JP2006301608A - 光学補償シート、偏光板および液晶表示装置 - Google Patents

光学補償シート、偏光板および液晶表示装置 Download PDF

Info

Publication number
JP2006301608A
JP2006301608A JP2006079192A JP2006079192A JP2006301608A JP 2006301608 A JP2006301608 A JP 2006301608A JP 2006079192 A JP2006079192 A JP 2006079192A JP 2006079192 A JP2006079192 A JP 2006079192A JP 2006301608 A JP2006301608 A JP 2006301608A
Authority
JP
Japan
Prior art keywords
group
rth
film
liquid crystal
cellulose acylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006079192A
Other languages
English (en)
Other versions
JP4856997B2 (ja
Inventor
Nobutaka Fukagawa
伸隆 深川
Hiromune Haruta
裕宗 春田
Aiko Yoshida
愛子 吉田
Hajime Nakayama
元 中山
Hiroshi Nozoe
寛 野副
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2006079192A priority Critical patent/JP4856997B2/ja
Publication of JP2006301608A publication Critical patent/JP2006301608A/ja
Application granted granted Critical
Publication of JP4856997B2 publication Critical patent/JP4856997B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

【課題】高温高湿下でも剥離等がなく、色味、コントラスト視野角依存性に優れ、高湿下で長時間点灯しても高品位の画像を維持できる光学補償シート及びこれを用いたの偏光板、液晶表示装置の提供。
【解決手段】延伸セルロースアシレートフィルム上に少なくとも1つの液晶性化合物を含有する光学異方性層を有し、レターデーションが下記(A)〜(F)の関係を満たす光学補償シート。 (A)20<Re(546)<150nm、(B)50<Rth(546)<400nm、(C)0.5<Re(480)/Re(546)<1、(D)1.0<Re(628)/Re(546)<2.0、(E)1.0<Rth(480)/Rth(546)<1.5、(F)0.7<Rth(628)/Rth(546)<1.0
【選択図】なし

