JP2006303398A - Hole-filled multilayered printed wiring board and manufacturing method thereof, and two-stage curing type resin composition used for manufacturing method thereof - Google Patents

Hole-filled multilayered printed wiring board and manufacturing method thereof, and two-stage curing type resin composition used for manufacturing method thereof Download PDF

Info

Publication number
JP2006303398A
JP2006303398A JP2005147287A JP2005147287A JP2006303398A JP 2006303398 A JP2006303398 A JP 2006303398A JP 2005147287 A JP2005147287 A JP 2005147287A JP 2005147287 A JP2005147287 A JP 2005147287A JP 2006303398 A JP2006303398 A JP 2006303398A
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
hole
resin composition
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005147287A
Other languages
Japanese (ja)
Other versions
JP4735815B2 (en
Inventor
Kiyoshi Sato
清 佐藤
Kazunori Kitamura
和憲 北村
Ryuta Hakoda
竜太 箱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
San Ei Kagaku Co Ltd
Original Assignee
San Ei Kagaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by San Ei Kagaku Co Ltd filed Critical San Ei Kagaku Co Ltd
Priority to JP2005147287A priority Critical patent/JP4735815B2/en
Publication of JP2006303398A publication Critical patent/JP2006303398A/en
Application granted granted Critical
Publication of JP4735815B2 publication Critical patent/JP4735815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a polishing cost and shorten a manufacturing process to prevent a substrate from being deformed (changes in the dimensions) with polishing, by omitting the polishing process of a hole-filled surface in the manufacturing method of the hole-filled multilayered printed wiring board. <P>SOLUTION: In the manufacturing method of the hole-filled multilayered printed wiring board, a two-stage curing type resin composition is filled in the through-holes of a both-sided printed wiring board; a first stage curing of the filled resin is performed by heating the board at 100-200°C or irradiation; and a conductive pattern is formed from the copper foil of a surface layer, after the both-sided printed wiring board has been sandwiched between (a) a copper foil with resin and the copper foil with the resin or (b) the copper foil with the resin and a prepreg is lamination-pressed by heating. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、穴埋め多層プリント配線板及びその製造方法、並びにその製造方法にのみ専ら使用される二段階硬化型樹脂組成物に関する。  The present invention relates to a hole-filled multilayer printed wiring board and a method for producing the same, and a two-stage curable resin composition used exclusively for the method for producing the same.

本願発明者等は先に、多層プリント配線板におけるスルーホールの穴埋め材料として好適な光・熱二段階硬化型樹脂組成物、並びにこの樹脂にて穴埋めした多層プリント配線板及びその製造方法等について開示した(特許文献1)。  The inventors of the present application previously disclosed a light / heat two-stage curable resin composition suitable as a material for filling a through hole in a multilayer printed wiring board, a multilayer printed wiring board filled with this resin, a method for manufacturing the same, and the like. (Patent Document 1).

上記穴埋め多層プリント配線板は、穴埋めした硬化樹脂部分に凹み、クラック等が発生せず、耐半田性に優れ、金属部分の腐食等が発生しないという優れたものである。このような穴埋め多層プリント配線板を使用することにより、ショートや電気接続不良を起こさない高信頼性及び長寿命の電気製品を製造することができる。  The above-mentioned hole-filled multilayer printed wiring board is excellent in that the cured resin portion filled in the hole is not dented, cracks or the like are generated, the solder resistance is excellent, and the metal portion is not corroded. By using such a hole-filled multilayer printed wiring board, it is possible to manufacture a highly reliable and long-life electric product that does not cause a short circuit or poor electrical connection.

上記穴埋め多層プリント配線板は、例えば、両面銅張積層板のスルーホールに二段階硬化型樹脂組成物を充填し、UV照射により上記充填樹脂の第一段硬化を行い、両面銅張積層板表面を研磨し、両面銅箔を導体パターン化し、樹脂付き銅箔を表面被覆し、加熱下に積層プレスして第一段硬化樹脂の第二段熱硬化を行うと同時に樹脂付き銅箔の樹脂の熱硬化を行い、その後樹脂付き銅箔の銅箔より導体パターンを形成することにより、製造することができる。  The hole-filled multilayer printed wiring board is, for example, filled with a two-stage curable resin composition in a through-hole of a double-sided copper-clad laminate, and subjected to the first-stage curing of the filled resin by UV irradiation, and the double-sided copper-clad laminate surface The two-sided copper foil is made into a conductor pattern, the surface of the resin-coated copper foil is coated, and the second stage thermosetting of the first-stage cured resin is performed by laminating and pressing under heating. It can manufacture by heat-curing and forming a conductor pattern from the copper foil of copper foil with resin after that.

特開2003−105061号公報。JP2003-105061A.

本願発明者等は、上記特許文献1に記載の穴埋め多層プリント配線板の製造方法を更に発展させ、当該発明の長所を損なうことなく、研磨工程を省くことを目的とする。  The inventors of the present application further develop the method for manufacturing a hole-filled multilayer printed wiring board described in Patent Document 1 above, and an object thereof is to omit the polishing step without impairing the advantages of the invention.

これにより、研磨コストを削減し且つ製造工程を短縮することができる。更には、研磨による基板の変形(寸法変化)を避けることができる。  As a result, the polishing cost can be reduced and the manufacturing process can be shortened. Furthermore, deformation (dimensional change) of the substrate due to polishing can be avoided.

上記課題を解決するため、本発明者等が鋭意、検討した結果、以下の本発明を成すに到った。
即ち、本発明は、両面プリント配線板の貫通穴に二段階硬化型樹脂組成物を充填し、100〜200℃の加熱若しくはUV照射により上記充填樹脂の第一段硬化を行い、両面プリント配線板をア)樹脂付き銅箔と樹脂付き銅箔、又はイ)樹脂付き銅箔とプリプレグとの間に挟んで、第二段硬化温度以上にて積層プレスした後、表層の銅箔より導体パターンを形成する穴埋め多層プリント配線板の製造方法を提供する。
In order to solve the above-mentioned problems, the present inventors have intensively studied, and as a result, have reached the following present invention.
That is, the present invention fills a through-hole of a double-sided printed wiring board with a two-stage curable resin composition, and performs the first-stage curing of the filled resin by heating at 100 to 200 ° C. or UV irradiation. A) Copper foil with resin and copper foil with resin, or b) Lamination between the copper foil with resin and the prepreg, laminating and pressing at the second stage curing temperature or higher, and then the conductor pattern from the copper foil on the surface layer A method for manufacturing a hole-filled multilayer printed wiring board to be formed is provided.

好ましくは、本発明は、上記二段階硬化型樹脂組成物が、下記成分[I]、[II]、[III]、[V]、及び[VI]を含有する熱・熱硬化型樹脂組成物A、又は下記成分[I]、[II]、[IV]、[V]、及び[VI]を含有する光・熱硬化型樹脂組成物Bである上記穴埋め多層プリント配線板の製造方法を提供する。  Preferably, in the present invention, the two-stage curable resin composition includes the following components [I], [II], [III], [V], and [VI]. Provided is a method for producing the above-described hole-filled multilayer printed wiring board, which is a photo-thermosetting resin composition B containing A or the following components [I], [II], [IV], [V], and [VI]. To do.

[I]:エポキシ樹脂の不飽和脂肪酸部分付加物。
[II]:(メタ)アクリレート類。
[III]:ラジカル熱重合開始剤。
[IV]:光架橋剤。
[V]:エポキシ樹脂。
「VI]:潜在性硬化剤。
[I]: Unsaturated fatty acid partial adduct of epoxy resin.
[II]: (Meth) acrylates.
[III]: radical thermal polymerization initiator.
[IV]: Photocrosslinking agent.
[V]: Epoxy resin.
“VI”: latent curing agent.

より好ましくは、本発明は、上記成分[V]:エポキシ樹脂が、結晶性エポキシ樹脂及び/又は液状エポキシ樹脂である上記穴埋め多層プリント配線板の製造方法を提供する。  More preferably, this invention provides the manufacturing method of the said hole-filling multilayer printed wiring board whose said component [V]: epoxy resin is a crystalline epoxy resin and / or a liquid epoxy resin.

更に、本発明は、上記何れかの製造方法にて製造される穴埋め多層プリント配線板を提供する。  Furthermore, the present invention provides a hole-filled multilayer printed wiring board manufactured by any one of the above manufacturing methods.

更に、本発明は、二段階硬化型樹脂組成物が上記熱・熱硬化型樹脂組成物A又は光・熱硬化型樹脂組成物Bであって、専ら上記本発明の穴埋め多層プリント配線板の製造方法にのみ使用される二段階硬化型樹脂組成物を提供する。  Further, according to the present invention, the two-stage curable resin composition is the thermo / thermosetting resin composition A or the photo / thermosetting resin composition B, and the manufacturing of the hole-filled multilayer printed wiring board of the present invention is exclusively performed. Provided is a two-stage curable resin composition used only in the method.

好ましくは、本発明は、上記熱・熱硬化型樹脂組成物A又は光・熱硬化型樹脂組成物Bにおける成分[V]:エポキシ樹脂が、結晶性エポキシ樹脂及び/又は液状エポキシ樹脂である上記二段階硬化型樹脂組成物を提供する。  Preferably, in the present invention, the component [V] in the thermo / thermosetting resin composition A or the photo / thermosetting resin composition B: the epoxy resin is a crystalline epoxy resin and / or a liquid epoxy resin. A two-stage curable resin composition is provided.

尚、上記熱・熱硬化型樹脂組成物A又は光・熱硬化型樹脂組成物Bは、本発明の穴埋め多層プリント配線板の製造方法以外にも使用され得るものであるが、本願においては専ら本発明の穴埋め多層プリント配線板の製造方法に使用されるもののみを特許請求するものである。  The thermo / thermosetting resin composition A or the photo / thermosetting resin composition B can be used in addition to the method for producing a hole-filled multilayer printed wiring board according to the present invention. Only what is used for the manufacturing method of the hole-filling multilayer printed wiring board of this invention is claimed.

本発明の穴埋めプリント配線板の製造方法によって、研磨工程を省くことができるので、研磨コストが削減され且つ製造工程が短縮される。従って、穴埋め多層プリント配線板を、極めて安価に提供することができる。  Since the polishing process can be omitted by the method for manufacturing a hole-filled printed wiring board of the present invention, the polishing cost is reduced and the manufacturing process is shortened. Therefore, the hole-filled multilayer printed wiring board can be provided at a very low cost.

更に、研磨を行わないことにより、研磨による基板の変形(寸法変化)を防ぐこともできる。従って、寸法精度の非常に優れた穴埋め多層プリント配線板を提供することができる。  Furthermore, by not performing polishing, it is possible to prevent deformation (dimensional change) of the substrate due to polishing. Therefore, it is possible to provide a hole-filled multilayer printed wiring board with extremely excellent dimensional accuracy.

以下、本発明を添付の図面を用いて詳述する。
本発明の穴埋め多層プリント配線板の製造方法においては先ず、両面プリント配線板の貫通穴に二段階硬化型樹脂組成物を充填して、貫通穴の穴埋めを行う。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
In the method for manufacturing a hole-filled multilayer printed wiring board according to the present invention, first, the through-holes of the double-sided printed wiring board are filled with a two-stage curable resin composition to fill the through-holes.

本発明の製造方法において、両面プリント配線板は、リジッドプリント配線板、フレキシブルプリント配線板、リジッド・フレックスプリント配線板等が挙げられる。  In the production method of the present invention, examples of the double-sided printed wiring board include a rigid printed wiring board, a flexible printed wiring board, and a rigid flex printed wiring board.

尚、両面プリント配線板の替わりに、導体パターン未形成のもの(両面銅張積層板等)を使用しても穴埋め多層プリント配線板を製造することができる。しかし、下記理由により、既に導体パターン形成済みのものが好ましい。即ち、導体パターン未形成のものを使用した場合は、後工程(例えば、後述の熱硬化型接着シートの被覆工程)前)に導体パターン形成を行う必要がある。しかしながら、この導体パターン形成工程において不良が発生した場合は、作製途中の基板を破棄せねばならず、それまでの製造工程が総て無駄になってしまう虞がある。  A hole-filled multilayer printed wiring board can be manufactured by using a conductor pattern-unformed (double-sided copper-clad laminate etc.) instead of the double-sided printed wiring board. However, a conductor pattern already formed is preferable for the following reasons. That is, when a conductor pattern-unformed one is used, it is necessary to form a conductor pattern in a subsequent process (for example, before a thermosetting adhesive sheet coating process described later). However, if a defect occurs in this conductor pattern forming process, the substrate in the process of production must be discarded, and there is a possibility that all of the previous manufacturing processes will be wasted.

