JP2006300343A - Refrigerating cycle - Google Patents

Refrigerating cycle Download PDF

Info

Publication number
JP2006300343A
JP2006300343A JP2005117886A JP2005117886A JP2006300343A JP 2006300343 A JP2006300343 A JP 2006300343A JP 2005117886 A JP2005117886 A JP 2005117886A JP 2005117886 A JP2005117886 A JP 2005117886A JP 2006300343 A JP2006300343 A JP 2006300343A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heat exchange
pressure
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005117886A
Other languages
Japanese (ja)
Inventor
Kazuhiko Marumoto
一彦 丸本
Takeji Watanabe
竹司 渡辺
Masahiro Ohama
昌宏 尾浜
Seiichi Yasuki
誠一 安木
Takayuki Takatani
隆幸 高谷
Tatsumura Mo
立群 毛
Tetsuei Kuramoto
哲英 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005117886A priority Critical patent/JP2006300343A/en
Publication of JP2006300343A publication Critical patent/JP2006300343A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Abstract

<P>PROBLEM TO BE SOLVED: To enlarge a temperature range of a heat-exchanged fluid in a radiator and a heat sink that can maximize COP by preventing the abnormal rise of a discharge temperature caused by the intake temperature rise of a compressor. <P>SOLUTION: This refrigerating cycle comprises a refrigerant circulating circuit with the compressor, the radiator, a pressure reducing means and the heat sink connected in annular shape, and a cycle heat exchanger for exchanging heat between a refrigerant between the radiator and pressure reducing means, and a refrigerant between the pressure reducing means and heat sink. The refrigerating cycle further comprises a heat exchange quantity adjusting means for adjusting the heat exchange quantity of the cycle heat exchanger. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超臨界流体を冷媒とする冷凍サイクル、特に、放熱器と減圧手段の間の高圧冷媒と減圧手段と吸熱器の間の低圧冷媒とで互いに熱交換を行うサイクル熱交換器を備えた冷凍サイクルに関する。   The present invention includes a refrigeration cycle using a supercritical fluid as a refrigerant, and in particular, a cycle heat exchanger that exchanges heat with each other between a high-pressure refrigerant between a radiator and a decompression unit and a low-pressure refrigerant between the decompression unit and a heat absorber. Related to the refrigeration cycle.

以下、この発明の背景技術を特許文献1に示されている図面に基づいて説明する。図5において、冷媒回路5は、冷媒を圧縮する圧縮機1、冷媒を冷却する放熱器2、高圧側ラインと低圧側ラインとの冷媒を熱交換する内部熱交換器6、冷媒を減圧する減圧手段3、冷媒を蒸発気化する吸熱器4で構成されている。   The background art of the present invention will be described below with reference to the drawings shown in Patent Document 1. In FIG. 5, the refrigerant circuit 5 includes a compressor 1 that compresses the refrigerant, a radiator 2 that cools the refrigerant, an internal heat exchanger 6 that exchanges heat between the high-pressure side line and the low-pressure side line, and a reduced pressure that depressurizes the refrigerant. It comprises means 3 and a heat absorber 4 for evaporating and evaporating the refrigerant.

この冷媒回路5は、圧縮機1の吐出側より放熱器2を介して内部熱交換器6の高圧側通路17aに接続し、この高圧側通路17aの流出側を減圧手段3に接続し、圧縮機1から減圧手段3の流入側に至る。また、減圧手段3の流出側は、吸熱器4に接続され、この吸熱器4の流出側は内部熱交換器6の低圧通路17bに接続されている。そして、低圧通路17bの流出側を圧縮機1の吸入側に接続している。   This refrigerant circuit 5 is connected to the high-pressure side passage 17a of the internal heat exchanger 6 from the discharge side of the compressor 1 via the radiator 2, and the outflow side of the high-pressure side passage 17a is connected to the decompression means 3 to compress the refrigerant circuit 5. From the machine 1 to the inflow side of the decompression means 3. The outflow side of the decompression means 3 is connected to the heat absorber 4, and the outflow side of the heat absorber 4 is connected to the low pressure passage 17 b of the internal heat exchanger 6. The outflow side of the low-pressure passage 17b is connected to the suction side of the compressor 1.

即ち、内部熱交換器6は放熱器2の流出側から減圧手段3に至る高圧ラインと、吸熱器4の流出側から圧縮機1に至る低圧側ラインとで熱交換を行う。   That is, the internal heat exchanger 6 performs heat exchange between the high pressure line extending from the outflow side of the radiator 2 to the decompression unit 3 and the low pressure side line extending from the outflow side of the heat absorber 4 to the compressor 1.

