点Qを用いて撮像装置1が画像を撮影するので、複数の変曲点Qを用いる場合と比較して、処理を高速化することができる。
[実施の形態の変形例]
次に、上記実施の形態の変形例について説明する。なお、上記実施の形態と同様の構成要素には同一の符号を付し、その説明を省略する。
本変形例における撮像装置1は、前記ステップS1において、照射装置12を消灯時,点灯時に各1回の予備撮影を行うようになっている。なお、照射装置12の照射量は、主被写体までの距離に応じて所定の量に設定されることが好ましい。
また、図11に示すように、制御装置46は、2つの画像データの差を取ることによって、照射装置12からの光に起因する反射光分布を撮影領域9A内で算出した後、画像データの差が大きく、白飛びが生じているものと判断される領域を高輝度領域9c、差が小さい領域を低輝度領域9dとするようになっている。
また、この撮像装置1は、前記ステップS5において、照射装置12を点灯させて撮影を行うようになっている。
このような撮像装置1によれば、照射装置12からの光を撮影領域9Aで反射させた予備撮影によって当該撮影領域9Aで得られた反射光分布に基づいて当該撮影領域9Aを高輝度領域9c、つまり反射領域と低輝度領域9dとに区分することにより、主被写体の反射率が高い場合であっても、輝度による撮影領域9Aの区分を正確に行うことができる。従って、上記実施の形態と同様の効果を得ることができる。
なお、上記実施の形態及び変形例においては、本発明に係る撮像装置をコンパクトタイプのデジタルカメラとして説明したが、一眼レフタイプのデジタルカメラとしても良いし、カメラ付携帯電話や車載カメラなどの撮影機能を備えた電子機器としても良いし、携帯電話や車載カメラなどの電子機器に組み込まれるカメラユニット等としても良い。
また、画素G11〜Gmnは図6のような構成を有することとして説明したが、線形変換モードと対数変換モードとを切り換え可能であれば、例えば上述の特許文献1,2に示されるような構成を有することとしても良い。
更に、各画素G11〜GmnにRGBフィルタを設けることとして説明したが、シアン(Cyan)、マゼンタ(Magenta)及びイエロー(Yellow)などの他の色フィルタを設けることとしても良い。
本発明に係る撮像装置の外観を示す図であり、(a)は正面側からの斜視図、(b)は背面側からの斜視図である。 本発明に係る撮像装置の概略構成を示すブロック図である。 撮像素子の構成を示すブロック図である。 画素及び信号処理部の動作を説明するための図である。 制御電圧と変曲点との関係を示す図である。 画素の構成を示す回路図である。 画素のリセット動作を示すタイミングチャートである。 本発明に係る撮像方法を示す図である。 本発明に係る撮像方法を用いた撮影画像を示す図である。 低輝度領域及び高輝度領域での画素の変換特性を示す図である。 高反射率の主被写体を示す図である。
符号の説明
1 撮像装置
2 撮像素子
9 撮影領域
9a,9c 高輝度領域(小領域)
9b、9d 低輝度領域(小領域)
12 照射装置
46 制御装置
11〜Gmn 画素
Q 変曲点

Claims (8)