貫通穴としては、プリント配線板中を貫通するあらゆる種類の穴が挙げられる。具体的には、貫通穴としては、貫通バイアホール、部品穴、その他スルーホール等が挙げられる。  Examples of the through hole include all kinds of holes penetrating through the printed wiring board. Specifically, examples of the through hole include a through via hole, a component hole, and other through holes.

二段階硬化型樹脂組成物としては、第一段硬化及び第二段硬化を共に加熱により行う熱・熱硬化型樹脂組成物が挙げられる。好ましくは、熱・熱硬化型樹脂組成物としては、下記成分[I]、[II]、[III]、[V]、及び[VI]を含有するもの(以下「熱・熱硬化型樹脂組成物A」ということがある。)が挙げられる。  Examples of the two-stage curable resin composition include a thermo / thermosetting resin composition in which both first-stage curing and second-stage curing are performed by heating. Preferably, the thermo / thermosetting resin composition includes the following components [I], [II], [III], [V], and [VI] (hereinafter referred to as “thermo / thermosetting resin composition”). And may be referred to as “product A”.).

[I]:エポキシ樹脂の不飽和脂肪酸部分付加物。
[II]:(メタ)アクリレート類。
[III]:ラジカル熱重合開始剤。
[V]:エポキシ樹脂。
[VI]:潜在性硬化剤。
[I]: Unsaturated fatty acid partial adduct of epoxy resin.
[II]: (Meth) acrylates.
[III]: radical thermal polymerization initiator.
[V]: Epoxy resin.
[VI]: Latent curing agent.

好ましくは、熱・熱硬化型樹脂組成物Aの具体例としては、特開2003−26765号公報に記載のものが挙げられる。  Preferably, specific examples of the thermo-thermosetting resin composition A include those described in JP-A No. 2003-26765.

熱・熱硬化型樹脂組成物Aには成分[I]として、エポキシ樹脂の不飽和脂肪酸部分付加物を含有する。成分[I]の調製原料であるエポキシ樹脂(以下、単に「原料用エポキシ樹脂」ということがある。)のエポキシ価は、例えば130〜400、特に150〜250が好ましい。原料用エポキシ樹脂としては、例えばフェノールノボラック型エポキシ樹脂、多官能性フェノールからのエポキシ樹脂、ナフタレン骨格エポキシ樹脂、グリシジルアミン系エポキシ樹脂、トリアジン骨格エポキシ樹脂、グリシジルエステル系エポキシ樹脂、脂環式タイプのエポキシ樹脂等が挙げられる。  The thermosetting resin composition A contains, as component [I], an unsaturated fatty acid partial adduct of an epoxy resin. The epoxy value of the epoxy resin that is the raw material for preparing the component [I] (hereinafter sometimes simply referred to as “raw material epoxy resin”) is, for example, preferably 130 to 400, particularly 150 to 250. Examples of the epoxy resin for raw materials include phenol novolac type epoxy resins, epoxy resins from polyfunctional phenols, naphthalene skeleton epoxy resins, glycidyl amine epoxy resins, triazine skeleton epoxy resins, glycidyl ester epoxy resins, and alicyclic types. An epoxy resin etc. are mentioned.

好ましくは、原料用エポキシ樹脂としては、表1に示す式[化I−E1]〜[化I−E7]で表される各化合物、特にフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスフェニルメタン型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ジシクロペンタジエンフェノール型エポキシ樹脂等が挙げられ、これらの一種以上使用してよい。  Preferably, as the raw material epoxy resin, each compound represented by the formulas [Chemical I-E1] to [Chemical I-E7] shown in Table 1, particularly phenol novolac type epoxy resin, cresol novolac type epoxy resin, trisphenyl A methane type epoxy resin, a bisphenol A novolak type epoxy resin, a dicyclopentadiene phenol type epoxy resin, etc. are mentioned, and one or more of these may be used.

Figure 2006303398
Figure 2006303398

本出願書類を通じ、式中、Gは、明らかに別の意味に用いられている場合を除き、グリシジル基、即ち次式、  Throughout this application document, where G is a glycidyl group, i.e. the following formula, unless clearly used otherwise:

Figure 2006303398
を表す。
Figure 2006303398
Represents.

式[化I−E1]〜[化I−E3]中、nは0〜30の整数を表す。式[化I−E4]〜[化I−E6]中、nは1〜30の整数を表す。式[化I−E7]中、nは2〜50の整数を表す。式[化I−E2]中、R及びRは、それぞれ独立に、H若しくはCHを表す。In the formulas [Chemical I-E1] to [Chemical I-E3], n represents an integer of 0 to 30. In the formulas [Chemical I-E4] to [Chemical I-E6], n represents an integer of 1 to 30. In the formula [Chemical I-E7], n represents an integer of 2 to 50. In the formula [Chemical I-E2], R 1 and R 2 each independently represent H or CH 3 .

成分[I]のもう一方の調製原料である不飽和脂肪酸としては、例えば次式[化I−UFA]、  As an unsaturated fatty acid which is the other preparation raw material of component [I], for example, the following formula [Chemical Formula I-UFA],

Figure 2006303398
[式中、R〜Rは、それぞれ独立に、H又はCHを表す。]
で表されるものが挙げられる。具体的には不飽和脂肪酸としては、アクリル酸、メタクリル酸、クロトン酸等が挙げられる。
Figure 2006303398
[Wherein, R 1 to R 3 each independently represent H or CH 3 . ]
The thing represented by is mentioned. Specific examples of the unsaturated fatty acid include acrylic acid, methacrylic acid, and crotonic acid.

成分[I]は、通常の調製法により調製してよい。例えば、原料用エポキシ樹脂の一種以上と不飽和脂肪酸の一種以上[例えばアクリル酸及び/又はメタアクリル酸(以下、単に「(メタ)アクリル酸」ということがある。)]とを、必要に応じ加熱下に、撹拌混合して調製してよい。  Component [I] may be prepared by a conventional preparation method. For example, one or more types of raw material epoxy resins and one or more types of unsaturated fatty acids [for example, acrylic acid and / or methacrylic acid (hereinafter sometimes simply referred to as “(meth) acrylic acid”)] are used as necessary. It may be prepared by stirring and mixing under heating.

成分[I]は、エポキシ樹脂に不飽和脂肪酸が部分的に付加した物である。即ち、エポキシ樹脂の不飽和脂肪酸部分付加物は、不飽和脂肪酸が付加した後のエポキシ樹脂中に少なくとも一個以上のエポキシ基が残存する。具体的には、不飽和脂肪酸は、原料用エポキシ樹脂中のエポキシ基の20〜80%、特に40〜60%に付加するのが好ましい。不飽和脂肪酸の付加量が20%未満のもの(単に、「20%未満不飽和脂肪酸付加物」のように言うことがある。以下、同様。)は、熱硬化性樹脂組成物に粘着性が生じ、基板に塗布したときに余分の樹脂をうまく除去できない場合がある。逆に80%超過不飽和脂肪酸付加物は、第一段硬化膜が硬くなり、後述の積層プレス後の表面の平坦性が損なわれることがある。  Component [I] is a product obtained by partially adding an unsaturated fatty acid to an epoxy resin. That is, in the unsaturated fatty acid partial adduct of the epoxy resin, at least one epoxy group remains in the epoxy resin after the addition of the unsaturated fatty acid. Specifically, the unsaturated fatty acid is preferably added to 20 to 80%, particularly 40 to 60% of the epoxy group in the raw material epoxy resin. Those having an unsaturated fatty acid addition amount of less than 20% (simply referred to as “less than 20% unsaturated fatty acid adduct”, the same shall apply hereinafter) have adhesiveness to the thermosetting resin composition. In some cases, the excess resin cannot be removed well when applied to the substrate. On the other hand, an 80% excess unsaturated fatty acid adduct may cause the first-stage cured film to become hard, and the flatness of the surface after the laminating press described later may be impaired.

成分[I]としては、例えばノボラック型エポキシ樹脂と(メタ)アクリル酸との付加物(具体的には、クレゾールノボラック型エポキシ樹脂とアクリル酸との付加物等)が挙げられ、これらの1種以上を熱・熱硬化型樹脂組成物A中に含有してよい。  Examples of component [I] include adducts of novolac type epoxy resin and (meth) acrylic acid (specifically, adducts of cresol novolac type epoxy resin and acrylic acid, etc.). The above may be contained in the thermosetting / thermosetting resin composition A.

好ましくは、成分[I]としては、フェノールノボラック型エポキシ樹脂のアクリル酸部分付加物、クレゾールノボラック型エポキシ樹脂のアクリル酸部分付加物、トリスフェニルメタン型エポキシ樹脂のアクリル酸部分付加物、ビスフェノールAノボラック型エポキシ樹脂のメタクリル酸部分付加物、ジシクロペンタジエンフェノール型エポキシ樹脂のメタクリル酸部分付加物、フェノールノボラック型エポキシ樹脂のクロトン酸部分付加物等が挙げられ、これらの一種以上使用してよい。  Preferably, as the component [I], an acrylic acid partial adduct of a phenol novolac type epoxy resin, an acrylic acid partial adduct of a cresol novolac type epoxy resin, an acrylic acid partial adduct of a trisphenylmethane type epoxy resin, or a bisphenol A novolak Methacrylic acid partial adduct of type epoxy resin, methacrylic acid partial adduct of dicyclopentadiene phenol type epoxy resin, crotonic acid partial adduct of phenol novolac type epoxy resin and the like, and one or more of these may be used.

熱・熱硬化型樹脂組成物Aには成分[II]として、(メタ)アクリレート類(即ち、アクリレート類及び/又はメタアクリレート類)を含有する。成分[II]において、上記アクリレート類としては、アクリル酸類とヒドロキシ化合物とのエステル化物等が挙げられる。上記メタアクリレート類としては、メタアクリル酸類とヒドロキシ化合物とのエステル化物等が挙げられる。  The thermo / thermosetting resin composition A contains (meth) acrylates (that is, acrylates and / or methacrylates) as component [II]. In the component [II], examples of the acrylate include esterified products of acrylic acid and a hydroxy compound. Examples of the methacrylates include esterified products of methacrylic acids and hydroxy compounds.

上記アクリル酸類及びメタクリル酸類としては、前記式[化I−UFA]により表される不飽和脂肪酸等が挙げられる。具体的には、アクリル酸類及びメタクリル酸類としては、アクリル酸、メタアクリル酸、クロトン酸等が挙げられる。  Examples of the acrylic acids and methacrylic acids include unsaturated fatty acids represented by the above formula [Chemical I-UFA]. Specific examples of acrylic acids and methacrylic acids include acrylic acid, methacrylic acid, and crotonic acid.

上記ヒドロキシ化合物としては、アルコール類、(ヘミ)アセタール若しくは(ヘミ)ケタール、ヒドロキシ酸エステル等が挙げられる。アルコール類としては、例えば低級アルコール、環系アルコール、多価アルコール類、芳香族アルコール等が挙げられる。ヒドロキシ化合物において、(ヘミ)アセタール若しくは(ヘミ)ケタールとしては、上記アルコール類(例えば環系アルコール、多価アルコール等)とホルムアルデヒド、ヒドロキシアルデヒドの縮合物等が挙げられる。ヒドロキシ化合物において、ヒドロキシ酸エステルとしては、具体的にはフルフリルアルコールのカプロラクトン開環付加体、ヒドロキシピバリン酸ネオペンチルグリコール等が挙げられる。  Examples of the hydroxy compound include alcohols, (hemi) acetals or (hemi) ketals, and hydroxy acid esters. Examples of alcohols include lower alcohols, ring alcohols, polyhydric alcohols, and aromatic alcohols. In the hydroxy compound, examples of (hemi) acetal or (hemi) ketal include condensates of the above alcohols (for example, ring alcohols, polyhydric alcohols, etc.) with formaldehyde and hydroxyaldehyde. In the hydroxy compound, specific examples of the hydroxy acid ester include caprolactone ring-opening adduct of furfuryl alcohol, neopentyl glycol hydroxypivalate, and the like.