この冷媒回路5においては、冷媒として炭酸ガスが用いられており、圧縮機1によって圧縮された冷媒は、高温高圧の超臨界状態の冷媒として放熱器2に入り、ここで放熱して冷却する。その後、内部熱交換器6において低圧側ラインの低温冷媒と熱交換して更に冷やされ、液化されることなく減圧手段3へ送られる。そして、この減圧手段3において減圧されて低温低圧の湿り蒸気となり、吸熱器4において空気と熱交換して蒸発気化し、内部熱交換器6へ流入し、この内部熱交換器6において高圧側ラインの高温冷媒と熱交換した後に圧縮機1へ戻される。   In the refrigerant circuit 5, carbon dioxide is used as the refrigerant, and the refrigerant compressed by the compressor 1 enters the radiator 2 as a high-temperature and high-pressure supercritical refrigerant, where it dissipates heat and cools it. Thereafter, the internal heat exchanger 6 exchanges heat with the low-temperature refrigerant in the low-pressure side line, further cools, and is sent to the decompression means 3 without being liquefied. Then, the pressure is reduced in the pressure reducing means 3 to become low-temperature and low-pressure wet steam, and heat is exchanged with air in the heat absorber 4 to evaporate and flow into the internal heat exchanger 6. In the internal heat exchanger 6, the high-pressure side line After the heat exchange with the high-temperature refrigerant, it is returned to the compressor 1.

また、冷媒回路1の低圧側ライン上には、内部熱交換器6をバイパスし、内部熱交換器6の熱交換量を調節する熱交換量調節手段7bが設けられている。即ち、この熱交換量調節手段7bは、減圧手段3と内部熱交換器6との間に一端を接続し、他端を内部熱交換器6と圧縮機1との間に接続されている。   Further, on the low pressure side line of the refrigerant circuit 1, a heat exchange amount adjusting means 7 b that bypasses the internal heat exchanger 6 and adjusts the heat exchange amount of the internal heat exchanger 6 is provided. That is, the heat exchange amount adjusting means 7 b has one end connected between the decompression means 3 and the internal heat exchanger 6 and the other end connected between the internal heat exchanger 6 and the compressor 1.

制御装置16は、圧縮機1の吐出圧力を検出する吐出圧力センサー18からの圧力信号、圧縮機1の吐出温度を検出する吐出温度センサー19からの信号を入力し、これら信号に基づいてCOPを最大とする最適圧力を演算し、また、高圧圧力が危険領域まで上昇したか否か、吐出温度が危険温度まで上昇したか否か等を判定し、それに基づいて熱交換量調節手段7bの開度を駆動制御するようになっている。
特開平11−193967号公報
The control device 16 inputs a pressure signal from the discharge pressure sensor 18 that detects the discharge pressure of the compressor 1 and a signal from the discharge temperature sensor 19 that detects the discharge temperature of the compressor 1, and performs COP based on these signals. The optimum pressure to be maximized is calculated, and whether or not the high pressure has risen to the dangerous area, whether or not the discharge temperature has risen to the dangerous temperature, etc. are determined, and based on this, the heat exchange amount adjusting means 7b is opened. The degree of driving is controlled.
JP 11-193967 A

しかしながら、上記の構成では、内部熱交換器6による熱交換を行うことにより、圧縮機1の吸入温度が上昇するため、吐出温度も上昇する。COPの向上を狙いに熱交換量を増加すると吸入温度がさらに上昇し吐出温度も上昇することになる。   However, in the above configuration, the heat exchange by the internal heat exchanger 6 causes the intake temperature of the compressor 1 to rise, so the discharge temperature also rises. If the heat exchange amount is increased with the aim of improving COP, the suction temperature further rises and the discharge temperature also rises.

そして、吐出温度の異常上昇を回避するために熱交換量調節手段7bにより熱交換量を減少させると吐出温度の異常上昇は回避できるが、COPは最適値とはならず低下することになる。   If the heat exchange amount is reduced by the heat exchange amount adjusting means 7b in order to avoid an abnormal increase in the discharge temperature, an abnormal increase in the discharge temperature can be avoided, but the COP will not be an optimum value but will decrease.

放熱器2あるいは吸熱器4の被熱交換流体の温度によってはCOPを最大としながら、異常吐出温度を回避できる熱交換量を設定できない。対応可能な放熱器2及び吸熱器4の被熱交換流体の温度範囲が狭い。   Depending on the temperature of the heat exchange fluid of the radiator 2 or the heat absorber 4, the amount of heat exchange that can avoid the abnormal discharge temperature cannot be set while maximizing the COP. The temperature range of the heat exchange fluid of the radiator 2 and the heat absorber 4 that can be supported is narrow.