Description

本発明は、光学補償シート、偏光板および液晶表示装置に関する。
液晶表示装置は、消費電力の小さい省スペースの画像表示装置として年々用途が広がっている。従来、画像の視野角依存性が大きいことが液晶表示装置の大きな欠点であったが、近年、VAモードの高視野角液晶モードが実用化されており、これによりテレビ等の高品位の画像が要求される市場でも液晶表示装置の需要が急速に拡大しつつある。
これに伴い液晶表示装置において、色味、コントラスト、およびそれらの視角依存性改良に用いられる光学補償部材に対しても光学補償能のさらなる向上が求められている。
VAモード液晶表示装置用の光学補償フィルムとしてはAプレートとCプレートを組み合わせたものがコントラスト視野角の改善効果が高いことが従来より知られている。
さらに特許文献1には、正の屈折率異方性を有し層面内に光軸を有する位相差層と、負の屈折率異方性を有し層面の法線方向に光軸を有する位相差層とを積層して構成され、正の屈折率異方性を有し層面内に光軸を有する位相差層として、レターデーションの波長が短くなるに従って小さくなる逆波長分散特性を持つ延伸高分子フィルムを用い、負の屈折率異方性を有し層面の法線方向に光軸を有する位相差層として、レターデーションが波長が短くなるに従って大きくなる正波長分散特性を持つコーティング層を用いた積層位相差層により、コントラストをさらに向上させ、且つ黒表示での色味をグレーに近づける技術が開示されている。
しかし、前記積層位相差層を偏光板保護フィルムとして用いると偏光子と偏光板の偏光性能が低下するとともに、偏光子の密着が不十分で偏光板加工時あるいは作製した偏光板が高温恒湿下に保存された場合、保護フィルムが偏光子から剥離してしまうという問題が生じていた。このため、前記積層位相差層をセルロースアセテート等他の偏光板保護フィルムに粘着剤を介して貼り合せて使用せざるを得ず、生産性、およびコストの点で改善が求められていた。
特開2004−326089号公報
本発明の目的は、偏光板の保護フィルムとして用いた場合、高温高湿下でも剥離等を生じることがなく、色味およびコントラスト視野角依存性に対する改良効果が大きく、高湿下で長時間点灯しても高品位の画像を維持できる光学補償シートと、これを用いて製造された偏光板および液晶表示装置を提供することである。
本発明は、以下のとおりである。
(1)延伸セルロースアシレートフィルム上に少なくとも1つの液晶性化合物を含有する光学異方性層を有し、かつレターデーションが下記(A)〜(F)の関係を満たすことを特徴とする光学補償シート。
20nm<Re(546)<150nm (A)
50nm<Rth(546)<400nm (B)
0.5<Re(480)/Re(546)<1 (C)
1.0<Re(628)/Re(546)<2.0 (D)
1.0<Rth(480)/Rth(546)<1.5 (E)
0.7<Rth(628)/Rth(546)<1.0 (F)
[式中、Re(λ)は波長λnmにおける正面レターデーション、Rth(λ)は波長λnmにおける膜厚方向のレターデーションである。]
(2)前記延伸セルロースアシレートフィルムの遅相軸と前記光学異方性層の遅相軸が直交していることを特徴とする前記(1)に記載の光学補償シート。
(3)前記延伸セルロースアシレートフィルムのレターデーションが、下記式(I)〜(L)を満たすことを特徴とする前記(1)または(2)に記載の光学補償シート。
0.90<Re(480)/Re(546)<1.10 (I)
0.90<Re(628)/Re(546)<1.10 (J)
0.90<Rth(480)/Rth(546)<1.10 (K)
0.90<Rth(628)/Rth(546)<1.10 (L)
(4)前記光学異方性層のレターデーションが、下記式(M)〜(P)を満たすことを特徴とする前記(1)〜(3)のいずれかに記載の光学補償シート。
1.0<Re(480)/Re(546)<2.0 (M)
0.5<Re(628)/Re(546)<1.0 (N)
1.0<Rth(480)/Rth(546)<2.0 (O)
0.5<Rth(628)/Rth(546)<1.0 (P)
(5)前記延伸セルロースアシレートフィルムが、置換度2.00以上2.90以下のセルロースアシレートを含有することを特徴とする前記(1)〜(4)のいずれかに記載の光学補償シート。
(6)前記延伸セルロースアシレートフィルムが、幅方向に1%以上200%以下の倍率で延伸されていることを特徴とする前記(1)〜(5)のいずれかに記載の光学補償シート。
(7)前記光学異方性層中の液晶性化合物の吸収極大が、前記延伸セルロースアシレートフィルム中に添加されるレターデーション発現剤の吸収極大よりも長波長である(1)〜(6)の光学補償シート。
(8)偏光子およびその両側に配置された2枚の保護フィルムを有し、少なくとも1枚の保護フィルムが前記(1)〜(7)のいずれかに記載の光学補償シートを含むことを特徴とする偏光板。
(9)液晶セルおよびその両側に配置された二枚の偏光板を有し、少なくとも1つの偏光板が前記(8)に記載の偏光板であることを特徴とする液晶表示装置。
(10)前記液晶セルがVAモードであることを特徴とする前記(9)に記載の液晶表示装置。
本発明によれば、偏光板の保護フィルムとして用いた場合、高温高湿下でも剥離等を生じることがなく、色味およびコントラスト視野角依存性に対する改良効果が大きく、高湿下で長時間点灯しても高品位の画像を維持できる光学補償シートと、これを用いて製造された偏光板および液晶表示装置を提供することができる。
<延伸セルロースアシレートフィルム>
まず、本発明の延伸セルロースアシレートフィルムについて説明する。
〔セルロースアシレート〕
まず、本発明に用いられるセルロースアシレートについて説明する。
セルロースアシレートの置換度は、セルロースの構成単位(β1→4−グリコシド結合しているグルコース)に存在している、3つの水酸基がアシル化されている割合を意味する。置換度(アシル化度)は、セルロースの構成単位質量当りの結合脂肪酸量を測定して算出することができる。測定方法は、ASTM D817−91に準じて実施する。
本発明のセルロースアシレートはアシル化度が2.00以上2.90以下のセルロースアセテートが好ましい。アシル化度は2.2以上2.8以下がさらに好ましい。さらに全アシル化度に対する6位のアシル化度の比率は0.25以上が好ましく、0.3以上がさらに好ましい。
さらに、もう一つの本発明の好ましいセルロースアシレートは、アシル化度が2以上2.9以下であり、アセチル基と炭素数が3〜4のアシル基を有する混合脂肪酸エステルである。アシル化度は2.2以上2.85以下がさらに好ましく、2.4以上2.8以下が最も好ましい。また、アセチル化度は2.5未満が好ましく、1.9未満がさらに好ましい。さらに全アシル化度に対する6位のアシル化度の比率は0.25以上が好ましく、0.3以上がさらに好ましい。
さらに本発明のセルロースアシレートとしては、アセチル基と下記一般式(B)で表されるアシル基を有する混合エステルも好ましい。
一般式(B)
Figure 2006301608
まず、前記一般式(B)について説明する。一般式(B)中、Xは置換基を示す。前記置換基の例には、ハロゲン原子、シアノ基、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基、カルボンアミド基、スルホンアミド基、ウレイド基、アラルキル基、ニトロ、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、カルバモイル基、スルファモイル基、アシルオキシ基、アルケニル基、アルキニル基、アルキルスルホニル基、アリールスルホニル基、アルキルオキシスルホニル基、アリールオキシスルホニル基、アルキルスルホニルオキシ基およびアリールオキシスルホニル基、−S−R、−NH−CO−OR、−PH−R、−P(−R)、−PH−O−R、−P(−R)(−O−R)、−P(−O−R)、−PH(=O)−R−P(=O)(−R)、−PH(=O)−O−R、−P(=O)(−R)(−O−R)、−P(=O)(−O−R)、−O−PH(=O)−R、−O−P(=O)(−R)−O−PH(=O)−O−R、−O−P(=O)(−R)(−O−R)、−O−P(=O)(−O−R)、−NH−PH(=O)−R、−NH−P(=O)(−R)(−O−R)、−NH−P(=O)(−O−R)、−SiH−R、−SiH(−R)、−Si(−R)、−O−SiH−R、−O−SiH(−R)および−O−Si(−R)が含まれる。上記Rは脂肪族基、芳香族基またはヘテロ環基である。
前記一般式(B)中、nは置換基の数であり、0〜5の整数を示す。前記置換基の数(n)は、1〜5であることが好ましく、1〜4であることがより好ましく、1〜3であることがさらに好ましく、1または2であることが最も好ましい。前記で示される置換基としては、ハロゲン原子、シアノ基、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基、カルボンアミド基、スルホンアミド基およびウレイド基が好ましく、ハロゲン原子、シアノ基、アルキル基、アルコキシ基、アリールオキシ基、アシル基およびカルボンアミド基がより好ましく、ハロゲン原子、シアノ、アルキル基、アルコキシ基およびアリールオキシ基がさらに好ましく、ハロゲン原子、アルキル基およびアルコキシ基が最も好ましい。
上記ハロゲン原子には、フッ素原子、塩素原子、臭素原子およびヨウ素原子が含まれる。上記アルキル基は、環状構造または分岐を有していてもよい。アルキル基の炭素原子数は、1〜20であることが好ましく、1〜12であることがより好ましく、1〜6であることがさらに好ましく、1〜4であることが最も好ましい。アルキル基の例には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert−ブチル基、ヘキシル基、シクロヘキシル基、オクチル基および2−エチルヘキシル基が含まれる。上記アルコキシ基は、環状構造あるいは分岐を有していてもよい。アルコキシ基の炭素原子数は、1〜20であることが好ましく、1〜12であることがより好ましく、1〜6であることがさらに好ましく、1〜4であることが最も好ましい。アルコキシ基は、さらに別のアルコキシ基で置換されていてもよい。アルコキシ基の例には、メトキシ基、エトキシ基、2−メトキシエトキシ基、2−メトキシ−2−エトキシエトキシ基、ブチルオキシ基、ヘキシルオキシ基およびオクチルオキシ基が含まれる。
上記アリール基の炭素原子数は、6〜20であることが好ましく、6〜12であることがさらに好ましい。アリール基の例には、フェニル基およびナフチル基が含まれる。上記アリールオキシ基の炭素原子数は、6〜20であることが好ましく、6〜12であることがさらに好ましい。アリールオキシ基の例には、フェノキシ基およびナフトキシ基が含まれる。上記アシル基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。アシル基の例には、ホルミル基、アセチル基およびベンゾイル基が含まれる。上記カルボンアミド基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。カルボンアミド基の例には、アセトアミド基およびベンズアミド基が含まれる。上記スルホンアミド基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。スルホンアミド基の例には、メタンスルホンアミド基、ベンゼンスルホンアミド基およびp−トルエンスルホンアミド基が含まれる。上記ウレイド基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。ウレイド基の例には、(無置換)ウレイドが含まれる。
上記アラルキル基の炭素原子数は、7〜20であることが好ましく、7〜12であることがさらに好ましい。アラルキル基の例には、ベンジル基、フェネチル基およびナフチルメチル基が含まれる。上記アルコキシカルボニル基の炭素原子数は、2〜20であることが好ましく、2〜12であることがさらに好ましい。アルコキシカルボニル基の例には、メトキシカルボニルが含まれる。上記アリールオキシカルボニル基の炭素原子数は、7〜20であることが好ましく、7〜12であることがさらに好ましい。アリールオキシカルボニル基の例には、フェノキシカルボニル基が含まれる。上記アラルキルオキシカルボニル基の炭素原子数は、8〜20であることが好ましく、8〜12であることがさらに好ましい。アラルキルオキシカルボニル基の例には、ベンジルオキシカルボニル基が含まれる。上記カルバモイル基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。カルバモイル基の例には、(無置換)カルバモイル基およびN−メチルカルバモイル基が含まれる。上記スルファモイル基の炭素原子数は、20以下であることが好ましく、12以下であることがさらに好ましい。スルファモイル基の例には、(無置換)スルファモイル基およびN−メチルスルファモイル基が含まれる。上記アシルオキシ基の炭素原子数は、1〜20であることが好ましく、2〜12であることがさらに好ましい。アシルオキシ基の例には、アセトキシ基およびベンゾイルオキシ基が含まれる。
上記アルケニル基の炭素原子数は、2〜20であることが好ましく、2〜12であることがさらに好ましい。アルケニル基の例には、ビニル基、アリル基およびイソプロペニル基が含まれる。上記アルキニル基の炭素原子数は、2〜20であることが好ましく、2〜12であることがさらに好ましい。アルキニル基の例には、チエニル基が含まれる。上記アルキルスルホニル基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。上記アリールスルホニル基の炭素原子数は、6〜20であることが好ましく、6〜12であることがさらに好ましい。上記アルキルオキシスルホニル基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。上記アリールオキシスルホニル基の炭素原子数は、6〜20であることが好ましく、6〜12であることがさらに好ましい。上記アルキルスルホニルオキシ基の炭素原子数は、1〜20であることが好ましく、1〜12であることがさらに好ましい。上記アリールオキシスルホニル基の炭素原子数は、6〜20であることが好ましく、6〜12であることがさらに好ましい。
さらに、芳香族環に置換する置換基の数が2個以上の時、該置換基は互いに同じでも異なっていてもよいし、互いに連結して縮合多環化合物(例えば、ナフタレン基、インデン基、インダン基、フェナントレン基、キノリン基、イソキノリン基、クロメン基、クロマン基、フタラジン基、アクリジン基、インドール基、インドリン基など)を形成してもよい。一般式(B)で表される芳香族アシル基の具体例は下記に示す通りである。
セルロース混合アシレートを得る方法としては、アシル化剤として2種のカルボン酸無水物を混合または逐次添加により反応させる方法、2種のカルボン酸の混合酸無水物(例えば、酢酸・プロピオン酸混合酸無水物)を用いる方法、カルボン酸と別のカルボン酸の酸無水物(例えば、酢酸とプロピオン酸無水物)を原料として反応系内で混合酸無水物(例えば、酢酸・プロピオン酸混合酸無水物)を合成してセルロースと反応させる方法、置換度が3に満たないセルロースアシレートを一旦合成し、酸無水物や酸ハライドを用いて、残存する水酸基を更にアシル化する方法などを用いることができる。
Figure 2006301608
Figure 2006301608
Figure 2006301608
Figure 2006301608
アセチル基と一般式Bで表されるアシル基を有する混合エステルの総アシル置換度は、2.0以上2.90以下が好ましく、2.2以上2.70以下がさらに好ましい。一般式Bで表される置換基の置換度は0.1以上1.0以下が好ましく、0.3以上0.9以下がさらに好ましい。
一般式Bで表される置換基の置換度は、2位、3位及び6位の置換度をそれぞれDSB2、DSB3、DSB6として
DSB6/(DSB2+DSB3+DSB6)≧0.60
を満たすことが好ましい。
さらに好ましくは、
DSB6/(DSB2+DSB3+DSB6)≧0.70
であり、最も好ましくは、
DSB6/(DSB2+DSB3+DSB6)≧0.80
である。
本発明のセルロースアシレートは、100〜800の質量平均重合度を有することが好ましく、200〜550の質量平均重合度を有することがさらに好ましい。また本発明のセルロースアシレートは、70000〜230000の数平均分子量を有することが好ましく、75000〜230000の数平均分子量を有することがさらに好ましく、78000〜120000の数平均分子量を有することが最も好ましい。
また、本発明に使用するセルロース体は、ゲルパーミエーションクロマトグラフィーによるMw/Mn(Mwは質量平均分子量、Mnは数平均分子量)の分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.0〜5.0であることが好ましく、1.5〜3.5であることがさらに好ましく、2.0〜3.0であることが最も好ましい。
また重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、2.0以上5.0以下が好ましく、2.0以上4.0以下がさらに好ましい。
本発明で用いられるセルロースアシレートは、アシル化剤として酸無水物や酸塩化物を用いて合成できる。アシル化剤が酸無水物である場合は、反応溶媒として有機酸(例えば、酢酸)や塩化メチレンが使用される。触媒としては、硫酸のようなプロトン性触媒が用いられる。アシル化剤が酸塩化物である場合は、触媒として塩基性化合物が用いられる。工業的に最も一般的な合成方法では、セルロースをアセチル基および他のアシル基に対応する有機酸(酢酸、プロピオン酸、酪酸)またはそれらの酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)を含む混合有機酸成分でエステル化してセルロースエステルを合成する。
この方法において、綿花リンターや木材パルプのようなセルロースは、酢酸のような有機酸で活性化処理した後、硫酸触媒の存在下で、上記のような有機酸成分の混合液を用いてエステル化する場合が多い。有機酸無水物成分は、一般にセルロース中に存在する水酸基の量に対して過剰量で使用する。このエステル化処理では、エステル化反応に加えてセルロース主鎖β1→4−グリコシド結合)の加水分解反応(解重合反応)が進行する。主鎖の加水分解反応が進むとセルロースエステルの重合度が低下し、製造するセルロースエステルフイルムの物性が低下する。そのため、反応温度のような反応条件は、得られるセルロースエステルの重合度や分子量を考慮して決定することが好ましい。
重合度の高い(分子量の大きい)セルロースエステルを得るためには、エステル化反応工程における最高温度を50℃以下に調節することが重要である。最高温度は、好ましくは35〜50℃、さらに好ましくは37〜47℃に調節する。反応温度が35℃以上であれば、エステル化反応が円滑に進行するので好ましい。反応温度が50℃以下であれば、セルロースエステルの重合度が低下するなどの不都合が生じないので好ましい。
エステル化反応の後、温度上昇を抑制しながら反応を停止すると、さらに重合度の低下を抑制でき、高い重合度のセルロースエステルを合成できる。すなわち、反応終了後に反応停止剤(例えば、水、酢酸)を添加すると、エステル化反応に関与しなかった過剰の酸無水物は、加水分解して対応する有機酸を副成する。この加水分解反応は激しい発熱を伴い、反応装置内の温度が上昇する。反応停止剤の添加速度が大きすぎることがなければ、反応装置の冷却能力を超えて急激に発熱して、セルロース主鎖の加水分解反応が著しく進行し、得られるセルロースエステルの重合度が低下するなどの問題が生じることはない。また、エステル化の反応中に触媒の一部はセルロースと結合しており、その大部分は反応停止剤の添加中にセルロースから解離する。このとき反応停止剤の添加速度が大きすぎなければ、触媒が解離するために充分な反応時間が確保され、触媒の一部がセルロースに結合した状態で残るなどの問題は生じにくい。強酸の触媒が一部結合しているセルロースエステルは安定性が非常に悪く、製品の乾燥時の熱などで容易に分解して重合度が低下する。これらの理由により、エステル化反応の後、好ましくは4分以上、さらに好ましくは4〜30分の時間をかけて反応停止剤を添加して、反応を停止することが望ましい。なお、反応停止剤の添加時間が30分以下であれば、工業的な生産性の低下などの問題が生じないので好ましい。
反応停止剤としては、一般に酸無水物を分解する水やアルコールが用いられている。ただし、本発明では、各種有機溶媒への溶解性が低いトリエステルを析出させないために、水と有機酸との混合物が、反応停止剤として好ましく用いられる。以上のような条件でエステル化反応を実施すると、質量平均重合度が500以上である高分子量セルロースエステルを容易に合成することができる。
本発明の延伸セルロースアシレートフィルムはレターデーション発現剤を含有することが好ましい。以下に本発明のレターデーション発現剤について詳しく説明する。
本発明のレターデーション発現剤は360nm以上750nmの波長範囲のモル吸光係数が1000以下であることがフィルムに不要の着色を引き起こさない点から好ましい。さらに好ましくは330nm以上750nm以下の波長範囲のモル吸光係数が1000以下であることである。
さらに、本発明のレターデーション発現剤の吸収極大は光学異方性層に含まれる液晶性化合物の吸収極大よりも短波長であることが好ましい。
330nm以上750nm波長範囲でのモル吸光係数が1000以下のレターデーション発現剤を用い、レターデーション発現剤の吸収極大が光学異方性層に含まれる液晶性化合物の吸収極大よりも短波長であることによって、前記一般式(C)及び(D)の関係を満たすセルロースアシレートフィルムが得られやすいという効果が奏される。
モル吸光係数は、市販の分光光度計(例えば(株)島津製作所 UV3400など)を用いて測定できる。
本発明のセルロースアシレートフィルムはレターデーション発現剤を含有することが好ましい。レターデーション発現剤として分極率異方性の大きい化合物であれば様々な化合物を使用することができるが、下記一般式(1)で表される化合物が特に好ましい。
一般式(1):Ar−L−Ar
上記一般式(1)において、ArおよびArは、それぞれ独立に、芳香族基である。
一般式(1)において、芳香族基は、アリール基(芳香族性炭化水素基)、置換アリール基、芳香族性ヘテロ環基および置換芳香族性ヘテロ環基を含む。
アリール基および置換アリール基の方が、芳香族性ヘテロ環基および置換芳香族性ヘテロ環基よりも好ましい。芳香族性へテロ環基のヘテロ環は、一般には不飽和である。芳香族性ヘテロ環は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましい。芳香族性へテロ環は一般に最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子または硫黄原子が好ましく、窒素原子または硫黄原子がさらに好ましい。
芳香族基の芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環およびピラジン環が好ましく、ベンゼン環が特に好ましい。
置換アリール基および置換芳香族性ヘテロ環基の置換基の例には、ハロゲン原子(F、Cl、Br、I)、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、アルキルアミノ基(例、メチルアミノ基、エチルアミノ基、ブチルアミノ基、ジメチルアミノ基)、ニトロ基、スルホ基、カルバモイル基、アルキルカルバモイル基(例、N−メチルカルバモイル基、N−エチルカルバモイル基、N,N−ジメチルカルバモイル基)、スルファモイル基、アルキルスルファモイル基(例、N−メチルスルファモイル基、N−エチルスルファモイル基、N,N−ジメチルスルファモイル基)、ウレイド基、アルキルウレイド基(例、N−メチルウレイド基、N,N−ジメチルウレイド基、N,N,N’−トリメチルウレイド基)、アルキル基(例、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘプチル基、オクチル基、イソプロピル基、s−ブチル基、t−アミル基、シクロヘキシル基、シクロペンチル基)、アルケニル基(例、ビニル基、アリル基、ヘキセニル基)、アルキニル基(例、エチニル基、ブチニル基)、アシル基(例、ホルミル基、アセチル基、ブチリル基、ヘキサノイル基、ラウリル基)、アシルオキシ基(例、アセトキシ基、ブチリルオキシ基、ヘキサノイルオキシ基、ラウリルオキシ基)、アルコキシ基(例、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘプチルオキシ基、オクチルオキシ基)、アリールオキシ基(例、フェノキシ基)、アルコキシカルボニル基(例、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘプチルオキシカルボニル基)、アリールオキシカルボニル基(例、フェノキシカルボニル基)、アルコキシカルボニルアミノ基(例、ブトキシカルボニルアミノ基、ヘキシルオキシカルボニルアミノ基)、アルキルチオ基(例、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘプチルチオ基、オクチルチオ基)、アリールチオ基(例、フェニルチオ基)、アルキルスルホニル基(例、メチルスルホニル基、エチルスルホニル基、プロピルスルホニル基、ブチルスルホニル基、ペンチルスルホニル基、ヘプチルスルホニル基、オクチルスルホニル基)、アミド基(例、アセトアミド基、ブチルアミド基、ヘキシルアミド基、ラウリルアミド基)および非芳香族性複素環基(例、モルホリル基、ピラジニル基)が含まれる。
置換アリール基および置換芳香族性ヘテロ環基の置換基としては、ハロゲン原子、シアノ基、カルボキシル基、ヒドロキシル基、アミノ基、アルキル置換アミノ基、アシル基、アシルオキシ基、アミド基、アルコキシカルボニル基、アルコキシ基、アルキルチオ基およびアルキル基が好ましい。
アルキルアミノ基、アルコキシカルボニル基、アルコキシ基およびアルキルチオ基のアルキル部分とアルキル基とは、さらに置換基を有していてもよい。アルキル部分およびアルキル基の置換基の例には、ハロゲン原子、ヒドロキシル、カルボキシル、シアノ、アミノ、アルキルアミノ基、ニトロ、スルホ、カルバモイル、アルキルカルバモイル基、スルファモイル、アルキルスルファモイル基、ウレイド、アルキルウレイド基、アルケニル基、アルキニル基、アシル基、アシルオキシ基、アシルアミノ基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アリールチオ基、アルキルスルホニル基、アミド基および非芳香族性複素環基が含まれる。アルキル部分およびアルキル基の置換基としては、ハロゲン原子、ヒドロキシル、アミノ、アルキルアミノ基、アシル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニル基およびアルコキシ基が好ましい。
一般式(1)において、Lは、アルキレン基、アルケニレン基、アルキニレン基、−O−、−CO−およびそれらの組合せからなる基から選ばれる二価の連結基である。
アルキレン基は、環状構造を有していてもよい。環状アルキレン基としては、シクロヘキシレンが好ましく、1,4−シクロへキシレンが特に好ましい。鎖状アルキレン基としては、直鎖状アルキレン基の方が分岐を有するアルキレン基よりも好ましい。
アルキレン基の炭素原子数は、1〜20であることが好ましく、より好ましくは1〜15であり、さらに好ましくは1〜10であり、さらに好ましくは1〜8であり、最も好ましくは1〜6である。
アルケニレン基およびアルキニレン基は、環状構造よりも鎖状構造を有することが好ましく、分岐を有する鎖状構造よりも直鎖状構造を有することがさらに好ましい。
アルケニレン基およびアルキニレン基の炭素原子数は、好ましくは2〜10であり、より好ましくは2〜8であり、さらに好ましくは2〜6であり、さらに好ましくは2〜4であり、最も好ましくは2(ビニレンまたはエチニレン)である。
アリーレン基は、炭素原子数は6〜20であることが好ましく、より好ましくは6〜16であり、さらに好ましくは6〜12である。
一般式(1)の分子構造において、Lを挟んで、ArとArとが形成する角度は、140度以上であることが好ましい。
棒状化合物としては、下記式一般式(2)で表される化合物がさらに好ましい。
一般式(2):Ar−L−X−L−Ar
上記一般式(2)において、ArおよびArは、それぞれ独立に、芳香族基である。芳香族基の定義および例は、一般式(1)のArおよびArと同様である。
一般式(2)において、LおよびLは、それぞれ独立に、アルキレン基、−O−、−CO−およびそれらの組合せからなる基より選ばれる二価の連結基である。
アルキレン基は、環状構造よりも鎖状構造を有することが好ましく、分岐を有する鎖状構造よりも直鎖状構造を有することがさらに好ましい。
アルキレン基の炭素原子数は、1〜10であることが好ましく、より好ましくは1〜8であり、さらに好ましくは1〜6であり、さらに好ましくは1〜4であり、1または2(メチレンまたはエチレン)であることが最も好ましい。
およびLは、−O−CO−または−CO−O−であることが特に好ましい。
一般式(2)において、Xは、1,4−シクロへキシレン、ビニレンまたはエチニレンである。
以下に、一般式(1)又は(2)で表される化合物の具体例を示す。
Figure 2006301608
Figure 2006301608
Figure 2006301608
Figure 2006301608
Figure 2006301608
Figure 2006301608
Figure 2006301608
Figure 2006301608
Figure 2006301608
具体例(1)〜(34)、(41)、(42)は、シクロヘキサン環の1位と4位とに二つの不斉炭素原子を有する。ただし、具体例(1)、(4)〜(34)、(41)、(42)は、対称なメソ型の分子構造を有するため光学異性体(光学活性)はなく、幾何異性体(トランス型とシス型)のみ存在する。具体例(1)のトランス型(1−trans)とシス型(1−cis)とを、以下に示す。
Figure 2006301608
前述したように、棒状化合物は直線的な分子構造を有することが好ましい。そのため、トランス型の方がシス型よりも好ましい。
具体例(2)および(3)は、幾何異性体に加えて光学異性体(合計4種の異性体)を有する。幾何異性体については、同様にトランス型の方がシス型よりも好ましい。光学異性体については、特に優劣はなく、D、Lあるいはラセミ体のいずれでもよい。
具体例(43)〜(45)では、中心のビニレン結合にトランス型とシス型とがある。 上記と同様の理由で、トランス型の方がシス型よりも好ましい。
その他、好ましい化合物を以下に示す。
Figure 2006301608
Figure 2006301608
溶液の紫外線吸収スペクトルにおいて最大吸収波長(λmax)が250nmより短波長である棒状化合物を、二種類以上併用してもよい。
棒状化合物は、文献記載の方法により合成できる。文献としては、Mol. Cryst. Liq. Cryst., 53巻、229ページ(1979年)、同89巻、93ページ(1982年)、同145巻、111ページ(1987年)、同170巻、43ページ(1989年)、J. Am. Chem. Soc., 113巻、1349ページ(1991年)、同118巻、5346ページ(1996年)、同92巻、1582ページ(1970年)、J. Org. Chem., 40巻、420ページ(1975年)、Tetrahedron、48巻16号、3437ページ(1992年)を挙げることができる。
本発明のレターデーション発現剤の添加量はセルロースアシレート100質量部に対して、1〜30質量%が好ましく、2〜25質量%がさらに好ましい。
本発明のレターデーション発現剤の添加方法は、アルコールやメチレンクロライド、ジオキソランの有機溶媒に溶解してから、セルロースアシレート溶液(ドープ)に添加するか、または直接ドープ組成中に添加してもよい。
〔延伸セルロースアシレートフィルムの製造〕
本発明のセルロースアシレートフィルムは、ソルベントキャスト法により製造することができる。ソルベントキャスト法では、セルロースアシレートを有機溶媒に溶解した溶液(ドープ)を用いてフィルムを製造する。
有機溶媒は、炭素原子数が3〜12のエーテル、炭素原子数が3〜12のケトン、炭素原子数が3〜12のエステルおよび炭素原子数が1〜6のハロゲン化炭化水素から選ばれる溶媒を含むことが好ましい。
エーテル、ケトンおよびエステルは、環状構造を有していてもよい。エーテル、ケトンおよびエステルの官能基(すなわち、−O−、−CO−およびCOO−)のいずれかを2つ以上有する化合物も、有機溶媒として用いることができる。有機溶媒は、アルコール性水酸基のような他の官能基を有していてもよい。2種類以上の官能基を有する有機溶媒の場合、その炭素原子数はいずれかの官能基を有する溶媒の上記した好ましい炭素原子数範囲内であることが好ましい。
炭素原子数が3〜12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、アニソールおよびフェネトールが含まれる。
炭素原子数が3〜12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロヘキサノンおよびメチルシクロヘキサノンが含まれる。
炭素原子数が3〜12のエステル類の例には、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテートおよびペンチルアセテートが含まれる。
2種類以上の官能基を有する有機溶媒の例には、2−エトキシエチルアセテート、2−メトキシエタノールおよび2−ブトキシエタノールが含まれる。
ハロゲン化炭化水素の炭素原子数は、1または2であることが好ましく、1であることが最も好ましい。ハロゲン化炭化水素のハロゲンは、塩素であることが好ましい。ハロゲン化炭化水素の水素原子が、ハロゲンに置換されている割合は、25〜75モル%であることが好ましく、30〜70モル%であることがより好ましく、35〜65モル%であることがさらに好ましく、40〜60モル%であることが最も好ましい。メチレンクロリドが、代表的なハロゲン化炭化水素である。
2種類以上の有機溶媒を混合して用いてもよい。
セルロースアシレート溶液は、0℃以上の温度(常温または高温)で処理することからなる一般的な方法で調製することができる。溶液の調製は、通常のソルベントキャスト法におけるドープの調製方法および装置を用いて実施することができる。なお、一般的な方法の場合は、有機溶媒としてハロゲン化炭化水素(特にメチレンクロリド)を用いることが好ましい。
セルロースアシレートの量は、得られる溶液中に10〜40質量%含まれるように調整する。セルロースアシレートの量は、10〜30質量%であることがさらに好ましい。有機溶媒(主溶媒)中には、後述する任意の添加剤を添加しておいてもよい。
溶液は、常温(0〜40℃)でセルロースアシレートと有機溶媒とを撹拌することにより調製することができる。高濃度の溶液は、加圧および加熱条件下で撹拌してもよい。具体的には、セルロースアシレートと有機溶媒とを加圧容器に入れて密閉し、加圧下で溶媒の常温における沸点以上、且つ溶媒が沸騰しない範囲の温度に加熱しながら撹拌する。加熱温度は、通常は40℃以上であり、好ましくは60〜200℃であり、さらに好ましくは80〜110℃である。
各成分は予め粗混合してから容器に入れてもよい。また、順次容器に投入してもよい。容器は撹拌できるように構成されている必要がある。窒素ガス等の不活性気体を注入して容器を加圧することができる。また、加熱による溶媒の蒸気圧の上昇を利用してもよい。あるいは、容器を密閉後、各成分を圧力下で添加してもよい。
加熱する場合、容器の外部より加熱することが好ましい。例えば、ジャケットタイプの加熱装置を用いることができる。また、容器の外部にプレートヒーターを設け、配管して液体を循環させることにより容器全体を加熱することもできる。
撹拌は、容器内部に撹拌翼を設けて、これを用いて行うことが好ましい。撹拌翼は、容器の壁付近に達する長さのものが好ましい。撹拌翼の末端には、容器の壁の液膜を更新するため、掻取翼を設けることが好ましい。
容器には、圧力計、温度計等の計器類を設置してもよい。容器内で各成分を溶媒中に溶解する。調製したドープは冷却後容器から取り出すか、あるいは、取り出した後、熱交換器等を用いて冷却する。
冷却溶解法により、溶液を調製することもできる。冷却溶解法では、通常の溶解方法では溶解させることが困難な有機溶媒中にも、セルロースアシレートを溶解させることができる。なお、通常の溶解方法でセルロースアシレートを溶解できる溶媒であっても、冷却溶解法によると迅速に均一な溶液が得られるとの効果がある。
冷却溶解法では、最初に室温で有機溶媒中にセルロースアシレートを撹拌しながら徐々に添加する。セルロースアシレートの量は、この混合物中に10〜40質量%含まれるように調整することが好ましい。セルロースアシレートの量は、10〜30質量%であることがさらに好ましい。さらに、混合物中には後述する任意の添加剤を添加しておいてもよい。
次に、混合物を−100〜−10℃(好ましくは−80〜−10℃、さらに好ましくは−50〜−20℃、最も好ましくは−50〜−30℃)に冷却する。冷却は、例えば、ドライアイス・メタノール浴(−75℃)や冷却したジエチレングリコール溶液(−30〜−20℃)中で実施できる。冷却によりセルロースアシレートと有機溶媒の混合物は固化する。
冷却速度は、4℃/分以上であることが好ましく、8℃/分以上であることがさらに好ましく、12℃/分以上であることが最も好ましい。冷却速度は、速いほど好ましいが、10000℃/秒が理論的な上限であり、1000℃/秒が技術的な上限であり、そして100℃/秒が実用的な上限である。なお、冷却速度は、冷却を開始する時の温度と最終的な冷却温度との差を、冷却を開始してから最終的な冷却温度に達するまでの時間で割った値である。
さらに、これを0〜200℃(好ましくは0〜150℃、さらに好ましくは0〜120℃、最も好ましくは0〜50℃)に加温すると、有機溶媒中にセルロースアシレートが溶解する。昇温は、室温中に放置するだけでもよく、温浴中で加温してもよい。加温速度は、4℃/分以上であることが好ましく、8℃/分以上であることがさらに好ましく、12℃/分以上であることが最も好ましい。加温速度は、速いほど好ましいが、10000℃/秒が理論的な上限であり、1000℃/秒が技術的な上限であり、そして100℃/秒が実用的な上限である。なお、加温速度は、加温を開始する時の温度と最終的な加温温度との差を加温を開始してから最終的な加温温度に達するまでの時間で割った値である。