成分[II]としては、その単独硬化物のTg(℃)が80〜180、特に120〜150のものが好ましい。Tgが80未満だと第一段硬化膜が粘着性を有するようになることがある。逆に180を超過すると、第一段硬化膜が硬くなり過ぎることがある。  Component [II] preferably has a single cured product having a Tg (° C.) of 80 to 180, particularly 120 to 150. If the Tg is less than 80, the first-stage cured film may become sticky. Conversely, if it exceeds 180, the first stage cured film may become too hard.

好ましくは、成分[II]としては、表2に示す式[化II−1]〜[化II−9]で表される各化合物、特にイソボロニルアクリレート、ジシクロペンタニルメタクリレート、ヒドロキシビバリン酸ネオペンチルグリコールジアクリレート、トリシクロデカンジメタノールアクリレート、トリメチロールプロパントリアクリレート、ジペンタエリスリトールヘキサアクリレート、クロトン酸イソボロニル等が挙げられ、これらの1種以上含有してよい。  Preferably, as the component [II], each compound represented by the formulas [Chemical Formula II-1] to [Chemical Formula II-9] shown in Table 2, particularly isobornyl acrylate, dicyclopentanyl methacrylate, hydroxybivalin. Examples include acid neopentyl glycol diacrylate, tricyclodecane dimethanol acrylate, trimethylolpropane triacrylate, dipentaerythritol hexaacrylate, isobornyl crotonic acid, and the like, and one or more of these may be contained.

Figure 2006303398
Figure 2006303398

熱・熱硬化型樹脂組成物Aには成分[III]として、第一段硬化反応に係るラジカル熱重合開始剤を含有する。成分[III]としては、例えばラジカル熱重合開始温度が60〜150℃、特に90〜120℃のものが好ましい。更に、成分[III]としては、第一段硬化反応においてエポキシ基ではなく不飽和結合(特に、上記不飽和脂肪酸に由来するもの)が関与するようなものが好ましい。  The thermo-thermosetting resin composition A contains a radical thermopolymerization initiator related to the first stage curing reaction as component [III]. As the component [III], for example, a radical thermal polymerization initiation temperature of 60 to 150 ° C., particularly 90 to 120 ° C. is preferable. Furthermore, the component [III] is preferably one in which an unsaturated bond (particularly, derived from the unsaturated fatty acid) is involved in the first-stage curing reaction instead of an epoxy group.

そのような成分[III]としては、具体的にはt−ブチルパーオキシベンゾエート、t−ブチルパーオキシ−2−エチルヘキサネート、ジクミルパーオキシド等が挙げられ、これらの一種以上を含有してよい。  Specific examples of such component [III] include t-butyl peroxybenzoate, t-butyl peroxy-2-ethylhexanate, dicumyl peroxide, and the like. Good.

熱・熱硬化型樹脂組成物Aには成分[V]として、エポキシ樹脂を含有する。エポキシ樹脂としては、結晶性エポキシ樹脂及び/又は液状エポキシ樹脂が挙げられる。成分[V]において、結晶性エポキシ樹脂としては、融点が常温より高く第一段硬化反応開始温度よりも低いもの、例えば80〜110℃、特に90〜105℃が好ましい。更に、結晶性エポキシ樹脂としては、粘度(mPa・s)が、融点〜第一段硬化反応開始温度において50以下、特に0.1〜20が好ましい。更に、結晶性エポキシ樹脂としては、熱・熱硬化型樹脂組成物A中において難溶性のものが好ましい。  The thermosetting / thermosetting resin composition A contains an epoxy resin as component [V]. Examples of the epoxy resin include a crystalline epoxy resin and / or a liquid epoxy resin. In the component [V], as the crystalline epoxy resin, those having a melting point higher than normal temperature and lower than the first stage curing reaction start temperature, for example, 80 to 110 ° C., particularly 90 to 105 ° C. are preferable. Furthermore, as a crystalline epoxy resin, the viscosity (mPa · s) is preferably 50 or less, particularly 0.1 to 20 at the melting point to the first stage curing reaction start temperature. Further, as the crystalline epoxy resin, those hardly soluble in the thermo-thermosetting resin composition A are preferable.

結晶性エポキシ樹脂としては、例えばビフェニル型、ジフェニル型、ハイドロキノン型、ビフェニルノボラック型、及びフルオレイン型等の結晶性エポキシ樹脂が挙げられ、これらの一種以上含有してよい。  Examples of the crystalline epoxy resin include crystalline epoxy resins such as biphenyl type, diphenyl type, hydroquinone type, biphenyl novolac type, and fluorin type, and one or more of these may be contained.

ビフェニル型結晶性エポキシ樹脂としては、例えば、次式[化Vc−1]、  Examples of the biphenyl type crystalline epoxy resin include the following formula [Chemical Vc-1],

Figure 2006303398
[式中、RはH若しくはCHを表す。]
で表されるものが挙げられ、これらの一種以上含有してよい。
Figure 2006303398
[Wherein R represents H or CH 3 . ]
These may be included, and one or more of these may be contained.

ジフェニル型結晶性エポキシ樹脂としては、例えば、次式[化Vc−2]、  As the diphenyl type crystalline epoxy resin, for example, the following formula [Chemical Vc-2],

Figure 2006303398
[式中、XはO若しくはSを表し、並びにR及びRは、それぞれ独立に、H、CH若しくはt−ブチルを表す。]
で表されるものが挙げられ、これらの一種以上含有してよい。
Figure 2006303398
[Wherein, X represents O or S, and R 1 and R 2 each independently represent H, CH 3 or t-butyl. ]
These may be included, and one or more of these may be contained.

ハイドロキノン型結晶性エポキシ樹脂としては、例えば、次式[化Vc−3]、  As hydroquinone type crystalline epoxy resin, for example, the following formula [Chemical Vc-3],

Figure 2006303398
[式中、nは0、1若しくは2を表す。]
で表されるものが挙げられ、これらの一種以上含有してよい。
Figure 2006303398
[Wherein n represents 0, 1 or 2. ]
These may be included, and one or more of these may be contained.

ビフェニルノボラック型結晶性エポキシ樹脂としては、例えば、次式[化Vc−4]、  Examples of the biphenyl novolac type crystalline epoxy resin include the following formula [Vc-4],

Figure 2006303398
[式中、nは1若しくは2を表す。]
で表されるものが挙げられ、これらの一種以上含有してよい。
Figure 2006303398
[Wherein n represents 1 or 2. ]
These may be included, and one or more of these may be contained.

フルオレイン型結晶性エポキシ樹脂としては、例えば、次式[化Vc−5]、  As the fluorescein type crystalline epoxy resin, for example, the following formula [Chemical Vc-5],

Figure 2006303398
で表されるものが挙げられる。
Figure 2006303398
The thing represented by is mentioned.

好ましくは、結晶性エポキシ樹脂としては、テトラメチルビフェニル型エポキシ樹脂、ハイドロキノンジグリシジルエーテル、ジ−(p−グリシジルフェニル)エーテル等が挙げられ、これらの1種以上含有してよい。  Preferably, examples of the crystalline epoxy resin include tetramethylbiphenyl type epoxy resin, hydroquinone diglycidyl ether, di- (p-glycidylphenyl) ether, and the like.

成分[V]において、液状エポキシ樹脂とは、常温で液状又は半固体状態のエポキシ樹脂をいい、例えば、常温で流動性をもつエポキシ樹脂が挙げられる。そのような液状エポキシ樹脂としては、例えば粘度(室温、mPa・s)が20000以下、特に1000〜10000が好ましい。  In component [V], the liquid epoxy resin refers to an epoxy resin that is in a liquid or semi-solid state at room temperature, and examples thereof include an epoxy resin that has fluidity at room temperature. As such a liquid epoxy resin, for example, the viscosity (room temperature, mPa · s) is 20000 or less, particularly preferably 1000 to 10,000.

具体的には、液状エポキシ樹脂としては、次式[化Vl−1]、  Specifically, as the liquid epoxy resin, the following formula [Formula Vl-1],

Figure 2006303398
[式中、nは0若しくは1を表す。]
で表されるビスフェノールA型エポキシ樹脂が挙げられ、これらの一種以上含有してよい。
Figure 2006303398
[Wherein n represents 0 or 1; ]
The bisphenol A type epoxy resin represented by these is mentioned, You may contain these 1 or more types.

更に、液状エポキシ樹脂の具体例としては、次式[化Vl−2]、  Furthermore, as a specific example of the liquid epoxy resin, the following formula [Chemical Vl-2],

Figure 2006303398
[式中、nは0若しくは1を表す。]
で表されるビスフェノールF型エポキシ樹脂が挙げられ、これらの一種以上含有してよい。
Figure 2006303398
[Wherein n represents 0 or 1; ]
The bisphenol F type epoxy resin represented by these is mentioned, You may contain these 1 or more types.

更に、液状エポキシ樹脂の具体例としては、ナフタレン型のもの、ジフェニルチオエーテル(スルフィド)型のもの、トリチル型のもの、脂環式タイプのもの、下記アルコール類から調製されるもの、ジアリルビスA型のもの、メチルレゾルシノール型のもの、ビスフェノールAD型のもの、及びN,N,O−トリス(グリシジル)−p−アミノフェノール等が挙げられ、これらの一種以上含有してよい。  Further, specific examples of the liquid epoxy resin include naphthalene type, diphenylthioether (sulfide) type, trityl type, alicyclic type, those prepared from the following alcohols, diallylbis A type , Methylresorcinol type, bisphenol AD type, N, N, O-tris (glycidyl) -p-aminophenol and the like, and one or more of these may be contained.

好ましくは、液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、N,N,O−トリス(グリシジル)−p−アミノフェノール、ビスフェノールAD型エポキシ樹脂等が挙げられ、これらの1種以上含有してよい。  Preferably, the liquid epoxy resin includes bisphenol A type epoxy resin, bisphenol F type epoxy resin, N, N, O-tris (glycidyl) -p-aminophenol, bisphenol AD type epoxy resin, etc. You may contain more than a seed.

熱・熱硬化型樹脂組成物Aには成分[VI]として、潜在性硬化剤を含有する。成分[VI]は、加熱により第二段硬化反応を起こさせるものである。成分[VI]としては、例えば第二段硬化反応開始温度が150〜300℃、特に150〜200℃となるものが挙げられる。  The thermosetting / thermosetting resin composition A contains a latent curing agent as component [VI]. Component [VI] causes a second-stage curing reaction by heating. Examples of component [VI] include those having a second-stage curing reaction start temperature of 150 to 300 ° C, particularly 150 to 200 ° C.

具体的には、成分[VI]としては、ジシアンジアミド(DICY)類、イミダゾール類、BF−アミン錯体、アミンアダクト型硬化剤、アミン−酸無水物(ポリアミド)アダクト型硬化剤、ヒドラジド系硬化剤、アミン系硬化剤のカルボン酸塩、オニウム塩等が挙げられ、これらの一種以上含有してよい。Specifically, as component [VI], dicyandiamide (DICY), imidazole, BF 3 -amine complex, amine adduct type curing agent, amine-acid anhydride (polyamide) adduct type curing agent, hydrazide type curing agent And carboxylic acid salts and onium salts of amine-based curing agents, and one or more of these may be contained.

具体的には、成分[VI]において、アミンアダクト型硬化剤としては、イミダゾール系硬化剤[2−エチル−4−メチルイミダゾール、2−メチルイミダゾール、2,4−ジアミノ−6−(2’−メチルイミダゾリル−(1H))−エチル−S−トリアジン等]若しくはアミン系硬化剤(ジエチルアミン等)とエポキシ化合物、尿素若しくはイソシアネート化合物とのアダクト物等が挙げられる。ヒドラジド系硬化剤としては、アジピン酸ジヒドラジド(ADH)、セバチン酸ジヒドラジド(SDH)等が挙げられる。アミン系硬化剤のカルボン酸塩としては、例えばナイロン塩やATU(3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン)・アジピン酸塩等が挙げられる。オニウム塩としては、スルホニウム塩、アンモニウム塩、ホスホニウム塩等が挙げられる。  Specifically, in the component [VI], as the amine adduct type curing agent, an imidazole-based curing agent [2-ethyl-4-methylimidazole, 2-methylimidazole, 2,4-diamino-6- (2′- Methylimidazolyl- (1H))-ethyl-S-triazine and the like] or an adduct of an amine-based curing agent (such as diethylamine) and an epoxy compound, urea or an isocyanate compound. Examples of the hydrazide curing agent include adipic acid dihydrazide (ADH), sebacic acid dihydrazide (SDH), and the like. Examples of carboxylates of amine curing agents include nylon salts and ATU (3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5,5] undecane) / adipic acid Examples include salts. Examples of onium salts include sulfonium salts, ammonium salts, and phosphonium salts.