  1. 入射光を電気信号に線形変換する線形変換モードと、対数変換する対数変換モードとを入射光量に基づいて切り換える複数の画素を有する撮像素子と、
    前記撮像素子を制御する制御装置とを備え、
    前記制御装置は、
    撮影領域の輝度情報に基づいて当該撮影領域を少なくとも2つの小領域に区分し、
    前記線形変換モードと前記対数変換モードとの境界となる変曲点を、各小領域に対応する前記複数の画素の間で変えて設定することを特徴とする撮像装置。
  2. 請求項1記載の撮像装置において、
    前記制御装置は、予備撮影によって撮影領域で得られた輝度分布を前記輝度情報として用いることを特徴とする撮像装置。
  3. 請求項1または2記載の撮像装置において、
    撮影時に発光する照射装置を備え、
    前記制御装置は、前記照射装置からの光を撮影領域で反射させた予備撮影によって当該撮影領域で得られた反射光分布を、前記輝度情報として用いることを特徴とする撮像装置。
  4. 請求項1〜3の何れか一項に記載の撮像装置において、
    前記撮像素子は、前記変曲点に対応する変曲入射光量未満の入射光量で線形変換モードになるとともに、前記変曲入射光量以上の入射光量で対数変換モードとなり、
    前記制御装置は、輝度値の高い前記小領域に対応する画素ほど、前記変曲入射光量が小さくなるように変曲点を設定することを特徴とする撮像装置。
  5. 入射光を電気信号に線形変換する線形変換モードと、対数変換する対数変換モードとを入射光量に基づいて切り換える複数の画素を有する撮像素子を用いて、
    前記線形変換モードと前記対数変換モードとの境界となる変曲点を設定する予備工程と、
    前記予備工程で設定された変曲点で画像を撮影する撮影工程とを行い、
    前記予備工程では、
    撮影領域の輝度情報に基づいて当該撮影領域を少なくとも2つの小領域に区分した後、
    前記線形変換モードと前記対数変換モードとの境界となる変曲点を、各小領域に対応する前記複数の画素の間で変えて設定することを特徴とする撮像方法。
  6. 請求項5記載の撮像方法において、
    前記予備工程では、画像を予備撮影し、この予備撮影によって撮影領域で得られた輝度分布を前記輝度情報として用いることを特徴とする撮像方法。
  7. 請求項5または6記載の撮像方法において、
    撮影時に発光する照射装置を用い、
    前記予備工程では、前記照射装置からの光を撮影領域で反射させて画像を予備撮影するとともに、この予備撮影によって撮影領域で得られた反射光分布を前記輝度情報として用い、
    前記撮影工程では、前記照射装置を用いて画像を撮影することを特徴とする撮像方法。
  8. 請求項5〜7の何れか一項に記載の撮像方法において、
    前記撮像素子として、前記変曲点に対応する変曲入射光量未満の入射光量で線形変換モードとなるとともに、前記変曲入射光量以上の入射光量で対数変換モードとなるものを用い、
    前記予備工程では、輝度値の高い前記小領域に対応する画素ほど、前記変曲入射光量が小さくなるように変曲点を設定することを特徴とする撮像方法。
JP2005120647A 2005-04-19 2005-04-19 撮像装置及び撮像方法 Pending JP2006303756A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005120647A JP2006303756A (ja) 2005-04-19 2005-04-19 撮像装置及び撮像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005120647A JP2006303756A (ja) 2005-04-19 2005-04-19 撮像装置及び撮像方法

Publications (1)

Publication Number Publication Date
JP2006303756A true JP2006303756A (ja) 2006-11-02

Family

ID=37471540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005120647A Pending JP2006303756A (ja) 2005-04-19 2005-04-19 撮像装置及び撮像方法

Country Status (1)

Country Link
JP (1) JP2006303756A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138714A (ja) * 2010-12-24 2012-07-19 Toshiba Corp 電子機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138714A (ja) * 2010-12-24 2012-07-19 Toshiba Corp 電子機器
US8797408B2 (en) 2010-12-24 2014-08-05 Kabushiki Kaisha Toshiba Electronic apparatus

Similar Documents

Publication Publication Date Title
TWI524709B (zh) 影像擷取設備、影像擷取設備之控制方法及電子裝置
JP4556722B2 (ja) 撮像装置
JP2010263647A (ja) 撮像装置及び撮像方法
JP4843009B2 (ja) カメラのレンズ制御方法及び装置、並びにカメラ
US20170318208A1 (en) Imaging device, imaging method, and image display device
JP4735051B2 (ja) 撮像装置
JP2008085634A (ja) 撮像装置及び画像処理方法
KR101230200B1 (ko) 촬상 장치
CN111434104A (zh) 图像处理装置、摄像装置、图像处理方法及程序
JPWO2006103880A1 (ja) 撮像装置
JP4285668B2 (ja) 撮像装置及びその露出制御方法並びに記録媒体
JP4458194B2 (ja) 撮像装置及びその露出制御方法並びに記録媒体
JP2006332936A (ja) 撮像装置
JP4335648B2 (ja) デジタルカメラ及びデジタルカメラの撮像方法
JP2006303755A (ja) 撮像装置及び撮像方法
JP2006279714A (ja) 撮像装置及び撮像方法
JP2006303756A (ja) 撮像装置及び撮像方法
JP4274207B2 (ja) 撮像装置及びその露出制御方法並びに記録媒体
JP5045788B2 (ja) 撮像装置
JP2007067491A (ja) 撮像装置
JP2006345301A (ja) 撮像装置
JP2004228636A (ja) 撮像装置及び撮像装置の撮影条件設定方法
JP2004198712A (ja) 撮像装置及び撮像方法
JP2004173044A (ja) 撮像装置
JP2007110492A (ja) 撮像装置