以上のようにして、均一な溶液が得られる。なお、溶解が不充分である場合は冷却、加温の操作を繰り返してもよい。溶解が充分であるかどうかは、目視により溶液の外観を観察するだけで判断することができる。
冷却溶解法においては、冷却時の結露による水分混入を避けるため、密閉容器を用いることが望ましい。また、冷却加温操作において、冷却時に加圧し、加温時に減圧すると、溶解時間を短縮することができる。加圧および減圧を実施するためには、耐圧性容器を用いることが望ましい。
なお、セルロースアセテート(酢化度:60.9%、粘度平均重合度:299)を冷却溶解法によりメチルアセテート中に溶解した20質量%の溶液は、示差走査熱量計(DSC)による測定によると、33℃近傍にゾル状態とゲル状態との疑似相転移点が存在し、この温度以下では均一なゲル状態となる。従って、この溶液は疑似相転移温度以上、好ましくはゲル相転移温度プラス10℃程度の温度で保することが好ましい。ただし、この疑似相転移温度は、セルロースアセテートの酢化度、粘度平均重合度、溶液濃度や使用する有機溶媒により異なる。
調製したセルロースアシレート溶液(ドープ)から、ソルベントキャスト法によりセルロースアシレートフィルムを製造する。ドープにはレターデーション発現剤を添加することが好ましい。ドープは、ドラムまたはバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が18〜35%となるように濃度を調整することが好ましい。ドラムまたはバンドの表面は、鏡面状態に仕上げておくことが好ましい。ドープは、表面温度が10℃以下のドラムまたはバンド上に流延することが好ましい。
ソルベントキャスト法における乾燥方法については、米国特許2336310号、同2367603号、同2492078号、同2492977号、同2492978号、同2607704号、同2739069号および同2739070号の各明細書、英国特許640731号および同736892号の各明細書、並びに特公昭45−4554号、同49−5614号、特開昭60−176834号、同60−203430号および同62−115035号の各公報に記載がある。バンドまたはドラム上での乾燥は空気、窒素などの不活性ガスを送風することにより行なうことができる。
得られたフィルムをドラムまたはバンドから剥ぎ取り、さらに100℃から160℃まで逐次温度を変えた高温風で乾燥して、残留溶媒を蒸発させることもできる。以上の方法は、特公平5−17844号公報に記載がある。この方法によると、流延から剥ぎ取りまでの時間を短縮することが可能である。この方法を実施するためには、流延時のドラムまたはバンドの表面温度においてドープがゲル化することが必要である。
調製したセルロースアシレート溶液(ドープ)を用いて2層以上の流延を行いフィルム化することもできる。この場合、ソルベントキャスト法によりセルロースアシレートフィルムを作製することが好ましい。ドープは、ドラムまたはバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が10〜40質量%の範囲となるように濃度を調整することが好ましい。ドラムまたはバンドの表面は、鏡面状態に仕上げておくことが好ましい。
2層以上の複数のセルロースアシレート液を流延する場合、複数のセルロースアシレート溶液を流延することが可能で、支持体の進行方向に間隔をおいて設けられた複数の流延口からセルロースアシレートを含む溶液をそれぞれ流延させて積層させながらフィルムを作製してもよい。例えば、特開昭61−158414号、特開平1−122419号、および特開平11−198285号の各公報に記載の方法を用いることができる。また、2つの流延口からセルロースアシレート溶液を流延することによっても、フィルム化することもできる。例えば、特公昭60−27562号、特開昭61−94724号、特開昭61−947245号、特開昭61−104813号、特開昭61−158413号、および、特開平6−134933号の各公報に記載の方法を用いることができる。さらに特開昭56−162617号公報に記載の高粘度セルロースアシレート溶液の流れを低粘度のセルロースアシレート溶液で包み込み、その高・低粘度のセルロースアシレート溶液を同時に押し出すセルロースアシレートフィルムの流延方法を用いることもできる。
また、2個の流延口を用いて、第一の流延口により支持体に成形したフィルムを剥ぎ取り、支持体面に接していた側に第二の流延を行うことにより、フィルムを作製することもできる。例えば、特公昭44−20235号公報に記載の方法を挙げることができる。
流延するセルロースアシレート溶液は同一の溶液を用いてもよいし、異なるセルロースアシレート溶液を用いてもよい。複数のセルロースアシレート層に機能をもたせるために、その機能に応じたセルロースアシレート溶液を、それぞれの流延口から押し出せばよい。さらに本発明のセルロースアシレート溶液は、他の機能層(例えば、接着層、染料層、帯電防止層、アンチハレーション層、紫外線吸収層、偏光層など)と同時に流延することもできる。
従来の単層液では、必要なフィルムの厚さにするためには高濃度で高粘度のセルロースアシレート溶液を押し出すことが必要である。その場合セルロースアシレート溶液の安定性が悪くて固形物が発生し、ブツ故障となったり、平面性が不良となったりして問題となることが多かった。この問題の解決方法として、複数のセルロースアシレート溶液を流延口から流延することにより、高粘度の溶液を同時に支持体上に押し出すことができ、平面性も良化し優れた面状のフィルムが作製できるばかりでなく、濃厚なセルロースアシレート溶液を用いることで乾燥負荷の低減化が達成でき、フィルムの生産スピードを高めることができる。
セルロースアシレートフィルムには、劣化防止剤(例えば、酸化防止剤、過酸化物分解剤、ラジカル禁止剤、金属不活性化剤、酸捕獲剤、アミン等)を添加してもよい。劣化防止剤については、特開平3−199201号、同5−1907073号、同5−194789号、同5−271471号、同6−107854号の各公報に記載がある。劣化防止剤の添加量は、調製する溶液(ドープ)の0.01〜1質量%であることが好ましく、0.01〜0.2質量%であることがさらに好ましい。添加量が0.01質量%以上であれば、劣化防止剤の効果が十分に発揮されるので好ましく、添加量が1質量%以下であれば、フィルム表面への劣化防止剤のブリードアウト(滲み出し)などが生じにくいので好ましい。特に好ましい劣化防止剤の例としては、ブチル化ヒドロキシトルエン(BHT)、トリベンジルアミン(TBA)を挙げることができる。
これら流延から後乾燥までの工程は、空気雰囲気下でもよいし窒素ガスなどの不活性ガス雰囲気下でもよい。本発明のセルロースアシレートフィルムの製造に用いる巻き取り機は、一般的に使用されているものでよく、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法などの巻き取り方法で巻き取ることができる。
〔延伸処理〕
本発明の光学補償シートには、延伸処理されたセルロースアシレートフィルム(延伸セルロースアシレートフィルム)が使用される。延伸処理によりセルロースアシレートフィルムに所望のレターデーションを付与することが可能であり、セルロースアシレートフィルムに位相差フィルムとしての機能も合わせて持たせることが可能となる。セルロースアシレートフィルムの延伸方向は幅方向、長手方向のいずれでも好ましい。
幅方向に延伸する方法は、例えば、特開昭62−115035号、特開平4−152125号、同4−284211号、同4−298310号、同11−48271号などの各公報に記載されている。
フィルムの延伸は、常温または加熱条件下で実施する。加熱温度は、フィルムのガラス転移温度以下であることが好ましい。フィルムは、乾燥中の処理で延伸することができ、特に溶媒が残存する場合は有効である。長手方向の延伸の場合、例えば、フィルムの搬送ローラーの速度を調節して、フィルムの剥ぎ取り速度よりもフィルムの巻き取り速度の方を速くするとフィルムは延伸される。幅方向の延伸の場合、フィルムの巾をテンターで保持しながら搬送して、テンターの巾を徐々に広げることによってもフィルムを延伸できる。フィルムの乾燥後に、延伸機を用いて延伸すること(好ましくはロング延伸機を用いる一軸延伸)もできる。
フィルムの延伸倍率(延伸前のフィルムに対する伸び率)は、1%以上200%以下が好ましく、5%以上150%以下がさらに好ましい。とくに、幅方向に1%以上200%以下で延伸するのが好ましく、さらに好ましくは5%以上150%以下である。延伸速度は1%/分以上100%/分以下が好ましく、5%/分以上80%/分以下がさらに好ましく、10%/分以上60%/分以下が最も好ましい。
また、本発明の延伸セルロースアシレートフィルムは、最大延伸倍率まで延伸したのちに、最大延伸倍率より低い延伸倍率で一定時間保持する工程(以下緩和工程)を経て製造されることが好ましい。緩和工程における延伸倍率は最大延伸倍率の50%以上99%以下が好ましく、70%以上97%以下がさらに好ましく、90%以上95%以下が最も好ましい。また、緩和工程の時間は1秒以上120秒以下が好ましく、5秒以上100秒以下がさらに好ましい。
緩和工程の延伸倍率、時間を上記範囲にすることにより、レターデーション発現剤の配向度が高まり、高レターデーションで且つ正面および膜厚方向のレターデーションの変動が小さいセルロースアシレートフィルムが得られる。本発明のレターデーション発現剤は分子間距離が長く、配向状態が平衡状態に落ち着くのに時間を要するため、延伸速度および緩和過程により配向状態をコントロールする方法は特に効果的である。
〔延伸セルロースアシレートフィルムの諸特性〕
[フィルムのレターデーション]
本明細書において、Re(λ)、Rth(λ)は、それぞれ波長λにおける正面レターデーションおよび膜厚方向のレターデーションを表す。Re(λ)は“KOBRA 21ADH”{王子計測機器(株)製}において、波長λnmの光をフィルムの法線方向に入射させて測定される。Rth(λ)は、前記Re(λ)、面内の遅相軸(“KOBRA 21ADH”により判断される)を傾斜軸(回転軸)として、フィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値、および面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して−40°傾斜した方向から波長λnmの光を入射させて測定したレターデーション値の合計3つの方向で測定したレターデーション値と平均屈折率の仮定値と入力された膜厚値とを基に“KOBRA 21ADH”が算出する。
ここで平均屈折率の仮定値は、「ポリマーハンドブック」(JOHN WILEY & SONS,Inc.)、および各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについては、アッベ屈折計で測定することができる。
主な光学フィルムの平均屈折率の値を以下に例示する:
セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHによりn(製膜方向の屈折率)、n(幅方向の屈折率)、n(厚み方向の屈折率)を算出する。
本発明の延伸セルロースアシレートフィルムレターデーションは下記関係を満たすことが好ましい。
40nm<Re(546)<400nm (G)
10nm<Rth(546)<390nm (H)
0.90<Re(480)/Re(546)<1.10 (I)
0.90<Re(628)/Re(546)<1.10 (J)
0.90<Rth(480)/Rth(546)<1.10 (K)
0.90<Rth(628)/Rth(546)<1.10 (L)
式(G)は60nm<Re(546)<300nmがさらに好ましい。式(H)は50nm<Rth(546)<300nmがさらに好ましい。式(I)は0.93<Re(480)/Re(546)<1.07がさらに好ましい。式(J)は0.93<Re(628)/Re(546)<1.07がさらに好ましい。式(K)は0.93<Rth(480)/Rth(546)<1.07がさらに好ましい。式(L)は0.93<Rth(628)/Rth(546)<1.07がさらに好ましい。
[延伸セルロースアシレートフィルムの厚み]
本発明の延伸セルロースアシレートフィルムの厚みは10μm以上200μm以下が好ましく、20μm以上150μm以下がさらに好ましく、30μm以上100μm以下が最も好ましい。
[延伸セルロースアシレートフィルムの含水率]
延伸セルロースアシレートフィルムの含水率は、一定の温湿度における平衡含水率を測定することにより評価することができる。平衡含水率は、一定の温湿度に24時間放置した後、平衡に達した試料の水分量をカールフィッシャー法で測定し、水分量(g)を試料質量(g)で除して算出したものである。
本発明の延伸セルロースアシレートフィルムの25℃、80%RHにおける含水率は5.0質量%以下であることが好ましく、4.3質量%以下であることがさらに好ましく、3.8質量%以下であることが最も好ましい。
[透湿度]
透湿度はJIS Z−0208に記載の方法に則り、各試料の透湿度を測定し、面積1m当たり24時間で蒸発する水分量(g)として算出する。透湿度は偏光板の耐久性と密接に関係したフィルム物性であり、透湿度を下げることにより偏光板耐久性を向上させることができる。本発明の延伸セルロースアシレートフィルムは、60℃、95%RH、24時間における透湿度が200g/m以上1700g/m以下であることが好ましい。より好ましくは、500g/m以上1400g/m以下である。
〔鹸化処理〕
本発明の延伸セルロースアシレートフィルムはアルカリ鹸化処理することによりポリビニルアルコールのような偏光子の材料との密着性を付与し、偏光板保護フィルムとして用いることができる。
延伸セルロースアシレートフィルムのアルカリ鹸化処理は、フイルム表面をアルカリ溶液に浸漬した後、酸性溶液で中和し、水洗して乾燥するサイクルで行われることが好ましい。アルカリ溶液としては、水酸化カリウム溶液、水酸化ナトリウム溶液が挙げられ、水酸化イオンの濃度は0.1〜5.0mol/Lの範囲にあることが好ましく、0.5〜4.0mol/Lの範囲にあることがさらに好ましい。アルカリ溶液温度は、室温〜90℃の範囲にあることが好ましく、40〜70℃の範囲にあることがさらに好ましい。
[延伸セルロースアシレートの光弾性]
本発明の延伸セルロースアシレートの光弾性係数は60×10−8cm/N以下が好ましく、20×10−8cm/Nがさらに好ましい。光弾性係数はエリプソメーターにより求めることができる。
[延伸セルロースアシレートのガラス転移温度]
本発明の延伸セルロースアシレートのガラス転移温度は、120℃以上が好ましく、更に140℃以上が好ましい。ガラス転移温度は、示差走査型熱量計(DSC)を用いて昇温速度10℃/分で測定したときにフィルムのガラス転移に由来するベースラインが変化しはじめる温度と再びベースラインに戻る温度との平均値として求めたものである。
(光学異方性層)
次に本発明の光学異方性層について詳しく説明する。
本発明の光学異方性層は少なくとも1つの液晶性化合物を含む。液晶性化合物としては、棒状液晶性化合物あるいは円盤状液晶性化合物であることが好ましい。また、本発明の液晶性化合物は前記延伸セルロースアシレートフィルムを構成するモノマーユニットよりも長波長側に吸収を有することが好ましい。これにより光学補償シートのレターデーションの波長分散を所望のパターンにコントロールすることができる。本発明の液晶性化合物の吸収極大の好ましい範囲は200nm以上370nm以下であり、さらに好ましくは220nm以上350nm以下であり、最も好ましくは240nm以上330nm以下である。吸収極大が長波長過ぎると吸収の裾が可視域にかかり光学補償シートが黄色味を帯びて好ましくない。
本発明の光学異方性層は、配向膜を用いて液晶性化合物を配向させ、その配向状態を固定することにより形成することが好ましい。液晶性化合物の配向状態を固定するため、液晶性化合物は重合性基を有することが好ましい。
(棒状液晶性化合物)
まず本発明の光学異方性層で使用する棒状液晶性化合物について説明する。
棒状液晶性化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましい。低分子の液晶性化合物だけではなく、高分子液晶性化合物も用いることもできる。特に好ましく用いられる、低分子の重合性基を有する棒状液晶性化合物としては、下記式(I)の棒状液晶性化合物である。
(I)Q1−L1−Cy1−L2−(Cy2−L3)n−Cy3−L4−Q2
式中、Q1およびQ2はそれぞれ独立に重合性基であり、L1およびL4はそれぞれ独立に二価の連結基であり、L2およびL3はそれぞれ独立に単結合または二価の連結基であり、Cy1,Cy2およびCy3は二価の環状基であり、nは0、1または2である。
Q1およびQ2において、重合性基の重合反応は、付加重合(開環重合を含む)または縮合重合であることが好ましい。言い換えると、重合性基は、付加重合反応または縮合重合反応が可能な官能基であることが好ましい。以下に重合性基の例を示す。
Figure 2006301608
L1およびL4はそれぞれ独立に二価の連結基である。L1およびL4はそれぞれ独立に、−O−,−S−,−CO−,−NR2−,二価の鎖状基、二価の環状基およびそれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。上記R2は炭素原子数が1から7のアルキル基または水素原子である。
組み合わせからなる二価の連結基の例を以下に示す。ここで、左側がQ(Q1またはQ2)に、右側がCy(Cy1またはCy3)に結合する。
L−1:−CO−O−二価の鎖状基―O−
L−2:−CO−O−二価の鎖状基―O−CO−
L−3:−CO−O−二価の鎖状基―O−CO−O−
L−4:−CO−O−二価の鎖状基―O−二価の環状基−
L−5:−CO−O−二価の鎖状基―O−二価の環状基−CO−O−
L−6:−CO−O−二価の鎖状基―O−二価の環状基−O−CO−
L−7:−CO−O−二価の鎖状基―O−二価の環状基−二価の鎖状基―
L−8:−CO−O−二価の鎖状基―O−二価の環状基−二価の鎖状基―CO−O−
L−9:−CO−O−二価の鎖状基―O−二価の環状基−二価の鎖状基―O−CO−
L−10:−CO−O−二価の鎖状基―O−CO−二価の環状基−
L−11:−CO−O−二価の鎖状基―O−CO−二価の環状基−CO−O−
L−12:−CO−O−二価の鎖状基―O−CO−二価の環状基−O−CO−
L−13:−CO−O−二価の鎖状基―O−CO−二価の環状基−二価の鎖状基―
L−14:−CO−O−二価の鎖状基―O−CO−二価の環状基−二価の鎖状基―CO−O−
L−15:−CO−O−二価の鎖状基―O−CO−二価の環状基−二価の鎖状基―O−CO−
L−16:−CO−O−二価の鎖状基―O−CO−O−二価の環状基−
L−17:−CO−O−二価の鎖状基―O−CO−O−二価の環状基−CO−O−
L−18:−CO−O−二価の鎖状基―O−CO−O−二価の環状基−O−CO−
L−19:−CO−O−二価の鎖状基―O−CO−O−二価の環状基−二価の鎖状基―
L−20:−CO−O−二価の鎖状基―O−CO−O−二価の環状基−二価の鎖状基―CO−O−
L−21:−CO−O−二価の鎖状基―O−CO−O−二価の環状基−二価の鎖状基―O−CO−
二価の鎖状基は、アルキレン基、置換アルキレン基、アルケニレン基、置換アルケニレン基、アルキニレン基,置換アルキニレン基を意味する。アルキレン基,置換アルキレン基,アルケニレン基,置換アルケニレン基が好ましく、アルキレン基およびアルケニレン基がさらに好ましい。
アルキレン基は,分岐を有していてもよい。アルキレン基の炭素数は1乃至12であることが好ましく、2乃至10であることがさらに好ましく、2乃至8であることがもっとも好ましい。
置換アルキレン基のアルキレン部分は、上記アルキレン基と同様である。置換基の例としてはハロゲン原子が含まれる。
アルケニレン基は、分岐を有していてもよい。アルケニレン基の炭素数は2乃至12であることが好ましく、2乃至10であることがさらに好ましく、2乃至8であることがもっとも好ましい。
置換アルキレン基のアルキレン部分は、上記アルキレン基と同様である。置換基の例としてはハロゲン原子が含まれる。
アルキニレン基は、分岐を有していてもよい。アルキニレン基の炭素数は2乃至12であることが好ましく、2乃至10であることがさらに好ましく、2乃至8であることがもっとも好ましい。
置換アルキニレン基のアルキニレン部分は、上記アルキニレン基と同様である。置換基の例としてはハロゲン原子が含まれる。
二価の鎖状基の具体例としては、エチレン、トリメチレン、プロピレン、ブタメチレン、1−メチル−ブタメチレン、ペンタメチレン、ヘキサメチレン、オクタメチレン、2−ブテニレン、2−ブチニレンなどが挙げられる。
二価の環状基の定義および例は、後述するCy1,Cy2およびCy3の定義および例と同様である。
R2は、炭素原子数1から4のアルキル基または水素原子であることが好ましく、メチル基、エチル基または水素原子であることがさらに好ましく、水素原子であることがもっとも好ましい。
L2またはL3はそれぞれ独立に単結合または二価の連結基である。L2およびL3はそれぞれ独立に、−O−,−S−,−CO−,−NR−,二価の鎖状基、二価の環状基およびそれらの組み合わせからなる群より選ばれる二価の連結基または単結合であることが好ましい。上記R2は炭素原子数が1から7のアルキル基または水素原子であり、炭素原子数1から4のアルキル基または水素原子であることが好ましく、メチル基、エチル基または水素原子であることがさらに好ましく、水素原子であることがもっとも好ましい。二価の鎖状基、および二価の環状基についてはL1およびL4の定義と同義である。
式(I)において、nは0または1または2である。nが2の場合、二つのL3は同じであっても異なっていても良く、二つのCy2も同じであっても異なっていてもよい。nは1または2であることが好ましく、1であることがさらに好ましい。
式(I)において、Cy1、Cy2およびCy3は、それぞれ独立に、二価の環状基である。
環状基に含まれる環は、5員環、6員環、または7員環であることが好ましく、5員環または6員環であることがさらに好ましく、6員環であることがもっとも好ましい。
環状基に含まれる環は、縮合環であっても良い。ただし、縮合環よりも単環であることがより好ましい。
環状基に含まれる環は、芳香族環、脂肪族環、および複素環のいずれでもよい。芳香族環の例には、ベンゼン環およびナフタレン環が含まれる。脂肪族環の例には、シクロヘキサン環が含まれる。複素環の例には、ピリジン環およびピリミジン環が含まれる。
ベンゼン環を有する環状基としては、1,4−フェニレンが好ましい。ナフタレン環を有する環状基としては、ナフタレン−1,5−ジイルおよびナフタレン−2,6−ジイルが好ましい。シクロヘキサン環を有する環状基としては1,4−シクロへキシレンであることが好ましい。ピリジン環を有する環状基としてはピリジンー2,5−ジイルが好ましい。ピリミジン環を有する環状基としては、ピリミジンー2,5−ジイルが好ましい。
環状基は、置換基を有していてもよい。置換基の例には、ハロゲン原子、シアノ基、ニトロ基、炭素原子数が1乃至5のアルキル基、炭素原子数が1乃至5のハロゲン置換アルキル基、炭素原子数が1乃至5のアルコキシ基、炭素原子数が1乃至5のアルキルチオ基、炭素原子数が2乃至6のアシルオキシ基、炭素原子数が2乃至6のアルコキシカルボニル基、カルバモイル基、炭素原子数が2乃至6のアルキル置換カルバモイル基および炭素原子数が2乃至6のアシルアミノ基が含まれる。
以下に、式(I)で表される重合性液晶性化合物の例を示す。本発明はこれらに限定されるものではない。
Figure 2006301608
Figure 2006301608
Figure 2006301608
Figure 2006301608
また、特開2002−308832号に開示されているネマチック性を示す重合性液晶化合物も本発明の光学異方性に好ましく用いることができる。
円盤液晶性化合物は、分子の円盤面と透明支持体平面との角度が光学異方性層の深さ方向において連続的に変化している(ハイブリッド配向している)ことが好ましい。円盤状液晶性化合物は、様々な文献(例えば、C.Destrade et.al., Mol.Cryst. vol. 71, page 111(1981);日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B.Kohne et.al., Angew. Chem. Soc. Chem., Comm., page 1794(1985);J.Zhang et.al., J. Am. Chem. Soc., vol. 116, page 2655(1994))に記載されている。光学異方性層に好ましく用いられる円盤状液晶性化合物については、特開平8−50286号公報にも記載がある。
光学異方性層は、液晶性化合物および必要に応じて重合開始剤、平均傾斜角調整剤、および任意の添加剤(例、可塑剤、モノマー、界面活性剤、配向温度低下剤、カイラル剤)を含む塗布液を配向膜の上に塗布することで形成できる。
(重合開始剤)
配向させた液晶性化合物は、配向状態を維持して固定することができる。固定化は、重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。
光重合開始剤の例には、α−カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60−105667号公報、米国特許4239850号明細書記載)およびオキサジアゾール化合物(米国特許4212970号明細書記載)が含まれる。
光重合開始剤の使用量は、塗布液の固形分の0.01乃至20質量%の範囲にあることが好ましく、0.5乃至5質量%の範囲にあることがさらに好ましい。
液晶性化合物の重合のための光照射は、紫外線を用いることが好ましい。
照射エネルギーは、20mJ/cm2 乃至50J/cm2 の範囲にあることが好ましく、20乃至5000mJ/cm2 の範囲にあることがより好ましく、100乃至800mJ/cm2 の範囲にあることがさらに好ましい。また、光重合反応を促進するため、加熱条件下で光照射を実施してもよい。
(平均傾斜角制御剤)
本発明の光学異方性層は特定の界面活性を有する化合物により液晶性化合物の平均傾斜角を調節することができる。
平均傾斜角を低下せしめる化合物としてはセルロースの低級脂肪酸エステル、含フッ素界面活性剤、または1,3,5-トリアジン環を有する化合物が上げられる。
(セルロースの低級脂肪酸エステル)
セルロースの低級脂肪酸エステルにおける「低級脂肪酸」とは、炭素原子数が6以下の脂肪酸を意味する。炭素原子数は、2乃至5であることが好ましく、2乃至4であることがさらに好ましい。脂肪酸には置換基(例、ヒドロキシ)が結合していてもよい。二種類以上の脂肪酸がセルロースとエステルを形成していてもよい。セルロースの低級脂肪酸エステルの例には、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースヒドロキシプロピオネート、セルロースアセテートプロピオネートおよびセルロースアセテートブチレートが含まれる。セルロースアセテートブチレートが特に好ましい。セルロースアセテートブチレートのブチリル化度は、30%以上であることが好ましく、30乃至80%であることがさらに好ましい。セルロースアセテートブチレートのアセチル化度は、30%以下であることが好ましく、1乃至30%であることがさらに好ましい。セルロースの低級脂肪酸エステルは、液晶性化合物の量の0.01乃至1質量%の量で使用する。使用量は、液晶性化合物の量の0.1乃至1質量%であることが好ましく、0.3乃至0.9質量%であることがさらに好ましい。
1,3,5−トリアジン環を有する化合物は、下記式(III)で表される化合物であることが好ましい。
Figure 2006301608
式中、X1 、X2 およびX3 は、それぞれ独立に、単結合、−NR−(Rは炭素原子数が1乃至30のアルキル基または水素原子)、−O−または−S−であり;そして、R31、R32およびR33は、それぞれ独立に、アルキル基、アルケニル基、アリール基または複素環基である。式(III)で表される化合物は、メラミン化合物であることが特に好ましい。メラミン化合物では、式(III)において、X1 、X2 またはX3 が−NR−であるか、あるいは、X1 、X2 またはX3 が単結合であり、かつR31、R32およびR33が窒素原子に遊離原子価をもつ複素環基である。メラミン化合物については、式(IV)を引用して、さらに詳細に説明する。−NR−のRは、水素原子であることが特に好ましい。R31、R32およびR33は、アリール基であることが特に好ましい。
上記アルキル基は、環状アルキル基よりも鎖状アルキル基である方が好ましい。分岐を有する鎖状アルキル基よりも、直鎖状アルキル基の方が好ましい。アルキル基の炭素原子数は、1乃至30であることが好ましく、2乃至30であることがより好ましく、4乃至30であることがさらに好ましく、6乃至30であることが最も好ましい。アルキル基は、置換基を有していてもよい。置換基の例には、ハロゲン原子、アルコキシ基(例、メトキシ、エトキシ、エポキシエチルオキシ)およびアシルオキシ基(例、アクリロイルオキシ、メタクリロイルオキシ)が含まれる。上記アルケニル基は、環状アルケニル基よりも鎖状アルケニル基である方が好ましい。分岐を有する鎖状アルケニル基よりも、直鎖状アルケニル基の方が好ましい。アルケニル基の炭素原子数は、2乃至30であることが好ましく、3乃至30であることがより好ましく、4乃至30であることがさらに好ましく、6乃至30であることが最も好ましい。アルケニル基は、置換基を有していてもよい。置換基の例には、ハロゲン原子、アルコキシ基(例、メトキシ、エトキシ、エポキシエチルオキシ)およびアシルオキシ基(例、アクリロイルオキシ、メタクリロイルオキシ)が含まれる。
上記アリール基は、フェニルまたはナフチルであることが好ましく、フェニルであることが特に好ましい。アリール基は、置換基を有していてもよい。置換基の例には、ハロゲン原子、ヒドロキシル、シアノ、ニトロ、カルボキシル、アルキル基、アルケニル基、アリール基、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、アルコキシカルボニル基、アルケニルオキシカルボニル基、アリールオキシカルボニル基、スルファモイル、アルキル置換スルファモイル基、アルケニル置換スルファモイル基、アリール置換スルファモイル基、スルホンアミド基、カルバモイル、アルキル置換カルバモイル基、アルケニル置換カルバモイル基、アリール置換カルバモイル基、アミド基、アルキルチオ基、アルケニルチオ基、アリールチオ基およびアシル基が含まれる。上記アルキル基は、前述したアルキル基と同様の定義を有する。アルコキシ基、アシルオキシ基、アルコキシカルボニル基、アルキル置換スルファモイル基、スルホンアミド基、アルキル置換カルバモイル基、アミド基、アルキルチオ基とアシル基のアルキル部分も、前述したアルキル基と同様である。上記アルケニル基は、前述したアルケニル基と同様の定義を有する。アルケニルオキシ基、アシルオキシ基、アルケニルオキシカルボニル基、アルケニル置換スルファモイル基、スルホンアミド基、アルケニル置換カルバモイル基、アミド基、アルケニルチオ基およびアシル基のアルケニル部分も、前述したアルケニル基と同様である。上記アリール基の例には、フェニル、α−ナフチル、β−ナフチル、4−メトキシフェニル、3,4−ジエトキシフェニル、4−オクチルオキシフェニルおよび4−ドデシルオキシフェニルが含まれる。アリールオキシ基、アシルオキシ基、アリールオキシカルボニル基、アリール置換スルファモイル基、スルホンアミド基、アリール置換カルバモイル基、アミド基、アリールチオ基およびアシル基の部分の例は、上記アリール基の例と同様である。
1 、X2 またはX3 が−NR−、−O−または−S−である場合の複素環基は、芳香族性を有することが好ましい。芳香族性を有する複素環は、一般に不飽和複素環であり、好ましくは最多の二重結合を有する複素環である。複素環は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましく、6員環であることが最も好ましい。複素環のヘテロ原子は、N、SまたはOであることが好ましく、Nであることが特に好ましい。芳香族性を有する複素環としては、ピリジン環(複素環基としては、2−ピリジルまたは4−ピリジル)が特に好ましい。複素環基は、置換基を有していてもよい。複素環基の置換基の例は、上記アリール部分の置換基の例と同様である。X1 、X2 またはX3 が単結合である場合の複素環基は、窒素原子に遊離原子価をもつ複素環基であることが好ましい。窒素原子に遊離原子価をもつ複素環基は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましく、5員環であることが最も好ましい。複素環基は、複数の窒素原子を有していてもよい。また、複素環基は、窒素原子以外のヘテロ原子(例、O、S)を有していてもよい。複素環基は、置換基を有していてもよい。複素環基の置換基の例は、上記アリール部分の置換基の例と同様である。以下に、窒素原子に遊離原子価をもつ複素環基の例を示す。
Figure 2006301608
Figure 2006301608
Figure 2006301608
Figure 2006301608
31、R32およびR33の少なくとも一つは、炭素原子数が9乃至30のアルキレン部分またはアルケニレン部分を含むことが好ましい。炭素原子数が9乃至30のアルキレン部分またはアルケニレン部分は、直鎖状であることが好ましい。アルキレン部分またはアルケニレン部分は、アリール基の置換基に含まれていることが好ましい。また、R31、R32およびR33の少なくとも一つは、重合性基を置換基として有することが好ましい。1,3,5−トリアジン環を有する化合物は、少なくとも二つの重合性基を有することが好ましい。また、重合性基は、R31、R32またはR33の末端に位置することが好ましい。1,3,5−トリアジン環を有する化合物に重合性基を導入することで、1,3,5−トリアジン環を有する化合物と液晶性化合物、例えばディスコティック液晶性分子とが重合している状態で光学的異方性層に含ませることができる。重合性基を置換基として有するR31、R32またはR33を、下記式(Rp)で示す。
(Rp) −L5 (−P)n
式中、L5 は、(n+1)価の連結基であり;Pは、重合性基であり;そして、nは1乃至5の整数である。式(Rp)において、(n+1)価の連結基(L5 )は、アルキレン基、アルケニレン基、n+1価の芳香族基、二価のヘテロ環残基、−CO−、−NR−(Rは炭素原子数が1乃至30のアルキル基または水素原子)、−O−、−S−および−SO2 −からなる群より選ばれる基を少なくとも二つ組み合わせた連結基であることが好ましい。アルキレン基の炭素原子数は、1乃至12であることが好ましい。アルケニレン基の炭素原子数は、2乃至12であることが好ましい。芳香族基の炭素原子数は、6乃至10であることが好ましい。式(Rp)のL5 の例を以下に示す。左側が式(III)のX1 、X2 またはX3に結合(X1 、X2 またはX3 が単結合の場合は、1,3,5−トリアジン環に直結)し、右側が(L53〜L59ではn個の)重合性基(P)に結合する。ALはアルキレン基またはアルケニレン基、Hcは二価のヘテロ環残基、ARは芳香族基を意味する。なお、アルキレン基、アルケニレン基、ヘテロ環残基および芳香族基は、置換基(例、アルキル基、ハロゲン原子)を有していてもよい。
L51:−AL−O−CO−
L52:−AL−O−
L53:−AR(−O−AL−O−CO−)n
L54:−AR(−O−AL−O−)n
L55:−AR(−O−CO−AL−O−CO−)n
L56:−AR(−CO−O−AL−O−CO−)n
L57:−AR(−O−CO−AR−O−AL−O−CO−)n
L58:−AR(−NR−SO2 −AL−O−CO−)n
L59:−AR(−SO2 −NR−AL−O−CO−)n
式(Rp)における重合性基(P)としては、下記の構造を好ましく使用できる。
Figure 2006301608
Figure 2006301608
Figure 2006301608
Figure 2006301608
Figure 2006301608
Figure 2006301608
重合性基(P)は、不飽和重合性基(P1、P2、P3、P7、P8、P15、P16、P17)またはエポキシ基(P6、P18)であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基(P1、P7、P8、P15、P16、P17)であることが最も好ましい。式(Rp)において、nは4乃至12の整数である。具体的な数字は、液晶性化合物の種類に応じて決定される。
1,3,5−トリアジン環を有する化合物の(メラミン化合物を除く)具体例を以下に示す。
Figure 2006301608
TR−1:R31、R32、R33:-(CH2)9-O-CO-CH=CH2
TR−2:R31、R32、R33:-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2
TR−3:R31、R32:-(CH2)9-O-CO-CH=CH2 ;R33:-(CH2)12-CH3
TR−4:R31、R32:-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2;R33:-(CH2)12-CH3
TR−5:R31:-(CH2)9-O-CO-CH=CH2;R32、R33:-(CH2)12-CH3
TR−6:R31:-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2;R32、R33:-(CH2)12-CH3
TR−7:R31、R32:-(CH2)4-O-CO-CH=CH2 ;R33:-(CH2)12-CH3
TR−8:R31:-(CH2)4-O-CO-CH=CH2 ;R32、R33:-(CH2)12-CH3
TR−9:R31、R32、R33:-(CH2)9-O-EpEt
TR−10:R31、R32、R33:-(CH2)4-CH=CH-(CH2)4-O-EpEt
TR−11:R31、R32:-(CH2)9-O-EpEt;R33:-(CH2)12-CH3
TR−12:R31、R32、R33:-(CH2)9-O-CH=CH2
TR−13:R31、R32:-(CH2)9-O-CH=CH2;R33:-(CH2)12-CH3
(註)EpEt:エポキシエチル
Figure 2006301608