好ましくは、成分[VI]としては、表3に示す式[化VI−1]〜[化VI−3]で表される各化合物等が挙げられ、これらの1種以上含有してよい。  Preferably, examples of the component [VI] include compounds represented by the formulas [Chemical VI-1] to [Chemical VI-3] shown in Table 3, and may contain one or more of these compounds.

Figure 2006303398
Figure 2006303398

熱・熱硬化型樹脂組成物Aには、必要に応じ、種々の添加剤を添加してよい。添加剤としては、例えば充填剤、有機・無機着色剤、難燃剤、消泡剤等が挙げられ、これらの一種以上含有してよい。  Various additives may be added to the thermosetting / thermosetting resin composition A as necessary. Examples of the additive include a filler, an organic / inorganic colorant, a flame retardant, an antifoaming agent, and the like.

熱・熱硬化型樹脂組成物Aの組成において、成分[I]が100重量部に対し、成分[II]は50〜300重量部(特に150〜250重量部)、成分[III]は5〜20重量部(特に8〜15重量部)、成分[V]は50〜200重量部(特に60〜120重量部)、成分[VI]は5〜30重量部(特に10〜20重量部)が好ましい。  In the composition of the thermosetting resin composition A, the component [I] is 100 parts by weight, the component [II] is 50 to 300 parts by weight (particularly 150 to 250 parts by weight), and the component [III] is 5 to 5 parts by weight. 20 parts by weight (particularly 8-15 parts by weight), component [V] is 50-200 parts by weight (particularly 60-120 parts by weight), and component [VI] is 5-30 parts by weight (particularly 10-20 parts by weight). preferable.

熱・熱硬化型樹脂組成物Aの調製は、例えば各成分[I]、[II]、[III]、[V]、及び[VI]、並びに必要に応じ添加剤を混合し、均一に分散した後、真空脱泡して行ってよい。各配合成分の添加順序等は特に限定されず、各配合成分を順次に加え、若しくは全配合成分を一度に加えてもよい。  Preparation of thermosetting / thermosetting resin composition A is performed by, for example, mixing each component [I], [II], [III], [V], and [VI] and additives as necessary, and uniformly dispersing them. After that, vacuum degassing may be performed. The order of addition of each blending component is not particularly limited, and each blending component may be added sequentially or all blending components may be added at once.

上記のようにして調製される熱・熱硬化型樹脂組成物Aは、樹脂粘度(Pa・S、室温)10〜50、特に15〜30が好ましい。  The thermo-thermosetting resin composition A prepared as described above preferably has a resin viscosity (Pa · S, room temperature) of 10 to 50, particularly 15 to 30.

更に、本発明の二段階硬化型樹脂組成物としては、第一段硬化を光照射により行い第二段硬化を加熱により行う光・熱硬化型樹脂組成物が挙げられる。好ましくは、光・熱硬化型樹脂組成物としては、前記成分[I]、[II]、[V]及び[VI]、並びに成分[IV]:光架橋剤を含有するもの(以下「光・熱硬化型樹脂組成物B」ということがある。)が挙げられる。  Furthermore, the two-stage curable resin composition of the present invention includes a photo / thermosetting resin composition in which the first stage curing is performed by light irradiation and the second stage curing is performed by heating. Preferably, as the photo / thermosetting resin composition, the components [I], [II], [V] and [VI], and the component [IV]: those containing a photocrosslinking agent (hereinafter referred to as “light • And may be referred to as “thermosetting resin composition B”).

好ましくは、光・熱硬化型樹脂組成物Bの具体例としては、特許文献1及び特開2004−75967号公報に記載のものが挙げられる。  Preferably, specific examples of the photo / thermosetting resin composition B include those described in Patent Document 1 and JP-A No. 2004-75967.

光・熱硬化型樹脂組成物Bにおいて、成分[I]、[II]、[V]、及び[VI]としては、前記熱・熱硬化型樹脂組成物Aにおいて例示、説明したものが挙げられる。尚、光・熱硬化型樹脂組成物Bにおいて成分[VI]としては、例えば第二段硬化反応開始温度が150〜300℃、特に150〜200℃となるものが好ましい。  In the photo / thermosetting resin composition B, the components [I], [II], [V], and [VI] include those exemplified and explained in the thermo / thermosetting resin composition A. . In the photo / thermosetting resin composition B, the component [VI] preferably has, for example, a second-stage curing reaction start temperature of 150 to 300 ° C, particularly 150 to 200 ° C.

光・熱硬化型樹脂組成物Bには成分[IV]として、光架橋剤を含有する。成分[IV]としては、光、例えば波長200〜400nmの紫外線等の照射により一次硬化反応を開始させるものが挙げられる。  The photo / thermosetting resin composition B contains a photocrosslinking agent as component [IV]. Examples of component [IV] include those that initiate a primary curing reaction by irradiation with light, for example, ultraviolet rays having a wavelength of 200 to 400 nm.

具体的には、成分[IV]としては、ヒドロキシケトン類、ベンジルメチルケタール類、アシルホスフィンオキサイド類、アミノケトン類、ベンゾインエーテル類、ベンゾイル化合物類、チオキサントン類、ビイミダゾール類、ジメチルアミノ安息香酸エステル類、スルホニウム塩類、アントラキノン類、アクリドン類、アクリジン類、カルバゾール類、チタン錯体、及びこれらの一種以上含有してよい。  Specifically, as component [IV], hydroxy ketones, benzyl methyl ketals, acyl phosphine oxides, amino ketones, benzoin ethers, benzoyl compounds, thioxanthones, biimidazoles, dimethylaminobenzoic acid esters , Sulfonium salts, anthraquinones, acridones, acridines, carbazoles, titanium complexes, and one or more of these.

好ましくは、成分[IV]としては、表4に示す式[化IV−1]及び[化IV−2]で表される各化合物等が挙げられ、これらの1種以上含有してよい。  Preferably, examples of component [IV] include compounds represented by the formulas [Formula IV-1] and [Formula IV-2] shown in Table 4, and one or more of these may be contained.

Figure 2006303398
Figure 2006303398

光・熱硬化型樹脂組成物Bには、必要に応じ、種々の添加剤を添加してよい。添加剤としては、例えば充填剤、有機・無機着色剤、難燃剤、消泡剤等が挙げられ、これらの一種以上含有してよい。具体的には、添加剤としては、前記熱・熱硬化型樹脂組成物Aにおいて「添加剤」として説明・例示したものが挙げられる。  Various additives may be added to the light / thermosetting resin composition B as necessary. Examples of the additive include a filler, an organic / inorganic colorant, a flame retardant, an antifoaming agent, and the like. Specifically, examples of the additive include those described and exemplified as the “additive” in the thermosetting / thermosetting resin composition A.

光・熱硬化型樹脂組成物Bの組成において、成分[I]100重量部に対し、成分[II]は100〜300重量部(特に150〜250重量部)、成分[IV]は1〜50重量部(特に5〜15重量部)、成分[V]は50〜200重量部(特に60〜120重量部)、成分[VI]は1〜50重量部(特に5〜20重量部)、充填剤は200〜500重量部(特に250〜350重量部)が好ましい。  In the composition of the light / thermosetting resin composition B, the component [II] is 100 to 300 parts by weight (particularly 150 to 250 parts by weight) and the component [IV] is 1 to 50 parts per 100 parts by weight of the component [I]. Parts by weight (particularly 5 to 15 parts by weight), component [V] is 50 to 200 parts by weight (particularly 60 to 120 parts by weight), component [VI] is 1 to 50 parts by weight (particularly 5 to 20 parts by weight), and filling The agent is preferably 200 to 500 parts by weight (particularly 250 to 350 parts by weight).

光・熱硬化型樹脂組成物Bの調製は、例えば前記熱・熱硬化型樹脂組成物Aと同様に行ってよい。  The photo / thermosetting resin composition B may be prepared in the same manner as the thermo / thermosetting resin composition A, for example.

上記のようにして調製される光・熱硬化型樹脂組成物Bは、基板への塗布性等を考慮すると、樹脂粘度(Pa・S、室温)10〜50、特に15〜30が好ましい。  The light / thermosetting resin composition B prepared as described above preferably has a resin viscosity (Pa · S, room temperature) of 10 to 50, particularly 15 to 30 in view of applicability to the substrate.

本発明の穴埋め多層プリント配線板の製造方法において、両面プリント配線板の貫通穴に上記二段階硬化型樹脂組成物を充填して、貫通穴の穴埋めを行う。貫通穴の充填・穴埋めは、例えばスクリーン印刷(ポリエステルスクリーン若しくはステンレススクリーン等によるマスク印刷等)、メタルマスク印刷、ロールコート印刷等により行ってよい。  In the method for producing a hole-filled multilayer printed wiring board of the present invention, the through hole is filled by filling the through hole of the double-sided printed wiring board with the two-stage curable resin composition. The filling and filling of the through holes may be performed by, for example, screen printing (mask printing using a polyester screen or stainless steel screen), metal mask printing, roll coat printing, or the like.

本発明の穴埋め多層プリント配線板の製造方法において、貫通穴の充填・穴埋めを行った後、充填した二段階硬化型樹脂組成物(充填樹脂)の第一段硬化を行う。第一段硬化条件としては、例えば充填樹脂が前記熱・熱硬化型樹脂組成物Aの場合は、成分[III]のラジカル熱重合開始温度、具体的には100〜200(特に100〜150)℃にて、10〜120分間、加熱することにより行うことができる。充填樹脂が前記光・熱硬化型樹脂組成物Bの場合は、成分[IV]の特性吸収波長領域の光、具体的には波長200〜400nmの紫外線を、0.5〜10J/cmの光照射量にて、−20〜80℃で、照射して行うことができる。尚、光硬化は、特開平9−6010号公報及び特開平10−29247号公報に記載された液中露光装置を使用して行ってもよい。In the method for manufacturing a hole-filled multilayer printed wiring board of the present invention, after filling and filling the through holes, the first-stage curing of the filled two-stage curable resin composition (filled resin) is performed. As the first stage curing conditions, for example, when the filling resin is the thermo-thermosetting resin composition A, the radical thermal polymerization start temperature of the component [III], specifically 100 to 200 (particularly 100 to 150). It can carry out by heating at 10 degreeC for 10 to 120 minutes. When the filling resin is the light / thermosetting resin composition B, light in the characteristic absorption wavelength region of the component [IV], specifically, ultraviolet light having a wavelength of 200 to 400 nm is 0.5 to 10 J / cm 2 . Irradiation can be performed at −20 to 80 ° C. with a light irradiation amount. The photocuring may be performed using an in-liquid exposure apparatus described in JP-A-9-6010 and JP-A-10-29247.

本発明における穴埋め多層プリント配線板の製造方法の一態様において、上記充填樹脂の第一段硬化を行った後、この両面プリント配線板を、ア)樹脂付き銅箔と樹脂付き銅箔との間に挟んで加熱下に積層プレスする。この積層プレスによって、例えば導体層が4層の穴埋め銅張積層板等を製造することができる。具体的には、図3Aに示す構造のものを製造することができる。尚、図3Aにおいて、(16)は絶縁基板、(17)は導体パターン、(18)は熱・熱硬化型樹脂組成物A又は光・熱硬化型樹脂組成物B、(19)は樹脂付き銅箔の樹脂層、(20)は樹脂付き銅箔の銅箔である。  In one aspect of the method for producing a hole-filled multilayer printed wiring board according to the present invention, after performing the first-stage curing of the filling resin, the double-sided printed wiring board is a) between the copper foil with resin and the copper foil with resin. Laminate and press with heating. With this lamination press, for example, a hole-filled copper-clad laminate having four conductor layers can be produced. Specifically, the structure shown in FIG. 3A can be manufactured. In FIG. 3A, (16) is an insulating substrate, (17) is a conductor pattern, (18) is a thermo / thermosetting resin composition A or photo / thermosetting resin composition B, and (19) is with resin. The resin layer of copper foil, (20) is a copper foil of a copper foil with resin.

