JP2006299319A - Steel for machine structure - Google Patents

Steel for machine structure Download PDF

Info

Publication number
JP2006299319A
JP2006299319A JP2005120500A JP2005120500A JP2006299319A JP 2006299319 A JP2006299319 A JP 2006299319A JP 2005120500 A JP2005120500 A JP 2005120500A JP 2005120500 A JP2005120500 A JP 2005120500A JP 2006299319 A JP2006299319 A JP 2006299319A
Authority
JP
Japan
Prior art keywords
steel
content
sulfide
machine structure
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005120500A
Other languages
Japanese (ja)
Inventor
Daisuke Suzuki
大輔 鈴木
Hitoshi Matsumoto
斉 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005120500A priority Critical patent/JP2006299319A/en
Publication of JP2006299319A publication Critical patent/JP2006299319A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Pb-free steel for a machine structure, which has chip partibility equivalent to or better than a Pb-free cutting steel, and does not contain Mg for controlling the form of sulfide-based inclusions. <P>SOLUTION: The steel for a machine structure includes the sulfide-based inclusions containing MnS as a main component so that a coefficient B of an exponential function shown by the expression of "y=Aexp(-Bx)" (wherein (y) represents the number, (x) represents the size (μm), and (A) and (B) represent coefficients) can be 0.25 or more, which is obtained by approximating a relationship between their sizes and their numbers obtained by converting the sizes of the sulfide-based inclusions existing in a longitudinal section of a base material for the machine structure, into an equivalent circle diameter, and distributing the number of the inclusions with the circle diameters between 2 μm and 20 μm into frequency distribution with a 2 μm pitch. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、機械構造用鋼に関し、詳しくは、被削性向上元素であるPbを含まなくてもPb快削鋼と同等以上の被削性を有する機械構造用鋼に関する。より詳しくは、Pb快削鋼と同等以上の切屑分断性を有するPbフリーの機械構造用鋼に関する。   The present invention relates to a machine structural steel, and more particularly to a machine structural steel having machinability equivalent to or better than Pb free-cutting steel even if Pb, which is a machinability improving element, is not included. More specifically, the present invention relates to a Pb-free steel for machine structural use having a chip dividing property equal to or higher than that of Pb free-cutting steel.

自動車や建設機械等に用いられる機械構造用部品の多くは、熱間鍛造などの熱間加工の後、切削加工によって所望の部品形状に仕上げ加工されている。しかし、上記切削加工時に、切屑が切削工具や所望形状に仕上げた製品に巻きつくという問題がある。このため、特に、自動化された切削加工ラインに用いられる機械構造用鋼には、優れた切屑分断性が求められることとなり、従来は、一般に、少量の添加で機械的性質を損ねることなく切屑分断性を著しく改善することができるPb快削鋼が用いられてきた。   Many machine structural parts used in automobiles and construction machines are finished into a desired part shape by cutting after hot working such as hot forging. However, there is a problem that chips are wound around a cutting tool or a finished product in a desired shape at the time of the cutting. For this reason, in particular, steel for machine structures used in automated cutting lines is required to have excellent chip breaking properties. Conventionally, in general, chip cutting is performed with a small amount of addition without impairing mechanical properties. Pb free-cutting steel that can significantly improve the properties has been used.

しかし、近年の地球環境問題に対する高まりから、Pbフリーで切削性を改善する要求がなされるようになり、このため、特許文献1〜3にPb快削鋼に替わる快削鋼に関する技術が提案されている。   However, due to the recent increase in global environmental problems, there is a demand for improving Pb-free machinability. For this reason, Patent Documents 1 to 3 propose a technique related to free-cutting steel that replaces Pb free-cutting steel. ing.

すなわち、特許文献1には、硫化物系介在物が存在する機械構造用鋼で、硫化物系介在物粒子の分散指数を定義し、その指数を特定の範囲に制限した切屑分断性と機械的特性に優れたMg添加の「機械構造用快削鋼」が開示されている。   That is, Patent Document 1 defines a dispersion index of sulfide inclusion particles in mechanical structural steel in which sulfide inclusions exist, and provides chip fragmentation and mechanical properties in which the index is limited to a specific range. An Mg-added “free-cutting steel for machine structure” having excellent characteristics is disclosed.

特許文献2には、硫化物系介在物のうち、長径が5μm以上の硫化物系介在物のアスペクト比の平均値が5.2以下であり、且つ長径が20μm以上の個数aと長径が5μm以上の個数bとの比a/bが0.25以下を満足することを特徴とする「切屑処理性及び機械的性質に優れた機械構造用」が開示されている。   In Patent Document 2, among sulfide inclusions, the average value of the aspect ratio of sulfide inclusions having a major axis of 5 μm or more is 5.2 or less, and the number a having a major axis of 20 μm or more and the major axis is 5 μm. “For machine structure excellent in chip disposal and mechanical properties” characterized in that the ratio a / b to the number b described above satisfies 0.25 or less is disclosed.

特許文献3には、機械的性質と切屑分断性の両性質を有する快削鋼を得るために、Mg合金を添加する工程を含むことを特徴とする、「硫化物系介在物の形態制御方法」が開示されている。   Patent Document 3 includes a step of adding a Mg alloy in order to obtain a free-cutting steel having both mechanical properties and chip breaking properties. Is disclosed.

特開2002−69569号公報JP 2002-69569 A 特開2002−146473号公報JP 2002-146473 A 特開2002−155312号公報Japanese Patent Laid-Open No. 2002-155312

前述の特許文献1〜3で提案された技術は、いずれも、硫化物系介在物を所定の形状及び分散状態に制御するためにMgが添加されている。しかしながら、Mgは沸点が低く蒸発しやすいうえ、強い脱酸元素であるため酸化物として溶鋼から分離しやすく、このため歩留りが低くコストアップが避けられないという問題がある。   In all of the techniques proposed in Patent Documents 1 to 3 described above, Mg is added to control the sulfide inclusions in a predetermined shape and dispersed state. However, Mg has a low boiling point and is easy to evaporate, and since it is a strong deoxidizing element, it is easy to separate from the molten steel as an oxide. Therefore, there is a problem that yield is low and cost increase is unavoidable.

そこで、本発明の目的は、Mgを添加することなく硫化物系介在物の形態を制御することで、Pb快削鋼と同等以上の切屑分断性を有するPbフリーの機械構造用鋼を提供することである。   Therefore, an object of the present invention is to provide a Pb-free steel for machine structural use having a chip cutting property equal to or higher than that of Pb free-cutting steel by controlling the form of sulfide inclusions without adding Mg. That is.

本発明者らは、CaとSを含有したCa−S複合快削鋼をPbフリーの機械構造用鋼として選定し、その被削性について詳細な検討を行った。その結果、下記の知見(a)を得た。   The present inventors selected Ca-S composite free-cutting steel containing Ca and S as Pb-free steel for machine structural use, and performed a detailed study on its machinability. As a result, the following knowledge (a) was obtained.

(a)化学組成や強度がほぼ同等の機械構造用鋼であっても、鋼中に分散しているMnSを主成分とする硫化物系介在物(以下、単に「硫化物系介在物」ともいう。)の分布状態および形態によって切屑分断性が大幅に異なる。   (A) Even for mechanical structural steels having almost the same chemical composition and strength, sulfide inclusions mainly composed of MnS dispersed in the steel (hereinafter simply referred to as “sulfide inclusions”) The chip breaking property varies greatly depending on the distribution state and form.

そこで、詳細な検討を行ったところ、下記(b)及び(c)の知見を得た。   Then, when detailed examination was performed, the following knowledge (b) and (c) was obtained.

(b)硫化物系介在物が不均一に存在する場合には、均一に存在する場合に比べて、近接した硫化物系介在物間のき裂の伝播が容易となるので、切屑の分断が促進される。このため、切屑分断性を高めるためには、鋼中に存在する硫化物系介在物の分散状態を不均一にするのがよい。   (B) When sulfide inclusions are present non-uniformly, crack propagation between adjacent sulfide inclusions is facilitated as compared with the case where the inclusions are uniformly present. Promoted. For this reason, in order to improve chip | tip cutting | disconnection property, it is good to make the dispersion | distribution state of the sulfide type inclusion which exists in steel nonuniform.