TR−14:X1、X2、X3:-O-;R32、R35、R38:-O-(CH2)9-O-CO-CH=CH2
TR−15:X1、X2、X3:-O-;R31、R32、R34、R35、R37、R38:-O-(CH2)9-O-CO-CH=CH2
TR−16:X1、X2、X3:-O-;R32、R35、R38:-O-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2
TR−17:X1、X2、X3:-O-;R31、R32、R34、R35、R37、R38:-O-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2
TR−18:X1、X2、X3:-O-;R31、R33、R34、R36、R37、R39:-O-(CH2)9-O-CO-CH=CH2
TR−19:X1、X2、X3:-O-;R31、R32、R33、R34、R35、R36、R37、R38、R39:-O-(CH2)9-O-CO-CH=CH2
TR−20:X1、X2:-O-;X3:-NH-;R32、R35、R38:-O-(CH2)9-O-CO-CH=CH2
TR−21:X1、X2:-O-;X3:-NH-;R32、R35:-O-(CH2)4-O-CO-CH=CH2;R38:-O-(CH2)12-CH3
TR−22:X1、X2:-O-;X3:-NH-;R32、R35:-O-(CH2)4-O-CO-CH=CH2;R37、R38:-O-(CH2)12-CH3
TR−23:X1、X2:-O-;X3:-NH-;R32、R35:-O-(CH2)4-O-CO-CH=CH2;R38:-O-CO-(CH2)11-CH3
TR−24:X1:-O-;X2、X3:-NH-;R31、R33:-O-(CH2)12-CH3;R35、R38:-O-(CH2)9-O-CO-CH=CH2
TR−25:X1:-O-;X2、X3:-NH-;R31、R32:-O-(CH2)6-O-CO-CH=CH2;R35、R38:-O-(CH2)11-CH3
TR−26:X1:-O-;X2、X3:-NH-;R31、R32、R33:-O-(CH2)6-O-CO-CH=CH2;R35、R38:-O-(CH2)11-CH3
TR−27:X1、X2:-NH-;X3:-S-;R32、R35:-O-(CH2)9-O-CO-CH=CH2;R38:-O-CO-(CH2)11-CH3
TR−28:X1、X2:-NH-;X3:-S-;R31、R32、R34、R35:-O-(CH2)9-O-CO-CH=CH2;R38:-O-CO-(CH2)11-CH3
TR−29:X1、X2:-NH-;X3:-S-;R32、R35:-O-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2;R38:-O-CO-(CH2)11-CH3
TR−30:X1、X2:-NH-;X3:-S-;R31、R32、R34、R35:-O-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2;R38:-O-CO-(CH2)11-CH3
TR−31:X1、X2:-NH-;X3:-S-;R31、R33、R34、R36:-O-(CH2)9-O-CO-CH=CH2;R38:-O-CO-(CH2)11-CH3
TR−32:X1、X2:-NH-;X3:-S-;R31、R32、R33、R34、R35、R36:-O-(CH2)9-O-CO-CH=CH2;R38:-O-CO-(CH2)11-CH3
TR−33:X1、X2:-O-;X3:-S-;R32、R35、R38:-O-(CH2)9-O-CO-CH=CH2
TR−34:X1、X2:-O-;X3:-S-;R32、R35:-O-(CH2)4-O-CO-CH=CH2;R38:-O-(CH2)12-CH3
TR−35:X1、X2:-O-;X3:-S-;R32、R35:-O-(CH2)4-O-CO-CH=CH2;R37、R38:-O-(CH2)12-CH3
TR−36:X1、X2:-O-;X3:-S-;R32、R35:-O-(CH2)4-O-CO-CH=CH2;R38:-O-CO-(CH2)11-CH3
TR−37:X1:-O-;X2、X3:-S-;R31、R33:-O-(CH2)12-CH3;R35、R38:-O-(CH2)9-O-CO-CH=CH2
TR−38:X1:-O-;X2、X3:-S-;R31、R32:-O-(CH2)6-O-CO-CH=CH2;R35、R38:-O-(CH2)11-CH3
TR−39:X1:-O-;X2、X3:-S-;R31、R32、R33:-O-(CH2)6-O-CO-CH=CH2;R35、R38:-O-(CH2)11-CH3
TR−40:X1、X2、X3:-S-;R32、R35、R38:-O-(CH2)9-O-CO-CH=CH2
TR−41:X1、X2、X3:-S-;R31、R32、R34、R35、R37、R38:-O-(CH2)9-O-CO-CH=CH2
TR−42:X1、X2、X3:-S-;R32、R35、R38:-O-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2
TR−43:X1、X2、X3:-S-;R31、R32、R34、R35、R37、R38:-O-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2
TR−44:X1、X2、X3:-S-;R31、R33、R34、R36、R37、R39:-O-(CH2)9-O-CO-CH=CH2
TR−45:X1、X2、X3:-S-;R31、R32、R33、R34、R35、R36、R37、R38、R39:-O-(CH2)9-O-CO-CH=CH2
TR−46:X1、X2:-S-;X3:-NH-;R32、R35、R38:-O-(CH2)9-O-CO-CH=CH2
TR−47:X1、X2:-S-;X3:-NH-;R32、R35:-O-(CH2)4-O-CO-CH=CH2;R38:-O-(CH2)12-CH3
TR−48:X1、X2:-S-;X3:-NH-;R32、R35:-O-(CH2)4-O-CO-CH=CH2;R37、R38:-O-(CH2)12-CH3
TR−49:X1、X2:-S-;X3:-NH-;R32、R35:-O-(CH2)4-O-CO-CH=CH2;R38:-O-CO-(CH2)11-CH3
TR−50:X1:-O-;X2:-NH-;X3:-S-;R31、R33:-O-(CH2)12-CH3;R35:-O-(CH2)9-O-CO-CH=CH2;R38:-O-(CH2)12-CH3
TR−51:X1:-O-;X2:-NH-;X3:-S-;R31、R32:-O-(CH2)6-O-CO-CH=CH2;R35:-O-(CH2)11-CH3;R38:-O-(CH2)12-CH3
TR−52:X1:-O-;X2:-NH-;X3:-S-;R31、R32、R33:-O-(CH2)6-O-CO-CH=CH2;R35:-O-(CH2)11-CH3;R38:-O-(CH2)12-CH3
TR−53:X1、X2、X3:-O-;R32、R35、R38:-O-(CH2)9-O-EpEt
TR−54:X1、X2、X3:-O-;R31、R32、R34、R35、R37、R38:-O-(CH2)9-O-EpEt
TR−55:X1、X2、X3:-O-;R32、R35、R38:-O-(CH2)4-CH=CH-(CH2)4-O-EpEt
TR−56:X1、X2、X3:-O-;R31、R32、R34、R35、R37、R38:-O-(CH2)4-CH=CH-(CH2)4-O-EpEt
TR−57:X1、X2、X3:-O-;R31、R33、R34、R36、R37、R39:-O-(CH2)9-O-EpEt
TR−58:X1、X2、X3:-O-;R32、R35、R38:-O-(CH2)9-O-CH=CH2
TR−59:X1、X2:-O-;X3:-NH-;R32、R35、R38:-O-(CH2)9-O-EpEt
TR−60:X1、X2:-O-;X3:-NH-;R32、R35:-O-(CH2)4-O-EpEt;R38:-O-(CH2)12-CH3
TR−61:X1、X2:-O-;X3:-NH-;R32、R35:-O-(CH2)4-O-EpEt;R37、R38:-O-(CH2)12-CH3
TR−62:X1、X2:-O-;X3:-NH-;R32、R35:-O-(CH2)4-O-EpEt;R38:-O-CO-(CH2)11-CH3
TR−63:X1:-O-;X2、X3:-NH-;R31、R33:-O-(CH2)12-CH3;R35、R38:-O-(CH2)9-O-EpEt
TR−64:X1:-O-;X2、X3:-NH-;R31、R32:-O-(CH2)6-O-EpEt;R35、R38:-O-(CH2)11-CH3
TR−65:X1、X2:-O-;X3:-NH-;R32、R35、R38:-O-(CH2)9-O-CH=CH2
(註)定義のないR:無置換(水素原子)。EpEt:エポキシエチル
1,3,5−トリアジン環を有する化合物は、下記式(IV)で表されるメラミン化合物であることが好ましい。
Figure 2006301608
式中、R41、R43およびR45は、それぞれ独立に、炭素原子数が1乃至30のアルキル基または水素原子であり、R42、R44およびR46は、それぞれ独立にアルキル基、アルケニル基、アリール基または複素環基であるか、あるいは、R41とR42、R43とR44またはR45とR46が結合して、複素環を形成する。R41、R43およびR45は、炭素原子数が1乃至20のアルキル基または水素原子であることが好ましく、炭素原子数が1乃至10のアルキル基または水素原子であることがより好ましく、炭素原子数が1乃至6のアルキル基または水素原子であることがさらに好ましく、水素原子であることが最も好ましい。R42、R44およびR46は、アリール基であることが特に好ましい。上記アルキル基、アルケニル基、アリール基および複素環基の定義および置換基は、前記式(III)で説明した各基の定義および置換基と同様である。R41とR42、R43とR44またはR45とR46が結合して形成する複素環は、前記式(III)で説明した窒素原子に遊離原子価をもつ複素環基と同様である。
42、R44およびR46の少なくとも一つは、炭素原子数が9乃至30のアルキレン部分またはアルケニレン部分を含むことが好ましい。炭素原子数が9乃至30のアルキレン部分またはアルケニレン部分は、直鎖状であることが好ましい。アルキレン部分またはアルケニレン部分は、アリール基の置換基に含まれていることが好ましい。また、R42、R44およびR46の少なくとも一つは、重合性基を置換基として有することが好ましい。メラミン化合物は、少なくとも二つの重合性基を有することが好ましい。また、重合性基は、R42、R44およびR46の末端に位置することが好ましい。メラミン化合物に重合性基を導入することで、メラミン化合物とディスコティック液晶性分子とが重合している状態で光学的異方性層に含ませることができる。重合性基を置換基として有するR42、R44およびR46は、前述した式(Rp)で示される基と同様である。
メラミン化合物の具体例を以下に示す。
Figure 2006301608
MM−1:R43、R44、R53、R54、R63、R64:-O-(CH2)9-CH3
MM−2:R43、R44、R53、R54、R63、R64:-O-(CH2)11-CH3
MM−3:R43、R44、R53、R54、R63、R64:-O-(CH2)15-CH3
MM−4:R44、R54、R64:-O-(CH2)9-CH3
MM−5:R44、R54、R64:-O-(CH2)15-CH3
MM−6:R43、R53、R63:-O-CH3;R44、R54、R64:-O-(CH2)17-CH3
MM−7:R44、R54、R64:-CO-O-(CH2)11-CH3
MM−8:R44、R54、R64:-SO2-NH-(CH2)17-CH3
MM−9:R43、R53、R63:-O-CO-(CH2)15-CH3
MM−10:R42、R52、R62:-O-(CH2)17-CH3
MM−11:R42、R52、R62:-O-CH3;R43、R53、R63:-CO-O-(CH2)11-CH3
MM−12:R42、R52、R62:-Cl;R43、R53、R63:-CO-O-(CH2)11-CH3
MM−13:R42、R52、R62:-O-(CH2)11-CH3;R45、R55、R65:-SO2-NH-iso-C3H7
MM−14:R42、R52、R62:-Cl;R45、R55、R65:-SO2-NH-(CH2)15-CH3
MM−15:R42、R46、R52、R56、R62、R66:-Cl;R45、R55、R65:-SO2-NH-(CH2)19-CH3
MM−16:R43、R54:-O-(CH2)9-CH3;R44、R53、R63、R64:-O-(CH2)11-CH3
MM−17:R44:-O-(CH2)11-CH3;R54:-O-(CH2)15-CH3;R64:-O-(CH2)17-CH3
MM−18:R42、R45、R52、R55、R62、R65:-O-CH3;R44、R54、R64:-NH-CO-(CH2)14-CH3
MM−19:R42、R45、R52、R55、R62、R65:-O-(CH2)3-CH3;R44、R54、R64:-O-(CH2)15-CH3
MM−20:R42、R52、R62:-NH-SO2-(CH2)15-CH3;R44、R45、R54、R55、R64、R65:-Cl
MM−21:R42、R43、R52、R53、R62、R63:-F;R44、R54、R64:-CO-NH-(CH2)15-CH3;R45、R46、R55、R56、R65、R66:-Cl
MM−22:R42、R52、R62:-Cl;R44、R54、R64:-CH3;R45、R55、R65:-NH-CO-(CH2)12-CH3
MM−23:R42、R52、R62:-OH;R44、R54、R64:-CH3;R45、R55、R65:-O-(CH2)15-CH3
MM−24:R42、R45、R52、R55、R62、R65:-O-CH3;R44、R54、R64:-(CH2)11-CH3
MM−25:R42、R52、R62:-NH-SO2-CH3;R45、R55、R65:-CO-O-(CH2)11-CH3
MM−26:R42、R52、R62:-S-(CH2)11-CH3;R45、R55、R65:-SO2-NH2
MM−27:R43、R44、R53、R54、R63、R64:-O-(CH2)12-O-CO-CH=CH2
MM−28:R43、R44、R53、R54、R63、R64:-O-(CH2)8-O-CO-CH=CH2
MM−29:R43、R44、R53、R54、R63、R64:-O-CO-(CH2)7-O-CO-CH=CH2
MM−30:R44、R54、R64:-CO-O-(CH2)12-O-CO-C(CH3)=CH2
MM−31:R43、R44、R53、R54、R63、R64:-O-CO-p-Ph-O-(CH2)4-O-CO-CH=CH2
MM−32:R42、R44、R52、R54、R62、R64:-NH-SO2-(CH2)8-O-CO-CH=CH2;R45、R55、R65:-Cl
MM−33:R42、R52、R62:-NH-SO2-CH3;R45、R55、R65:-CO-O-(CH2)12-O-CO-CH=CH2
MM−34:R44、R54、R64:-O-(CH2)9-O-CO-CH=CH2
MM−35:R43、R44、R53、R54、R63、R64:-O-(CH2)9-O-CO-CH=CH2
MM−36:R44、R54、R64:-O-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2
MM−37:R43、R44、R53、R54、R63、R64:-O-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2
MM−38:R43、R45、R53、R55、R63、R65:-O-(CH2)9-O-CO-CH=CH2
MM−39:R43、R44、R45、R53、R54、R55、R63、R64、R65:-O-(CH2)9-O-CO-CH=CH2
MM−40:R44、R54:-O-(CH2)4-O-CO-CH=CH2;R64:-O-(CH2)9-O-CO-CH=CH2
MM−41:R44、R54:-O-(CH2)4-O-CO-CH=CH2;R64:-O-(CH2)12-CH3
MM−42:R44、R54:-O-(CH2)4-O-CO-CH=CH2;R63、R64:-O-(CH2)12-CH3
MM−43:R44、R54:-O-(CH2)4-O-CO-CH=CH2;R63、R64:-O-CO-(CH2)11-CH3
MM−44:R43、R45:-O-(CH2)12-CH3;R54、R64:-O-(CH2)9-O-CO-CH=CH2
MM−45:R43、R44:-O-(CH2)6-O-CO-CH=CH2;R54、R64:-O-(CH2)11-CH3
MM−46:R43、R44、R45:-O-(CH2)6-O-CO-CH=CH2;R54、R64:-O-(CH2)11-CH3
(註)定義のないR:無置換(水素原子)。p-Ph:p−フェニレン
Figure 2006301608
MM−47:R46、R56、R66:-SO2-NH-(CH2)15-CH3;R48、R58、R68:-O-(CH2)11-CH3
MM−48:R45、R55、R65:-SO2-NH-(CH2)17-CH3
MM−49:R46、R56、R66:-SO2-NH-(CH2)15-CH3
MM−50:R45、R55、R65:-O-(CH2)17-CH3;R47、R57、R67:-SO2-NH-CH3
MM−51:R43、R53、R63:-O-(CH2)15-CH3
MM−52:R41、R51、R61:-O-(CH2)17-CH3
MM−53:R46、R56、R66:-SO2-NH-Ph;R48、R58、R68:-O-(CH2)11-CH3
MM−54:R45、R55、R65:-O-(CH2)21-CH3;R47、R57、R67:-SO2-NH-Ph
MM−55:R41、R51、R61:-p-Ph-(CH2)11-CH3
MM−56:R46、R48、R56、R58、R66、R68:-SO2-NH-(CH2)7-CH3
MM−57:R46、R56、R66:-SO2-NH-(CH2)10-O-CO-CH=CH2;R48、R58、R68:-O-(CH2)12-CH3
MM−58:R45、R55、R65:-O-(CH2)12-O-CO-CH=CH2;R47、R57、R67:-SO2-NH-Ph
MM−59:R43、R53、R63:-O-(CH2)16-O-CO-CH=CH2
(註)定義のないR:無置換(水素原子)。Ph:フェニルp-Ph:p−フェニレン
Figure 2006301608
MM−60:R45、R55、R65:-NH-CO-(CH2)14-CH3
MM−61:R42、R52、R62:-O-(CH2)17-CH3MM−62:R44、R54、R64:-O-(CH2)15-CH3
MM−63:R45、R55、R65:-SO2-NH-(CH2)15-CH3
MM−64:R43、R53、R63:-CO-NH-(CH2)17-CH3;R44、R54、R64:-OH
MM−65:R45、R55、R65:-O-(CH2)15-CH3;R46、R56、R66:-SO2-NH-(CH2)11-CH3
MM−66:R47、R57、R67:-O-(CH2)21-CH3MM−67:R44、R54、R64:-O-p-Ph-(CH2)11-CH3
MM−68:R46、R56、R66:-SO2-NH-(CH2)15-CH3
MM−69:R43、R53、R63:-CO-NH-(CH2)17-CH3;R44、R54、R64:-O-(CH2)12-O-CO-CH=CH2
MM−70:R45、R55、R65:-O-(CH2)8-O-CO-CH=CH2;R46、R56、R66:-SO2-NH-(CH2)11-CH3
MM−71:R43、R46、R53、R56、R63、R66:-SO2-NH-(CH2)8-0-CO-CH=CH2
(註)定義のないR:無置換(水素原子)。p-Ph:p−フェニレン
Figure 2006301608
MM−72:R41、R43、R45:-CH3
MM−73:R41、R43、R45:-C2H5
MM−74:R41、R43:-C2H5;R45:-CH3
MM−75:R41、R43、R45:-(CH2)3-CH3
Figure 2006301608
MM−76:R42、R44、R46:-(CH2)9-O-CO-CH=CH2
MM−77:R42、R44、R46:-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2
MM−78:R42、R44:-(CH2)9-O-CO-CH=CH2 ;R46:-(CH2)12-CH3
MM−79:R42、R44:-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2;R46:-(CH2)12-CH3
MM−80:R42:-(CH2)9-O-CO-CH=CH2;R44、R46:-(CH2)12-CH3
MM−81:R42:-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2;R44、R46:-(CH2)12-CH3
MM−82:R42、R44:-(CH2)4-O-CO-CH=CH2 ;R46:-(CH2)12-CH3
MM−83:R42:-(CH2)4-O-CO-CH=CH2 ;R44、R46:-(CH2)12-CH3
MM−84:R42、R44、R46:-(CH2)9-O-EpEt
MM−85:R42、R44、R46:-(CH2)4-CH=CH-(CH2)4-O-EpEt
MM−86:R42、R44:-(CH2)9-O-EpEt;R46:-(CH2)12-CH3
MM−87:R42、R44、R46:-(CH2)9-O-CH=CH2
MM−88:R42、R44:-(CH2)9-O-CH=CH2;R46:-(CH2)12-CH3
(註)EpEt:エポキシエチル
Figure 2006301608
MM−89:R41、R42、R43、R44、R45、R46:-(CH2)9-CH3
MM−90:R41、R43、R45:-CH3;R42、R44、R46:-(CH2)17-CH3
MM−91:R41、R42、R43、R44:-(CH2)7-CH3;R45、R46:-(CH2)5-CH3
MM−92:R41、R42、R43、R44、R45、R46:-CyHx
MM−93:R41、R42、R43、R44、R45、R46:-(CH2)2-O-C2H5
MM−94:R41、R43、R45:-CH 3;R42、R44、R46:-(CH2)12-O-CO-CH=CH2
MM−95:R41、R42、R43、R44、R45、R46:-(CH2)8-O-CO-CH=CH2
(註)CyHx:シクロヘキシル
Figure 2006301608
メラミン化合物として、メラミンポリマーを用いてもよい。メラミンポリマーは、下記式(V)で示すメラミン化合物とカルボニル化合物との重合反応により合成することが好ましい。
Figure 2006301608
式中、R71、R72、R73、R74、R75およびR76は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アリール基または複素環基である。上記アルキル基、アルケニル基、アリール基および複素環基の定義および置換基は、前記式(III)で説明した各基の定義および置換基と同様である。メラミン化合物とカルボニル化合物との重合反応は、通常のメラミン樹脂(例、メラミンホルムアルデヒド樹脂)の合成方法と同様である。市販のメラミンポリマー(メラミン樹脂)を用いてもよい。メラミンポリマーの分子量は、2千以上40万以下であることが好ましい。
71、R72、R73、R74、R75およびR76の少なくとも一つは、炭素原子数が9乃至30のアルキレン部分またはアルケニレン部分を含むことが好ましい。炭素原子数が9乃至30のアルキレン部分またはアルケニレン部分は、直鎖状であることが好ましい。アルキレン部分またはアルケニレン部分は、アリール基の置換基に含まれていることが好ましい。また、R71、R72、R73、R74、R75およびR76の少なくとも一つは、重合性基を置換基として有することが好ましい。また、重合性基は、R71、R72、R73、R74、R75およびR76の末端に位置することが好ましい。メラミンポリマーに重合性基を導入することで、メラミンポリマーとディスコティック液晶性分子とが重合している状態で光学的異方性層に含ませることができる。重合性基を置換基として有するR71、R72、R73、R74、R75およびR76は、前述した式(Rp)で示される基と同様である。重合性基は、カルボニル化合物(R71、R72)とメラミン化合物(R73、R74、R75、R76)の一方に導入すればよい。メラミン化合物が重合性基を有する場合は、カルボニル化合物はホルムアルデヒドのような簡単な化学構造の化合物が好ましく用いられる。カルボニル化合物が重合性基を有する場合は、メラミン化合物は、(無置換)メラミンのような簡単な化学構造の化合物が好ましく用いられる。
重合性基を有するカルボニル化合物の例を以下に示す。
Figure 2006301608
CO−1:R72:-H;R82:-O-(CH2)9-O-CO-CH=CH2
CO−2:R72:-H;R81、R82:-O-(CH2)9-O-CO-CH=CH2
CO−3:R72:-H;R82:-O-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2
CO−4:R72:-H;R81、R82:-O-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2
CO−5:R72:-H;R81、R83:-O-(CH2)9-O-CO-CH=CH2
CO−6:R72:-H;R81、R82、R83:-O-(CH2)9-O-CO-CH=CH2
CO−7:R72:-CH3;R82:-O-(CH2)9-O-CO-CH=CH2
CO−8:R72:-(CH2)11-CH3;R82:-O-(CH2)4-O-CO-CH=CH2
CO−9:R72:-(CH2)9-O-CO-CH=CH2;R82:-O-(CH2)4-O-CO-CH=CH2
CO−10:R72:-(CH2)9-O-CO-EpEt;R82:-O-(CH2)4-O-CO-CH=CH2
CO−11:R72:-(CH2)4-O-CO-CH=CH2;R81、R83:-O-(CH2)12-CH3
(註)定義のないR:無置換(水素原子)。EpEt:エポキシエチル
Figure 2006301608
CO−12:R81、R82、R83、R84:-O-(CH2)6-O-CO-CH=CH2
CO−13:R82、R83:-O-(CH2)9-O-CO-CH=CH2
(註)定義のないR:無置換(水素原子)
Figure 2006301608
CO−14:R71:-(CH2)9-O-CO-CH=CH2;R72:-H
CO−15:R71:-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2;R72:-H
CO−16:R71:-(CH2)9-O-CO-CH=CH2;R72:-CH3
CO−17:R71:-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2;R72:-CH3
CO−18:R71:-(CH2)9-O-CO-CH=CH2;R72:-Ph
CO−19:R71:-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2;R72:-Ph
CO−20:R71:-(CH2)4-O-CO-CH=CH2;R72:-(CH2)9-O-CO-CH=CH2
CO−21:R71:-(CH2)4-O-CO-CH=CH2;R72:-(CH2)12-CH3
CO−22:R71:-(CH2)9-O-EpEt;R72:-H
CO−23:R71:-(CH2)4-CH=CH-(CH2)4-O-EpEt;R72:-H
CO−24:R71、R72:-(CH2)9-O-EpEt
CO−25:R71、R72:-(CH2)9-O-CO-CH=CH2
CO−26:R71、R72:-(CH2)4-CH=CH-(CH2)4-O-CO-CH=CH2
(註)Ph:フェニル。EpEt:エポキシエチル
メラミン化合物側に重合性基を有するメラミンポリマーの例を以下に示す。
Figure 2006301608
MP−1:R73、R75、R76:-CH2-NH-CO-CH=CH2;R74:-CH2-NH-CO-(CH2)8-CH3
MP−2:R71:-CH3;R73、R75、R76:-CH2-NH-CO-CH=CH2;R74:-CH2-NH-CO-(CH2)8-CH3
MP−3:R71、R72:-CH3;R73、R75、R76:-CH2-NH-CO-CH=CH2;R74:-CH2-NH-CO-(CH2)8-CH3
MP−4:R71:-Ph;R73、R75、R76:-CH2-NH-CO-CH=CH2;R74:-CH2-NH-CO-(CH2)8-CH3
MP−5:R73、R76:-CH2-NH-CO-CH=CH2;R74:-CH2-NH-CO-(CH2)7-CH=CH-(CH2)7-CH3;R75:-CH2-O-CH3
MP−6:R73、R76:-CH2-NH-CO-CH=CH2;R74:-CH2-NH-CO-(CH2)7-CH=CH-(CH2)7-CH3;R75:-CH2-OH
MP−7:R73、R76:-CH2-NH-CO-C2H5;R74:-CH2-NH-CO-(CH2)16-CH3;R75:-CH2-O-CH3
MP−8:R73、R76:-CH2-NH-CO-C2H5;R74:-CH2-NH-CO-(CH2)16-CH3;R75:-CH2-OH
MP−9:R73、R76:-CH2-O-CO-CH=CH2;R74:-CH2-O-CO-(CH2)7-CH=CH-(CH2)7-CH3;R75:-CH2-O-CH3
MP−10:R73、R76:-CH2-O-CO-CH=CH2;R74:-CH2-O-CO-(CH2)7-CH=CH-(CH2)7-CH3;R75:-CH2-OH
MP−11:R73、R76:-CH2-O-CO-(CH2)7-CH=CH-(CH2)7-CH3;R74:-CH2-NH-CO-(CH2)7-CH=CH-(CH2)7-CH3;R75:-CH2-O-CH3
MP−12:R73、R76:-CH2-O-CO-(CH2)7-CH=CH-(CH2)7-CH3;R74:-CH2-NH-CO-(CH2)7-CH=CH-(CH2)7-CH3;R75:-CH2-OH
MP−13:R73、R74、R75、R76:-CH2-O-(CH2)11-O-CO-CH=CH2
MP−14:R73、R75、R76:-CH2-NH-CO-CH=CH2;R74:-CH2-O-(CH2)16-CH3
(註)定義のないR:無置換(水素原子)。Ph:フェニル
(含フッ素界面活性剤)
本発明の光学異方性層は含フッ素界面活性剤の添加により液晶性化合物を安定かつ均一に配向させることができる。
本発明の含フッ素界面活性剤は、フッ素原子を含む疎水性基、ノニオン性、アニオン性、カチオン性あるいは両性の親水性基および任意に設けられる連結基からなる。一つの疎水性基と一つの親水性基からなる含フッ素界面活性剤は、下記式(II)で表わされる。
(II) Rf−L3 −Hy
式中、Rfは、フッ素原子で置換された一価の炭化水素残基であり;L3 は、単結合または二価の連結基であり;そして、Hyは親水性基である。式(II)のRfは、疎水性基として機能する。炭化水素残基は、アルキル基またはアリール基であることが好ましい。アルキル基の炭素原子数は3乃至30であることが好ましく、アリール基の炭素原子数は6乃至30であることが好ましい。炭化水素残基に含まれる水素原子の一部または全部は、フッ素原子で置換されている。フッ素原子で、炭化水素残基に含まれる水素原子の50%以上を置換することが好ましく、60%以上を置換することがより好ましく、70%以上を置換することがさらに好ましく、80%以上を置換することが最も好ましい。残りの水素原子は、さらに他のハロゲン原子(例、塩素原子、臭素原子)で置換されていてもよい。Rfの例を以下に示す。
Rf1:n−C8 17
Rf2:n−C6 13
Rf3:Cl−(CF2 −CFCl)3 −CF2
Rf4:H−(CF2 8
Rf5:H−(CF2 10
Rf6:n−C9 19
Rf7:ペンタフルオロフェニル
Rf8:n−C7 15
Rf9:Cl−(CF2 −CFCl)2 −CF2
Rf10:H−(CF2 4
Rf11:H−(CF2 6
Rf12:Cl−(CF2 6
Rf13:C3 7
式(II)において、二価の連結基は、アルキレン基、アリーレン基、二価のヘテロ環残基、−CO−、−NR−(Rは炭素原子数が1乃至5のアルキル基または水素原子)、−O−、−SO2 −およびそれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。式(II)のL3 の例を以下に示す。左側が疎水性基(Rf)に結合し、右側が親水性基(Hy)に結合する。ALはアルキレン基、ARはアリーレン基、Hcは二価のヘテロ環残基を意味する。なお、アルキレン基、アリーレン基および二価のヘテロ環残基は、置換基(例、アルキル基)を有していてもよい。
L0:単結合
L31:−SO2 −NR−
L32:−AL−O−
L33:−CO−NR−
L34:−AR−O−
L35:−SO2 −NR−AL−CO−O−
L36:−CO−O−
L37:−SO2 −NR−AL−O−
L38:−SO2 −NR−AL−
L39:−CO−NR−AL−
L40:−AL1 −O−AL2
L41:−Hc−AL−
L42:−SO2 −NR−AL1 −O−AL2
L43:−AR−
L44:−O−AR−SO2 −NR−AL−
L45:−O−AR−SO2 −NR−
L46:−O−AR−O−
式(II)のHyは、ノニオン性親水性基、アニオン性親水性基、カチオン性親水性基あるいはそれらの組み合わせ(両性親水性基)のいずれかである。ノニオン性親水性基が特に好ましい。式(II)のHyの例を以下に示す。
Hy1:−(CH2 CH2 O)n −H(nは5乃至30の整数)
Hy2:−(CH2 CH2 O)n −R1(nは5乃至30の整数、R1 は炭素原子数が1乃至6のアルキル基)
Hy3:−(CH2 CHOHCH2 n −H(nは5乃至30の整数)
Hy4:−COOM(Mは水素原子、アルカリ金属原子または解離状態)
Hy5:−SO3 M(Mは水素原子、アルカリ金属原子または解離状態)
Hy6:−(CH2 CH2 O)n −CH2 CH2 CH2 −SO3 M(nは5乃至30の整数、Mは水素原子またはアルカリ金属原子)
Hy7:−OPO(OH)2Hy8:−N+ (CH3 3 ・X- (Xはハロゲン原子)
Hy9:−COONH4
ノニオン性親水性基(Hy1、Hy2、Hy3)が好ましく、ポリエチレンオキサイドからなる親水性基(Hy1)が最も好ましい。式(II)で表わされる含フッ素界面活性剤の具体例を、以上のRf、L3 およびHyの例を引用して示す。
FS−1:Rf1−L31(R=C3 7 )−Hy1(n=6)
FS−2:Rf1−L31(R=C3 7 )−Hy1(n=11)
FS−3:Rf1−L31(R=C3 7 )−Hy1(n=16)
FS−4:Rf1−L31(R=C3 7 )−Hy1(n=21)
FS−5:Rf1−L31(R=C2 5 )−Hy1(n=6)
FS−6:Rf1−L31(R=C2 5 )−Hy1(n=11)
FS−7:Rf1−L31(R=C2 5 )−Hy1(n=16)
FS−8:Rf1−L31(R=C2 7 )−Hy1(n=21)
FS−9:Rf2−L31(R=C3 7 )−Hy1(n=6)
FS−10:Rf2−L31(R=C3 7 )−Hy1(n=11)
FS−11:Rf2−L31(R=C3 7 )−Hy1(n=16)
FS−12:Rf2−L31(R=C3 7 )−Hy1(n=21)
FS−13:Rf3−L32(AL=CH2 )−Hy1(n=5)
FS−14:Rf3−L32(AL=CH2 )−Hy1(n=10)
FS−15:Rf3−L32(AL=CH2 )−Hy1(n=15)
FS−16:Rf3−L32(AL=CH2 )−Hy1(n=20)
FS−17:Rf4−L33(R=C3 7 )−Hy1(n=7)
FS−18:Rf4−L33(R=C3 7 )−Hy1(n=13)
FS−19:Rf4−L33(R=C3 7 )−Hy1(n=19)
FS−20:Rf4−L33(R=C3 7 )−Hy1(n=25)
FS−21:Rf5−L32(AL=CH2 )−Hy1(n=11)
FS−22:Rf5−L32(AL=CH2 )−Hy1(n=15)
FS−23:Rf5−L32(AL=CH2 )−Hy1(n=20)
FS−24:Rf5−L32(AL=CH2 )−Hy1(n=30)
FS−25:Rf6−L34(AR=p-フェニレン)−Hy1(n=11)
FS−26:Rf6−L34(AR=p-フェニレン)−Hy1(n=17)
FS−27:Rf6−L34(AR=p-フェニレン)−Hy1(n=23)
FS−28:Rf6−L34(AR=p-フェニレン)−Hy1(n=29)
FS−29:Rf1−L35(R=C3 7 、AL=CH2 )−Hy1(n=20)
FS−30:Rf1−L35(R=C3 7 、AL=CH2 )−Hy1(n=30)
FS−31:Rf1−L35(R=C3 7 、AL=CH2 )−Hy1(n=40)
FS−32:Rf1−L36−Hy1(n=5)
FS−33:Rf1−L36−Hy1(n=10)
FS−34:Rf1−L36−Hy1(n=15)
FS−35:Rf1−L36−Hy1(n=20)
FS−36:Rf7−L36−Hy1(n=8)
FS−37:Rf7−L36−Hy1(n=13)
FS−38:Rf7−L36−Hy1(n=18)
FS−39:Rf7−L36−Hy1(n=25)
FS−40:Rf1−L0−Hy1(n=6)
FS−41:Rf1−L0−Hy1(n=11)
FS−42:Rf1−L0−Hy1(n=16)
FS−43:Rf1−L0−Hy1(n=21)
FS−44:Rf1−L31(R=C3 7 )−Hy2(n=7、R1 =C2 5
FS−45:Rf1−L31(R=C3 7 )−Hy2(n=13、R1 =C2 5
FS−46:Rf1−L31(R=C3 7 )−Hy2(n=20、R1 =C2 5
FS−47:Rf1−L31(R=C3 7 )−Hy2(n=28、R1 =C2 5
FS−48:Rf8−L32(AL=CH2 )−Hy1(n=5)
FS−49:Rf8−L32(AL=CH2 )−Hy1(n=10)
FS−50:Rf8−L32(AL=CH2 )−Hy1(n=15)
FS−51:Rf8−L32(AL=CH2 )−Hy1(n=20)