本発明における穴埋め多層プリント配線板の製造方法の別の一態様において、上記充填樹脂の第一段硬化を行った後、この両面プリント配線板を、イ)樹脂付き銅箔とプリプレグとの間に挟んで積層プレスする。この積層プレスによって、例えば導体層が3層の穴埋め銅張積層板等を製造することができる。具体的には、図3Bに示す構造のものを製造することができる。尚、図3Bにおいて、(21)は絶縁基板、(22)は導体パターン、(23)は熱・熱硬化型樹脂組成物A又は光・熱硬化型樹脂組成物B、(24)は樹脂付き銅箔の樹脂層、(25)は樹脂付き銅箔の銅箔、(26)はプリプレグである。  In another aspect of the method for producing a hole-filled multilayer printed wiring board according to the present invention, after the first stage curing of the filling resin, the double-sided printed wiring board is a) between a copper foil with resin and a prepreg. Laminate and press. With this lamination press, for example, a hole-filled copper-clad laminate having three conductor layers can be produced. Specifically, the structure shown in FIG. 3B can be manufactured. 3B, (21) is an insulating substrate, (22) is a conductor pattern, (23) is a thermo / thermosetting resin composition A or light / thermosetting resin composition B, and (24) is with resin. The resin layer of copper foil, (25) is the copper foil of the copper foil with resin, and (26) is the prepreg.

上記ア)及びイ)の場合において、両面プリント配線板を樹脂付き銅箔にて挟む場合、銅箔が表面側に来るように挟むのが好ましい。  In the case of the above a) and b), when the double-sided printed wiring board is sandwiched between resin-coated copper foils, it is preferable to sandwich the copper foil so that it comes to the front side.

積層プレスは、具体的には開放式積層装置、真空式積層装置等にて行うことができる。更に、これらの積層装置は、例えば油圧プレス、オートクレーブ・プレス等であってよい。更に、真空式油圧プレスは、枠タイプ、ボックスタイプ等であってよい。  Specifically, the lamination press can be performed with an open lamination apparatus, a vacuum lamination apparatus, or the like. Furthermore, these laminating apparatuses may be, for example, a hydraulic press, an autoclave press or the like. Furthermore, the vacuum hydraulic press may be a frame type, a box type, or the like.

積層プレスは、加熱下に行う。加熱は、二段階硬化型樹脂組成物の第二段熱硬化温度以上(特に、成分[VI]の硬化反応開始温度若しくはそれ以上)となるように行うのが好ましい。  The lamination press is performed under heating. Heating is preferably performed so that the temperature is equal to or higher than the second-stage thermosetting temperature of the two-stage curable resin composition (in particular, the curing reaction start temperature of component [VI] or higher).

具体的には、積層プレス条件としては、例えば150〜300(特に180〜230)℃、30〜300(特に60〜240)分、圧力10〜100(特に15〜40)kgf/cmが好ましい。Specifically, as lamination press conditions, for example, 150 to 300 (particularly 180 to 230) ° C., 30 to 300 (particularly 60 to 240) minutes, pressure 10 to 100 (particularly 15 to 40) kgf / cm 2 is preferable. .

積層プレスにより、以下のことが行われる。即ち、積層プレスの際の加熱により充填樹脂の第一段硬化物は一旦、軟化し、貫通穴表面から食み出た部分の第一段硬化物はプレスの圧力により押し潰され、平滑化される。このように平滑化された状態にて、積層プレスの際の加熱により、第一段硬化物の第二段硬化が行われると同時に、樹脂付き銅箔又はプリプレグのBステージ状態にある熱硬化性樹脂の完全熱硬化が行われる。このようにして、研磨をしなくとも、表面が高度に平滑化された穴埋め銅張積層板が製造される。  The following is performed by the lamination press. That is, the first-stage cured product of the filling resin is temporarily softened by heating during the laminating press, and the first-stage cured product protruding from the surface of the through hole is crushed and smoothed by the pressure of the press. The In such a smoothed state, the second-stage curing of the first-stage cured product is performed by heating at the time of the lamination press, and at the same time, the thermosetting in the B-stage state of the resin-coated copper foil or prepreg The resin is completely cured. In this manner, a hole-filled copper-clad laminate with a highly smooth surface is produced without polishing.

本発明の穴埋め多層プリント配線板の製造方法において、その後、上記穴埋め銅張積層板表層の銅箔より導体パターンを形成する。導体パターンの形成は、例えばサブトラクティブ法又はアディティブ法等によって行うことができる。  In the method for manufacturing a hole-filled multilayer printed wiring board of the present invention, a conductor pattern is then formed from the copper foil on the surface layer of the hole-filled copper-clad laminate. The conductor pattern can be formed, for example, by a subtractive method or an additive method.

サブトラクティブ法の場合は、具体的には以下のようにして、導体パターンを形成してよい。即ち、銅箔表面に対し、エッチングレジスト加工を行い、次いでエッチングを行い、その後エッチングレジストを除去して行ってよい。  In the case of the subtractive method, specifically, the conductor pattern may be formed as follows. That is, etching resist processing may be performed on the copper foil surface, etching may be performed, and then the etching resist may be removed.

上記エッチングレジスト加工としては、例えばドライフィルムを被覆した後、パターンマスクを介して露光・硬化してレジストを形成するドライフィルム(ラミネート)法、導体箔の不要部を予め有機レジストで被覆した後に、導体パターン部を電着により金属レジストにて被覆し、その後有機レジストのみを除去する電着レジスト法等が挙げられる。  As the etching resist processing, for example, after coating a dry film, after exposing and curing through a pattern mask to form a resist, a dry film (laminate) method, after previously covering unnecessary portions of the conductor foil with an organic resist, Examples thereof include an electrodeposition resist method in which the conductor pattern portion is coated with a metal resist by electrodeposition and then only the organic resist is removed.

エッチャントとしては、例えば塩化第二鉄エッチング液、塩化第二銅エッチング液、アルカリエッチャント、過酸化水素/硫酸等が挙げられる。これらは、上記エッチングレジスト加工の種類に応じ、適宜選択してよい。  Examples of the etchant include ferric chloride etchant, cupric chloride etchant, alkaline etchant, hydrogen peroxide / sulfuric acid, and the like. These may be appropriately selected according to the type of etching resist processing.

エッチングレジストの除去は、例えば水酸化ナトリウム水溶液等のレジスト剥離液をスプレーノズル等からパネル表面へ噴射して、レジストを洗い流すことにより行ってよい。  The etching resist may be removed by, for example, spraying a resist stripping solution such as an aqueous sodium hydroxide solution from the spray nozzle or the like onto the panel surface to wash away the resist.

上記のようにして、本発明の穴埋め多層プリント配線板が製造される。具体的には、図3C及び図3Dにそれぞれ示す構造のものを製造することができる。尚、図3Cにおいて、(27)は絶縁基板、(28)及び(31)は導体パターン、(29)は熱・熱硬化型樹脂組成物A又は光・熱硬化型樹脂組成物B、(30)は樹脂付き銅箔の樹脂層である。  As described above, the hole-filled multilayer printed wiring board of the present invention is manufactured. Specifically, the structures shown in FIGS. 3C and 3D can be manufactured. 3C, (27) is an insulating substrate, (28) and (31) are conductor patterns, (29) is a thermo / thermosetting resin composition A or light / thermosetting resin composition B, (30 ) Is a resin layer of resin-coated copper foil.

図3Dにおいて、(32)は絶縁基板、(33)及び(36)は導体パターン、(34)は熱・熱硬化型樹脂組成物A又は光・熱硬化型樹脂組成物B、(35)は樹脂付き銅箔の樹脂層、(37)はプリプレグである。  3D, (32) is an insulating substrate, (33) and (36) are conductor patterns, (34) is a thermo / thermosetting resin composition A or light / thermosetting resin composition B, (35) is A resin layer (37) of a copper foil with resin is a prepreg.

以上、本発明を穴埋め多層プリント配線板について説明したが、当業者であれば本発明を更に改変・拡張することは容易である。例えば、両面プリント配線板を、前記ア)樹脂付き銅箔と樹脂付き銅箔、又はイ)樹脂付き銅箔とプリプレグの替わりに、ウ)プリプレグとプリプレグとの間に挟んで積層プレスすれば、穴埋めプリント配線板(具体的には、図3Eに示されるもの等)が製造される。  Although the present invention has been described above with respect to the hole-filled multilayer printed wiring board, those skilled in the art can easily modify and expand the present invention. For example, if a double-sided printed wiring board is sandwiched and pressed between the prepreg and the prepreg instead of a) the copper foil with resin and the copper foil with resin, or b) the copper foil with resin and the prepreg, A hole-filled printed wiring board (specifically, such as that shown in FIG. 3E) is manufactured.

図3Eにおいて、(38)は絶縁基板、(39)は導体パターン、(40)は熱・熱硬化型樹脂組成物A又は光・熱硬化型樹脂組成物B、(41)はプリプレグである。  In FIG. 3E, (38) is an insulating substrate, (39) is a conductor pattern, (40) is a thermo / thermosetting resin composition A or light / thermosetting resin composition B, and (41) is a prepreg.

更に、上記図3C及び図3Dに示される穴埋め多層プリント配線板等、並びに図3Eに示される穴埋めプリント配線板を、内層材又は外層材として適宜、複数枚、組み合わせ、これらを積層プレスすれば、層数がより多く且つ層構造がより複雑な所望の穴埋め多層プリント配線板を製造することができる。  Furthermore, the hole-filled multilayer printed wiring board shown in FIGS. 3C and 3D above, and the hole-filled printed wiring board shown in FIG. 3E are appropriately combined as an inner layer material or an outer layer material, if these are laminated and pressed, A desired hole-filled multilayer printed wiring board having a larger number of layers and a more complicated layer structure can be manufactured.

更に、原材料として、未穴埋め両面プリント配線板の替わりに未穴埋め片面プリント配線板若しくは未穴埋め多層プリント配線板を使用することにより、所望の層数の穴埋め多層プリント配線板を製造することができる。  Furthermore, a hole-filled multilayer printed wiring board having a desired number of layers can be manufactured by using an unhole-filled single-sided printed wiring board or an unhole-filled multilayer printed wiring board instead of the unhole-filled double-sided printed wiring board as a raw material.

更に、樹脂付き銅箔又はプリプレグの替わりに、他の接着シートその他層間材料を使用することにより、所望の層構造の穴埋め多層プリント配線板を製造することができる。  Furthermore, a hole-filled multilayer printed wiring board having a desired layer structure can be manufactured by using another adhesive sheet or other interlayer material instead of the resin-coated copper foil or prepreg.

以下本発明を、図を用い、実施例にて更に具体的に説明する。
<熱・熱硬化型樹脂組成物の調製>
・調製例1〜3
成分[I]と成分[II]との混合物、成分[III]、成分[V]、成分[VI]、並びに他の配合成分を順次加え、撹拌混合した。次いで、3本ロールミルにて均一に分散させた。得られた均一分散物を真空脱泡して、熱・熱硬化型樹脂組成物(調製例1〜3)を調製した。表5に各配合成分及び配合量(重量部)を示す。
Hereinafter, the present invention will be described more specifically with reference to the drawings.
<Preparation of thermosetting / thermosetting resin composition>
Preparation examples 1 to 3
A mixture of component [I] and component [II], component [III], component [V], component [VI], and other blending components were sequentially added and mixed with stirring. Subsequently, it was uniformly dispersed with a three-roll mill. The obtained uniform dispersion was vacuum degassed to prepare thermo-thermosetting resin compositions (Preparation Examples 1 to 3). Table 5 shows each blending component and blending amount (parts by weight).

<光・熱硬化型樹脂組成物の調製>
・調製例4
成分[I]、成分[II]、成分「IV]、成分[V]、成分[VI]、並びに他の配合成分を順次加え、撹拌混合した。次いで、3本ロールミルにて均一に分散させた。得られた均一分散物を真空脱泡して、光・熱硬化型樹脂組成物(調製例4)を調製した。表5に各配合成分及び配合量(重量部)を示す。
<Preparation of light / thermosetting resin composition>
Preparation Example 4
Ingredient [I], ingredient [II], ingredient "IV", ingredient [V], ingredient [VI], and other compounding ingredients were added in order and mixed with stirring, and then uniformly dispersed in a three-roll mill. The obtained uniform dispersion was vacuum degassed to prepare a photo / thermosetting resin composition (Preparation Example 4) Table 5 shows each compounding component and compounding amount (parts by weight).