本発明の目的は、圧縮機1の吸入温度の上昇による吐出温度の異常上昇を防止することで、COPを最大とできる放熱器2及び吸熱器4の被熱交換流体の温度範囲を広げることを目的としている。   An object of the present invention is to widen the temperature range of the heat exchange fluid of the radiator 2 and the heat absorber 4 that can maximize COP by preventing an abnormal increase in discharge temperature due to an increase in the intake temperature of the compressor 1. It is aimed.

この目的を達成するために本発明の冷凍サイクルは、放熱器と減圧手段の間の冷媒と減圧手段と吸熱器の間の冷媒とで互いに熱交換を行うサイクル熱交換器を備えた。   In order to achieve this object, the refrigeration cycle of the present invention includes a cycle heat exchanger that exchanges heat with each other between the refrigerant between the radiator and the decompression unit and the refrigerant between the decompression unit and the heat absorber.

これによって、圧縮機の吸入冷媒を加熱し吸入温度を上昇させることによる吐出温度の上昇を防止できると共にCOPを最適に調整できる。   As a result, it is possible to prevent an increase in the discharge temperature caused by heating the refrigerant sucked in the compressor and increasing the suction temperature, and to optimally adjust the COP.

本発明の冷凍サイクルは、圧縮機の吸入温度の上昇による吐出温度の異常上昇を防止することで、COPを最大とできる放熱器及び吸熱器の被熱交換流体の温度範囲がより広い冷凍サイクルを提供できる。   The refrigeration cycle of the present invention has a refrigeration cycle in which the temperature range of the heat exchange fluid of the heat sink and the heat sink that can maximize COP is prevented by preventing an abnormal increase in discharge temperature due to an increase in the suction temperature of the compressor. Can be provided.

第1の発明は、放熱器と減圧手段の間の冷媒と、減圧手段と吸熱器の間の冷媒とで、互いに熱交換を行うサイクル熱交換器を備えた。   The first invention includes a cycle heat exchanger that exchanges heat with each other between the refrigerant between the radiator and the decompression unit and the refrigerant between the decompression unit and the heat absorber.

これによって、圧縮機の吸入冷媒を加熱し吸入温度を上昇させることによる吐出温度の上昇を防止できると共に、COPを最大とできる放熱器及び吸熱器の被熱交換流体の温度範囲がより広い冷凍サイクルを提供できる。   As a result, it is possible to prevent an increase in discharge temperature by heating the refrigerant sucked in the compressor and raising the suction temperature, and a refrigeration cycle having a wider temperature range of the heat exchange fluid of the heat sink and the heat sink that can maximize COP Can provide.

第2の発明は、特に第1の発明で、サイクル熱交換器の熱交換量を調節する熱交換量調節手段を備えた。   The second aspect of the invention is particularly the first aspect of the invention, and is provided with heat exchange amount adjusting means for adjusting the heat exchange amount of the cycle heat exchanger.

これによって、COPが最適となる熱交換量の調整範囲をより広くできるので、COPを最大とできる放熱器及び吸熱器の被熱交換流体の温度範囲がさらに広い冷凍サイクルを提供できる。   As a result, the adjustment range of the heat exchange amount at which the COP is optimal can be broadened, so that it is possible to provide a refrigeration cycle in which the temperature range of the heat exchange fluid of the heat sink and the heat absorber that can maximize the COP is wider.

第3の発明は、特に第1、2の発明で、熱交換量調節手段を用いて熱交換量を調節することにより高圧圧力を調整し所定のサイクル効率をもたらすようにした。   The third invention is the first and second inventions, in particular, by adjusting the heat exchange amount using the heat exchange amount adjusting means, thereby adjusting the high pressure and bringing about a predetermined cycle efficiency.

これによって、COPが最適となる熱交換量を調節する事によって高圧圧力の調整範囲をより広くできるので、COPを最大とできる放熱器及び吸熱器の被熱交換流体の温度範囲がさらに広い冷凍サイクルを提供できる。   As a result, the adjustment range of the high pressure can be expanded by adjusting the heat exchange amount at which the COP is optimal, so that the temperature range of the heat exchange fluid of the radiator and the heat sink that can maximize the COP is wider. Can provide.

第4の発明は、特に第1〜3の発明で、熱交換量調節手段を高圧圧力側の冷媒回路に備えた。   The fourth invention is particularly the first to third inventions, wherein the heat exchange amount adjusting means is provided in the refrigerant circuit on the high pressure side.