(c)硫化物系介在物が微細な場合には、粗大な場合に比べて、硫化物系介在物の存在確率の高い領域が多くなって切欠き効果が増大するので、切屑の分断が促進される。このため、切屑分断性を高めるためには、鋼中に存在する硫化物系介在物を微細にするのがよい。   (C) When the sulfide inclusions are fine, compared to the coarse case, there are more regions where the sulfide inclusions have a high probability of existence and the notch effect is increased. Is done. For this reason, in order to improve chip parting property, it is good to make the sulfide type inclusion which exists in steel fine.

そこで次に、本発明者らは、硫化物系介在物を不均一かつ微細に分散させる手法について種々検討を行った。その結果、硫化物系介在物の形態は、溶鋼の脱酸方法及び凝固時の冷却速度によって大きく変化することが明らかになった。   Accordingly, the present inventors then conducted various studies on techniques for unevenly and finely dispersing sulfide inclusions. As a result, it has been clarified that the form of sulfide inclusions varies greatly depending on the deoxidation method of the molten steel and the cooling rate during solidification.

そこで、更に詳細な検討を行ったところ、下記(d)〜(h)の知見を得た。   Then, when further detailed examination was conducted, the following findings (d) to (h) were obtained.

(d)溶鋼中のO(酸素)の含有量が多すぎる状態で脱酸元素であるSi、Mn、CaやAl等を添加すると、多量の脱酸生成物が形成されて溶鋼中の至る所に酸化物系介在物が存在するようになる。そして、この酸化物系介在物を核として硫化物系介在物が生成するので、硫化物系介在物は粗大で比較的均一に存在するようになる。   (D) When a deoxidizing element such as Si, Mn, Ca, Al, etc. is added in a state where the content of O (oxygen) in the molten steel is too much, a large amount of deoxidized products are formed throughout the molten steel. Oxide inclusions will be present in the film. Since sulfide inclusions are generated using the oxide inclusions as nuclei, the sulfide inclusions are coarse and relatively uniform.

(e)溶鋼中のO(酸素)の含有量が少なすぎる状態でCaを添加すると、CaとSの親和力が強いために溶鋼の段階でCaSを生成し、これが後で晶出するMnSの生成核となる。このため、硫化物系介在物は粗大で比較的均一に存在するようになる。   (E) When Ca is added in a state where the content of O (oxygen) in the molten steel is too small, CaS is produced at the stage of molten steel due to the strong affinity between Ca and S, and this produces MnS that crystallizes later. Become the nucleus. For this reason, the sulfide inclusions are coarse and relatively uniform.

(f)溶鋼中に脱酸生成物である酸化物系介在物やCaSが多量に存在しない状態でも、凝固時の冷却速度が遅い場合には、晶出するMnSが粗大になる傾向がある。   (F) Even when the oxide steel inclusions and CaS which are deoxidation products are not present in a large amount in the molten steel, if the cooling rate at the time of solidification is slow, MnS to be crystallized tends to become coarse.

(g)溶鋼中のO(酸素)及びCaの含有量を適切に制御するとともに凝固時の冷却速度を適切に管理することにより、鋼中の硫化物系介在物が微細かつ不均一に存在するようになるので、切屑分断性が向上する。   (G) By appropriately controlling the contents of O (oxygen) and Ca in the molten steel and appropriately managing the cooling rate during solidification, sulfide-based inclusions in the steel are present minutely and non-uniformly. As a result, chip separation is improved.

(h)上記(g)の場合には、硫化物系介在物の分布形態に特徴があり、鋼材の縦断面中での硫化物系介在物を等価円直径に換算し、前記等価円直径が2μmから20μmまでを2μmピッチで度数分布化して得られる寸法と個数の関係を近似して得られる指数関数の係数Bが一定以上の値を有する。   (H) In the case of the above (g), there is a feature in the distribution form of sulfide inclusions, the sulfide inclusions in the longitudinal section of the steel material are converted into equivalent circle diameters, and the equivalent circle diameter is The coefficient B of the exponential function obtained by approximating the relationship between the size and the number obtained by frequency distribution from 2 μm to 20 μm at a pitch of 2 μm has a certain value or more.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)〜(4)に示す機械構造用鋼にある。   This invention is completed based on said knowledge, The summary exists in steel for machine structure shown to following (1)-(4).

(1)MnSを主成分とする硫化物系介在物が存在する機械構造用鋼であって、それを素材とする鋼材の縦断面中での前記硫化物系介在物を等価円直径に換算し、前記等価円直径が2μmから20μmまでを2μmピッチで度数分布化して得られる寸法と個数の関係を近似して得られる下記(1)式で表される指数関数の係数Bが0.25以上であることを特徴とする機械構造用鋼。
y=Aexp(−Bx)・・・(1)。
なお、(1)式におけるyは個数を、また、xは寸法(μm)を表し、A及びBは係数である。
(1) Steel for machine structure in which sulfide inclusions mainly composed of MnS are present, and the sulfide inclusions in a longitudinal section of a steel material using the inclusions are converted into equivalent circular diameters. The coefficient B of the exponential function expressed by the following equation (1) obtained by approximating the relationship between the size and the number obtained by frequency distribution of the equivalent circular diameter from 2 μm to 20 μm at a pitch of 2 μm is 0.25 or more. A machine structural steel characterized by
y = Aexp (-Bx) (1).
In Equation (1), y represents the number, x represents the dimension (μm), and A and B are coefficients.

(2)質量%で、C:0.2〜0.6%、Si:0.1〜1.0%、Mn:0.4〜2.0%、P:0.04%以下、S:0.02%〜0.12%、Cr:0〜2.0%、Ca:0.0003〜0.005%、Al:0〜0.05%、O:0.005%以下、N:0.004〜0.020%を含有し、残部はFe及び不純物からなる化学組成を有することを特徴とする上記(1)に記載の機械構造用鋼。   (2) By mass%, C: 0.2-0.6%, Si: 0.1-1.0%, Mn: 0.4-2.0%, P: 0.04% or less, S: 0.02% to 0.12%, Cr: 0 to 2.0%, Ca: 0.0003 to 0.005%, Al: 0 to 0.05%, O: 0.005% or less, N: 0 The steel for machine structural use as described in (1) above, containing 0.004 to 0.020% and the balance having a chemical composition comprising Fe and impurities.

(3)Feの一部に代えて、Cu:0.2〜1.0%、Ni:0.2〜1.0%、Mo:0.05〜0.5%、V:0.03〜0.3%、Ti:0.005〜0.1%、Nb:0.005〜0.05%、Zr:0.005〜0.05%のうちの1種以上を含有する化学組成を有することを特徴とする上記(2)に記載の機械構造用鋼。   (3) Instead of part of Fe, Cu: 0.2 to 1.0%, Ni: 0.2 to 1.0%, Mo: 0.05 to 0.5%, V: 0.03 to It has a chemical composition containing one or more of 0.3%, Ti: 0.005-0.1%, Nb: 0.005-0.05%, Zr: 0.005-0.05%. The steel for machine structure as described in (2) above.

(4)Feの一部に代えて、Bi:0.01〜0.1%、Te:0.001〜0.01%、REM:0.0001〜0.01%のうちの1種以上を含有する化学組成を有することを特徴とする上記(2)又は(3)に記載の機械構造用鋼。   (4) Instead of a part of Fe, at least one of Bi: 0.01 to 0.1%, Te: 0.001 to 0.01%, REM: 0.0001 to 0.01% The steel for machine structure according to (2) or (3) above, which has a chemical composition.

以下、上記 (1)〜(4)の機械構造用鋼に係る発明を、それぞれ、「本発明(1)」〜「本発明(4)」という。また、総称して「本発明」ということがある。   Hereinafter, the inventions related to the steels for machine structures (1) to (4) are referred to as “present invention (1)” to “present invention (4)”, respectively. Also, it may be collectively referred to as “the present invention”.

なお、本発明でいう「MnSを主成分とする硫化物系介在物」とは、介在物の組成のうち、Mnの質量割合が50%以上、Sの質量割合が25%以上である、MnとSの化合物が主成分である介在物を指す。また、また、「REM」は、Sc、Y及びランタノイドの合計17元素の総称であり、REMの含有量は上記元素の合計含有量を指す。   In the present invention, the term “sulfide-based inclusions mainly composed of MnS” refers to Mn whose mass ratio of Mn is 50% or more and whose mass ratio of S is 25% or more in the composition of inclusions. And inclusions whose main component is a compound of S. “REM” is a general term for a total of 17 elements of Sc, Y and lanthanoid, and the content of REM refers to the total content of the above elements.