Figure 2006303398
Figure 2006303398

<熱・熱硬化型樹脂組成物で穴埋した穴埋多層プリント配線板の製造>
・実施例1
両面プリント配線板として、絶縁基板[図1A、(1)]の両面に導体パターン層[図1A、(2)]を備え、且つスルーホール[図1A、(3)]内壁が銅張りされたもの[銅回路厚が40μ、L/S=75μ]を使用した。
<Manufacture of a hole-filled multilayer printed wiring board filled with a thermo-thermosetting resin composition>
Example 1
As a double-sided printed wiring board, a conductor pattern layer [FIG. 1A, (2)] is provided on both sides of an insulating substrate [FIG. 1A, (1)], and the inner wall of the through hole [FIG. 1A, (3)] is copper-coated. [Copper circuit thickness is 40μ, L / S = 75μ] was used.

上記両面プリント配線板上に調製例1の熱・熱硬化型樹脂組成物[図1B、(4)]を、150メッシュのステンレススクリーンにてマスク印刷して、スルーホールを充填・穴埋した。  On the double-sided printed wiring board, the thermo-thermosetting resin composition of Preparation Example 1 [FIG. 1B, (4)] was mask-printed with a 150-mesh stainless screen to fill and fill the through holes.

次いで、上記穴埋した両面プリント配線板を、加熱炉により150℃まで加熱し、この温度下で30分間、一次硬化を行った。上記一次硬化後、この一次熱硬化物の表面硬度を鉛筆硬度法(JISK−5400)により調べた。結果を表7に示す。  Next, the hole-filled double-sided printed wiring board was heated to 150 ° C. in a heating furnace, and primary curing was performed at this temperature for 30 minutes. After the primary curing, the surface hardness of the primary thermoset was examined by the pencil hardness method (JISK-5400). The results are shown in Table 7.

次いで、上記両面プリント配線板の両表面上に、樹脂付き銅箔をラミネートして両面銅張り積層板を形成した。なお、図1Cにおいて、(5)は樹脂付き銅箔の樹脂層であり、(6)は樹脂付き銅箔の銅箔である。  Next, a copper foil with resin was laminated on both surfaces of the double-sided printed wiring board to form a double-sided copper-clad laminate. In FIG. 1C, (5) is a resin layer of a copper foil with resin, and (6) is a copper foil of the copper foil with resin.

次いで、表6のプレス条件に従って、上記両面銅張り積層板を加熱真空プレスし、樹脂付き銅箔の樹脂層の熱硬化と、一次熱硬化物の二次熱硬化を同時に行い、穴埋両面銅張り積層板を製造した。[図1C]。  Next, the double-sided copper-clad laminate was heated and vacuum-pressed according to the pressing conditions shown in Table 6, and the resin layer of the resin-coated copper foil and the secondary thermoset of the primary thermoset were simultaneously subjected to hole filling double-sided copper. A tension laminate was produced. [FIG. 1C].

次いで、上記穴埋両面銅張り積層板の両表面上に以下のようにして導体パターン[図1D、7]を形成させた。先ず、ドライフィルムを用い、ドライフィルム(ラミネート)法にて、エッチングレジストを形成した。即ち、ドライフィルムを穴埋両面銅張り積層板の両表面にラミネートし、ネガ型フィルム(パターンマスク)を重ね合わせ、超高圧水銀灯にて、露光・硬化した。  Next, conductor patterns [FIG. 1D, 7] were formed on both surfaces of the hole-filled double-sided copper-clad laminate as follows. First, using a dry film, an etching resist was formed by a dry film (laminate) method. That is, a dry film was laminated on both surfaces of a hole-filled double-sided copper-clad laminate, a negative film (pattern mask) was overlaid, and exposed and cured with an ultra-high pressure mercury lamp.

次いで、ドライフィルムのキャリアフィルムを剥離し、露出したレジスト面へ現像液(1%炭酸ナトリウム溶液)をスプレーノズルから吹き付け現像し、その後水洗して、レジストパターンを形成した。  Next, the carrier film of the dry film was peeled off, and a developer (1% sodium carbonate solution) was sprayed and developed on the exposed resist surface from a spray nozzle, and then washed with water to form a resist pattern.

次いで、エッチングを行った。即ち、上記レジスト被覆両面銅張り積層板の両面に、塩化第二鉄溶液(36重量%)をスプレーノズルから吹き付けて、不要銅箔を溶解除去した。上記エッチング完了後、3%水酸化ナトリウム水溶液をスプレーノズルから噴射して、エッチングレジストを膨潤させながら洗い流した。
上記のようにして、本発明の穴埋多層プリント配線板(実施例1)を製造した[図1D]。
Next, etching was performed. That is, a ferric chloride solution (36% by weight) was sprayed from both sides of the resist-coated double-sided copper-clad laminate from a spray nozzle to dissolve and remove unnecessary copper foil. After completion of the etching, a 3% aqueous sodium hydroxide solution was sprayed from a spray nozzle to wash away the etching resist while swelling.
As described above, a hole-filled multilayer printed wiring board (Example 1) of the present invention was produced [FIG. 1D].

・実施例2
スルーホール内に充填・穴埋する熱・熱硬化型樹脂組成物として、調製例1の替わりに調製例2を使用し、更に一次硬化の加熱温度を150℃の替わりに120℃とした以外は、すべて上記の実施例1と同様の方法で、穴埋多層プリント配線板(実施例2)を製造した。
Example 2
As the thermo-thermosetting resin composition that fills and fills the through hole, Preparation Example 2 is used instead of Preparation Example 1, and the heating temperature for primary curing is 120 ° C. instead of 150 ° C. A hole-filled multilayer printed wiring board (Example 2) was manufactured in the same manner as in Example 1 above.

・実施例3
スルーホール内に充填・穴埋する熱・熱硬化型樹脂組成物として、調製例1の替わりに調製例3を使用し、更に一次硬化の加熱温度を150℃の替わりに110℃とした以外は、すべて上記の実施例1と同様の方法で、穴埋多層プリント配線板(実施例3)を製造した。
Example 3
As a thermo / thermosetting resin composition that fills and fills the through hole, Preparation Example 3 is used instead of Preparation Example 1, and the heating temperature for primary curing is 110 ° C. instead of 150 ° C. A hole-filled multilayer printed wiring board (Example 3) was manufactured in the same manner as in Example 1 above.

・比較例1
両面プリント配線板として、絶縁基板の両面に導体パターン層を備え、且つスルーホール内壁が銅張りされたもの[銅回路厚が40μ、L/S=75μ]を使用した。
Comparative example 1
As a double-sided printed wiring board, a conductor pattern layer provided on both sides of an insulating substrate and the inner wall of the through hole being copper-coated [copper circuit thickness is 40 μ, L / S = 75 μ] was used.

上記両面プリント配線板上に調製例3の熱・熱硬化型樹脂組成物を、150メッシュのステンレススクリーンにてマスク印刷して、スルーホール及び導体パターン間の凹部を充填・穴埋した。  On the double-sided printed wiring board, the thermosetting / thermosetting resin composition of Preparation Example 3 was mask-printed with a 150-mesh stainless screen to fill and fill in the recesses between the through holes and the conductor patterns.

次いで、上記穴埋した両面プリント配線板を、加熱炉により110℃まで加熱し、この温度下で30分間、一次硬化を行った。上記一次硬化後、この一次熱硬化物の表面硬度を鉛筆硬度法(JISK−5400)により調べた。結果を表7に示す。  Next, the hole-filled double-sided printed wiring board was heated to 110 ° C. in a heating furnace, and primary curing was performed at this temperature for 30 minutes. After the primary curing, the surface hardness of the primary thermoset was examined by the pencil hardness method (JISK-5400). The results are shown in Table 7.

その後、一次硬化膜を含む表面を、先ず600番セラミックバフにて4回研磨した後、800番不織布バフにて4回研磨した。  Thereafter, the surface including the primary cured film was first polished 4 times with a 600th ceramic buff and then polished 4 times with an 800th nonwoven buff.

次いで、上記両面プリント配線板の両表面上に、樹脂付き銅箔をラミネートして両面銅張り積層板を形成した。  Next, a copper foil with resin was laminated on both surfaces of the double-sided printed wiring board to form a double-sided copper-clad laminate.

次いで、表6のプレス条件に従って、上記両面銅張り積層板を加熱真空プレスし、樹脂付き銅箔の樹脂層の熱硬化と、一次熱硬化物の二次熱硬化を同時に行い、穴埋両面銅張り積層板を製造した。  Next, the double-sided copper-clad laminate was heated and vacuum-pressed according to the pressing conditions shown in Table 6, and the resin layer of the resin-coated copper foil and the secondary thermoset of the primary thermoset were simultaneously subjected to hole filling double-sided copper. A tension laminate was produced.

次いで、上記穴埋両面銅張り積層板の両表面上に以下のようにして導体パターンを形成させた。先ず、ドライフィルムを用い、ドライフィルム(ラミネート)法にて、エッチングレジストを形成した。即ち、ドライフィルムを穴埋両面銅張り積層板の両表面にラミネートし、ネガ型フィルム(パターンマスク)を重ね合わせ、超高圧水銀灯にて、露光・硬化した。  Next, conductor patterns were formed on both surfaces of the hole-filled double-sided copper-clad laminate as follows. First, using a dry film, an etching resist was formed by a dry film (laminate) method. That is, a dry film was laminated on both surfaces of a hole-filled double-sided copper-clad laminate, a negative film (pattern mask) was overlaid, and exposed and cured with an ultra-high pressure mercury lamp.

次いで、ドライフィルムのキャリアフィルムを剥離し、露出したレジスト面へ現像液(1%炭酸ナトリウム溶液)をスプレーノズルから吹き付け現像し、その後水洗して、レジストパターンを形成した。  Next, the carrier film of the dry film was peeled off, and a developer (1% sodium carbonate solution) was sprayed and developed on the exposed resist surface from a spray nozzle, followed by washing with water to form a resist pattern.

次いで、エッチングを行った。即ち、上記レジスト被覆両面銅張り積層板の両面に、塩化第二鉄溶液(36重量%)をスプレーノズルから吹き付けて、不要銅箔を溶解除去した。上記エッチング完了後、3%水酸化ナトリウム水溶液をスプレーノズルから噴射して、エッチングレジストを膨潤させながら洗い流した。
上記のようにして、穴埋多層プリント配線板(比較例1)を製造した。
Next, etching was performed. That is, a ferric chloride solution (36% by weight) was sprayed from both sides of the resist-coated double-sided copper-clad laminate from a spray nozzle to dissolve and remove unnecessary copper foil. After completion of the etching, a 3% aqueous sodium hydroxide solution was sprayed from a spray nozzle to wash away the etching resist while swelling.
A hole-filled multilayer printed wiring board (Comparative Example 1) was manufactured as described above.

<光・熱硬化型樹脂組成物で穴埋した穴埋多層プリント配線板の製造>
・実施例4
両面プリント配線板として、絶縁基板[図1A、(1)]の両面に導体パターン層[図1A、(2)]を備え、且つスルーホール[図1A、(3)]内壁が銅張りされたもの[銅回路厚が40μ、L/S=75μ]を使用した。
<Manufacture of hole-filled multilayer printed wiring board filled with light / thermosetting resin composition>
Example 4
As a double-sided printed wiring board, a conductor pattern layer [FIG. 1A, (2)] is provided on both sides of an insulating substrate [FIG. 1A, (1)], and the inner wall of the through hole [FIG. 1A, (3)] is copper-coated. [Copper circuit thickness is 40μ, L / S = 75μ] was used.

上記両面プリント配線板上に、調製例4の光・熱硬化型樹脂組成物[図1B、(4)]を、150メッシュのステンレススクリーンにてマスク印刷して、スルーホールを充填・穴埋した。  On the double-sided printed wiring board, the photo / thermosetting resin composition of Preparation Example 4 [FIG. 1B, (4)] was mask-printed with a 150 mesh stainless screen to fill and fill the through holes. .

次いで、上記穴埋した両面プリント配線板を、高圧水銀ランプを用いて、露光量1500mj/cmにて光照射して光硬化した後、この光硬化物の表面硬度を鉛筆硬度法(JISK−5400)により調べた。結果を表7に示す。Next, the double-sided printed wiring board filled in the hole was photocured by irradiating with light at an exposure amount of 1500 mj / cm 2 using a high-pressure mercury lamp, and then the surface hardness of the photocured product was determined by the pencil hardness method (JISK− 5400). The results are shown in Table 7.