これにより高圧側冷媒のサイクル熱交換器への流通量を調節できるので、COPが最適となる熱交換量を調節する事によって高圧圧力の調整範囲をより広くできるので、COPを最大とできる放熱器及び吸熱器の被熱交換流体の温度範囲がさらに広い冷凍サイクルを提供できる。   As a result, the flow amount of the high-pressure side refrigerant to the cycle heat exchanger can be adjusted. Therefore, the adjustment range of the high-pressure pressure can be broadened by adjusting the heat exchange amount at which the COP is optimal. In addition, a refrigeration cycle having a wider temperature range of the heat exchange fluid of the heat absorber can be provided.

第5の発明は、特に第1〜4の発明で、熱交換量調節手段を低圧圧力側の冷媒回路に備えた。   The fifth invention is particularly the first to fourth inventions, wherein the heat exchange amount adjusting means is provided in the refrigerant circuit on the low pressure side.

これにより低圧側冷媒のサイクル熱交換器への流通量を調節できるので、COPが最適となる熱交換量を調節する事によって高圧圧力の調整範囲をより広くできるので、COPを最大とできる放熱器及び吸熱器の被熱交換流体の温度範囲がさらに広い冷凍サイクルを提供できる。   As a result, the flow amount of the low-pressure side refrigerant to the cycle heat exchanger can be adjusted. Therefore, the adjustment range of the high-pressure pressure can be broadened by adjusting the heat exchange amount at which the COP is optimal. In addition, a refrigeration cycle having a wider temperature range of the heat exchange fluid of the heat absorber can be provided.

第6の発明は、特に第1〜5の発明において、ヒートポンプに臨界圧力以上に昇圧された冷媒を用いた。   In the sixth invention, in particular, in the first to fifth inventions, a refrigerant whose pressure is increased to a critical pressure or higher is used in the heat pump.

これにより、前記臨界圧力以上に昇圧された冷媒により水を加熱することにより、冷媒が、圧縮機で臨界圧力以上に加圧されているので、水を加熱することによって熱を奪われて温度低下しても凝縮することがない。したがって、水を冷媒で加熱する熱交換器全域で冷媒側の流路と水側の流路とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。   As a result, the water is heated by the refrigerant whose pressure has been increased to the critical pressure or higher, so that the refrigerant is pressurized to the critical pressure or higher by the compressor. Even if it does not condense. Therefore, it becomes easy to form a temperature difference between the flow path on the refrigerant side and the flow path on the water side over the entire heat exchanger that heats the water with the refrigerant, so that hot water can be obtained and the heat exchange efficiency can be increased.

(実施の形態1)
以下、本発明の実施の形態による冷凍サイクルについて図面を用いて説明する。図1は本発明の実施の形態における冷凍サイクルの回路図である。
(Embodiment 1)
Hereinafter, a refrigeration cycle according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram of a refrigeration cycle in an embodiment of the present invention.

図1において、冷媒回路5は、冷媒を圧縮する圧縮機1、冷媒を冷却する放熱器2、高圧側ラインと低圧側ラインの冷媒を熱交換するサイクル熱交換器20、冷媒を減圧する減圧手段3、冷媒を蒸発気化する吸熱器4で構成されている。   In FIG. 1, a refrigerant circuit 5 includes a compressor 1 for compressing refrigerant, a radiator 2 for cooling the refrigerant, a cycle heat exchanger 20 for exchanging heat between the refrigerant on the high-pressure side line and the low-pressure side line, and decompression means for decompressing the refrigerant. 3. It is comprised by the heat absorber 4 which evaporates and evaporates a refrigerant | coolant.

この冷媒回路5は、圧縮機1の吐出側の放熱器3よりサイクル熱交換器20の高圧側通路17aに接続し、この高圧側通路17aの流出側を減圧手段3に接続し、圧縮機1から減圧手段3の流入側に至る。また、減圧手段3の流出側は、サイクル熱交換器20の低圧側通路17bに接続され、低圧側通路17bの流出側を、吸熱器4を介して圧縮機1の吸入側に接続している。   The refrigerant circuit 5 is connected from the radiator 3 on the discharge side of the compressor 1 to the high pressure side passage 17 a of the cycle heat exchanger 20, and the outflow side of the high pressure side passage 17 a is connected to the decompression means 3. To the inflow side of the decompression means 3. The outflow side of the decompression means 3 is connected to the low pressure side passage 17 b of the cycle heat exchanger 20, and the outflow side of the low pressure side passage 17 b is connected to the intake side of the compressor 1 through the heat absorber 4. .