本発明の機械構造用鋼は、Pbフリーの「地球環境に優しい機械構造用鋼」であるにも拘わらず、Pb快削鋼と同等以上の切屑分断性を有するので、自動化された切削加工ラインに用いることができる。この鋼は硫化物系介在物の形態制御にMgを使用しないため安価に製造できる。   Although the steel for machine structural use of the present invention is a Pb-free “global environmentally friendly steel for machine structural use”, it has a chip cutting property equal to or higher than that of Pb free-cutting steel. Can be used. This steel can be manufactured at low cost because Mg is not used to control the form of sulfide inclusions.

以下、本発明において、硫化物系介在物の形態及び化学組成を前記の如くに限定した理由を説明する。なお、各元素の含有量の「%」の表示は、「質量%」を意味する。   The reason why the form and chemical composition of the sulfide inclusions are limited as described above in the present invention will be described below. The indication “%” of the content of each element means “mass%”.

(A)硫化物系介在物の形態
鋼材中に存在する硫化物系介在物が微細化するほど、下記(1)式で表される指数関数の係数B、つまり、yを個数、xを寸法(μm)、また、A及びBを係数として、鋼材縦断面中での硫化物系介在物を等価円直径に換算し、前記等価円直径が2μmから20μmまでを2μmピッチで度数分布化して得られる寸法と個数の関係を近似して得られる指数関数における係数Bの値が大きくなる。
y=Aexp(−Bx)・・・(1)。
(A) Form of sulfide inclusions The finer the sulfide inclusions present in the steel, the more the coefficient B of the exponential function expressed by the following equation (1), that is, y is the number and x is the dimension. (Μm), and by using A and B as coefficients, the sulfide inclusions in the longitudinal section of the steel material are converted into equivalent circular diameters, and the equivalent circular diameter is obtained by frequency distribution from 2 μm to 20 μm at a pitch of 2 μm. The value of the coefficient B in the exponential function obtained by approximating the relationship between the size and the number obtained is increased.
y = Aexp (-Bx) (1).

そして、係数Bの値が0.25以上であれば、単位体積あたりの硫化物系介在物の個数が多くなって微細になるため、切屑分断性が向上する。   And if the value of the coefficient B is 0.25 or more, the number of sulfide inclusions per unit volume is increased and becomes finer, so that the chip breaking property is improved.

以下、上記の事項について、本発明者らが行った下記の実験に基づいて詳しく説明する。   Hereinafter, the above items will be described in detail based on the following experiments conducted by the present inventors.

本発明者らは、機械構造用炭素鋼鋼材であるJISのS48Cに相当する化学成分に被削性を高める元素としてS、或いはSとPbを添加した表1に示す鋼A1〜A7を溶解し、3t鋼塊を製造した。なお、表1における鋼A1〜A6は、自動車規格JASO M 106-92(制定:社団法人自動車技術会、制定期日:1977年5月28日、改正期日:1992年3月30日)に記載のS1クラスのS含有量である0.040〜0.070%のSを含む被削性改善鋼である。また、鋼A7は、上記S1クラスのS含有量とともにL2クラスのPb含有量である0.10〜0.30%のPbを含む被削性改善鋼である。   The present inventors dissolved steels A1 to A7 shown in Table 1 in which S or S and Pb were added as elements that enhance machinability to chemical components corresponding to JIS S48C, which is a carbon steel material for mechanical structures. A 3t steel ingot was produced. The steels A1 to A6 in Table 1 are listed in the automotive standard JASO M 106-92 (established by the Japan Society for Automotive Engineers, date of regulation: May 28, 1977, date of revision: March 30, 1992). This is a machinability improved steel containing 0.040 to 0.070% S, which is the S content of S1 class. Steel A7 is a machinability-improving steel containing 0.10 to 0.30% of Pb which is the Pb content of the L2 class together with the S content of the S1 class.

Figure 2006299319
Figure 2006299319

次いで、これらの鋼塊を1523Kに加熱した後、仕上げ温度が1273K以上となるように熱間圧延を行い、直径80mmの丸棒を作成し、更に、1153Kに加熱して2時間保持した後空冷する焼ならし処理を施した。   Next, after heating these steel ingots to 1523K, hot rolling was performed so that the finishing temperature would be 1273K or higher to produce a round bar with a diameter of 80 mm, and further heating to 1153 K and holding for 2 hours, followed by air cooling Normalizing treatment was performed.

このようにして得た直径80mmの丸棒を用いて、硫化物系介在物の観察と切屑分断性の評価を行った。   Using the thus obtained round bar with a diameter of 80 mm, the observation of sulfide inclusions and the evaluation of chip breaking property were performed.

硫化物系介在物の観察は、丸棒の圧延方向と平行な面、つまり、縦断面について、D/4(但し、「D」は丸棒の直径である。)の部位を切り出して鏡面研磨を行い、光学顕微鏡により200倍で50視野観察した。このときの一視野あたりの観察面積は0.3mm2である。 The sulfide inclusions were observed by specular polishing by cutting out a portion of D / 4 (where “D” is the diameter of the round bar) on the plane parallel to the rolling direction of the round bar, ie, the longitudinal section. And 50 visual fields were observed at 200 times with an optical microscope. At this time, the observation area per field of view is 0.3 mm 2 .

次いで、上記50視野で観察された硫化物系介在物を等価円直径に換算した後、前記等価円直径が2μmから20μmまでを2μmピッチで度数分布化し、寸法と個数の関係を近似して得られる前記(1)式で表される指数関数の係数Bを計算した。   Next, after converting the sulfide inclusions observed in the 50 fields of view into equivalent circle diameters, the equivalent circle diameter is frequency-distributed from 2 μm to 20 μm at a pitch of 2 μm, and the relationship between the size and the number is approximated. The coefficient B of the exponential function expressed by the above equation (1) was calculated.

図1及び図2に、鋼A1及び鋼A4について、硫化物系介在物の寸法としての等価円直径及び個数としての頻度とをヒストグラム化し、指数関数に近似した例を示す。なお、図1及び図2の横軸「硫化物系介在物の寸法」における「2〜4」から「18〜20」との記載は、それぞれ、硫化物系介在物の寸法が「2μm以上4μm未満」のものから「18μm以上20μm未満」のものについて度数分布化したことを示す。   FIG. 1 and FIG. 2 show examples of steel A1 and steel A4, in which the equivalent circular diameter as the size of sulfide inclusions and the frequency as the number are histogrammed and approximated to an exponential function. In addition, the description of “2-4” to “18-20” in the horizontal axis “size of sulfide inclusions” in FIGS. 1 and 2 indicates that the size of sulfide inclusions is “2 μm or more and 4 μm”, respectively. Less than “less than” to “18 μm or more but less than 20 μm” indicates that the frequency distribution is made.

これらの図から、微細な硫化物系介在物が少ない鋼A4の場合の係数Bは0.23で小さく、一方、硫化物系介在物が鋼4より微細化されている鋼A1の場合の係数Bは0.30で大きいことが明らかである。そして、同様の計算結果から、前記(1)式で表される指数関数の係数Bが0.25以上の場合に、硫化物系介在物の個数が多くなって微細になることが判明した。なお、表2に、鋼A1〜A6の各鋼について求めた前記(1)式で表される指数関数の係数Bを示す。鋼A7については、切屑分断性を向上させる効果を有するPbを含有しているため、硫化物系介在物の分散状態に依らず切り屑質量は小さい。   From these figures, the coefficient B in the case of steel A4 with few fine sulfide inclusions is as small as 0.23, while the coefficient in the case of steel A1 in which sulfide inclusions are made finer than steel 4 It is clear that B is large at 0.30. From the same calculation results, it was found that when the coefficient B of the exponential function expressed by the above equation (1) is 0.25 or more, the number of sulfide inclusions increases and becomes finer. Table 2 shows the coefficient B of the exponential function represented by the formula (1) obtained for each of the steels A1 to A6. Steel A7 contains Pb, which has the effect of improving chip separability, and therefore the chip mass is small regardless of the dispersion state of sulfide inclusions.