次いで、上記両面プリント配線板の両表面上に、樹脂付き銅箔をラミネートして両面銅張り積層板を形成した。なお、図1Cにおいて、(5)は樹脂付き銅箔の樹脂層であり、(6)は樹脂付き銅箔の銅箔である。  Next, a copper foil with resin was laminated on both surfaces of the double-sided printed wiring board to form a double-sided copper-clad laminate. In FIG. 1C, (5) is a resin layer of a copper foil with resin, and (6) is a copper foil of the copper foil with resin.

次いで、表6のプレス条件に従って、上記両面銅張り積層板を加熱真空プレスし、樹脂付き銅箔の樹脂層の一次熱硬化と、光硬化物の二次熱硬化を同時に行い、穴埋両面銅張り積層板を製造した[図1C]。  Next, the double-sided copper-clad laminate was heated and vacuum-pressed according to the pressing conditions in Table 6, and the primary thermal curing of the resin layer of the resin-coated copper foil and the secondary thermal curing of the photocured product were simultaneously performed, and the hole-filled double-sided copper A tension laminate was produced [FIG. 1C].

次いで、上記穴埋両面銅張り積層板の両表面上に以下のようにして導体パターン[図1D、7]を形成させた。先ず、ドライフィルムを用い、ドライフィルム(ラミネート)法にて、エッチングレジストを形成した。即ち、ドライフィルムを穴埋両面銅張り積層板の両表面にラミネートし、ネガ型フィルム(パターンマスク)を重ね合わせ、超高圧水銀灯にて、露光・硬化した。  Next, conductor patterns [FIG. 1D, 7] were formed on both surfaces of the hole-filled double-sided copper-clad laminate as follows. First, using a dry film, an etching resist was formed by a dry film (laminate) method. That is, a dry film was laminated on both surfaces of a hole-filled double-sided copper-clad laminate, a negative film (pattern mask) was overlaid, and exposed and cured with an ultra-high pressure mercury lamp.

次いで、ドライフィルムのキャリアフィルムを剥離し、露出したレジスト面へ現像液(1%炭酸ナトリウム溶液)をスプレーノズルから吹き付け現像し、その後水洗して、レジストパターンを形成した。  Next, the carrier film of the dry film was peeled off, and a developer (1% sodium carbonate solution) was sprayed and developed on the exposed resist surface from a spray nozzle, and then washed with water to form a resist pattern.

次いで、エッチングを行った。即ち、レジスト被覆両面銅張り積層板の両面に、塩化第二鉄溶液(36重量%)をスプレーノズルから吹き付けて、不要銅箔を溶解除去した。上記エッチング完了後、3%水酸化ナトリウム水溶液をスプレーノズルから噴射して、エッチングレジストを膨潤させながら洗い流した。  Next, etching was performed. That is, ferric chloride solution (36% by weight) was sprayed from both sides of the resist-coated double-sided copper-clad laminate from a spray nozzle to dissolve and remove unnecessary copper foil. After completion of the etching, a 3% aqueous sodium hydroxide solution was sprayed from a spray nozzle to wash away the etching resist while swelling.

上記のようにして、本発明の穴埋多層プリント配線板(実施例4)を作製した[図1D]。  As described above, a hole-filled multilayer printed wiring board (Example 4) of the present invention was produced [FIG. 1D].

・比較例2
両面プリント配線板として、絶縁基板[図2A、(9)]の両面に導体パターン層[図2A、(10)]を備え、且つスルーホール[図2A、(11)]内壁が銅張りされたもの[銅回路厚が40μ、L/S=75μ]を使用した。
Comparative example 2
As a double-sided printed wiring board, a conductor pattern layer [FIGS. 2A, (10)] is provided on both sides of an insulating substrate [FIGS. 2A, (9)], and the inner walls of the through holes [FIGS. 2A, (11)] are copper-coated. [Copper circuit thickness is 40μ, L / S = 75μ] was used.

上記両面プリント配線板上に、調製例4の光・熱硬化型樹脂組成物[図2B、(12)]を、150メッシュのステンレススクリーンにてマスク印刷して、スルーホールを充填・穴埋した。  On the double-sided printed wiring board, the photo / thermosetting resin composition of Preparation Example 4 [FIG. 2B, (12)] was mask-printed with a 150 mesh stainless screen to fill and fill the through holes. .

次いで、上記穴埋した両面プリント配線板を、高圧水銀ランプを用いて、露光量1500mj/cmにて光照射して光硬化した後、この光硬化物の表面硬度を鉛筆硬度法(JISK−5400)により調べた。結果を表7に示す。Next, the double-sided printed wiring board filled with holes was photocured by irradiating light at an exposure amount of 1500 mj / cm 2 using a high-pressure mercury lamp, and then the surface hardness of the photocured product was determined by the pencil hardness method (JISK− 5400). The results are shown in Table 7.

次いで、一次硬化膜を含む表面を、先ず600番セラミックバフにて4回研磨した後、800番不織布バフにて4回研磨した[図2C]。  Next, the surface including the primary cured film was first polished 4 times with a 600th ceramic buff and then polished 4 times with an 800th nonwoven buff [FIG. 2C].

次いで、上記両面プリント配線板の両表面上に、樹脂付き銅箔をラミネートして両面銅張り積層板を形成した。なお、図2Dにおいて、(13)は樹脂付き銅箔の樹脂層であり、(14)は樹脂付き銅箔の銅箔である。  Next, a copper foil with resin was laminated on both surfaces of the double-sided printed wiring board to form a double-sided copper-clad laminate. In FIG. 2D, (13) is a resin layer of a copper foil with resin, and (14) is a copper foil of the copper foil with resin.

次いで、表6のプレス条件に従って、上記両面銅張り積層板を加熱真空プレスし、樹脂付き銅箔の樹脂層の一次熱硬化と、光硬化物の二次熱硬化を同時に行い、穴埋両面銅張り積層板を製造した[図2D]。  Next, the double-sided copper-clad laminate was heated and vacuum-pressed according to the pressing conditions in Table 6, and the primary thermal curing of the resin layer of the resin-coated copper foil and the secondary thermal curing of the photocured product were simultaneously performed, and the hole-filled double-sided copper A tension laminate was produced [FIG. 2D].

次いで、上記穴埋両面銅張り積層板の両表面上に以下のようにして導体パターン[図2E、(15)]を形成させた。先ず、ドライフィルムを用い、ドライフィルム(ラミネート)法にて、エッチングレジストを形成した。即ち、ドライフィルムを穴埋両面銅張り積層板の両表面にラミネートし、ネガ型フィルム(パターンマスク)を重ね合わせ、超高圧水銀灯にて、露光・硬化した。  Next, a conductor pattern [FIG. 2E, (15)] was formed on both surfaces of the hole-filled double-sided copper-clad laminate as follows. First, using a dry film, an etching resist was formed by a dry film (laminate) method. That is, a dry film was laminated on both surfaces of a hole-filled double-sided copper-clad laminate, a negative film (pattern mask) was overlaid, and exposed and cured with an ultra-high pressure mercury lamp.

次いで、ドライフィルムのキャリアフィルムを剥離し、露出したレジスト面へ現像液(1%炭酸ナトリウム溶液)をスプレーノズルから吹き付け現像し、その後水洗して、レジストパターンを形成した。  Next, the carrier film of the dry film was peeled off, and a developer (1% sodium carbonate solution) was sprayed and developed on the exposed resist surface from a spray nozzle, and then washed with water to form a resist pattern.

次いで、エッチングを行った。即ち、レジスト被覆両面銅張り積層板の両面に、塩化第二鉄溶液(36重量%)をスプレーノズルから吹き付けて、不要銅箔を溶解除去した。上記エッチング完了後、3%水酸化ナトリウム水溶液をスプレーノズルから噴射して、エッチングレジストを膨潤させながら洗い流した。
上記のようにして、穴埋多層プリント配線板(比較例2)を作製した[図2E]。
Next, etching was performed. That is, ferric chloride solution (36% by weight) was sprayed from both sides of the resist-coated double-sided copper-clad laminate from a spray nozzle to dissolve and remove unnecessary copper foil. After completion of the etching, a 3% aqueous sodium hydroxide solution was sprayed from a spray nozzle to wash away the etching resist while swelling.
A hole-filled multilayer printed wiring board (Comparative Example 2) was produced as described above [FIG. 2E].

Figure 2006303398
Figure 2006303398

<穴埋多層プリント配線板(実施例1〜4、並びに比較例1及び2)の性状>
得られた穴埋多層プリント配線板の穴埋部分の平坦性を調べた。即ち、穴埋多層プリント配線板の表層銅箔の平坦性を、表面粗さ計によって調べた。結果を表7に示す。
<Properties of hole-embedded multilayer printed wiring board (Examples 1 to 4 and Comparative Examples 1 and 2)>
The flatness of the hole filling portion of the obtained hole filling multilayer printed wiring board was examined. That is, the flatness of the surface copper foil of the hole-filled multilayer printed wiring board was examined with a surface roughness meter. The results are shown in Table 7.

得られた穴埋多層プリント配線板の半田耐熱性及び半田耐熱後の平坦性を、以下のようにして調べた。即ち、穴埋多層プリント配線板を260℃の溶融半田中に60秒間浸漬して、その後、膨れ・剥れの有無及び表層銅箔の平坦性を調べた。結果を表7に示す。  The resulting hole-filled multilayer printed wiring board was examined for solder heat resistance and flatness after solder heat resistance as follows. That is, the hole-filled multilayer printed wiring board was immersed in molten solder at 260 ° C. for 60 seconds, and then the presence or absence of swelling / peeling and the flatness of the surface copper foil were examined. The results are shown in Table 7.

得られた穴埋多層プリント配線板の寸法変化を調べた。即ち、上記穴埋多層プリント配線板の基板の長辺方向にある2つのガイドピン間の距離(約480mm)を調べた。結果を表7に示す。  The dimensional change of the obtained hole-filled multilayer printed wiring board was investigated. That is, the distance (about 480 mm) between the two guide pins in the long side direction of the substrate of the hole-filled multilayer printed wiring board was examined. The results are shown in Table 7.

得られた穴埋多層プリント配線板の研磨に係るコストを調べた。即ち、人件費及び動力費、水道費等の有無の他、バフやベルトサンダ−の消耗による交換の必要性の有無を調べた。結果を表7に示す。  The cost for polishing the obtained hole-filled multilayer printed wiring board was examined. In other words, in addition to the presence of personnel costs, power costs, water costs, etc., the necessity of replacement due to consumption of buffs and belt sanders was examined. The results are shown in Table 7.

Figure 2006303398
Figure 2006303398

上記表7から明らかなように、一次硬化後の研磨が不要な、本発明に係る穴埋多層プリント配線板(実施例1〜4)は、研磨を行わないことにより、プリント配線板製造の工程を短縮することができ、且つ人件費及び動力費、水道費等の研磨に関するコストを削減することができる。更に、研磨による基板の変形(寸法変化)を避けることができる。  As is apparent from Table 7 above, the hole-filled multilayer printed wiring boards (Examples 1 to 4) according to the present invention, which do not require polishing after primary curing, are not polished, so that the printed wiring board manufacturing process is performed. In addition, it is possible to reduce costs related to polishing such as labor costs, power costs, and water costs. Furthermore, deformation (dimensional change) of the substrate due to polishing can be avoided.

更に、研磨を行わないことにより懸念される穴埋部分の平坦性は、研磨を行った穴埋多層プリント配線板(比較例1、2)と差はなく、本発明に係る穴埋多層プリント配線板(実施例1〜4)は、穴埋部分の平坦性にも優れていると言える。更に、本発明に係る穴埋多層プリント配線板(実施例1〜4)は、半田耐熱性、半田耐熱後の平坦性も、研磨を行わなくとも損なわれることはなく、全く問題がないことが判る。  Further, the flatness of the hole-filled portion, which is a concern due to not performing polishing, is not different from the hole-filled multilayer printed wiring board (Comparative Examples 1 and 2) that has been polished, and the hole-filled multilayer printed wiring according to the present invention. It can be said that a board (Examples 1-4) is excellent also in the flatness of a hole filling part. Further, the hole-filled multilayer printed wiring boards (Examples 1 to 4) according to the present invention have no problem even if the solder heat resistance and the flatness after the solder heat resistance are not polished. I understand.

一方、一次硬化後に研磨を行った穴埋多層プリント配線板(比較例1、2)は、プリント配線板の製造過程が増え、又、人件費及び動力費、水道費等の研磨に関するコストが生じる。更に、研磨による基板の変形(寸法変化)が起こる。  On the other hand, in the hole-filled multilayer printed wiring board (Comparative Examples 1 and 2) that has been polished after primary curing, the manufacturing process of the printed wiring board increases, and costs related to polishing such as labor costs, power costs, and water costs arise. . Further, deformation (dimensional change) of the substrate occurs due to polishing.