即ち、サイクル熱交換器20は放熱器2の流出側から減圧手段3に至る高圧ラインと、減圧手段3の流出側から吸熱器4に至る低圧側ラインとで熱交換を行う。   That is, the cycle heat exchanger 20 performs heat exchange between the high pressure line extending from the outflow side of the radiator 2 to the decompression unit 3 and the low pressure side line extending from the outflow side of the decompression unit 3 to the heat absorber 4.

この冷媒回路5においては、冷媒として炭酸ガスが用いられており、圧縮機1によって圧縮された冷媒は、高温高圧の超臨界状態の冷媒として放熱器2に入り、ここで放熱して冷却する。   In the refrigerant circuit 5, carbon dioxide is used as the refrigerant, and the refrigerant compressed by the compressor 1 enters the radiator 2 as a high-temperature and high-pressure supercritical refrigerant, where it dissipates heat and cools it.

その後、サイクル熱交換器20において低圧側ラインの低温冷媒と熱交換して更に冷やされ、液化されることなく減圧手段3へ送られる。そして、この減圧手段3において減圧されて低温低圧の湿り蒸気となり、サイクル熱交換器20へ流入し、このサイクル熱交換器20において高圧側ラインの高温冷媒と熱交換した後に吸熱器4において流体と熱交換して蒸発気化し、圧縮機1へ戻される。   Thereafter, heat is exchanged with the low-temperature refrigerant in the low-pressure side line in the cycle heat exchanger 20 to further cool it, and it is sent to the decompression means 3 without being liquefied. Then, the pressure is reduced in the pressure reducing means 3 to become low-temperature and low-pressure wet steam, and flows into the cycle heat exchanger 20. After heat exchange with the high-temperature refrigerant in the high-pressure side line in the cycle heat exchanger 20, Heat exchange is performed to evaporate and return to the compressor 1.

また、冷媒回路1の高圧側ライン上及び低圧側ライン上に、サイクル熱交換器20をバイパスし、サイクル熱交換器20の熱交換量を調節する熱交換量調節手段7a、7bがそれぞれ設けられている。即ち、熱交換量調節手段7aは減圧手段3とサイクル熱交換器6との間に一端を接続し、他端をサイクル熱交換器6と放熱器2との間に接続されている。また、熱交換量調節手段7bは、減圧手段3とサイクル熱交換器6との間に一端を接続し、他端をサイクル熱交換器6と吸熱器4との間に接続されている。   Further, heat exchange amount adjusting means 7 a and 7 b for bypassing the cycle heat exchanger 20 and adjusting the heat exchange amount of the cycle heat exchanger 20 are provided on the high pressure side line and the low pressure side line of the refrigerant circuit 1, respectively. ing. That is, the heat exchange amount adjusting means 7 a has one end connected between the decompression means 3 and the cycle heat exchanger 6 and the other end connected between the cycle heat exchanger 6 and the radiator 2. The heat exchange amount adjusting means 7 b has one end connected between the decompression means 3 and the cycle heat exchanger 6 and the other end connected between the cycle heat exchanger 6 and the heat absorber 4.

制御装置16は、放熱器2内を流れる冷媒との被熱交換流体の温度を検知する放熱器流体温度センサー8、吸熱器4内を流れる冷媒との被熱交換流体の温度を検知する吸熱器流体温度センサー9、の信号に基づいてCOPを最大とする熱交換調整手段7a、7bの最適熱交換量となる開度を演算し駆動制御するようになっている。なお、ここでの被熱交換流体は液体でも気体でも構わない。   The control device 16 includes a radiator fluid temperature sensor 8 that detects the temperature of the heat exchange fluid with the refrigerant flowing in the radiator 2, and a heat absorber that detects the temperature of the heat exchange fluid with the refrigerant flowing in the heat absorber 4. Based on the signal from the fluid temperature sensor 9, the opening degree that is the optimum heat exchange amount of the heat exchange adjusting means 7 a, 7 b that maximizes the COP is calculated and driven and controlled. Note that the heat exchange fluid here may be liquid or gas.

図2は本発明のサイクル図であり、横軸には比エンタルピーを縦軸には圧力を取っている。図中の曲線は、炭酸ガスの飽和曲線を示している。   FIG. 2 is a cycle diagram of the present invention, in which the horizontal axis represents specific enthalpy and the vertical axis represents pressure. The curve in the figure shows the saturation curve of carbon dioxide.