切屑分断性は、旋削試験により評価した。すなわち、超硬工具P20のチップを用いて、下記の条件で旋削し、代表的な切屑10個あたりの質量を測定して切屑分断性の指標とした。この質量が小さい値であるほど切屑分断性は良好であると判断できる。
・切り込み深さ:2.0mm、
・送り量:0.25mm/rev、
・切削速度160m/min、
・潤滑:乾式。
The chip breaking property was evaluated by a turning test. That is, using the tip of the cemented carbide tool P20, turning was performed under the following conditions, and the mass per 10 representative chips was measured and used as an index of chip breaking property. It can be determined that the smaller the mass, the better the chip breaking property.
-Cutting depth: 2.0 mm,
-Feed rate: 0.25mm / rev,
-Cutting speed 160m / min,
・ Lubrication: Dry type.

切屑分断性の評価指数としての切屑質量を、表2に併せて示す。また、図3に、前記(1)式で表される指数関数の係数B(図では、「指数関数の係数B」と表記した。)と切屑分断性の評価指数である切屑質量との関係を示す。   Table 2 shows the chip mass as an evaluation index of chip breaking property. FIG. 3 shows the relationship between the exponential function coefficient B (expressed as “exponential function coefficient B” in the figure) expressed by the above equation (1) and the chip mass, which is an evaluation index of chip fragmentation. Indicates.

Figure 2006299319
Figure 2006299319

図3から、前記(1)式で表される指数関数の係数Bが0.25以上になって硫化物系介在物の個数が多くなって微細になれば、切屑質量が小さくなって切屑分断性が向上し、Pbを含有した鋼A7と同等以上の切屑分断性が得られることが明らかである。   From FIG. 3, if the coefficient B of the exponential function represented by the above equation (1) becomes 0.25 or more and the number of sulfide inclusions increases and becomes finer, the chip mass decreases and the chip fragmentation occurs. It is clear that the cutting property is improved and the chip breaking property equal to or higher than that of steel A7 containing Pb is obtained.

上述の理由から、本発明(1)に係る機械構造用鋼においては、縦断面中での硫化物系介在物を等価円直径に換算し、前記等価円直径が2μmから20μmまでを2μmピッチで度数分布化して得られる寸法と個数の関係を近似して得られる前記(1)式で表される指数関数の係数Bが0.25以上であることと規定した。より一層安定して良好な切屑分断性を得るためには、係数Bを0.28以上とすることが好ましい。   For the reasons described above, in the steel for machine structure according to the present invention (1), the sulfide inclusions in the longitudinal section are converted into an equivalent circle diameter, and the equivalent circle diameter is 2 μm to 20 μm at a pitch of 2 μm. It was specified that the coefficient B of the exponential function expressed by the above equation (1) obtained by approximating the relationship between the size and number obtained by frequency distribution was 0.25 or more. In order to obtain more stable and good chip separation, the coefficient B is preferably set to 0.28 or more.

なお、前記(1)式で表される指数関数の係数Bを0.25以上とするためには、例えば、溶鋼中の酸素の含有量を適切に管理した状態でFe−Si合金、Fe−Mn合金及びAlを添加して脱酸処理し、更に、主要成分であるC、Si、Mn、Sその他の元素を所定量に調整した後Caを添加し、水冷鋳型を用いて鋳造すればよい。   In order to set the coefficient B of the exponential function represented by the above formula (1) to 0.25 or more, for example, in a state where the oxygen content in the molten steel is appropriately controlled, the Fe—Si alloy, Fe— Mn alloy and Al are added for deoxidation treatment, and further, C, Si, Mn, S and other elements as main components are adjusted to a predetermined amount, then Ca is added, and casting is performed using a water-cooled mold. .

(B)化学組成
Pb快削鋼と同等以上の切屑分断性を有し、自動化された切削加工ラインに用いることができる本発明に係る機械構造用鋼は、その具体的な化学成分や製造方法は特に限定する必要はない。しかし、製品に求められる機械的性質を確保する観点から、本発明に係る機械構造用鋼の化学成分を下記のとおり規定してもよい。
(B) Chemical composition Steel for machine structural use according to the present invention, which has a chip cutting property equivalent to or better than Pb free-cutting steel and can be used in an automated cutting line, has its specific chemical composition and manufacturing method. There is no particular limitation. However, from the viewpoint of ensuring the mechanical properties required for the product, the chemical components of the steel for machine structure according to the present invention may be defined as follows.

C:0.2〜0.6%
Cは、鋼の引張強度を確保するのに有効な元素である。しかしながら、その含有量が0.2%未満の場合には添加効果に乏しい。一方、Cの含有量が0.6%を超えると被削性が低下する。したがって、Cの含有量を0.2〜0.6%とした。
C: 0.2 to 0.6%
C is an element effective for securing the tensile strength of steel. However, when the content is less than 0.2%, the effect of addition is poor. On the other hand, if the C content exceeds 0.6%, the machinability decreases. Therefore, the content of C is set to 0.2 to 0.6%.

Si:0.1〜1.0%
Siは、溶鋼の脱酸を促進するほかに、鋼の引張強度を高める作用を有している。しかしながら、その含有量が0.1%未満の場合には添加効果に乏しい。一方、Siの含有量が1.0%を超えると被削性が低下する。したがって、Siの含有量を0.1〜1.0%とした。
Si: 0.1 to 1.0%
In addition to promoting deoxidation of molten steel, Si has an effect of increasing the tensile strength of steel. However, when the content is less than 0.1%, the effect of addition is poor. On the other hand, if the Si content exceeds 1.0%, the machinability deteriorates. Therefore, the Si content is set to 0.1 to 1.0%.

Mn:0.4〜2.0%
Mnは、鋼の引張強度を高める作用を有するとともに、Sと結合してMnSを主成分とする硫化物系介在物を形成し、鋼の被削性を高める作用を有する。しかしながら、Mnの含有量が0.4%を下回る場合には、FeSが増加して靱性が劣化する場合がある。一方、Mnの含有量が2.0%を超えると被削性が低下する。したがって、Mnの含有量を0.4〜2.0%とした。
Mn: 0.4 to 2.0%
Mn has the effect of increasing the tensile strength of the steel, and also has the effect of combining with S to form sulfide-based inclusions containing MnS as a main component and improving the machinability of the steel. However, when the Mn content is less than 0.4%, FeS may increase and the toughness may deteriorate. On the other hand, if the Mn content exceeds 2.0%, the machinability decreases. Therefore, the Mn content is set to 0.4 to 2.0%.

P:0.04%以下
Pは、鋼の結晶粒界に偏析して熱間加工などにおける加工性を低下させ、特に、その含有量が0.04%を超えると加工性の低下が著しくなる。したがって、Pの含有量を0.04%以下とした。なお、Pの含有量は、0.02%以下とすることが一層好ましい。
P: 0.04% or less P segregates at the grain boundaries of steel to reduce workability in hot working and the like, and particularly when its content exceeds 0.04%, the workability deteriorates remarkably. . Therefore, the content of P is set to 0.04% or less. The P content is more preferably 0.02% or less.

S:0.02%〜0.12%
Sは、Mnと結合してMnSを主成分とする硫化物系介在物を形成し、鋼の被削性を高める効果を有している。しかしながら、その含有量が0.02%未満の場合には添加効果に乏しい。一方、Sを過剰に含有すると熱間加工などにおける加工性が低下し、特に、その含有量が0.12%を超えると加工性の低下が著しくなる。したがって、Sの含有量を0.02〜0.12%とした。
S: 0.02% to 0.12%
S combines with Mn to form sulfide inclusions mainly composed of MnS, and has the effect of improving the machinability of steel. However, when the content is less than 0.02%, the effect of addition is poor. On the other hand, when S is contained excessively, the workability in hot working or the like is lowered. In particular, when the content exceeds 0.12%, the workability is significantly lowered. Therefore, the content of S is set to 0.02 to 0.12%.

Cr:0〜2.0%
Crは、鋼の引張強度を高める作用を有する。したがって、引張強度を高めたい場合、Crを添加してもよい。しかしながら、Crの含有量が2.0%を超えると被削性が低下する。したがって、Crの含有量を0〜2.0%とした。なお、添加する場合のCr含有量の下限は、0.02%とすることが好ましい。
Cr: 0 to 2.0%
Cr has the effect of increasing the tensile strength of steel. Therefore, Cr may be added to increase the tensile strength. However, if the Cr content exceeds 2.0%, the machinability decreases. Therefore, the content of Cr is set to 0 to 2.0%. In addition, it is preferable that the minimum of Cr content in the case of adding is 0.02%.