本発明に係る研磨不要の穴埋多層プリント配線板の製造工程図であり、プリント配線板及び両面銅張り積層板の断面図を示す。It is a manufacturing-process figure of the hole-filled multilayer printed wiring board which does not require grinding | polishing which concerns on this invention, and shows sectional drawing of a printed wiring board and a double-sided copper clad laminated board. 比較例に係る研磨を行う穴埋多層プリント配線板の製造工程図であり、プリント配線板及び両面銅張り積層板の断面図を示す。It is a manufacturing-process figure of the hole-filled multilayer printed wiring board which performs grinding | polishing which concerns on a comparative example, and shows sectional drawing of a printed wiring board and a double-sided copper clad laminated board. 本発明に係る穴埋銅箔積層板及び穴埋(多層)プリント配線板の断面図を示す。Sectional drawing of the hole-filled copper foil laminated board and hole-filled (multilayer) printed wiring board which concern on this invention is shown.

符号の説明Explanation of symbols

1,9,16,21,27,32,38:絶縁基板。
2,7,10,15,17,22,28,31,33,36,39:導体パターン。
3,11:スルーホール。
4,12,18,23,29,34,40:熱・熱硬化型樹脂組成物A又は光・熱硬化型樹脂組成物B。
5,13,19,24,30,35,41:樹脂付き銅箔の樹脂層。
6,14,20,25:樹脂付き銅箔の銅箔。
8:導体パターン間の凹部。
26,37:プリプレグ。
1, 9, 16, 21, 27, 32, 38: Insulating substrate.
2, 7, 10, 15, 17, 22, 28, 31, 33, 36, 39: conductor pattern.
3, 11: Through hole.
4, 12, 18, 23, 29, 34, 40: Thermo / thermosetting resin composition A or photo / thermosetting resin composition B.
5, 13, 19, 24, 30, 35, 41: Resin layer of copper foil with resin.
6, 14, 20, 25: Copper foil of resin-coated copper foil.
8: Concave part between conductor patterns.
26, 37: Pre-preg.

Claims (6)

両面プリント配線板の貫通穴に二段階硬化型樹脂組成物を充填し、100〜200℃の加熱若しくはUV照射により上記充填樹脂の第一段硬化を行い、両面プリント配線板を
ア)樹脂付き銅箔と樹脂付き銅箔、又は
イ)樹脂付き銅箔とプリプレグ
との間に挟んで、第二段硬化温度以上にて積層プレスした後、表層の銅箔より導体パターンを形成することを特徴とする穴埋め多層プリント配線板の製造方法。
Fill the through-hole of the double-sided printed wiring board with a two-stage curable resin composition, perform the first-stage curing of the filled resin by heating at 100 to 200 ° C. or UV irradiation, and a) double-sided printed wiring board Foil and copper foil with resin, or b) sandwiched between copper foil with resin and prepreg, after laminating and pressing at the second stage curing temperature or higher, and forming a conductor pattern from the copper foil of the surface layer To manufacture a hole-filled multilayer printed wiring board.
二段階硬化型樹脂組成物が、下記成分[I]、[II]、[III]、[V]、及び[VI]を含有する熱・熱硬化型樹脂組成物A、又は
下記成分[I]、[II]、[IV]、[V]、及び[VI]を含有する光・熱硬化型樹脂組成物Bであることを特徴とする請求項1に記載の穴埋め多層プリント配線板の製造方法。
[I]:エポキシ樹脂の不飽和脂肪酸部分付加物。
[II]:(メタ)アクリレート類。
[III]:ラジカル熱重合開始剤。
[IV]:光架橋剤。
[V]:エポキシ樹脂。
[VI]:潜在性硬化剤。
The two-stage curable resin composition contains the following components [I], [II], [III], [V], and [VI], or a thermo / thermosetting resin composition A, or the following component [I] 2. The method for producing a hole-filled multilayer printed wiring board according to claim 1, which is a photo-thermosetting resin composition B containing [II], [IV], [V], and [VI]. .
[I]: Unsaturated fatty acid partial adduct of epoxy resin.
[II]: (Meth) acrylates.
[III]: radical thermal polymerization initiator.
[IV]: Photocrosslinking agent.
[V]: Epoxy resin.
[VI]: Latent curing agent.
成分[V]:エポキシ樹脂が、結晶性エポキシ樹脂及び/又は液状エポキシ樹脂である請求項2に記載の穴埋め多層プリント配線板の製造方法。  Component [V]: The epoxy resin is a crystalline epoxy resin and / or a liquid epoxy resin, The manufacturing method of the hole-filling multilayer printed wiring board of Claim 2. 請求項1乃至3の何れかに記載の製造方法にて製造される穴埋め多層プリント配線板。  A hole-filled multilayer printed wiring board manufactured by the manufacturing method according to claim 1. 二段階硬化型樹脂組成物が、下記成分[I]、[II]、[III]、[V]、及び[VI]を含有する熱・熱硬化型樹脂組成物A、又は
下記成分[I]、[II]、[IV]、[V]、及び[VI]を含有する光・熱硬化型樹脂組成物Bであって、
且つ請求項1に記載の穴埋め多層プリント配線板の製造方法に使用される二段階硬化型樹脂組成物。
[I]:エポキシ樹脂の不飽和脂肪酸部分付加物。
[II]:(メタ)アクリレート類。
[III]:ラジカル熱重合開始剤。
[IV]:光架橋剤。
[V]:エポキシ樹脂。
[VI]:潜在性硬化剤。
The two-stage curable resin composition contains the following components [I], [II], [III], [V], and [VI], or a thermo / thermosetting resin composition A, or the following component [I] , [II], [IV], [V], and [VI], a photo / thermosetting resin composition B,
And the two-stage curable resin composition used for the manufacturing method of the hole-filling multilayer printed wiring board of Claim 1.
[I]: Unsaturated fatty acid partial adduct of epoxy resin.
[II]: (Meth) acrylates.
[III]: radical thermal polymerization initiator.
[IV]: Photocrosslinking agent.
[V]: Epoxy resin.
[VI]: Latent curing agent.
成分[V]:エポキシ樹脂が、結晶性エポキシ樹脂及び/又は液状エポキシ樹脂である請求項5に記載の二段階硬化型樹脂組成物。  The two-stage curable resin composition according to claim 5, wherein the component [V]: the epoxy resin is a crystalline epoxy resin and / or a liquid epoxy resin.
JP2005147287A 2005-04-18 2005-04-18 Hole-filled multilayer printed wiring board and manufacturing method thereof Active JP4735815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005147287A JP4735815B2 (en) 2005-04-18 2005-04-18 Hole-filled multilayer printed wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005147287A JP4735815B2 (en) 2005-04-18 2005-04-18 Hole-filled multilayer printed wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006303398A true JP2006303398A (en) 2006-11-02
JP4735815B2 JP4735815B2 (en) 2011-07-27

Family

ID=37471291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005147287A Active JP4735815B2 (en) 2005-04-18 2005-04-18 Hole-filled multilayer printed wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4735815B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9173300B2 (en) 2012-05-22 2015-10-27 Haesung Ds Co., Ltd Method of manufacturing printed circuit board
CN105120596A (en) * 2015-09-17 2015-12-02 深圳市迅捷兴电路技术有限公司 Stepped adhesive-obstructing pressing structure and stepped adhesive-obstructing pressing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215498A (en) * 1990-12-14 1992-08-06 Matsushita Electric Works Ltd Manufacture of multilayer circuit board
JPH06338687A (en) * 1993-05-31 1994-12-06 Nec Corp Multilayer printed wiring board and its manufacture
JPH07336054A (en) * 1994-04-14 1995-12-22 Sumitomo Bakelite Co Ltd Interlayer insulating resin material for multilayer board printed circuit board and manufacture of the same board
JPH11284337A (en) * 1998-03-26 1999-10-15 Ibiden Co Ltd Manufacture of multi-layer printed circuit board
JP2000244118A (en) * 1999-02-23 2000-09-08 Matsushita Electric Works Ltd Manufacture of build-up multilayer wiring board
JP2003026765A (en) * 2001-07-19 2003-01-29 Sanei Kagaku Kk Thermosetting resin composition, production method for smooth plate, and smooth plate produced thereby
JP2003105061A (en) * 2001-09-27 2003-04-09 Sanei Kagaku Kk Photo-thermally curable resin composition, production method for hole-filled printed circuit board, and hole- filled printed circuit board
JP2003286333A (en) * 2002-03-28 2003-10-10 Mitsubishi Gas Chem Co Inc Epoxy composition for filling through-hole and method for filling hole of printed wiring board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215498A (en) * 1990-12-14 1992-08-06 Matsushita Electric Works Ltd Manufacture of multilayer circuit board
JPH06338687A (en) * 1993-05-31 1994-12-06 Nec Corp Multilayer printed wiring board and its manufacture
JPH07336054A (en) * 1994-04-14 1995-12-22 Sumitomo Bakelite Co Ltd Interlayer insulating resin material for multilayer board printed circuit board and manufacture of the same board
JPH11284337A (en) * 1998-03-26 1999-10-15 Ibiden Co Ltd Manufacture of multi-layer printed circuit board
JP2000244118A (en) * 1999-02-23 2000-09-08 Matsushita Electric Works Ltd Manufacture of build-up multilayer wiring board
JP2003026765A (en) * 2001-07-19 2003-01-29 Sanei Kagaku Kk Thermosetting resin composition, production method for smooth plate, and smooth plate produced thereby
JP2003105061A (en) * 2001-09-27 2003-04-09 Sanei Kagaku Kk Photo-thermally curable resin composition, production method for hole-filled printed circuit board, and hole- filled printed circuit board
JP2003286333A (en) * 2002-03-28 2003-10-10 Mitsubishi Gas Chem Co Inc Epoxy composition for filling through-hole and method for filling hole of printed wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9173300B2 (en) 2012-05-22 2015-10-27 Haesung Ds Co., Ltd Method of manufacturing printed circuit board
CN105120596A (en) * 2015-09-17 2015-12-02 深圳市迅捷兴电路技术有限公司 Stepped adhesive-obstructing pressing structure and stepped adhesive-obstructing pressing method

Also Published As

Publication number Publication date
JP4735815B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
US5928839A (en) Method of forming a multilayer printed circuit board and product thereof
JP3911690B2 (en) Thermosetting resin composition, smooth plate manufacturing method and smooth plate
TWI529191B (en) Resin composition, resin cured product, wiring board and fabricating thereof
JP5572714B2 (en) Method for forming solder resist
JP2003105061A (en) Photo-thermally curable resin composition, production method for hole-filled printed circuit board, and hole- filled printed circuit board
JP5408655B2 (en) Printed wiring board and manufacturing method thereof
JPH04136857A (en) Photosesetting resist composition and manufacture of printed circuit board by using same and this circuit board
JP4915639B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4735815B2 (en) Hole-filled multilayer printed wiring board and manufacturing method thereof
EP0570094A2 (en) Method of forming a multilayer printed circuit board and product thereof
JPH08316642A (en) Multilayer printed wiring board with interstitial via hole
JPH05198909A (en) High density printed board and manufacture thereof
WO2022054873A1 (en) Method for producing wiring board, and wiring board
JP5610310B2 (en) Flattened resin-coated printed wiring board
EP0691802B1 (en) Method and composition for forming a multilayer printed circuit board
JPH09235355A (en) Photocurable-thermosetting resin composition and production of multilayer printed wiring board using the same
JP3799551B2 (en) Photo / thermosetting resin composition, smooth plate manufacturing method and smooth plate
JP3815574B2 (en) Manufacturing method of multilayer printed wiring board
JPH06260733A (en) Copper-clad insulating sheet resin composition
JPH08174755A (en) Manufacture of copper-clad insulation sheet and multilayer printed wiring board
JPH1154936A (en) Multilayered printed wiring board and its manufacture
JP6065354B2 (en) Coreless multilayer wiring board and manufacturing method thereof
JPH06260771A (en) Copper clad board for printed wiring board
JPH08162760A (en) Production of multilayer printed wiring board
JPH0779074A (en) Copper-clad insulating sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110412

R150 Certificate of patent or registration of utility model

Ref document number: 4735815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250