A及びA’は圧縮機1の吐出点、B及びEは放熱器2の出口、Cは吸熱器4の入口、Dは圧縮機1吸入点をそれぞれ表す。また、B’点は高圧側のサイクル熱交換器20の出口をC1点は低圧側のサイクル熱交換器20の入口を表す。   A and A 'are discharge points of the compressor 1, B and E are outlets of the radiator 2, C is an inlet of the heat absorber 4, and D is an intake point of the compressor 1, respectively. Point B 'represents the outlet of the high-pressure cycle heat exchanger 20, and point C1 represents the inlet of the low-pressure cycle heat exchanger 20.

さらに、サイクル熱交換器20の熱交換量がゼロの場合、サイクル状態はA−B−C−Dで表すことができる。   Furthermore, when the heat exchange amount of the cycle heat exchanger 20 is zero, the cycle state can be represented by A-B-C-D.

ここで、サイクル熱交換器20の熱交換量を増加していくと、B点の冷媒は熱交換されることによりB’点となって、減圧手段3に流入してC’点まで減圧される。C’点の冷媒はサイクル熱交換器20で高圧冷媒より吸熱してC点となって吸熱器4に送られる。   Here, when the amount of heat exchange in the cycle heat exchanger 20 is increased, the refrigerant at the point B becomes a point B ′ due to heat exchange, flows into the decompression means 3 and is decompressed to the point C ′. The The refrigerant at the point C ′ absorbs heat from the high-pressure refrigerant at the cycle heat exchanger 20 and is sent to the heat absorber 4 as a point C.

この時、図では、例えばB’点で800kg/m3、B点では500kg/m3とB’点とB点では冷媒密度が異なりB’での冷媒密度は大きくなる。   At this time, in the figure, for example, 800 kg / m3 at the B 'point, 500 kg / m3 at the B point, the refrigerant density is different at the B' point and the B point, and the refrigerant density at the B 'becomes large.

従って、B’点の冷媒密度は、B点の冷媒密度より大きくなるため、高圧側の冷媒ホールド量が増加し高圧圧力は低下して、圧縮機1の吐出冷媒の状態はA’点となる。   Therefore, since the refrigerant density at the point B ′ becomes larger than the refrigerant density at the point B, the refrigerant hold amount on the high pressure side increases, the high pressure decreases, and the state of the refrigerant discharged from the compressor 1 becomes the point A ′. .

またこの時、サイクル熱交換器20はE−B’とC−C’の間で熱交換しその熱交換量は等しくなるが、圧縮機1の吸入冷媒の状態は大きく変化しない。   At this time, the cycle heat exchanger 20 exchanges heat between E-B 'and C-C' and the heat exchange amount becomes equal, but the state of the refrigerant sucked in the compressor 1 does not change greatly.

そして効率COPは放熱器のエネルギーを基準とした時、熱交換量がゼロの場合はCOP0=Δhg÷Δhcで、熱交換した場合にはCOP1=Δhg÷Δhc’となり図から明らかなようにΔhc>Δhc’となるのでCOP0<COP1となる。   The efficiency COP is COP0 = Δhg ÷ Δhc when the heat exchange amount is zero, and COP1 = Δhg ÷ Δhc ′ when the heat exchange amount is zero when the heat exchange amount is zero, and Δhc> Since Δhc ′, COP0 <COP1.

図3は高圧圧力とサイクル熱交換器20の熱交換量の関係を示した図である。   FIG. 3 is a diagram showing the relationship between the high pressure and the heat exchange amount of the cycle heat exchanger 20.

サイクル熱交換器20の熱交換量を増加させると、減圧手段3に流入する冷媒密度を大きくすることができるので、高圧圧力を減少させる事ができる。   When the heat exchange amount of the cycle heat exchanger 20 is increased, the density of the refrigerant flowing into the decompression means 3 can be increased, so that the high pressure can be reduced.

図4は高圧圧力とCOPの関係を示した図で、放熱器出口の冷媒温度が一定の図である。   FIG. 4 is a diagram showing the relationship between the high pressure and the COP, in which the refrigerant temperature at the radiator outlet is constant.

サイクル熱交換器20の熱交換量を増加し高圧圧力の低下させていくとCOPは向上する。しかし、ある高圧圧力より低下すると減圧手段に流入する冷媒密度が過度に大きくなるため、冷媒回路5の冷媒ガス量不足を巻き起しCOPも低下することになる。   When the amount of heat exchange in the cycle heat exchanger 20 is increased and the high pressure is lowered, the COP is improved. However, if the pressure drops below a certain high pressure, the density of the refrigerant flowing into the pressure reducing means becomes excessively large, causing a shortage of the refrigerant gas in the refrigerant circuit 5 and reducing the COP.