FS−52:Rf1−L37(R=C3 7 、AL=CH2CH2)−Hy3(n=5)
FS−53:Rf1−L37(R=C3 7 、AL=CH2CH2)−Hy3(n=7)
FS−54:Rf1−L37(R=C3 7 、AL=CH2CH2)−Hy3(n=9)
FS−55:Rf1−L37(R=C3 7 、AL=CH2CH2)−Hy3(n=12)
FS−56:Rf9−L0−Hy4(M=H)
FS−57:Rf3−L0−Hy4(M=H)
FS−58:Rf1−L38(R=C3 7 、AL=CH2 )−Hy4(M=K)
FS−59:Rf4−L39(R=C3 7 、AL=CH2 )−Hy4(M=Na)
FS−60:Rf1−L0−Hy5(M=K)
FS−61:Rf10−L40(AL1 =CH2 、AL2 =CH2CH2)−Hy5(M=Na)
FS−62:Rf11−L40(AL1 =CH2 、AL2 =CH2CH2)−Hy5(M=Na)
FS−63:Rf5−L40(AL1 =CH2 、AL2 =CH2CH2)−Hy5(M=Na)
FS−64:Rf1−L38(R=C3H7、AL=CH2CH2CH2 )−Hy5(M=Na)
FS−65:Rf1−L31(R=C3 7 )−Hy6(n=5、M=Na)
FS−66:Rf1−L31(R=C3 7 )−Hy6(n=10、M=Na)
FS−67:Rf1−L31(R=C3 7 )−Hy6(n=15、M=Na)
FS−68:Rf1−L31(R=C3 7 )−Hy6(n=20、M=Na)
FS−69:Rf1−L38(R=C2 5 、AL=CH2 CH2 )−Hy7
FS−70:Rf1−L38(R=H、AL=CH2CH2CH2 )−Hy8(X=I)
FS−71:Rf11−L41(下記Hc、AL=CH2CH2CH2 )−Hy6(Mは解離)
Figure 2006301608
FS−72:Rf1−L42(R=C3H7、AL1=CH2CH2、AL2=CH2CH2CH2)−Hy6(M=Na)
FS−73:Rf12−L0−Hy5(M=Na)
FS−74:Rf13−L43(AR=o-フェニレン)−Hy6(M=K)
FS−75:Rf13−L43(AR=m-フェニレン)−Hy6(M=K)
FS−76:Rf13−L43(AR=p-フェニレン)−Hy6(M=K)
FS−77:Rf6−L44(R=C2H5、AL=CH2CH2)−Hy5(M=H)
FS−78:Rf6−L45(AR=p-フェニレン、R=C2H5)−Hy1(n=9)
FS−79:Rf6−L45(AR=p-フェニレン、R=C2H5)−Hy1(n=14)
FS−80:Rf6−L45(AR=p-フェニレン、R=C2H5)−Hy1(n=19)
FS−81:Rf6−L45(AR=p-フェニレン、R=C2H5)−Hy1(n=28)
FS−82:Rf6−L46(AR=p-フェニレン)−Hy1(n=5)
FS−83:Rf6−L46(AR=p-フェニレン)−Hy1(n=10)
FS−84:Rf6−L46(AR=p-フェニレン)−Hy1(n=15)
FS−85:Rf6−L46(AR=p-フェニレン)−Hy1(n=20)
フッ素原子を含む疎水性基または親水性基を二以上有する含フッ素界面活性剤を用いてもよい。二以上の疎水性基または親水性基を有する含フッ素界面活性剤の例を以下に示す。
Figure 2006301608
FS−86:n1+n2=12、
FS−87:n1+n2=18、
FS−88:n1+n2=24
Figure 2006301608
FS−89:n1+n2=20、
FS−90:n1+n2=30、
FS−91:n1+n2=40
Figure 2006301608
FS−92:n=5、
FS−93:n=10、
FS−94:n=15、
FS−95:n=20
Figure 2006301608
二種類以上の含フッ素界面活性剤を併用してもよい。界面活性剤については、様々な文献(例、堀口弘著「新界面活性剤」三共出版(1975)、M.J. Schick, Nonionic Surfactants, Marcell Dekker Inc., New York, (1967)、特開平7−13293号公報)に記載がある。含フッ素界面活性剤は、液晶性化合物の量の2乃至30質量%の量で使用する。使用量は、液晶性化合物の量の3乃至25質量%であることが好ましく、5乃至10質量%であることがさらに好ましい。
二種類以上の1,3,5−トリアジン環を有する化合物(メラミン化合物およびメラミンポリマーを含む)を併用してもよい。1,3,5−トリアジン環を有する化合物は、液晶性化合物の量の0.01乃至20質量%の量で使用する。使用量は、液晶性化合物の量の0.1乃至15質量%であることが好ましく、0.5乃至10質量%であることがさらに好ましい。
光学的異方性層は、本発明の延伸セルロースアシレートフィルムまたは配向膜の上に塗布することで形成する。塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。二種類以上の有機溶媒を併用してもよい。塗布液は、公知の方法(例、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、印刷コーティング法、スプレーコーティング法、スライドコーティング法)により実施できる。連続塗布により光学的異方性層を形成することが好ましい。カーテンコーティング法、ロールコーティング法およびスライドコーティング法が連続塗布に適している。
光学異方性層の厚さは、0.5乃至100μmであることが好ましく、0.5乃至30μmであることがさらに好ましい。
(配向膜)
配向膜は、光学異方性層に含まれる液晶性化合物の配向方向を決定する機能を有する。
配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア−ブロジェット法(LB膜)による有機化合物(例、ω−トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で、設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。
配向膜は、ポリマーのラビング処理により形成することが好ましい。ラビング処理は延伸セルロースアシレートフィルムの遅相軸と実質的に垂直の方向に行うことが好ましい。これにより延伸セルロースアシレートフィルムの遅相軸と光学異方性層の遅相軸を直交させることが可能である。
延伸セルロースアシレートフィルムの遅相軸と光学異方性層の遅相軸を直交させることにより、延伸セルロースアシレートフィルムのReと光学異方性層のReが相殺され、光学補償シートのReの波長分散を容易に調節できるという効果が得られる。
ポリマーは、ポリビニルアルコールが好ましい。疎水性基が結合している変性ポリビニルアルコールが特に好ましい。疎水性基は、光学異方性層の液晶性化合物と親和性があるため、疎水性基をポリビニルアルコールに導入することで、液晶性化合物を均一に配向させることができる。疎水性基は、ポリビニルアルコールの主鎖末端または側鎖に結合させる。
疎水性基は、炭素原子数が6以上の脂肪族基(好ましくは、アルキル基またはアルケニル基)または芳香族基が好ましい。
ポリビニルアルコールの主鎖末端に疎水性基を結合させる場合、疎水性基と主鎖末端との間に連結基を導入することが好ましい。連結基の例には、−S−、−C(CN)R1 −、−NR2 −、−CS−およびそれらの組み合わせが含まれる。上記R1 およびR2 は、それぞれ独立に、水素原子または炭素原子数が1乃至6のアルキル基(好ましくは、炭素原子数が1乃至6のアルキル基)である。
ポリビニルアルコールの側鎖に疎水性基を導入する場合は、ポリビニルアルコールの酢酸ビニル単位のアセチル基(−CO−CH3 )の一部を、炭素原子数が7以上のアシル基(−CO−R3 )で置き換えればよい。R3 は、炭素原子数が6以上の脂肪族基または芳香族基である。
市販の変性ポリビニルアルコール(例、MP103、MP203、R1130、クラレ(株)製)を用いてもよい。
配向膜に用いる(変性)ポリビニルアルコールのケン化度は、80%以上であることが好ましい。(変性)ポリビニルアルコールの重合度は、200以上であることが好ましい。
ラビング処理は、配向膜の表面を、紙や布で一定方向に数回こすることにより実施する。長さおよび太さが均一な繊維を均一に植毛した布を用いることが好ましい。
なお、光学異方性層の液晶性化合物を配向膜で配向させた後、配向膜を除去しても、液晶性化合物の配向状態を維持することができる。すなわち、配向膜は液晶性化合物を配向させるため、光学補償シートの製造において必須であるが、製造された光学補償シートにおいては必須ではない。
配向膜を延伸セルロースアシレートフィルムと光学異方性との間に設ける場合は、さらに接着層(下塗り層)を透明支持体と配向膜との間に設けてもよい。
本発明の光学異方性層は特開2000−155216号の記載の変性ポリビニルアルコールを含む配向層により液晶性化合物の平均傾斜角を調節することもできる。
(光学異方性層のレターデーション)
本発明の光学異方性層のRe(546)は20nm以上150nm以下が好ましく、30nm以上120nmがさらに好ましい。Rth(546)は50nm以上200nm以下が好ましく、100nm以上150nm以下が好ましい。
さらに、本発明の光学異方性層は下記式(M)〜(P)を満たすことが好ましい。
1.0<Re(480)/Re(546)<2.0 (M)
0.5<Re(628)/Re(546)<1.0 (N)
1.0<Rth(480)/Rth(546)<2.0 (O)
0.5<Rth(628)/Rth(546)<1.0 (P)
式Mはより好ましくは1.02<Re(480)/Re(546)<1.50であり、さらに好ましくは1.05<Re(480)/Re(546)<1.30である。
式Nはより好ましくは0.75<Re(628)/Re(546)<0.98である。
式Oはより好ましくは1.02<Rth(480)/Rth(546)<1.50であり、さらに好ましくは1.02<Rth(480)/Rth(546)<1.30である。
式Pはより好ましくは0.65<Rth(628)/Rth(546)<1.0であり、さらに好ましくは0.75<Rth(628)/Rth(546)<1.0である。
上記範囲にレターデーションを調節することによりコントラストが高く、色味変化の小さい光学補償シートが得られる。
<光学補償シートのレターデーション>
本発明の光学補償シートのレターデーションは下記式の関係を満たすことが好ましい。
20nm<Re(546)<150nm (A)
50nm<Rth(546)<400nm (B)
0.5<Re(480)/Re(546)<1 (C)
1.0<Re(628)/Re(546)<2.0 (D)
1.0<Rth(480)/Rth(546)<1.5 (E)
0.7<Rth(628)/Rth(546)<1.0 (F)
式(A)は30nm<Re(546)<150nmが好ましく、35nm<Re(546)<120nmがより好ましく、40nm<Re(546)<100nmがさらに好ましい。
式(B)は、100nm<Rth(546)<4000nmが好ましく、110nm<Rth(546)<350nmがより好ましく、120nm<Rth(546)<300nmがさらに好ましい。
式(C)は0.6<Re(480)/Re(546)<0.95が好ましく0.7<Re(480)/Re(546)<0.9がさらに好ましい。
式(D)は1.0<Re(628)/Re(546)<1.50が好ましく1.02<Re(628)/Re(546)<1.30がさらに好ましい。
式(E)は1.00<Rth(480)/Rth(546)<1.30が好ましく、1.01<Rth(480)/Rth(546)<1.20がさらに好ましい。
式(F)は0.8<Rth(628)/Rth(546)<1.0が好ましく0.85<Rth(628)/Rth(546)<0.99がさらに好ましい。
<偏光板の作製>
次に本発明の光学補償シートを含む偏光板について説明する。
(保護フィルム)
本発明の偏光板は偏光子の両側に1ずつ合計2枚の保護フィルムを有し、少なくとも1枚は本発明の光学補償シートであることが好ましい。
本発明において用いられる他の保護フィルムはノルボルネン樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリスチレン、ポリアリレート、ポリスルフォン、セルロースアシレートなどから製造された透明ポリマーフィルムであることが好ましく、セルロースアシレートフィルムであることが最も好ましい。
(偏光子)
次に本発明の偏光板に用いられる偏光子について説明する。
本発明の偏光子は、ポリビニルアルコール(PVA)と二色性分子から構成することが好ましいが、特開平11−248937号公報に記載されているようにPVAやポリ塩化ビニルを脱水、脱塩素することによりポリエン構造を生成し、これを配向させたポリビニレン系偏光子も使用することができる。
PVAは、ポリ酢酸ビニルをケン化したポリマー素材であるが、例えば不飽和カルボン酸、不飽和スルホン酸、オレフィン類、ビニルエーテル類のような酢酸ビニルと共重合可能な成分を含有しても構わない。また、アセトアセチル基、スルホン酸基、カルボキシル基、オキシアルキレン基等を含有する変性PVAも用いることができる。
PVAのケン化度は特に限定されないが、溶解性等の観点から80〜100mol%が好ましく、90〜100mol%が特に好ましい。またPVAの重合度は特に限定されないが、1000〜10000が好ましく、1500〜5000が特に好ましい。
PVAのシンジオタクティシティーは特許2978219号に記載されているように耐久性を改良するため55%以上が好ましいが、特許第3317494号に記載されている45〜52.5%も好ましく用いることができる。
PVAはフィルム化した後、二色性分子を導入して偏光子を構成することが好ましい。PVAフィルムの製造方法は、PVA系樹脂を水または有機溶媒に溶解した原液を流延して成膜する方法が一般に好ましく用いられる。原液中のポリビニルアルコール系樹脂の濃度は、通常5〜20質量%であり、この原液を流延法により製膜することによって、膜厚10〜200μmのPVAフィルムを製造できる。PVAフィルムの製造は、特許第3342516号、特開平09−328593号、特開2001−302817号、特開2002−144401号の各公報を参考にして行うことができる。
PVAフィルムの結晶化度は、特に限定されないが、特許第3251073号に記載されている平均結晶化度(Xc)50〜75質量%や、面内の色相バラツキを低減させるため、特開2002−236214号に記載されている結晶化度38%以下のPVAフィルムを用いることができる。
PVAフィルムの複屈折(△n)は小さいことが好ましく、特許第3342516号に記載されている複屈折が1.0×10−3以下のPVAフィルムを好ましく用いることができる。但し、特開2002−228835号公報に記載されているように、PVAフィルムの延伸時の切断を回避しながら高偏光度を得るため、PVAフィルムの複屈折を0.002以上0.01以下としてもよいし、特開2002−060505号に記載されているように(nx+ny)/2−nzの値を0.0003以上0.01以下としてもよい。PVAフィルムのRe(1090)は0nm以上100nm以下が好ましく、0nm以上50nm以下がさらに好ましい。また、PVAフィルムのRth(1090)は0nm以上500nm以下が好ましく、0nm以上300nm以下がさらに好ましい。
この他、本発明の偏光板には、特許3021494号に記載されている1、2−グリコール結合量が1.5モル%以下のPVAフィルム、特開2001−316492号公報に記載されている5μm以上の光学的異物が100cm当たり500個以下であるPVAフィルム、特開2002−030163号に記載されているフィルムのTD方向の熱水切断温度斑が1.5℃以下であるPVAフィルム、さらにグリセリンなどの3〜6価の多価アルコ−ルを1〜100質量部混合したり、特開平06−289225号公報に記載されている可塑剤を15質量%以上混合した溶液から製膜したPVAフィルムを好ましく用いることができる。
PVAフィルムの延伸前のフィルム膜厚は特に限定されないが、フィルム保持の安定性、延伸の均質性の観点から、1μm〜1mmが好ましく、20〜200μmが特に好ましい。特開2002−236212号に記載されているように水中において4倍から6倍の延伸を行った時に発生する応力が10N以下となるような薄いPVAフィルムを使用してもよい。
二色性分子はI やI などの高次のヨウ素イオンもしくは二色性染料を好ましく使用することができる。本発明では高次のヨウ素イオンが特に好ましく使用される。高次のヨウ素イオンは、「偏光板の応用」永田良編、CMC出版や工業材料、第28巻、第7号、p.39〜p.45に記載されているようにヨウ素をヨウ化カリウム水溶液に溶解した液および/またはホウ酸水溶液にPVAを浸漬し、PVAに吸着・配向した状態で生成することができる。
二色性分子として二色性染料を用いる場合は、アゾ系色素が好ましく、特にビスアゾ系とトリスアゾ系色素が好ましい。二色性染料は水溶性のものが好ましく、このため二色性分子にスルホン酸基、アミノ基、水酸基などの親水性置換基が導入され、遊離酸、あるいはアルカリ金属塩、アンモニウム塩、アミン類の塩として好ましく用いられる。
このような二色性染料の具体例としては、例えば、C.I.Direct Red 37、 Congo Red(C.I. Direct Red 28)、C.I.Direct Violet 12、 C.I.Direct Blue 90、 C.I.Direct Blue 22、 C.I.Direct Blue 1、 C.I.Direct Blue 151、 C.I.Direct Green 1等のベンジジン系、C.I.Direct Yellow 44、 C.I.Direct Red 23、 C.I.Direct Red 79等のジフェニル尿素系、C.I.Direct Yellow 12等のスチルベン系、C.I.Direct Red 31等のジナフチルアミン系、C.I.Direct Red 81、 C.I.Direct Violet 9、 C.I.Direct Blue 78等のJ酸系を挙げることができる。
これ以外にも、C.I.Direct Yellow 8、C.I.Direct Yellow 28、C.I.Direct Yellow 86、C.I.Direct Yellow 87、C.I.Direct Yellow 142、C.I.Direct Orange 26、C.I.Direct Orange 39、C.I.Direct Orange 72、C.I.Direct Orange 106、C.I.Direct Orange 107、C.I.Direct Red 2、C.I.Direct Red 39、C.I.Direct Red 83、C.I.Direct Red 89、C.I.Direct Red 240、C.I.Direct Red 242、C.I.Direct Red 247、C.I.Direct Violet 48、C.I.Direct Violet 51、C.I.Direct Violet 98、C.I.Direct Blue 15、C.I.Direct Blue 67、C.I.Direct Blue 71、C.I.Direct Blue 98、C.I.Direct Blue 168、C.I.Direct Blue 202、C.I.Direct Blue 236、C.I.Direct Blue 249、C.I.Direct Blue 270、C.I.Direct Green 59、C.I.Direct Green 85、C.I.Direct Brown 44、C.I.Direct Brown 106、C.I.Direct Brown 195、C.I.Direct Brown 210、C.I.Direct Brown 223、C.I.Direct Brown 224、C.I.Direct Black 1、C.I.Direct Black 17、C.I.Direct Black 19、C.I.Direct Black 54等が、さらに特開昭62−70802号、特開平1−161202号、特開平1−172906号、特開平1−172907号、特開平1−183602号、特開平1−248105号、特開平1−265205号、特開平7−261024号、の各公報記載の二色性染料等も好ましく使用することができる。各種の色相を有する二色性分子を製造するため、これらの二色性染料は2種以上を配合してもかまわない。二色性染料を用いる場合、特開2002−082222号公報に記載されているように吸着厚みが4μm以上であってもよい。
フィルム中の該二色性分子の含有量は、少なすぎると偏光度が低く、また、多すぎても単板透過率が低下することから通常、フィルムのマトリックスを構成するポリビニルアルコール系重合体に対して、0.01質量%から5質量%の範囲に調整される。
偏光子の好ましい膜厚としては、5μm〜40μmが好ましく、さらに好ましくは10μm〜30μmである。偏光子の厚さと後述する保護フィルムの厚さの比を、特開2002−174727号に記載されている0.01≦A(偏光子膜厚)/B(保護フィルム膜厚)≦0.16範囲とすることも好ましい。
保護フィルムの遅相軸と偏光子の吸収軸の交差角は、任意の値でよいが、平行もしくは45±20゜の方位角であることが好ましい。
<偏光板の製造工程>
次に、本発明の偏光板の製造工程について説明する。
本発明における偏光板の製造工程は、膨潤工程、染色工程、硬膜工程、延伸工程、乾燥工程、保護フィルム貼り合わせ工程、貼り合わせ後乾燥工程から構成されることが好ましい。染色工程、硬膜工程、延伸工程の順序を任意に変えること、また、いくつかの工程を組み合わせて同時に行っても構わない。また、特許第3331615号に記載されているように、硬膜工程の後に水洗することも好ましく行うことができる。
本発明では、膨潤工程、染色工程、硬膜工程、延伸工程、乾燥工程、保護フィルム貼り合わせ工程、貼り合わせ後乾燥工程を記載の順序で遂次行うことが特に好ましい。また、前述の工程中あるいは後にオンライン面状検査工程を設けても構わない。
膨潤工程は、水のみで行うことが好ましいが、特開平10−153709号公報に記載されているように、光学性能の安定化および、製造ラインでの偏光板基材のシワ発生回避のために、偏光板基材をホウ酸水溶液により膨潤させて、偏光板基材の膨潤度を管理することもできる。
また、膨潤工程の温度、時間は、任意に定めることができるが、10℃以上60℃以下、5秒以上2000秒以下が好ましい。
染色工程は、特開2002−86554号公報に記載の方法を用いることができる。また、染色方法としては浸漬だけでなく、ヨウ素あるいは染料溶液の塗布あるいは噴霧等、任意の手段が可能である。また、特開2002−290025号公報に記載されているように、ヨウ素の濃度、染色浴温度、浴中の延伸倍率、および浴中の浴液を攪拌させながら染色させる方法を用いてもよい。
二色性分子として高次のヨウ素イオンを用いる場合、高コントラストの偏光板を得るためには、染色工程はヨウ素をヨウ化カリウム水溶液に溶解した液を用いることが好ましい。この場合のヨウ素−ヨウ化カリウム水溶液のヨウ素は0.05〜20g/l、ヨウ化カリウムは3〜200g/l、ヨウ素とヨウ化カリウムの質量比は1〜2000が好ましい範囲である。染色時間は10〜1200秒が好ましく、液温度は10〜60℃が好ましい。さらに好ましくは、ヨウ素は0.5〜2g/l、ヨウ化カリウムは30〜120g/l、ヨウ素とヨウ化カリウムの質量比は30〜120がよく、染色時間は30〜600秒、液温度は20〜50℃がよい。
また、特許第3145747号に記載されているように、染色液にホウ酸、ホウ砂等のホウ素系化合物を添加しても良い。
硬膜工程は、架橋剤溶液に浸漬、または溶液を塗布して架橋剤を含ませるのが好ましい。また、特開平11−52130号公報に記載されているように、硬膜工程を数回に分けて行うこともできる。
架橋剤としては米国再発行特許第232897号に記載のものが使用でき、特許第3357109号に記載されているように、寸法安定性を向上させるため、架橋剤として多価アルデヒドを使用することもできるが、ホウ酸類が最も好ましく用いられる。硬膜工程に用いる架橋剤としてホウ酸を用いる場合には、ホウ酸−ヨウ化カリウム水溶液に金属イオンを添加しても良い。金属イオンとしては塩化亜鉛が好ましいが、特開2000−35512号公報に記載されているように、塩化亜鉛の変わりに、ヨウ化亜鉛などのハロゲン化亜鉛、硫酸亜鉛、酢酸亜鉛などの亜鉛塩を用いることもできる。
本発明では、塩化亜鉛を添加したホウ酸−ヨウ化カリウム水溶液を作製し、PVAフィルムを浸漬させて硬膜を行うことが好ましく行われる。ホウ酸は1〜100g/l、ヨウ化カリウムは1〜120g/l、塩化亜鉛は0.01〜10g/l、硬膜時間は10〜1200秒が好ましく、液温度は10〜60℃が好ましい。さらに好ましくは、ホウ酸は10〜80g/l、ヨウ化カリウムは5〜100g/l、塩化亜鉛は0.02〜8g/l、硬膜時間は30〜600秒がよく、液温度は20〜50℃がよい。
延伸工程は、米国特許2,454,515号明細書などに記載されているような、縦一軸延伸方式、もしくは特開2002−86554号公報に記載されているようなテンター方式を好ましく用いることができる。好ましい延伸倍率は2倍以上12倍以下であり、さらに好ましくは3倍以上10倍以下である。また、延伸倍率と原反厚さと偏光子厚さの関係は特開2002−040256号公報に記載されている(保護フィルム貼合後の偏光子膜厚/原反膜厚)×(全延伸倍率)>0.17としたり、最終浴を出た時の偏光子の幅と保護フィルム貼合時の偏光子幅の関係は特開2002−040247号公報に記載されている0.80≦(保護フィルム貼合時の偏光子幅/最終浴を出た時の偏光子の幅)≦0.95とすることも好ましく行うことができる。
乾燥工程は、特開2002−86554号公報で公知の方法を使用できるが、好ましい温度範囲は30℃〜100℃であり、好ましい乾燥時間は30秒〜60分である。また、特許第3148513号に記載されているように、水中退色温度を50℃以上とするような熱処理を行ったり、特開平07−325215号公報や特開平07−325218号公報に記載されているように温湿度管理した雰囲気でエージングすることも好ましく行うことができる。
保護フィルム貼り合わせ工程は、乾燥工程を出た前述の偏光子の両面を2枚の保護フィルムで貼合する工程である。貼合直前に接着液を供給し、偏光子と保護フィルムを重ね合わせるように、一対のロールで貼り合わせる方法が好ましく使用される。また、特開2001−296426および特開2002−86554号公報に記載されているように、偏光子の延伸に起因するレコードの溝状の凹凸を抑制するため、貼り合わせ時の偏光子の水分率を調整することが好ましい。本発明では0.1%〜30%の水分率が好ましく用いられる。
偏光子と保護フィルムとの接着剤は特に限定されないが、PVA系樹脂(アセトアセチル基、スルホン酸基、カルボキシル基、オキシアルキレン基等の変性PVAを含む)やホウ素化合物水溶液等が挙げられ、中でもPVA系樹脂が好ましい。接着剤層厚みは乾燥後に0.01〜5μmが好ましく、0.05〜3μmが特に好ましい。
また、偏光子と保護フィルムの接着力を向上させるために、保護フィルムを表面処理して親水化してから接着することが好ましく行われる。表面処理の方法は特に制限は無いが、アルカリ溶液を用いてケン化する方法、コロナ処理法など公知の方法を用いることができる。また、表面処理後にゼラチン下塗り層等の易接着層を設けても良い。特開2002−267839号公報に記載されているように保護フィルム表面の水との接触角は50°以下が好ましい。
貼り合わせ後乾燥条件は、特開2002−86554号公報に記載の方法に従うが、好ましい温度範囲は30℃〜100℃であり、好ましい乾燥時間は30秒〜60分である。また、特開平07−325220号公報に記載されているように温湿度管理をした雰囲気でエージングすることも好ましい。
偏光子中の元素含有量は、ヨウ素0.1〜3.0g/m、ホウ素0.1〜5.0g/m、カリウム0.1〜2.00g/m、亜鉛0〜2.00g/mであることが好ましい。また、カリウム含有量は特開2001−166143号に記載されているように0.2質量%以下であってもよいし、偏光子中の亜鉛含有量を特開2000−035512号公報に記載されている0.04質量%〜0.5質量%としてもよい。
特許第3323255号に記載されているように、偏光板の寸法安定性をあげるために、染色工程、延伸工程および硬膜工程のいずれかの工程において有機チタン化合物および/または有機ジルコニウム化合物を添加使用し、有機チタン化合物および有機ジルコニウム化合物から選ばれた少なくとも一種の化合物を含有することもできる。また、偏光板の色相を調整するために二色性染料を添加しても良い。
<偏光板の特性>
(1)透過率および偏光度
本発明の偏光板の好ましい単板透過率は42.5%以上49.5%以下であるが、さらに好ましくは42.8%以上49.0%以下である。式4で定義される偏光度の好ましい範囲は99.900%以上99.999%以下であり、さらに好ましくは99.940%以上99.995%以下である。平行透過率の好ましい範囲は36%以上42%以下であり、直交透過率の好ましい範囲は、0.001%以上0.05%以下である。次に示す式5で定義される二色性比の好ましい範囲は48以上、1215以下であるが、さらに好ましくは53以上525以下である。
Figure 2006301608
上述の透過率はJISZ8701に基づいて、下記式により定義される。
Figure 2006301608
ここで、K、S(λ)、y(λ)、τ(λ)は以下の通りである。
Figure 2006301608
S(λ):色の表示に用いる標準光の分光分布
y(λ):XYZ系における等色関数
τ(λ):分光透過率
Figure 2006301608
ヨウ素濃度と単板透過率は特開2002−258051号公報に記載されている範囲であってもよい。
平行透過率は、特開2001−083328号公報や特開2002−022950号公報に記載されているように波長依存性が小さくてもよい。偏光板をクロスニコルに配置した場合の光学特性は、特開2001−091736号公報に記載されている範囲であってもよく、平行透過率と直交透過率の関係は、特開2002−174728号公報に記載されている範囲内であってもよい。
特開2002−221618号公報に記載されているように、光の波長が420〜700nmの間での10nm毎の平行透過率の標準偏差が3以下で、且つ、光の波長が420〜700nmの間での10nm毎の(平行透過率/直交透過率)の最小値が300以上であってもよい。
偏光板の波長440nmにおける平行透過率と直交透過率、平行透過率、波長550nmにおける平行透過率と直交透過率、波長610nmにおける平行透過率と直交透過率が、特開2002−258042号公報や特開2002−258043号公報に記載された範囲とすることも好ましく行うことができる。
(2)色相
本発明の偏光板の色相は、CIE均等知覚空間として推奨されているL*a*b*表色系における明度指数L*およびクロマティクネス指数a*とb*を用いて好ましく評価される。
L*、a*、b*の定義は、例えば、東京電機大学出版局刊、色彩光学等に記載されている。
偏光板単枚の好ましいa*の範囲は−2.5以上0.2以下であり、さらに好ましくは−2.0以上0以下である。偏光板単枚の好ましいb*の範囲は1.5以上5以下であり、さらに好ましくは2以上4.5以下である。2枚の偏光板の平行透過光のa*の好ましい範囲は−4.0以上0以下であり、さらに好ましくは−3.5以上−0.5以下である。2枚の偏光板の平行透過光のb*の好ましい範囲は2.0以上8以下であり、さらに好ましくは2.5以上7以下である。2枚の偏光板の直交透過光のa*の好ましい範囲は−0.5以上1.0以下であり、さらに好ましくは0以上2以下である。2枚の偏光板の直交透過光のb*の好ましい範囲は−2.0以上2以下であり、さらに好ましくは−1.5以上0.5以下である。
色相は、前述のX、 Y、 Zから算出される色度座標(x,y)で評価しても良く、例えば、2枚の偏光板の平行透過光の色度(x、y)と直交透過光の色度(x、y)は、特開2002−214436号、特開2001−166136号や特開2002−169024号の各公報に記載されている範囲にしたり、色相と吸光度の関係を特開2001−311827号公報に記載されている範囲内にすることも好ましく行うことができる。
(3)視野角特性
偏光板をクロスニコルに配置して波長550nmの光を入射させる場合の、垂直光を入射させた場合と、偏光軸に対して45度の方位から法線に対し40度の角度で入射させた場合の、透過率比やxy色度差を特開2001−166135号や特開2001−166137号公報に記載された範囲とすることも好ましい。また、特開平10−068817号公報に記載されているように、クロスニコル配置した偏光板積層体の垂直方向の光透過率(T)と、積層体の法線から60°傾斜方向の光透過率(T60)との比(T60/T)を10000以下としたり、特開2002−139625号公報に記載されているように、偏光板に法線から仰角80度までの任意な角度で自然光を入射させた場合に、その透過スペクトルの520〜640nmの波長範囲において波長域20nm以内における透過光の透過率差を6%以下としたり、特開平08−248201号公報に記載されている、フィルム上の任意の1cm離れた場所における透過光の輝度差が30%以内とすることも好ましい。
(4)耐久性
(4−1)湿熱耐久性
60℃、95%RHの雰囲気に500時間放置した場合のその前後における光透過率および偏光度の変化率が絶対値に基づいて3%以下であることが好ましい。特に光透過率の変化率は2%以下、また、偏光度の変化率は絶対値に基づいて1.0%以下であることが好ましい。また、特開平07−077608号公報に記載されているように80℃、90%RH、500時間放置後の偏光度が95%以上、単体透過率が38%以上であることも好ましい。
(4−2)ドライ耐久性
80℃、ドライ雰囲気下に500時間放置した場合のその前後における光透過率および偏光度の変化率も絶対値に基づいて3%以下であることが好ましい。特に、光透過率の変化率は2%以下、また、偏光度の変化率は絶対値に基づいて1.0%以下、更には0.1%以下であることが好ましい。
(4−3)その他の耐久性
さらに、特開平06−167611号公報に記載されているように80℃で2時間放置した後の収縮率を0.5%以下としたり、ガラス板の両面にクロスニコル配置した偏光板積層体を69℃の雰囲気中で750時間放置した後のx値およびy値を特開平10−068818号に記載されている範囲内としたり、80℃、90%RHの雰囲気中で200時間放置処理後のラマン分光法による105cm−1および157cm−1のスペクトル強度比の変化を、特開平08−094834号や特開平09−197127号公報に記載された範囲とすることも好ましく行うことができる。
(5)配向度
PVAの配向度は高い程良好な偏光性能が得られるが、偏光ラマン散乱や偏光FT−IR等の手段によって算出されるオーダーパラメーター値として0.2〜1.0が好ましい範囲である。また、特開昭59−133509号公報に記載されているように、偏光子の全非晶領域の高分子セグメントの配向係数と占領分子の配向係数(0.75以上)との差を少なくとも0.15としたり、特開平04−204907号公報に記載されているように偏光子の非晶領域の配向係数を0.65〜0.85としたり、I やI5 の高次ヨウ素イオンの配向度を、オーダーパラメーター値として0.8〜1.0とすることも好ましく行うことができる。
(6)その他の特性
特開2002−006133号公報に記載されているように、80℃30分加熱したときの単位幅あたりの吸収軸方向の収縮力を4.0N/cm以下としたり、特開2002−236213号公報に記載されているように、偏光板を70℃の加熱条件下に120時間置いた場合に、偏光板の吸収軸方向の寸法変化率および偏光軸方向の寸法変化率を、共に±0.6%以内としたり、偏光板の水分率を特開2002−090546号公報に記載されているように3質量%以下とすることも好ましく行うことができる。さらに、特開2000−249832号公報に記載されているように延伸軸に垂直な方向の表面粗さを中心線平均粗さに基づいて0.04μm以下としたり、特開平10−268294号に記載されているように透過軸方向の屈折率nを1.6より大きくしたり、偏光板の厚みと保護フィルムの厚みの関係を特開平10−111411号公報に記載された範囲とすることも好ましく行うことができる。
<偏光板の機能化>
本発明の偏光板は、ディスプレイの視認性向上のための反射防止フィルム、輝度向上フィルムや、ハードコート層、前方散乱層、アンチグレア(防眩)層等の機能層を有する光学フィルムと複合した機能化偏光板として好ましく使用される。
(反射防止フィルム)
本発明の偏光板は反射防止フィルムと組み合わせて使用することができる。反射防止フィルムは、フッ素系ポリマー等の低屈折率素材を単層付与しただけの反射率1.5%程度のフィルム、もしくは薄膜の多層干渉を利用した反射率1%以下のフィルムのいずれも使用できる。本発明では、透明支持体上に低屈折率層、および低屈折率層より高い屈折率を有する少なくとも一層の層(即ち、高屈折率層、中屈折率層)を積層した構成が好ましく使用される。また、日東技報, vol.38, No.1, may, 2000, 26頁〜28頁や特開2002−301783号などに記載された反射防止フィルムも好ましく使用できる。
各層の屈折率は以下の関係を満足する。
高屈折率層の屈折率>中屈折率層の屈折率>透明支持体の屈折率>低屈折率層の屈折率
反射防止フィルムに用いる透明支持体は、前述の偏光子の保護フィルムに使用する透明ポリマーフィルムを好ましく使用することができる。
低屈折率層の屈折率は1.20〜1.55であり、好ましくは1.30〜1.50である。低屈折率層は、耐擦傷性、防汚性を有する最外層として使用することが好ましい。耐擦傷性向上のため、シリコーン基や、フッ素の含有する素材を用い表面への滑り性付与することも好ましく行われる。
含フッ素化合物としては、例えば、特開平9−222503号公報明細書段落番号[0018]〜[0026]、同11−38202号公報明細書段落番号[0019]〜[0030]、特開2001-40284号公報明細書段落番号[0027]〜[0028]、特開2000−284102号公報等に記載の化合物を好ましく使用することができる。
含シリコーン化合物はポリシロキサン構造を有する化合物が好ましいが、反応性シリコーン(例、サイラプレーン(チッソ(株)製)や両末端にシラノール基含有のポリシロキサン(特開平11−258403号公報)等を使用することもできる。シランカップリング剤等の有機金属化合物と特定のフッ素含有炭化水素基含有のシランカップリング剤とを触媒共存下に縮合反応で硬化させてもよい(特開昭58−142958号公報、同58−147483号公報、同58−147484号公報、特開平9−157582号公報、同11−106704号公報、特開2000−117902号公報、同2001−48590号公報、同2002−53804号公報記載の化合物等)。