Ca:0.0003〜0.005%
Caは、低融点の酸化物を形成して工具に付着し、工具寿命を高める作用を有する。しかしながら、その含有量が0.0003%未満の場合には添加効果に乏しい。一方、Caを過剰に含有させると前記の効果が飽和するばかりか、CaSを生成してMnSを主成分とする硫化物系介在物の微細分散化を妨げることとなる。したがって、Caの含有量を0.0003〜0.005%とした。
Ca: 0.0003 to 0.005%
Ca forms an oxide having a low melting point and adheres to the tool, thereby increasing the tool life. However, when the content is less than 0.0003%, the effect of addition is poor. On the other hand, when Ca is excessively contained, the above effect is saturated, and CaS is generated to prevent fine dispersion of sulfide inclusions mainly composed of MnS. Therefore, the content of Ca is set to 0.0003 to 0.005%.

Al:0〜0.05%
Alは、溶鋼の脱酸を促進する作用を有する。したがって、脱酸効果を高めたい場合、Alを添加してもよい。しかしながら、Alを過剰に含有すると、硬質の酸化物を生成して工具寿命の低下を招き、特に、その含有量が0.05%を超えると工具寿命の低下が著しくなる。したがって、Alの含有量を0〜0.05%とした。
Al: 0 to 0.05%
Al has an action of promoting deoxidation of molten steel. Therefore, when it is desired to enhance the deoxidation effect, Al may be added. However, when Al is contained excessively, a hard oxide is generated and the tool life is shortened. In particular, when the content exceeds 0.05%, the tool life is significantly decreased. Therefore, the Al content is set to 0 to 0.05%.

O(酸素):0.005%以下
O(酸素)はSi、Mn、CaやAl等の脱酸作用を有する元素と結びついて、酸化物系介在物を形成する。特に、Oの含有量が0.005%を超えると酸化物系介在物が多く形成され、それが硫化物系介在物の核となって硫化物系介在物の微細分散化を妨げる場合がある。したがって、Oの含有量を0.005%以下とした。
O (oxygen): 0.005% or less O (oxygen) is combined with an element having a deoxidizing action such as Si, Mn, Ca and Al to form oxide inclusions. In particular, if the O content exceeds 0.005%, a large amount of oxide inclusions are formed, which may become the nucleus of the sulfide inclusions and prevent fine dispersion of the sulfide inclusions. . Therefore, the content of O is set to 0.005% or less.

N:0.004〜0.020%
Nは、窒化物を形成して結晶粒を微細化し、鋼の引張強度及び靱性を向上させる作用を有している。しかしながら、その含有量が0.004%未満の場合には添加効果に乏しい。一方、Nの含有量が0.020%を超えると、窒化物が粗大になって靱性が劣化したり被削性が低下することがある。したがって、Nの含有量を0.004〜0.020%とした。
N: 0.004 to 0.020%
N has a function of forming nitrides to refine crystal grains and improving the tensile strength and toughness of steel. However, when the content is less than 0.004%, the effect of addition is poor. On the other hand, when the content of N exceeds 0.020%, the nitride becomes coarse and the toughness may deteriorate or the machinability may deteriorate. Therefore, the N content is set to 0.004 to 0.020%.

上記の理由から、本発明(2)に係る機械構造用鋼の化学組成は、上述した範囲のCからNまでの元素を含有し、残部はFe及び不純物からなることと規定した。   For the above reason, the chemical composition of the steel for machine structural use according to the present invention (2) contains the elements from C to N in the above-mentioned range, and the remainder is defined as consisting of Fe and impurities.

本発明に係る機械構造用鋼には、必要に応じて更に、Feの一部に代えて、後述する第1群から選択される1種以上の元素及び第2群から選択される1種以上の元素のうち一方又は両方を含有させてもよい。   In the machine structural steel according to the present invention, if necessary, in place of a part of Fe, one or more elements selected from the first group described later and one or more selected from the second group may be used. One or both of these elements may be contained.

以下、上記第1群及び第2群の元素に関して説明する。   Hereinafter, the elements of the first group and the second group will be described.

第1群:Cu:0.2〜1.0%、Ni:0.2〜1.0%、Mo:0.05〜0.5%、V:0.03〜0.3%、Ti:0.005〜0.1%、Nb:0.005〜0.05%及びZr:0.005〜0.05%
Cu、Ni、Mo、V、Ti、Nb及びZrは、いずれも、引張強度を高める作用を有する。このため、より一層優れた引張強度を得たい場合に、以下の範囲で含有してもよい。
First group: Cu: 0.2-1.0%, Ni: 0.2-1.0%, Mo: 0.05-0.5%, V: 0.03-0.3%, Ti: 0.005 to 0.1%, Nb: 0.005 to 0.05% and Zr: 0.005 to 0.05%
Cu, Ni, Mo, V, Ti, Nb and Zr all have the effect of increasing the tensile strength. For this reason, when it is desired to obtain a further excellent tensile strength, it may be contained in the following range.

Cu:0.2〜1.0%
Cuは、鋼の引張強度を高める作用を有する。しかしながら、その含有量が0.2%未満では添加効果に乏しい。一方、Cuの含有量が1.0%を超えると熱間加工などにおける加工性の低下を招く。したがって、添加する場合のCuの含有量を0.2〜1.0%とした。
Cu: 0.2 to 1.0%
Cu has the effect | action which raises the tensile strength of steel. However, if the content is less than 0.2%, the effect of addition is poor. On the other hand, if the Cu content exceeds 1.0%, workability in hot working or the like is reduced. Therefore, when Cu is added, the content of Cu is set to 0.2 to 1.0%.

Ni:0.2〜1.0%
Niは、鋼の引張強度を高める作用を有する。しかしながら、その含有量が0.2%未満では添加効果に乏しい。一方、Niの含有量が1.0%を超えると前記の効果が飽和してコストが嵩むばかりか、被削性や靱性の低下を招く。したがって、添加する場合のNiの含有量を0.2〜1.0%とした。
Ni: 0.2-1.0%
Ni has the effect of increasing the tensile strength of steel. However, if the content is less than 0.2%, the effect of addition is poor. On the other hand, if the Ni content exceeds 1.0%, the above effects are saturated and the cost increases, and machinability and toughness are reduced. Therefore, the content of Ni when added is set to 0.2 to 1.0%.

Mo:0.05〜0.5%
Moは、鋼の引張強度を高める作用を有する。しかしながら、その含有量が0.05%未満では添加効果に乏しい。一方、Moの含有量が0.5%を超えると前記の効果が飽和してコストが嵩むばかりか、被削性や靱性の低下を招く。したがって、添加する場合のMoの含有量を0.05〜0.5%とした。
Mo: 0.05-0.5%
Mo has the effect | action which raises the tensile strength of steel. However, if the content is less than 0.05%, the effect of addition is poor. On the other hand, if the Mo content exceeds 0.5%, the above effects are saturated and the cost increases, and machinability and toughness are reduced. Therefore, the Mo content when added is set to 0.05 to 0.5%.

V:0.03〜0.3%
Vは、炭化物及び窒化物を形成して結晶粒を微細化し、鋼の引張強度を高める作用を有する。Vには前記結晶粒の微細化による靱性向上作用もある。しかしながら、その含有量が0.03%未満では添加効果に乏しい。一方、Vの含有量が0.3%を超えると前記の効果が飽和してコストが嵩むばかりか、被削性が低下する。したがって、添加する場合のVの含有量を0.03〜0.3%とした。
V: 0.03-0.3%
V has the action of forming carbides and nitrides to refine crystal grains and increasing the tensile strength of steel. V also has an effect of improving toughness by refining the crystal grains. However, if the content is less than 0.03%, the effect of addition is poor. On the other hand, if the content of V exceeds 0.3%, the above effects are saturated and the cost increases, and the machinability decreases. Therefore, when V is added, the content of V is set to 0.03 to 0.3%.