この様に、サイクル熱交換器20の熱交換量を調節することで、高圧圧力を調整することによりCOPを最適に調整する事ができる。   Thus, by adjusting the heat exchange amount of the cycle heat exchanger 20, the COP can be optimally adjusted by adjusting the high pressure.

また、圧縮機1の吸入冷媒との熱交換はなく、吸入冷媒は加熱されることがないため、圧縮機1の吸入温度はサイクル熱交換器20の熱交換量に依らないので、圧縮機の吸入冷媒を加熱し吸入温度を上昇させることによる吐出温度の上昇を防止できると共にCOPを最適に調整し、放熱器2及び吸熱器4の被熱交換流体の温度範囲を広げることがきる。   Further, since there is no heat exchange with the suction refrigerant of the compressor 1 and the suction refrigerant is not heated, the suction temperature of the compressor 1 does not depend on the amount of heat exchange of the cycle heat exchanger 20, so that the compressor It is possible to prevent the discharge temperature from rising due to heating the suction refrigerant and raising the suction temperature, and to adjust the COP optimally to widen the temperature range of the heat exchange fluid of the radiator 2 and the heat absorber 4.

尚、上述の実施形態では、二酸化炭素を冷媒とする高圧側圧力が冷媒の臨界圧力以上となるものであったが、これら実施形態はこれに限定されるものではなく、高圧側圧力が冷媒の臨界圧力未満となるものにも適用することができる。また、上述の実施形態では、暖専用の空調装置であったが、本発明はこれに限定されるものではなく、冷暖房切替可能な空調装置やヒートポンプ運転により給湯水等の加熱する給湯機等、特に床暖房やバス乾燥装置などの多機能化された給湯機にも適用することができる。   In the above-described embodiment, the high-pressure side pressure using carbon dioxide as the refrigerant is equal to or higher than the critical pressure of the refrigerant. However, these embodiments are not limited to this, and the high-pressure side pressure is It can also be applied to those that are less than the critical pressure. In the above-described embodiment, the air conditioner is dedicated to heating, but the present invention is not limited to this, such as an air conditioner that can be switched between heating and cooling, a hot water heater that heats hot water using a heat pump operation, and the like. In particular, the present invention can be applied to multifunctional water heaters such as floor heating and bath drying devices.

以上のように、本発明にかかる冷凍サイクルは、圧縮機の吸入温度の上昇による吐出温度の異常上昇を防止することで、COPを最大とできる放熱器及び吸熱器の被熱交換流体の温度範囲がより広い冷凍サイクルとして有用である。   As described above, in the refrigeration cycle according to the present invention, the temperature range of the heat exchange fluid of the heat sink and the heat sink that can maximize the COP by preventing the abnormal increase in the discharge temperature due to the increase in the suction temperature of the compressor. Is useful as a wider refrigeration cycle.

本発明の実施の形態における冷凍サイクルの回路図Circuit diagram of refrigeration cycle in an embodiment of the present invention 本発明の実施形態における冷凍サイクルのサイクル図Cycle diagram of refrigeration cycle in an embodiment of the present invention 本発明の実施形態における高圧圧力とサイクル熱交換器20の熱交換量の関係図Relationship diagram between high pressure and heat exchange amount of cycle heat exchanger 20 in an embodiment of the present invention 本発明の実施形態における高圧圧力とCOPの関係図Relationship diagram between high pressure and COP in an embodiment of the present invention 従来の冷凍サイクルの回路図Circuit diagram of conventional refrigeration cycle

符号の説明Explanation of symbols

1 圧縮機
2 放熱器
3 減圧手段
4 吸熱器
5 冷媒回路
7a、7b 熱交換量調節手段
20 サイクル熱交換器
DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Pressure reducing means 4 Heat absorber 5 Refrigerant circuit 7a, 7b Heat exchange amount adjusting means 20 Cycle heat exchanger

Claims (6)