低屈折率層には、上記以外の添加剤として充填剤(例えば、二酸化珪素(シリカ)、含フッ素粒子(フッ化マグネシウム、フッ化カルシウム、フッ化バリウム)等の一次粒子平均径が1〜150nmの低屈折率無機化合物、特開平11−3820公報の段落番号[0020]〜[0038]に記載の有機微粒子等)、シランカップリング剤、滑り剤、界面活性剤等を含有させることも好ましく行うことができる。
低屈折率層は、気相法(真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等)により形成されても良いが、安価に製造できる点で、塗布法で形成することが好ましい。塗布法としては、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート、マイクログラビア法を好ましく使用することができる。
低屈折率層の膜厚は、30〜200nmであることが好ましく、50〜150nmであることがさらに好ましく、60〜120nmであることが最も好ましい。
中屈折率層および高屈折率層は、平均粒径100nm以下の高屈折率の無機化合物超微粒子をマトリックス用材料に分散した構成とすることが好ましい。高屈折率の無機化合物微粒子としては、屈折率1.65以上の無機化合物、例えば、Ti、Zn、Sb、Sn、Zr、Ce、Ta、La、In等の酸化物、これらの金属原子を含む複合酸化物等を好ましく使用できる。
このような超微粒子は、粒子表面を表面処理剤で処理したり(シランカップリング剤等:特開平11−295503号公報、同11−153703号公報、特開2000−9908、アニオン性化合物或は有機金属カップリング剤:特開2001−310432号公報等)、高屈折率粒子をコアとしたコアシェル構造としたり(特開2001−166104等)、特定の分散剤併用する(例、特開平11−153703号公報、特許番号US6210858B1、特開2002−2776069号公報等)等の態様で使用することができる。
マトリックス用材料としては、従来公知の熱可塑性樹脂、硬化性樹脂皮膜等を使用できるが、特開2000−47004号公報、同2001−315242号公報、同2001−31871号公報、同2001−296401号公報等に記載の多官能性材料や、特開2001−293818号公報等に記載の金属アルコキシド組成物から得られる硬化性膜を使用することもできる。
高屈折率層の屈折率は、1.70〜2.20であることが好ましい。高屈折率層の厚さは、5nm〜10μmであることが好ましく、10nm〜1μmであることがさらに好ましい。
中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.50〜1.70であることが好ましい。
反射防止フィルムのヘイズは、5%以下あることが好ましく、3%以下がさらに好ましい。又膜の強度は、JIS K5400に従う鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
(輝度向上フィルム)
本発明の偏光板は、輝度向上フィルムと組み合わせて使用することができる。輝度向上フィルムは、円偏光もしくは直線偏光の分離機能を有しており、偏光板とバックライトの間に配置され、一方の円偏光もしくは直線偏光をバックライト側に後方反射もしくは後方散乱する。バックライト部からの再反射光は、部分的に偏光状態を変化させ、輝度向上フィルムおよび偏光板に再入射する際、部分的に透過するため、この過程を繰り返すことにより光利用率が向上し、正面輝度が1.4倍程度に向上する。輝度向上フィルムとしては異方性反射方式および異方性散乱方式が知られており、いずれも本発明の偏光板と組み合わせることができる。
異方性反射方式では、一軸延伸フィルムと未延伸フィルムを多重に積層して、延伸方向の屈折率差を大きくすることにより反射率ならびに透過率の異方性を有する輝度向上フィルムが知られており、誘電体ミラーの原理を用いた多層膜方式(WO95/17691号、WO95/17692号、WO95/17699号の各明細書記載)やコレステリック液晶方式(欧州特許606940A2号明細書、特開平8−271731号公報記載)が知られている。誘電体ミラーの原理を用いた多層方式の輝度向上フィルムとしてはDBEF―E、DBEF−D、DBEF−M(いずれも3M社製)、コレステリック液晶方式の輝度向上フィルムとしてはNIPOCS(日東電工(株)製)が本発明で好ましく使用される。NIPOCSについては、日東技報, vol.38, No.1, may, 2000, 19頁〜21頁などを参考にすることができる。
また、本発明ではWO97/32223号、WO97/32224号、WO97/32225号、WO97/32226号の各明細書および特開平9−274108号、同11−174231号の各公報に記載された正の固有複屈折性ポリマーと負の固有複屈折性ポリマーをブレンドして一軸延伸した異方性散乱方式の輝度向上フィルムと組み合わせて使用することも好ましい。異方性散乱方式輝度向上フィルムとしては、DRPF−H(3M社製)が好ましい。
(他の機能性光学フィルム)
本発明の偏光板は、さらに、ハードコート層、前方散乱層、アンチグレア(防眩)層、ガスバリア層、滑り層、帯電防止層、下塗り層や保護層等を設けた機能性光学フィルムと組み合わせて使用することも好ましい。また、これらの機能層は、前述の反射防止フィルムにおける反射防止層、あるいは光学異方性層等と同一層内で相互に複合して使用することも好ましい。これらの機能層は、偏光子側および偏光子と反対面(より空気側の面)のどちらか片面、もしくは両面に設けて使用できる。
〔ハードコート層〕
本発明の偏光板は耐擦傷性等の力学的強度を付与するため、ハードコート層を透明支持体の表面に設けた機能性光学フィルムと組み合わせることが好ましく行われる。ハードコート層を、前述の反射防止フィルムに適用して用いる場合は、特に、透明支持体と高屈折率層の間に設けることが好ましい。
ハードコート層は、光および/または熱による硬化性化合物の架橋反応、または、重合反応により形成されることが好ましい。硬化性官能基としては、光重合性官能基が好ましく、又加水分解性官能基含有の有機金属化合物は有機アルコキシシリル化合物が好ましい。ハードコート層の具体的な構成組成物としては、例えば、特開2002−144913号公報、同2000−9908号公報、WO0/46617号公報等記載のものを好ましく使用することができる。
ハードコート層の膜厚は、0.2〜100μmであることが好ましい。
ハードコート層の強度は、JIS K5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。又、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
ハードコート層を形成する材料は、エチレン性不飽和基を含む化合物、開環重合性基を含む化合物を用いることができ、これらの化合物は単独あるいは組み合わせて用いることができる。エチレン性不飽和基を含む化合物の好ましい例としては、エチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート等のポリオールのポリアクリレート類;ビスフェノールAジグリシジルエーテルのジアクリレート、ヘキサンジオールジグリシジルエーテルのジアクリレート等のエポキシアクリレート類;ポリイソシナネートとヒドロキシエチルアクリレート等の水酸基含有アクリレートの反応によって得られるウレタンアクリレート等を好ましい化合物として挙げることができる。
また、市販化合物としては、EB−600、EB−40、EB−140、EB−1150、EB−1290K、IRR214、EB−2220、TMPTA、TMPTMA(以上、ダイセル・ユーシービー(株)製)、UV−6300、UV−1700B(以上、日本合成化学工業(株)製)等が挙げられる。
また、開環重合性基を含む化合物の好ましい例としては、グリシジルエーテル類としてエチレングリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセロールトリグリシジルエーテル、トリグリシジルトリスヒドロキシエチルイソシアヌレート、ソルビトールテトラグリシジルエーテル、ペンタエリスリトールテトラグリシルエーテル、クレゾールノボラック樹脂のポリグリシジルエーテル、フェノールノボラック樹脂のポリグリシジルエーテルなど、脂環式エポキシ類としてセロキサイド2021P、セロキサイド2081、エポリードGT−301、エポリードGT−401、EHPE3150CE(以上、ダイセル化学工業(株)製)、フェノールノボラック樹脂のポリシクロヘキシルエポキシメチルエーテルなど、オキセタン類としてOXT−121、OXT−221、OX−SQ、PNOX−1009(以上、東亞合成(株)製)などが挙げられる。その他にグリシジル(メタ)アクリレートの重合体、或いはグリシジル(メタ)アクリレートと共重合できるモノマーとの共重合体をハードコート層に使用することもできる。
ハードコート層には、ハードコート層の硬化収縮の低減、基材との密着性の向上、本発明のハードコート処理物品のカールを低減するため、ケイ素、チタン、ジルコニウム、アルミニウム等の酸化物微粒子やポリエチレン、ポリスチレン、ポリ(メタ)アクリル酸エステル類、ポリジメチルシロキサン等の架橋粒子、SBR、NBRなどの架橋ゴム微粒子等の有機微粒子等の架橋微粒子を添加することも好ましく行われる。これらの架橋微粒子の平均粒径は、1nmないし20000nmであることが好ましい。また、架橋微粒子の形状は、球状、棒状、針状、板状など特に制限無く使用できる。微粒子の添加量は硬化後のハードコート層の60体積%以下であることが好ましく、40体積%以下がより好ましい。
上記で記載した無機微粒子を添加する場合、一般にバインダーポリマーとの親和性が悪いため、ケイ素、アルミニウム、チタニウム等の金属を含有し、かつアルコキシド基、カルボン酸基、スルホン酸基、ホスホン酸基等の官能基を有する表面処理剤を用いて表面処理を行うことも好ましく行われる。
ハードコート層は、熱または活性エネルギー線を用いて硬化することが好ましく、その中でも放射線、ガンマー線、アルファー線、電子線、紫外線等の活性エネルギー線を用いることがより好ましく、安全性、生産性を考えると電子線、紫外線を用いることが特に好ましい。熱で硬化させる場合は、プラスチック自身の耐熱性を考えて、加熱温度は140℃以下が好ましく、より好ましくは100℃以下である。
〔前方散乱層〕
前方散乱層は、本発明の偏光板を液晶表示装置に適用した際の、上下左右方向の視野角特性(色相と輝度分布)改良するために使用される。本発明では、屈折率の異なる微粒子をバインダー分散した構成が好ましく、例えば、前方散乱係数を特定化した特開11−38208号公報、透明樹脂と微粒子の相対屈折率を特定範囲とした特開2000−199809号公報、ヘイズ値を40%以上と規定した特開2002−107512号公報等の構成を使用することができる。また、本発明の偏光板をヘイズの視野角特性を制御するため、住友化学の技術レポート「光機能性フィルム」31頁〜39頁に記載された「ルミスティ」と組み合わせて使用することも好ましく行うことができる。
〔アンチグレア層〕
アンチグレア(防眩)層は、反射光を散乱させ映り込みを防止するために使用される。アンチグレア機能は、液晶表示装置の最表面(表示側)に凹凸を形成することにより得られる。アンチグレア機能を有する光学フィルムのヘイズは、3〜30%であることが好ましく、5〜20%であることがさらに好ましく、7〜20%であることが最も好ましい。
フィルム表面に凹凸を形成する方法は、例えば、微粒子を添加して膜表面に凹凸を形成する方法(例えば、特開2000−271878号公報等)、比較的大きな粒子(粒径0.05〜2μm)を少量(0.1〜50質量%)添加して表面凹凸膜を形成する方法(例えば、特開2000−281410号公報、同2000−95893号公報、同2001−100004号公報、同2001−281407号公報等)、フィルム表面に物理的に凹凸形状を転写する方法(例えば、エンボス加工方法として、特開昭63−278839号公報、特開平11−183710号公報、特開2000−275401号公報等記載)等を好ましく使用することができる。
<液晶表示装置>
次に本発明の光学補償シートを含む偏光板が好ましく用いられる液晶表示装置について説明する。
図1は、本発明の液晶表示装置の例を示す概略図である。図1において、液晶表示装置10は、液晶層7とこの上下に配置された液晶セル上電極基板5および液晶セル下電極基板8とを有する液晶セル、液晶セルの両側に配置された上側偏光板1および下側偏光板12からなる。液晶セルと偏光膜との間にカラーフィルターを配置してもよい。透過型として使用する場合は、冷陰極あるいは熱陰極蛍光管、あるいは発光ダイオード、フィールドエミッション素子、エレクトロルミネッセント素子を光源とするバックライトを背面に配置する。また反射型として使用する場合において偏光板は観察側に1枚配置したのみでよく、液晶セル背面あるいは液晶セルの下側基板の内面に反射膜を設置する。もちろん前記光源を用いたフロントライトを液晶セル観察側に設けることも可能である。
本発明の液晶表示装置は、偏光板の少なくとも一方を、本発明の偏光板として利用する。本発明の液晶表示装置は、装置の外側(液晶セルから遠い側)から、透明保護フィルム、偏光子、本発明の光学補償シートの順序で積層することが好ましい。液晶表示装置には、画像直視型、画像投影型や光変調型が含まれる。TFTやMIMのような3端子または2端子半導体素子を用いたアクティブマトリックス液晶表示装置が本発明は有効である。もちろん時分割駆動と呼ばれるSTNモードに代表されるパッシブマトリックス液晶表示装置でも有効である。
(VAモード)
本発明の液晶表示装置はVAモードであることが好ましい。
VAモードでは上下基板間に誘電異方性が負で、Δn=0.0813、Δε=−4.6程度の液晶をラビング配向により、液晶分子の配向方向を示すダイレクタ、いわゆるチルト角を、約89°で作成する。液晶層7の厚さdは3.5μmに設定してある。ここで厚さdと屈折率異方性Δnの積Δndの大きさにより白表示時の明るさが変化する。このため最大の明るさを得るために0.2から0.5μmの範囲になるように設定する。
液晶セルの上側偏光板1の吸収軸2と下側偏光板12の吸収軸13は概略直交に積層する。液晶セル上電極基板5および液晶セル下電極基板8のそれぞれの配向膜の内側には透明電極(図示せず)が形成されるが、電極に駆動電圧を印加しない非駆動状態では、液晶層7中の液晶分子は、基板面に対して概略垂直に配向し、その結果液晶パネルを通過する光の偏光状態はほとんど変化しない。すなわち、液晶表示装置では、非駆動状態において理想的な黒表示を実現する。これに対し、駆動状態では、液晶分子は基板面に平行な方向に傾斜し、液晶パネルを通過する光はかかる傾斜した液晶分子により偏光状態を変化させる。換言すると、液晶表示装置では、駆動状態において白表示が得られる。なお図1において、符号6および9は、配向制御方向である。
ここでは上下基板間に電界が印加されるため、電界方向に垂直に液晶分子が応答するような、誘電率異方性が負の液晶材料を使用した。また電極を一方の基板に配置し、電界が基板面に平行の横方向に印加される場合は、液晶材料は正の誘電率異方性を有するものを使用する。
またVAモードの液晶表示装置では、TNモードの液晶表示装置で一般的に使われているカイラル剤の添加は、動的応答特性の劣化させるため用いることは少ないが、配向不良を低減するために添加されることもある。
VAモードの特徴は、高速応答であることと、コントラストが高いことである。しかし、コントラストは正面では高いが、斜め方向では劣化する課題がある。黒表示時に液晶分子は基板面に垂直に配向している。正面から観察すると、液晶分子の複屈折はほとんどないため透過率は低く、高コントラストが得られる。しかし、斜めから観察した場合は液晶分子に複屈折が生じる。さらに上下の偏光板吸収軸の交差角が、正面では90°の直交であるが、斜めから見た場合は90°より大きくなる。この2つの要因のために斜め方向では漏れ光が生じ、コントラストが低下する。これを解決するために光学補償シートを配置する。
また白表示時には液晶分子が傾斜しているが、傾斜方向とその逆方向では、斜めから観察した時の液晶分子の複屈折の大きさが異なり、輝度や色調に差が生じる。これを解決するためには、液晶表示装置の一画素を複数の領域に分割するマルチドメインと呼ばれる構造にする。
[マルチドメイン]
例えばVA方式では液晶分子が電界印加により、一つの画素内で異なる複数の領域に傾斜することで視角特性が平均化される。一画素内で配向を分割するには、電極にスリットを設けたり、突起を設け、電界方向を変えたり電界密度に偏りを持たせる。全方向で均等な視野角を得るにはこの分割数を多くすればよいが、4分割、あるいは8分割以上することでほぼ均等な視野角が得られる。特に8分割時は偏光板吸収軸を任意の角度に設定できるので好ましい。
また配向分割の領域境界では、液晶分子が応答しずらい。そのためノーマリーブラック表示では黒表示が維持されるため、輝度低下が問題となる。そこで液晶材料にカイラル剤を添加して境界領域を小さくすることが可能である。
以下、本発明を実施例によりさらに説明するが、本発明は下記例に制限されない。
モル吸光係数はレターデーション発現剤をメチレンクロライドに溶解し、(株)島津製作所製分光光度計UV3400により測定した。
また、本実施例では特に断りのない限り、「部」および「%」は質量基準である。
[実施例1]
<光学補償シートA−1の作製>
(偏光板保護フィルムA−1の作製)
[セルロースアシレート溶液の調製]
下記の組成物をミキシングタンクに投入し、撹拌して各成分を溶解し、セルロースアシレート溶液を調製した。
(セルロースアシレート溶液の組成)
セルロースアシレート(CA−1) 100.0質量部
アセチル化度1.75、ベンゾイル化度0.65
ベンゾイル基の6位置換比率0.90
可塑剤:トリフェニルホスフェート(吸収極大の波長は280nmより短波長)
6.0質量部
可塑剤:ビフェニルホスフェート(吸収極大の波長は280nmより短波長)
3.0質量部
メチレンクロリド(第1溶媒) 402.0質量部
メタノール(第2溶媒) 60.0質量部
[マット剤溶液の調製]
下記の組成物を分散機に投入し、撹拌して各成分を溶解し、マット剤溶液を調製した。
(マット剤溶液組成)
平均粒径20nmのシリカ粒子 2.0質量部
“AEROSIL R972”日本アエロジル(株)製
メチレンクロリド(第1溶媒) 75.0質量部
メタノール(第2溶媒) 12.7質量部
セルロースアシレート溶液 10.3質量部
[レターデーション発現剤溶液の調製]
下記の組成物をミキシングタンクに投入し、加熱しながら撹拌して、各成分を溶解し、レターデーション発現剤溶液を調製した。
(レターデーション発現剤溶液の組成)
レターデーション発現剤(41)(吸収極大の波長は250nmより短波長)
20.0質量部
メチレンクロリド(第1溶媒) 58.4質量部
メタノール(第2溶媒) 8.7質量部
セルロースアシレート溶液 12.8質量部
上記セルロースアシレート溶液94.3質量部、マット剤溶液1.3質量部およびレターデーション発現剤溶液4.4質量部をそれぞれ濾過した後に混合し、バンド流延機を用いて流延した。残留溶媒含量30質量%で得られたウェブをバンドから剥離し、125℃の条件でテンターを用いて51%の延伸倍率まで、30%/分の延伸速度で横延伸した後、45%の延伸倍率で125℃、30秒間保持した。その後、クリップを外して120℃で30分間乾燥させ、延伸セルロースアシレートフィルム(CAF1)を製造した。出来上がった延伸セルロースアシレートフィルムの残留溶媒量は0.2質量%であり、膜厚は95μmであった。
また、Re(480)/Re(546)は1.01、Re(628)/Re(546)は0.99、Rth(480)/Rth(546)は1.01、Rth(628)/Rth(546)は1.00であった。
(延伸セルロースアシレートフィルムの鹸化処理)
作製した延伸セルロースアシレートフィルム(CAF1)上に、下記組成の液を5.2mL/m塗布し、60℃で10秒間乾燥させた。フィルムの表面を流水で10秒洗浄し、25℃の空気を吹き付けることでフィルム表面を乾燥させた。
(鹸化液の組成)
イソプロピルアルコール 818質量部
水 167質量部
プロピレングリコール 187質量部
日本エマルジョン(株)製“EMALEX” 10質量部
水酸化カリウム 67質量部
(配向膜層の形成)
鹸化処理した延伸セルロースアシレートフィルム(CAF1)の片方の面に、下記の組成の塗布液を、#14のワイヤーバーコーターで24ml/m2 塗布した。60℃の温風で60秒、さらに90℃の温風で150秒乾燥した。
次に、鹸化処理した延伸セルロースアシレートフィルム(CAF1)の延伸方向(遅相軸とほぼ一致)と90゜の方向に、形成した膜に対してラビング処理を実施した。
(配向膜塗布液組成)
下記の変性ポリビニルアルコール 20質量部
水 360質量部
メタノール 120質量部
グルタルアルデヒド(架橋剤) 1.0質量部
変性ポリビニルアルコール
Figure 2006301608
(光学異方性層の作製)
配向膜上に、下記組成の塗布液を、#4のワイヤーバーコーターで15.4ml/m2塗布した。これを金属の枠に貼り付けて、100℃の恒温槽中で2分間加熱し、液晶性化合物を配向させた。次に、90℃で120W/cm高圧水銀灯を用いて、1分間UV照射し液晶性化合物を重合させた。その後、室温まで放冷した。
―――――――――――――――――――――――――――――――――――――
光学異方性層塗布液組成
―――――――――――――――――――――――――――――――――――――
棒状液晶性化合物I−6(吸収極大の波長は280nmより長波長) 100質量部
架橋性基含有ポリマー(1) 0.7重量部
フッ素系ポリマー
(大日本インク(株)製メガファック F-780-F) 0.5質量部
光重合開始剤(イルガキュアー907、チバガイギー社製) 2.9質量部
増感剤(カヤキュアーDETX、日本化薬(株)製) 1.0質量部
メチルエチルケトン 253質量部
―――――――――――――――――――――――――――――――――――――
架橋性基含有ポリマー(1)
Figure 2006301608
光学異方性層の、Re(480)/Re(546)は1.05、Re(628)/Re(546)は0.97であった。Rth(480)/Rth(546)は1.05、Rth(628)/Rth(546)は0.97であった。
[実施例2]
<光学補償シートA−2の作製>
実施例1で作製した配向膜上に下記組成の塗布液を、#3.6のワイヤーバーコーターで13.9ml/m2塗布した。これを金属の枠に貼り付けて、120℃の恒温槽中で2分間加熱し、液晶性化合物を配向させた。次に、90℃で120W/cm高圧水銀灯を用いて、1分間UV照射し液晶性化合物を重合させた。その後、室温まで放冷した。
―――――――――――――――――――――――――――――――――――――
光学異方性層塗布液組成
―――――――――――――――――――――――――――――――――――――
棒状液晶性化合物(A)(吸収極大の波長は280nmより長波長) 100質量部
架橋性基含有ポリマー(1) 0.7重量部
フッ素系ポリマー
(大日本インク(株)製メガファック F-780-F) 0.5質量部
光重合開始剤(イルガキュアー907、チバガイギー社製) 2.9質量部
増感剤(カヤキュアーDETX、日本化薬(株)製) 1.0質量部
メチルエチルケトン 253質量部
―――――――――――――――――――――――――――――――――――――
光学異方性層の、Re(480)/Re(546)は1.11、Re(628)/Re(546)は0.91であった。Rth(480)/Rth(546)は1.11、Rth(628)/Rth(546)は0.91であった。
棒状液晶化合物(A)
Figure 2006301608
[比較例1]
<光学補償シートB−1の作製>
(セルロースアシレートフィルムB−1の作製)
下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアシレート溶液B−1を調製した。
(セルロースアシレート溶液B−1組成)
アセチル化度1.6、プロピオニル化度1.0のセルロースアシレート 100.0質量部
トリフェニルホスフェート(可塑剤) 8.0質量部
エチルフタリルエチルグリコレート(可塑剤) 1.5質量部
メチレンクロライド(第1溶媒) 348.0質量部
エタノール(第2溶媒) 100.0質量部
<マット剤溶液の調製>
下記の組成物を分散機に投入し、攪拌して各成分を溶解し、マット剤溶液を調製した。
(マット剤溶液組成)
平均粒径20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製) 2.0質量部
メチレンクロライド(第1溶媒) 75.0質量部
エタノール(第2溶媒) 12.7質量部
セルロースアシレート溶液B−1 10.3質量部
<添加剤溶液の調製>
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、レターデーション発現剤溶液を調製した。
(レターデーション発現剤溶液組成)
レターデーション発現剤(A) 10.0質量部
レターデーション発現剤(B) 10.0質量部
メチレンクロライド(第1溶媒) 75.2質量部
エタノール(第2溶媒) 11.2質量部
レターデーション発現剤(A)
Figure 2006301608
レターデーション発現剤(B)
Figure 2006301608
上記マット剤溶液1.3質量部とレターデーション発現剤溶液6.0質量部それぞれを濾過後にインラインミキサーで混合後、さらにセルロースアシレート溶液B−1を92.7質量部、添加してインラインミキサーで混合し、バンド流延機を用いて流延した。残留溶剤含量36質量%でフィルムをバンドから剥離し、130℃の雰囲気温度ででフィルムをテンターを用いて40%まで横延伸したのち、140℃で30秒間保持した。延伸開始時の残留溶剤含量は15質量%だった。その後、クリップを外して130℃で40分間乾燥させ、延伸セルロースアシレートフィルムを製造した。出来あがったセルロースアシレートフィルムの残留溶剤量は0.1質量%であり、膜厚は90μmであった。Re(480)/Re(546)は1.15、Re(628)/Re(546)は1.11、Rth(480)/Rth(546)は1.15、Rth(628)/Rth(546)は1.09であった。
(フィルムのアルカリ処理)
延伸セルロースアシレートフィルムB−1を、2.3 mol/Lの水酸化ナトリウム水溶液に、55℃で3分間浸漬した。室温の水洗浴槽中で洗浄し、30℃で0.05 mol/Lの硫酸を用いて中和した。再度、室温の水洗浴槽中で洗浄し、さらに100℃の温風で乾燥した。このようにして、比較例の光学補償シートB−1を作製した。
[比較例2]
<光学補償シートB−2の作製>
(セルロースアシレートフィルムB−2の作製)
下記の組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、セルロースアシレート溶液B−2を調製した。
(セルロースアシレート溶液B−2組成)
アセチル化度1.9、プロピオニル化度0.8のセルロースアシレート
100.0質量部
トリフェニルホスフェート(可塑剤) 9.0質量部
エチルフタリルエチルグリコレート(可塑剤) 2.0質量部
メチレンクロライド(第1溶媒) 348.0質量部
エタノール(第2溶媒) 100.0質量部
<マット剤溶液の調製>
下記の組成物を分散機に投入し、攪拌して各成分を溶解し、マット剤溶液を調製した。
(マット剤溶液組成)
平均粒径20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製) 2.0質量部
メチレンクロライド(第1溶媒) 75.0質量部
エタノール(第2溶媒) 12.7質量部
セルロースアシレート溶液B−2 10.3質量部
<添加剤溶液の調製>
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、紫外線吸収剤溶液を調製した。
(紫外線吸収剤溶液組成)
紫外線吸収剤(C) 10.0質量部
紫外線吸収剤(D) 10.0質量部
メチレンクロライド(第1溶媒) 75.2質量部
エタノール(第2溶媒) 11.2質量部
紫外線吸収剤(C)
Figure 2006301608
紫外線吸収剤(D)
Figure 2006301608
上記マット剤溶液1.3質量部と紫外線吸収剤溶液2.7質量部それぞれを濾過後にインラインミキサーで混合後、さらにセルロースアシレート溶液B−2を96.0質量部、添加してインラインミキサーで混合し、バンド流延機を用いて流延した。残留溶剤含量40質量%でフィルムをバンドから剥離し、130℃の雰囲気温度ででフィルムをテンターを用いて35%まで横延伸したのち、140℃で30秒間保持した。延伸開始時の残留溶剤含量は15質量%だった。その後、クリップを外して130℃で40分間乾燥させ、延伸セルロースアシレートフィルムを製造した。出来あがったセルロースアシレートフィルムの残留溶剤量は0.1質量%であり、膜厚は110μmであった。Re(480)/Re(546)は0.97、Re(628)/Re(546)は1.03、Rth(480)/Rth(546)は0.97、Rth(628)/Rth(546)は1.02であった。
(フィルムのアルカリ処理)
延伸セルロースアシレートフィルムB−2をそれぞれ、2.3 mol/Lの水酸化ナトリウム水溶液に、55℃で3分間浸漬した。室温の水洗浴槽中で洗浄し、30℃で0.05 mol/Lの硫酸を用いて中和した。再度、室温の水洗浴槽中で洗浄し、さらに100℃の温風で乾燥した。このようにして、比較例の光学補償シートB−2を作製した
[比較例3]
<光学補償シートB−3の作製>
(延伸高分子フィルム3の作製)
厚さ80μmの延伸ポリカーボネートフィルムを下記液晶層塗布の支持体に用いた。
(重合成液晶塗布液の調製)
液晶材料(A)を75質量部、イルガキュアIrg184(Chiba Speciality Chemicals製)を1質量部、トルエン25質量部を混合して、さらにカイラル剤(B)10質量部加えて重合性液晶塗布液を調製した。
液晶材料(A)
Figure 2006301608
カイラル剤.(B)
Figure 2006301608
(カイラルネマチック(コレステリック)液晶層の成膜)
調製した上記塗布液を、スピンコーティング法を用いて延伸高分子フィルム3上に塗布した。続いて、重合性液晶塗布液を塗布したフィルムをホットプレート上で110℃、6分間加熱し、残存溶剤を除去し、ツイスト配向した液晶構造を発現させた。
続いて、塗布した液晶層に紫外線照射を行い(20mJ/cm2 、波長365nm)、3.8μm厚のカイラルネマチック(コレステリック)液晶層の積層膜構造を得た。
<光学補償シートのレターデーションの測定>
(光学特性の測定)
自動複屈折率計(KOBRA−21ADH、王子計測機器(株)製)を用いて25℃60%RHで光学補償シートA−1〜A−2およびB−1、B−2のReおよびRthを測定した。測定波長は480nm、546nm、628nmとした。結果を表1に示す。
Figure 2006301608
[実施例3]
(光学補償シートの鹸化処理)
光学補償シートA−1およびA−2を、2.3 mol/Lの水酸化ナトリウム水溶液に、55℃で3分間浸漬した。室温の水洗浴槽中で洗浄し、30℃で0.05 mol/Lの硫酸を用いて中和した。再度、室温の水洗浴槽中で洗浄し、さらに100℃の温風で乾燥した。
[実施例4]
<偏光板の作製>
(偏光板保護フィルムの鹸化処理)
市販のセルロースアシレートフィルム(富士タックTD80)を1.5 mol/Lの水酸化ナトリウム水溶液に、55℃で1分間浸漬した。室温の水洗浴槽中で洗浄し、30℃で0.05 mol/Lの硫酸を用いて中和した。再度、室温の水洗浴槽中で洗浄し、さらに100℃の温風で乾燥した。
(偏光子の作成)
重合度1700、厚さ39μmのポリビニルアルコールフィルムを、30度の温水浴にて膨潤した後、ヨウ素とヨウ化カリウムの水溶液からなる30℃の染色浴にて約4倍に延伸した。次いで、ホウ酸とヨウ化カリウムの入った50℃の架橋浴にて総延伸倍率が5.5倍になるように延伸し、架橋した。これを、35℃のヨウ化カリウム水溶液中に10秒間浸漬して色相の調整を行った。さらに水洗、乾燥して、厚さ18μmの偏光子を得た。この偏光子の水分率は14%であった。また波長900nmにおける複屈折率(Δn)は0.0482、透過率は43%、偏光度は99.9%であった。
なお、複屈折率は、900nmの波長光により、平行ニコル回転法を用いて位相差値(Δnd)を求め、厚さd(nm)で割ることにより求めた。
透過率は、分光光度計(村上色彩技術研究所製,DOT−3)を用いて測定し、JIS Z8701の2度視野(C光源)により、視感度補正を行ったY値である。
偏光度は、2枚の同じ偏光子を偏光軸が平行になるように重ね合わせた場合の透過率(H0)と直交に重ね合わせた場合の透過率(H90)を、上記の透過率の測定に準じて測定し、以下の式から求めた。なお、偏光の透過率(H0)と直交の透過率(H90)は、視感度補正したY値である。
偏光度(%)=√{(H0−H90)/(H0+H90)}×100
(接着剤の調製)
ポリエステル系ウレタン(三井武田ケミカル社製,タケラックXW−74−C154)10部およびイソシアネート系架橋剤(三井武田ケミカル社製,タケネートWD−725)1部を、水に溶解し、固形分を20%に調整した溶液を調製した。これを接着剤として用いた。
(偏光板A−1の作製)
上記偏光子の両面に、上記接着剤溶液を塗布した後、実施例3で鹸化処理した光学補償シートA−1と上記で作製した鹸化処理済みの富士タックTD80とを偏光子を挟み込むように貼り合わせ、40℃のオーブンで72時間乾燥キュアして、偏光板A−1を作製した。光学補償シートA−1については光学異方性層が空気側となるように貼り合せた。
(偏光板A−2の作製)
上記偏光子の両面に、上記接着剤溶液を塗布した後、実施例3で鹸化処理した光学補償シートA−2と上記で作製した鹸化処理済みの富士タックTD80とを偏光子を挟み込むように貼り合わせ、40℃のオーブンで72時間乾燥キュアして、偏光板A−2を作製した。光学補償シートA−2については光学異方性層が空気側となるように貼り合せた。
[比較例3]
(偏光板B−1の作製)
上記偏光子の両面に、上記接着剤溶液を塗布した後、比較例1で作製した光学補償シートB−1と上記で作製した鹸化処理済みの富士タックTD80とを偏光子を挟み込むように貼り合わせ、40℃のオーブンで72時間乾燥キュアして、偏光板B−1を作製した。
[比較例4]
(偏光板B−2の作製)
上記偏光子の両面に、上記接着剤溶液を塗布した後、比較例2で作製した光学補償シートB−2と上記で作製した鹸化処理済みの富士タックTD80とを偏光子を挟み込むように貼り合わせ、40℃のオーブンで72時間乾燥キュアして、偏光板B−2を作製した。
[比較例5]
(光学補償シートB-3の表面処理)
光学補償シート(B−3)のポリカーボネートフィルム側を12W・分/mの条件で春日電機(株)製コロナ放電して親水性を付与した。
(偏光板B-3の作製)
実施例4と同様にして、光学補償シートB−3と上記で作製した鹸化処理済みの富士タックTD80とを偏光子を挟み込むように貼り合わせ、40℃のオーブンで72時間乾燥キュアして、偏光板B−3を作製した。なお、光学補償シートB−3はポリカーボネート側が偏光子と接するように貼り合せた。
[実施例5]
(偏光板の耐久性試験)
実施例4および比較例5で作製した偏光板(A−1)および(B−3)を20cm×20cmに切り出し、60℃90%RHで500時間経時させた後の偏光子と保護フィルム間界面の密着性を確認したところ、本発明の偏光板(A−1)は良好な密着性を保持していたのに対して、比較例の偏光板(B−3)は正方形の四隅で偏光子とポリカーボネート界面で剥離が発生していた。
本発明の光学補償シートを用いた偏光板(A−1)は比較例の光学補償シートを用いた偏光板(B−3)に対して偏光性能が良好で高温高湿下での耐久性に優れていることがわかった。
[実施例6]
図2の液晶表示装置を作製した。即ち、観察者方向(上)から上側偏光板、VAモード液晶セル(上基板、液晶層、下基板)、下側偏光板(光学補償シート、偏光子、保護フィルム)を積層し、さらにバックライト光源を配置した。以下の例では、上側偏光板に市販品の偏光板(HLC2−5618)を用いて、下側偏光板に本発明の偏光板を使用している。
<液晶セルの作製>
液晶セルは、基板間のセルギャップを3.8μmとし、負の誘電率異方性を有する液晶材料(「MLC6608」、メルク社製)を基板間に滴下注入して封入し、基板間に液晶層を形成して作製した。液晶層のレターデーション(即ち、記液晶層の厚さd(μm)と屈折率異方性Δnとの積Δn・d)を300nmとした。なお、液晶材料は垂直配向するように配向させた。
上記の垂直配向型液晶セルを使用した液晶表示装置(図2)の上側偏光板に、市販品のスーパーハイコントラスト品(株式会社サンリッツ社製HLC2−5618)を、下側偏光板に実施例5で作製した偏光板(A−1)を、光学補償シート(A−1)が液晶セル側となるように粘着剤を介して、貼り付けて液晶表示装置(A−1)を作製した。観察者側の偏光板の透過軸が上下方向に、そして、バックライト側の偏光板の透過軸が左右方向になるように、クロスニコル配置とした。
さらに偏光板(A−2)についても上記と同様にして液晶表示装置(A−2)を作製した。
[比較例6]
偏光板(B−1)および(B−2)についても実施例6と同様にして液晶表示装置(B−1)および(B-2)を作製した。
<色味変化の評価>
実施例6および比較例6で作製した液晶表示装置(A−1)、(B−1)及び(B−2)について極角60°において、方位角0°と方位角80°との色味変化をELDIM社製Ezcontrastにより測定し、xy色度図上での色味変化の絶対値Δx,Δyを求めた。結果を表2に示す。
Figure 2006301608
表2の結果から本発明の光学補償シートを用いた偏光板は液晶表示に組み込んだ場合、視角による色味変化が少なく、好ましいことがわかった。
本発明の液晶表示装置の例を示す概略図である。 本発明の液晶表示装置の例を示す概略図である。
符号の説明
1 上側偏光板
2 上側偏光板吸収軸の方向
5 液晶セル上電極基板
6 上基板の配向制御方向
7 液晶層
8 液晶セル下電極基板
9 下基板の配向制御方向
10 液晶表示装置
12 下側偏光板
13 下側偏光板吸収軸の方向