Ti:0.005〜0.1%
Tiは、炭化物及び窒化物を形成して結晶粒を微細化し、鋼の引張強度を高める作用を有する。Tiには前記結晶粒の微細化による靱性向上作用もある。しかしながら、その含有量が0.005%未満では添加効果に乏しい。一方、Tiの含有量が0.1%を超えると被削性が低下する。したがって、添加する場合のTiの含有量を0.005〜0.1%とした。
Ti: 0.005 to 0.1%
Ti has the action of forming carbides and nitrides to refine crystal grains and increasing the tensile strength of steel. Ti also has an effect of improving toughness by refining the crystal grains. However, if the content is less than 0.005%, the effect of addition is poor. On the other hand, if the Ti content exceeds 0.1%, the machinability decreases. Therefore, when Ti is added, the content of Ti is set to 0.005 to 0.1%.

Nb:0.005〜0.05%
Nbは、炭化物及び窒化物を形成して結晶粒を微細化し、鋼の引張強度を高める作用を有する。Nbには前記結晶粒の微細化による靱性向上作用もある。しかしながら、その含有量が0.005%未満では添加効果に乏しい。一方、Nbの含有量が0.05%を超えると被削性が低下する場合がある。したがって、添加する場合のNbの含有量を0.005〜0.05%とした。
Nb: 0.005 to 0.05%
Nb has the effect | action which forms carbide | carbonized_material and nitride and refines | miniaturizes a crystal grain and raises the tensile strength of steel. Nb also has an effect of improving toughness by refining the crystal grains. However, if the content is less than 0.005%, the effect of addition is poor. On the other hand, if the Nb content exceeds 0.05%, the machinability may decrease. Therefore, the content of Nb when added is set to 0.005 to 0.05%.

Zr:0.005〜0.05%
Zrは、炭化物及び窒化物を形成して結晶粒を微細化し、鋼の引張強度を高める作用を有する。Zrには前記結晶粒の微細化による靱性向上作用もある。しかしながら、その含有量が0.005%未満では添加効果に乏しい。一方、Zrの含有量が0.05%を超えると被削性が低下する場合がある。したがって、添加する場合のZrの含有量を0.005〜0.05%とした。
Zr: 0.005 to 0.05%
Zr has the action of forming carbides and nitrides to refine crystal grains and increasing the tensile strength of steel. Zr also has an effect of improving toughness by refining the crystal grains. However, if the content is less than 0.005%, the effect of addition is poor. On the other hand, if the Zr content exceeds 0.05%, the machinability may decrease. Therefore, the content of Zr when added is 0.005 to 0.05%.

上記のCu、Ni、Mo、V、Ti、Nb及びZrは、いずれか1種のみ、或いは2種以上の複合で添加することができる。   Said Cu, Ni, Mo, V, Ti, Nb, and Zr can be added only by any 1 type or 2 or more types of composite.

第2群:Bi:0.01〜0.1%、Te:0.001〜0.01%及びREM:0.0001〜0.01%
Bi、Te及びREMは、いずれも、被削性高める作用を有する。このため、より一層優れた被削性を得たい場合に、以下の範囲で含有してもよい。
Second group: Bi: 0.01-0.1%, Te: 0.001-0.01% and REM: 0.0001-0.01%
Bi, Te, and REM all have an effect of improving machinability. For this reason, when it is desired to obtain a further excellent machinability, it may be contained in the following range.

Bi:0.01〜0.1%
Biは、鋼の被削性を高める作用を有する。しかしながら、その含有量が0.01%未満では添加効果に乏しい。一方、Biの含有量が0.1%を超えると前記の効果が飽和してコストが嵩むばかりか、熱間加工などにおける加工性の低下を招く場合がある。したがって、添加する場合のBiの含有量を0.01〜0.1%とした。
Bi: 0.01 to 0.1%
Bi has the effect | action which improves the machinability of steel. However, if the content is less than 0.01%, the effect of addition is poor. On the other hand, if the Bi content exceeds 0.1%, the above effects are saturated and the cost increases, and the workability in hot working or the like may be reduced. Therefore, the Bi content when added is 0.01 to 0.1%.

Te:0.001〜0.01%
Teは、鋼の被削性を高める作用を有する。しかしながら、その含有量が0.001%未満では添加効果に乏しい。一方、0.01%を超えてTeを含有させても前記の効果が飽和してコストが嵩むばかりである。したがって、添加する場合のTeの含有量を0.001〜0.01%とした。
Te: 0.001 to 0.01%
Te has the effect | action which improves the machinability of steel. However, if the content is less than 0.001%, the effect of addition is poor. On the other hand, even if Te is contained in excess of 0.01%, the above effect is saturated and the cost is increased. Therefore, the content of Te when added is set to 0.001 to 0.01%.

REM:0.0001〜0.01%
REMは、鋼の被削性を高める作用を有する。しかしながら、その含有量が0.0001%未満では添加効果に乏しい。一方、0.01%を超えてREMを含有させても前記の効果が飽和してコストが嵩むばかりである。したがって、添加する場合のREMの含有量を0.0001〜0.01%とした。なお、既に述べたように「REM」は、Sc、Y及びランタノイドの合計17元素の総称であり、REMの含有量は上記元素の合計含有量を指す。
REM: 0.0001 to 0.01%
REM has the effect | action which improves the machinability of steel. However, if the content is less than 0.0001%, the effect of addition is poor. On the other hand, even if it contains REM exceeding 0.01%, the above effect is saturated and the cost is increased. Therefore, the content of REM when added is set to 0.0001 to 0.01%. As already described, “REM” is a generic name for a total of 17 elements of Sc, Y, and lanthanoid, and the content of REM indicates the total content of the above elements.

上記のBi、Te及びREMは、いずれか1種のみ、或いは2種以上の複合で添加することができる。   Said Bi, Te, and REM can be added only by any 1 type or 2 or more types of composite.

上述の理由から、本発明(3)に係る機械構造用鋼の化学組成を、本発明(2)に係る機械構造用鋼のFeの一部に代えて、質量%で、Cu:0.2〜1.0%、Ni:0.2〜1.0%、Mo:0.05〜0.5%、V:0.03〜0.3%、Ti:0.005〜0.1%、Nb:0.005〜0.05%、Zr:0.005〜0.05%のうちの1種以上を含有するものと規定した。   For the reasons described above, the chemical composition of the steel for machine structure according to the present invention (3) is replaced by a part of Fe of the steel for machine structure according to the present invention (2). -1.0%, Ni: 0.2-1.0%, Mo: 0.05-0.5%, V: 0.03-0.3%, Ti: 0.005-0.1%, It was defined as containing one or more of Nb: 0.005 to 0.05% and Zr: 0.005 to 0.05%.

また、本発明(4)に係る機械構造用鋼の化学組成を、本発明(2)又は本発明(3)に係る機械構造用鋼のFeの一部に代えて、質量%で、Bi:0.01〜0.1%、Te:0.001〜0.01%、REM:0.0001〜0.01%のうちの1種以上を含有するものと規定した。   Further, the chemical composition of the steel for machine structure according to the present invention (4) is replaced by a part of Fe of the steel for machine structure according to the present invention (2) or the present invention (3), in mass%, Bi: It was specified to contain one or more of 0.01 to 0.1%, Te: 0.001 to 0.01%, and REM: 0.0001 to 0.01%.

以下、実施例により本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

雰囲気調整が可能な高周波誘導炉を用いて、表3〜5に示す化学組成を有する鋼B1〜B14、鋼C1〜C10及び鋼D1〜D12を溶製し、3t鋼塊を作製した。   Using a high-frequency induction furnace capable of adjusting the atmosphere, steels B1 to B14, steels C1 to C10, and steels D1 to D12 having chemical compositions shown in Tables 3 to 5 were melted to produce 3t steel ingots.

なお、上記各鋼のうち、鋼B8〜B10、鋼C6、鋼C7、鋼D7及び鋼D8については、溶鋼中の酸素の含有量が多い状態でFe−Si合金、Fe−Mn合金、Alのいずれかを添加して脱酸処理し、更に、主要成分であるC、Si、Mn、Sその他の元素を所定量に調整した後Caを添加し、水冷鋳型を用いて鋳造した。上記のような製造方法では、生成した多量の酸化物系介在物が硫化物系介在物の生成核となって、硫化物系介在物の微細化及び不均一分散化を妨げるので、前記(1)式で表される指数関数の係数Bが本発明で規定する条件から外れるようになる。   Of the above steels, Steel B8 to B10, Steel C6, Steel C7, Steel D7 and Steel D8 are made of Fe-Si alloy, Fe-Mn alloy and Al with a high oxygen content in the molten steel. Any one of them was added for deoxidation treatment. Further, C, Si, Mn, S and other elements as main components were adjusted to predetermined amounts, Ca was added, and casting was performed using a water-cooled mold. In the manufacturing method as described above, a large amount of the oxide inclusions that are generated serve as nuclei of sulfide inclusions and prevent the refinement and uneven dispersion of the sulfide inclusions. The coefficient B of the exponential function expressed by the formula is out of the conditions defined in the present invention.