圧縮機と放熱器と減圧手段と吸熱器とを有する冷媒循環回路を有し、前記放熱器と前記減圧手段の間の高圧冷媒と、前記減圧手段と前記吸熱器の間の低圧冷媒とで、互いに熱交換を行うサイクル熱交換器を備えた冷凍サイクル。 A refrigerant circulation circuit having a compressor, a radiator, a decompression unit, and a heat absorber; a high-pressure refrigerant between the radiator and the decompression unit; and a low-pressure refrigerant between the decompression unit and the heat absorber; A refrigeration cycle equipped with a cycle heat exchanger that exchanges heat with each other. サイクル熱交換器の熱交換量を調節する熱交換量調節手段を備えた請求項1に記載の冷凍サイクル。 The refrigeration cycle according to claim 1, further comprising heat exchange amount adjusting means for adjusting a heat exchange amount of the cycle heat exchanger. 熱交換量調節手段を用いて熱交換量を調節することにより高圧圧力を調整し所定のサイクル効率をもたらす請求項2記載の冷凍サイクル。 3. The refrigeration cycle according to claim 2, wherein the high pressure is adjusted by adjusting the heat exchange amount using the heat exchange amount adjusting means, thereby providing a predetermined cycle efficiency. 熱交換量調節手段を高圧圧力側の冷媒回路に備えた請求項2または3に記載の冷凍サイクル。 The refrigeration cycle according to claim 2 or 3, wherein the heat exchange amount adjusting means is provided in the refrigerant circuit on the high pressure side. 熱交換量調節手段を低圧圧力側の冷媒回路に備えた請求項2〜4のいずれか1項に記載の冷凍サイクル。 The refrigeration cycle according to any one of claims 2 to 4, wherein the heat exchange amount adjusting means is provided in the refrigerant circuit on the low pressure side. 臨界圧力以上に昇圧された冷媒を用いたことを特徴とする請求項1〜5のいずれか1項に記載の冷凍サイクル。 The refrigeration cycle according to any one of claims 1 to 5, wherein a refrigerant whose pressure is increased to a critical pressure or higher is used.
JP2005117886A 2005-04-15 2005-04-15 Refrigerating cycle Pending JP2006300343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117886A JP2006300343A (en) 2005-04-15 2005-04-15 Refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117886A JP2006300343A (en) 2005-04-15 2005-04-15 Refrigerating cycle

Publications (1)

Publication Number Publication Date
JP2006300343A true JP2006300343A (en) 2006-11-02

Family

ID=37468850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117886A Pending JP2006300343A (en) 2005-04-15 2005-04-15 Refrigerating cycle

Country Status (1)

Country Link
JP (1) JP2006300343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024023874A1 (en) * 2022-07-25 2024-02-01 三菱電機株式会社 Air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155277U (en) * 1980-04-18 1981-11-19
JPS59197755A (en) * 1983-04-21 1984-11-09 株式会社東芝 Capability variable type refrigeration cycle
JPH10103806A (en) * 1996-09-27 1998-04-24 Matsushita Electric Ind Co Ltd Air conditioner
JPH11270919A (en) * 1998-03-25 1999-10-05 Mitsubishi Electric Corp Refrigerating cycle device
JP2002349977A (en) * 2001-05-24 2002-12-04 Denso Corp Heat pump cycle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155277U (en) * 1980-04-18 1981-11-19
JPS59197755A (en) * 1983-04-21 1984-11-09 株式会社東芝 Capability variable type refrigeration cycle
JPH10103806A (en) * 1996-09-27 1998-04-24 Matsushita Electric Ind Co Ltd Air conditioner
JPH11270919A (en) * 1998-03-25 1999-10-05 Mitsubishi Electric Corp Refrigerating cycle device
JP2002349977A (en) * 2001-05-24 2002-12-04 Denso Corp Heat pump cycle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024023874A1 (en) * 2022-07-25 2024-02-01 三菱電機株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
JP4539553B2 (en) Heat pump water heater
US8991207B2 (en) Refrigerating cycle apparatus and air conditioning apparatus
JP6019837B2 (en) Heat pump system
JP2011080633A (en) Refrigerating cycle device and hot-water heating device
JP2005291622A (en) Refrigerating cycle device and its control method
JP5375919B2 (en) heat pump
JP3915770B2 (en) Heat pump water heater
JP2006517643A (en) Supercritical pressure regulation of vapor compression system
JP6304996B2 (en) Water heater
JP4420225B2 (en) Operation method of compression refrigeration system
JP2006118820A (en) Heat pump type water heater
JP2007303806A (en) Refrigerating cycle device and its operation method
JP2009092258A (en) Refrigerating cycle device
JP2009156520A (en) Refrigerating air-conditioning device
JP2014055753A (en) Binary refrigeration device
JP4140625B2 (en) Heat pump water heater and control method of heat pump water heater
JP2008082601A (en) Heat pump hot water supply device
CN102980334A (en) Refrigerating circuit for use in a motor vehicle
JP5150300B2 (en) Heat pump type water heater
JP2006145144A (en) Refrigerating cycle device
JP2007155277A (en) Refrigerating cycle
JP5338758B2 (en) Hot water supply apparatus and hot water control method thereof
JP2006300343A (en) Refrigerating cycle
JP2009281631A (en) Heat pump unit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311