Claims (10)

  1. 延伸セルロースアシレートフィルム上に少なくとも1つの液晶性化合物を含有する光学異方性層を有し、かつレターデーションが下記(A)〜(F)の関係を満たすことを特徴とする光学補償シート。
    20nm<Re(546)<150nm (A)
    50nm<Rth(546)<400nm (B)
    0.5<Re(480)/Re(546)<1 (C)
    1.0<Re(628)/Re(546)<2.0 (D)
    1.0<Rth(480)/Rth(546)<1.5 (E)
    0.7<Rth(628)/Rth(546)<1.0 (F)
    [式中、Re(λ)は波長λnmにおける正面レターデーション、Rth(λ)は波長λnmにおける膜厚方向のレターデーションである。]
  2. 前記延伸セルロースアシレートフィルムの遅相軸と前記光学異方性層の遅相軸が直交していることを特徴とする請求項1に記載の光学補償シート。
  3. 前記延伸セルロースアシレートフィルムのレターデーションが、下記式(I)〜(L)を満たすことを特徴とする請求項1または2に記載の光学補償シート。
    0.90<Re(480)/Re(546)<1.10 (I)
    0.90<Re(628)/Re(546)<1.10 (J)
    0.90<Rth(480)/Rth(546)<1.10 (K)
    0.90<Rth(628)/Rth(546)<1.10 (L)
  4. 前記光学異方性層のレターデーションが、下記式(M)〜(P)を満たすことを特徴とする請求項1〜3のいずれかに記載の光学補償シート。
    1.0<Re(480)/Re(546)<2.0 (M)
    0.5<Re(628)/Re(546)<1.0 (N)
    1.0<Rth(480)/Rth(546)<2.0 (O)
    0.5<Rth(628)/Rth(546)<1.0 (P)
  5. 前記延伸セルロースアシレートフィルムが、置換度2.00以上2.90以下のセルロースアシレートを含有することを特徴とする請求項1〜4のいずれかに記載の光学補償シート。
  6. 前記延伸セルロースアシレートフィルムが、幅方向に1%以上200%以下の倍率で延伸されていることを特徴とする請求項1〜5のいずれかに記載の光学補償シート。
  7. 前記光学異方性層中の液晶性化合物の吸収極大が、前記延伸セルロースアシレートフィルム中に添加されるレターデーション発現剤の吸収極大よりも長波長である請求項1〜6の光学補償シート。
  8. 偏光子およびその両側に配置された2枚の保護フィルムを有し、少なくとも1枚の保護フィルムが請求項1〜7のいずれかに記載の光学補償シートを含むことを特徴とする偏光板。
  9. 液晶セルおよびその両側に配置された二枚の偏光板を有し、少なくとも1つの偏光板が請求項8に記載の偏光板であることを特徴とする液晶表示装置。
  10. 前記液晶セルがVAモードであることを特徴とする請求項9に記載の液晶表示装置。
JP2006079192A 2005-03-22 2006-03-22 光学補償シート、偏光板および液晶表示装置 Active JP4856997B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006079192A JP4856997B2 (ja) 2005-03-22 2006-03-22 光学補償シート、偏光板および液晶表示装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005082765 2005-03-22
JP2005082765 2005-03-22
JP2006079192A JP4856997B2 (ja) 2005-03-22 2006-03-22 光学補償シート、偏光板および液晶表示装置