鋼B11〜B13、鋼C8、鋼C9、鋼D9及び鋼D10については、溶鋼中の酸素の含有量が少ない状態でFe−Si合金、Fe−Mn合金、Alのいずれかを添加して脱酸処理し、更に、主要成分であるC、Si、Mn、Sその他の元素を所定量に調整した後Caを添加し、水冷鋳型を用いて鋳造した。このような製造方法では、脱酸反応に寄与しない過剰なCaがCaSとなってMnS晶出の核として作用し、硫化物系介在物の微細化及び不均一分散化を妨げるので、前記(1)式で表される指数関数の係数Bが本発明で規定する条件から外れるようになる。   Steels B11 to B13, Steel C8, Steel C9, Steel D9 and Steel D10 are deoxidized by adding any of Fe-Si alloy, Fe-Mn alloy and Al in a state where the oxygen content in the molten steel is low After the treatment, C, Si, Mn, S and other elements as main components were adjusted to a predetermined amount, Ca was added and cast using a water-cooled mold. In such a production method, excess Ca that does not contribute to the deoxidation reaction becomes CaS and acts as a nucleus for MnS crystallization, preventing the refinement and non-uniform dispersion of sulfide inclusions. The coefficient B of the exponential function expressed by the formula is out of the conditions defined in the present invention.

鋼B14、鋼C10、鋼D11及び鋼D12については、溶鋼中の酸素を適切に管理した状態でFe−Si合金、Fe−Mn合金、Alのいずれかを添加して脱酸処理し、更に、主要成分であるC、Si、Mn、Sその他の元素を所定量に調整した後、鋳造する直前にCaを添加した。但し、鋳型の冷却水の流量を通常の2/3として、冷却速度を低下させた。上記のような製造方法では、凝固時の冷却速度が遅いために晶出するMnSが粗大となり、硫化物系介在物の微細化を妨げるので、前記(1)式で表される指数関数の係数Bが本発明で規定する条件から外れるようになる。   Steel B14, Steel C10, Steel D11 and Steel D12 are deoxidized by adding any of Fe-Si alloy, Fe-Mn alloy and Al in a state where oxygen in the molten steel is appropriately controlled, After adjusting C, Si, Mn, S and other elements as main components to predetermined amounts, Ca was added immediately before casting. However, the cooling rate was reduced by setting the flow rate of the cooling water of the mold to 2/3 of the normal flow rate. In the manufacturing method as described above, the cooling rate during solidification is slow, so that the MnS crystallized becomes coarse and prevents the refinement of sulfide inclusions. Therefore, the coefficient of the exponential function represented by the above formula (1) B comes out of the conditions defined in the present invention.

鋼B1〜B7、鋼C1〜C5及び鋼D1〜D6については、溶鋼中の酸素を適切に管理した状態でFe−Si合金、Fe−Mn合金、Alのいずれかを添加して脱酸処理し、更に、主要成分であるC、Si、Mn、Sその他の元素を所定量に調整した後Caを添加し、水冷鋳型を用いて鋳造した。このような製造方法によって、鋼中の硫化物系介在物は微細で不均一に存在するようになり、前記(1)式で表される指数関数の係数Bが本発明で規定する条件を満たすようになる。   Steels B1 to B7, Steels C1 to C5, and Steels D1 to D6 are deoxidized by adding any of Fe-Si alloy, Fe-Mn alloy, and Al in a state where oxygen in the molten steel is appropriately controlled. Furthermore, after adjusting C, Si, Mn, S and other elements as main components to predetermined amounts, Ca was added and cast using a water-cooled mold. By such a manufacturing method, the sulfide inclusions in the steel become fine and non-uniform, and the coefficient B of the exponential function expressed by the above equation (1) satisfies the condition defined in the present invention. It becomes like this.

Figure 2006299319
Figure 2006299319

Figure 2006299319
Figure 2006299319

Figure 2006299319
Figure 2006299319

次いで、これらの鋼塊を1523Kに加熱した後、仕上げ温度が1273K以上となるように熱間圧延を行い、直径57mmの丸棒を作成した。なお、熱間圧延後の冷却は大気中放冷とした。   Subsequently, these steel ingots were heated to 1523K, and then hot-rolled so that the finishing temperature was 1273K or higher, and a round bar having a diameter of 57 mm was formed. The cooling after hot rolling was allowed to cool in the atmosphere.

このようにして得た直径57mmの丸棒を用いて、硫化物系介在物の観察と切屑分断性の評価を行った。   Using the round bar having a diameter of 57 mm obtained in this manner, the observation of sulfide inclusions and the evaluation of chip breaking property were performed.

硫化物系介在物の観察は、丸棒の圧延方向と平行な面、つまり、縦断面について、D/4(但し、「D」は丸棒の直径である。)の部位を切り出して鏡面研磨を行い、光学顕微鏡により200倍で50視野観察した。このときの一視野あたりの観察面積は0.3mm2である。 The sulfide inclusions were observed by specular polishing by cutting out a portion of D / 4 (where “D” is the diameter of the round bar) on the plane parallel to the rolling direction of the round bar, ie, the longitudinal section. And 50 visual fields were observed at 200 times with an optical microscope. At this time, the observation area per field of view is 0.3 mm 2 .

次いで、上記50視野で観察された硫化物系介在物を等価円直径に換算した後、前記等価円直径が2μmから20μmまでを2μmピッチで度数分布化し、寸法と個数の関係を近似して得られる前記(1)式で表される指数関数の係数Bを計算した。   Next, after converting the sulfide inclusions observed in the 50 fields of view into equivalent circle diameters, the equivalent circle diameter is frequency-distributed from 2 μm to 20 μm at a pitch of 2 μm, and the relationship between the size and the number is approximated. The coefficient B of the exponential function expressed by the above equation (1) was calculated.

切屑分断性は、旋削試験により評価した。すなわち、超硬工具P20のチップを用いて、下記の条件で旋削し、代表的な切屑10個あたりの質量を測定して切屑分断性の指標とした。この質量が小さい値であるほど切屑分断性は良好であると判断できる。
・切り込み深さ:2.0mm、
・送り量:0.25mm/rev、
・切削速度160m/min、
・潤滑:乾式。
The chip breaking property was evaluated by a turning test. That is, using the tip of the cemented carbide tool P20, turning was performed under the following conditions, and the mass per 10 representative chips was measured and used as an index of chip breaking property. It can be determined that the smaller the mass, the better the chip breaking property.
-Cutting depth: 2.0 mm,
-Feed rate: 0.25mm / rev,
-Cutting speed 160m / min,
・ Lubrication: Dry type.

表6〜8に、各鋼について求めた前記(1)式で表される指数関数の係数B及び切屑分断性の評価指数としての切屑質量を示す。また、図4〜6に、それぞれ、鋼B1〜B14、鋼C1〜C10及び鋼D1〜D12について、前記(1)式で表される指数関数の係数B(図では、「指数関数の係数B」と表記した。)と切屑分断性の評価指数である切屑質量との関係を示す。   Tables 6 to 8 show the coefficient B of the exponential function represented by the formula (1) obtained for each steel and the chip mass as an evaluation index of chip breaking property. 4 to 6, steel B1 to B14, steel C1 to C10, and steel D1 to D12, respectively, the coefficient B of the exponential function represented by the above equation (1) (in the figure, "coefficient B of the exponential function" And the chip mass, which is an evaluation index of chip breaking property.

Figure 2006299319
Figure 2006299319

Figure 2006299319
Figure 2006299319

Figure 2006299319
Figure 2006299319

図4〜6から本発明に係る機械構造用鋼である鋼B1〜B7、鋼C1〜C5及び鋼D1〜D6は、Pbフリーであるにも拘わらず、Pb快削鋼である前述の鋼A7と同等以上の切屑分断性を有することが明らかである。   4 to 6, the steels B1 to B7, the steels C1 to C5, and the steels D1 to D6, which are steels for machine structural use according to the present invention, are Pb-free steels although they are Pb-free. It is clear that it has a chip breaking property equivalent to or better than.