Publications (2)

Publication Number Publication Date
JP2006301608A true JP2006301608A (ja) 2006-11-02
JP4856997B2 JP4856997B2 (ja) 2012-01-18

Family

ID=37469897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079192A Active JP4856997B2 (ja) 2005-03-22 2006-03-22 光学補償シート、偏光板および液晶表示装置

Country Status (1)

Country Link
JP (1) JP4856997B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145919A (ja) * 2006-12-13 2008-06-26 Kuraray Co Ltd 偏光フィルムの製造方法
JP2020112837A (ja) * 2015-06-12 2020-07-27 住友化学株式会社 偏光フィルム及びそれを含む偏光板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000154261A (ja) * 1997-10-20 2000-06-06 Fuji Photo Film Co Ltd セルロースアセテートフイルム、その製造方法、光学補償シートおよび液晶表示装置
JP2002363343A (ja) * 2001-03-14 2002-12-18 Fuji Photo Film Co Ltd セルロースエステルフイルム用添加剤およびセルロースエステルフイルム
JP2004326089A (ja) * 2003-04-07 2004-11-18 Dainippon Printing Co Ltd 積層位相差層、その製造方法及びそれを用いた液晶表示装置
JP2005037440A (ja) * 2003-07-15 2005-02-10 Konica Minolta Opto Inc 光学補償フィルム、偏光板及び液晶表示装置
JP2005062810A (ja) * 2003-03-28 2005-03-10 Fuji Photo Film Co Ltd 液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000154261A (ja) * 1997-10-20 2000-06-06 Fuji Photo Film Co Ltd セルロースアセテートフイルム、その製造方法、光学補償シートおよび液晶表示装置
JP2002363343A (ja) * 2001-03-14 2002-12-18 Fuji Photo Film Co Ltd セルロースエステルフイルム用添加剤およびセルロースエステルフイルム
JP2005062810A (ja) * 2003-03-28 2005-03-10 Fuji Photo Film Co Ltd 液晶表示装置
JP2004326089A (ja) * 2003-04-07 2004-11-18 Dainippon Printing Co Ltd 積層位相差層、その製造方法及びそれを用いた液晶表示装置
JP2005037440A (ja) * 2003-07-15 2005-02-10 Konica Minolta Opto Inc 光学補償フィルム、偏光板及び液晶表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145919A (ja) * 2006-12-13 2008-06-26 Kuraray Co Ltd 偏光フィルムの製造方法
JP2020112837A (ja) * 2015-06-12 2020-07-27 住友化学株式会社 偏光フィルム及びそれを含む偏光板
JP7068377B2 (ja) 2015-06-12 2022-05-16 住友化学株式会社 偏光フィルム及びそれを含む偏光板
JP2022115906A (ja) * 2015-06-12 2022-08-09 住友化学株式会社 偏光フィルム及びそれを含む偏光板

Also Published As

Publication number Publication date
JP4856997B2 (ja) 2012-01-18

Similar Documents

Publication Publication Date Title
JP5284567B2 (ja) 液晶表示装置
JP4900963B2 (ja) 光学補償フィルム、偏光板および液晶表示装置
JP5016788B2 (ja) セルロースアシレートフィルム、偏光板および液晶表示装置
JP2007126603A (ja) ポリマーフィルム、ポリマーフィルムの製造方法、び偏光板及び液晶表示装置
JP2006241306A (ja) セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、偏光板および液晶表示装置
CN100538404C (zh) 光学薄膜、光学补偿薄膜、偏振片以及使用它们的液晶显示装置
JP2007102205A (ja) 光学補償フィルム、その製造方法、並びにそれを用いた偏光板及び液晶表示装置
JP2006096023A (ja) セルロースアシレートフィルム、その製造方法、光学補償フィルム、偏光板、及び液晶表示装置
JP2007156459A (ja) 光学フィルム、偏光板、および液晶表示装置
JP4330410B2 (ja) セルロースフィルム、偏光板および液晶表示装置
JP4686351B2 (ja) セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、並びにそれを用いた偏光板及び液晶表示装置
JP5140520B2 (ja) セルロースエステルフィルムの製造方法、位相差フィルム、それを用いた偏光板、及び液晶表示装置
TWI407156B (zh) 醯化纖維素薄膜、偏光板保護薄膜、偏光板及液晶顯示裝置
JP2005349616A (ja) セルロースアシレートフィルム、偏光板保護フィルム、偏光板及び液晶表示装置
JP4726740B2 (ja) 光学補償フィルム及び液晶表示装置
JP2005331909A (ja) 偏光板および液晶表示装置
JP2005128520A (ja) 偏光板およびそれを用いた液晶表示装置
JP4474169B2 (ja) セルロースアシレートフィルム、偏光板および液晶表示装置
JP4856997B2 (ja) 光学補償シート、偏光板および液晶表示装置
TWI412843B (zh) 光學補償膜、偏光板及液晶顯示裝置
JP2005272800A (ja) セルロースアシレートフィルム、偏光板及び液晶表示装置
JP4530144B2 (ja) セルロースアセテートフィルム、偏光板及び液晶表示装置
JP2005309348A (ja) 偏光板保護フィルム、その製造方法、偏光板および液晶表示装置
JP2007193276A (ja) 光学補償フィルム、偏光板及び液晶表示装置
JP2006235483A (ja) セルロースアシレートフィルム、その製造方法、それを用いた偏光板、並びにその偏光板を用いた液晶表示装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4856997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250