これに対して、本発明で規定する条件から外れた鋼は、切屑処理性に劣っている。   On the other hand, steel that deviates from the conditions defined in the present invention is inferior in chip disposal.

本発明の機械構造用鋼は、Pbフリーの「地球環境に優しい機械構造用鋼」であるにも拘わらず、Pb快削鋼と同等以上の切屑分断性を有するので、自動化された切削加工ラインに用いることができる。この鋼は硫化物系介在物の形態制御にMgを使用しないため安価に製造できる。   Although the steel for machine structural use of the present invention is a Pb-free “global environmentally friendly steel for machine structural use”, it has a chip cutting property equal to or higher than that of Pb free-cutting steel. Can be used. This steel can be manufactured at low cost because Mg is not used to control the form of sulfide inclusions.

鋼A1について、硫化物系介在物の寸法としての等価円直径及び個数としての頻度とをヒストグラム化し、指数関数に近似したとを示す図である。It is a figure which shows about steel A1 that the equivalent circle diameter as a dimension of sulfide inclusions and the frequency as the number were histogrammed and approximated to an exponential function. 鋼A4について、硫化物系介在物の寸法としての等価円直径及び個数としての頻度とをヒストグラム化し、指数関数に近似したとを示す図である。It is a figure which shows that the equivalent circle diameter as a dimension of sulfide inclusions, and the frequency as the number of steel A4 were histogrammed and approximated to an exponential function. (1)式で表される指数関数の係数Bと切屑分断性の評価指数である切屑質量との関係を示す図である。It is a figure which shows the relationship between the coefficient B of the exponential function represented by (1) Formula, and the chip mass which is an evaluation index of chip parting property. 鋼B1〜B14についていて、(1)式で表される指数関数の係数Bと切屑分断性の評価指数である切屑質量との関係を示す図である。About steel B1-B14, it is a figure which shows the relationship between the coefficient B of the exponential function represented by (1) Formula, and the chip mass which is an evaluation index of chip | tip cutting property. 鋼C1〜C10についていて、(1)式で表される指数関数の係数Bと切屑分断性の評価指数である切屑質量との関係を示す図である。About steel C1-C10, it is a figure which shows the relationship between the coefficient B of the exponential function represented by (1) Formula, and the chip mass which is an evaluation index of chip | tip cutting property. 鋼D1〜D12について、(1)式で表される指数関数の係数Bと切屑分断性の評価指数である切屑質量との関係を示す図である。It is a figure which shows the relationship between the coefficient B of the exponential function represented by (1) Formula, and the chip mass which is an evaluation index of chip parting property about steel D1-D12.

Claims (4)

MnSを主成分とする硫化物系介在物が存在する機械構造用鋼であって、それを素材とする鋼材の縦断面中での前記硫化物系介在物を等価円直径に換算し、前記等価円直径が2μmから20μmまでを2μmピッチで度数分布化して得られる寸法と個数の関係を近似して得られる下記(1)式で表される指数関数の係数Bが0.25以上であることを特徴とする機械構造用鋼。
y=Aexp(−Bx)・・・(1)
なお、(1)式におけるyは個数を、また、xは寸法(μm)を表し、A及びBは係数である。
A steel for machine structure in which sulfide-based inclusions containing MnS as a main component exist, and the sulfide-based inclusions in a longitudinal section of a steel material made from the same are converted into equivalent circular diameters, and the equivalent The coefficient B of the exponential function expressed by the following formula (1) obtained by approximating the relationship between the size and the number obtained by frequency distribution from 2 μm to 20 μm at a pitch of 2 μm is 0.25 or more. Steel for machine structural features.
y = Aexp (-Bx) (1)
In Equation (1), y represents the number, x represents the dimension (μm), and A and B are coefficients.
質量%で、C:0.2〜0.6%、Si:0.1〜1.0%、Mn:0.4〜2.0%、P:0.04%以下、S:0.02%〜0.12%、Cr:0〜2.0%、Ca:0.0003〜0.005%、Al:0〜0.05%、O:0.005%以下、N:0.004〜0.020%を含有し、残部はFe及び不純物からなる化学組成を有することを特徴とする請求項1に記載の機械構造用鋼。   In mass%, C: 0.2 to 0.6%, Si: 0.1 to 1.0%, Mn: 0.4 to 2.0%, P: 0.04% or less, S: 0.02 % To 0.12%, Cr: 0 to 2.0%, Ca: 0.0003 to 0.005%, Al: 0 to 0.05%, O: 0.005% or less, N: 0.004 to The steel for machine structural use according to claim 1, comprising 0.020%, the balance having a chemical composition comprising Fe and impurities. Feの一部に代えて、Cu:0.2〜1.0%、Ni:0.2〜1.0%、Mo:0.05〜0.5%、V:0.03〜0.3%、Ti:0.005〜0.1%、Nb:0.005〜0.05%、Zr:0.005〜0.05%のうちの1種以上を含有する化学組成を有することを特徴とする請求項2に記載の機械構造用鋼。   Instead of a part of Fe, Cu: 0.2 to 1.0%, Ni: 0.2 to 1.0%, Mo: 0.05 to 0.5%, V: 0.03 to 0.3 %, Ti: 0.005 to 0.1%, Nb: 0.005 to 0.05%, and Zr: 0.005 to 0.05%. The steel for machine structure according to claim 2. Feの一部に代えて、Bi:0.01〜0.1%、Te:0.001〜0.01%、REM:0.0001〜0.01%のうちの1種以上を含有する化学組成を有することを特徴とする請求項2又は3に記載の機械構造用鋼。
Chemistry containing at least one of Bi: 0.01-0.1%, Te: 0.001-0.01%, REM: 0.0001-0.01% instead of part of Fe The steel for machine structure according to claim 2 or 3, characterized by having a composition.
JP2005120500A 2005-04-19 2005-04-19 Steel for machine structure Pending JP2006299319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005120500A JP2006299319A (en) 2005-04-19 2005-04-19 Steel for machine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005120500A JP2006299319A (en) 2005-04-19 2005-04-19 Steel for machine structure

Publications (1)

Publication Number Publication Date
JP2006299319A true JP2006299319A (en) 2006-11-02

Family

ID=37467970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005120500A Pending JP2006299319A (en) 2005-04-19 2005-04-19 Steel for machine structure

Country Status (1)

Country Link
JP (1) JP2006299319A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046722A (en) * 2007-08-17 2009-03-05 Kobe Steel Ltd Steel for machine structure superior in strength-anisotropy and machinability, and component for machine structure
JP2016222985A (en) * 2015-06-01 2016-12-28 新日鐵住金株式会社 Non-heat treated steel for high frequency induction hardening

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046722A (en) * 2007-08-17 2009-03-05 Kobe Steel Ltd Steel for machine structure superior in strength-anisotropy and machinability, and component for machine structure
JP2016222985A (en) * 2015-06-01 2016-12-28 新日鐵住金株式会社 Non-heat treated steel for high frequency induction hardening

Similar Documents

Publication Publication Date Title
JP3468239B2 (en) Steel for machine structural use and its manufacturing method
JP4924422B2 (en) Low carbon sulfur free cutting steel
KR101355321B1 (en) Case hardened steel and method for producing the same
WO2004050932A1 (en) Steel excellent in machinability and method for production thereof
JP4424503B2 (en) Steel bar and wire rod
JP4900127B2 (en) Induction hardening steel and manufacturing method thereof
CN1214127C (en) High strength hot rolled steel plate excellent in enlargeability and ductlity and method for production thereof
JP2010070812A (en) Free-cutting austenitic stainless steel wire rod excellent in cold forgeability, and manufacturing method therefor
KR101044176B1 (en) Low-carbon resulfurized free-cutting steel material
TWI221857B (en) Sulfur-containing free-cutting steel
JP2002146473A (en) Steel for machine structural use having excellent treatability of chip and mechanical property
JP4041413B2 (en) Machine structural steel having excellent chip disposal and manufacturing method thereof
KR20220054862A (en) Alloy structural steel and its manufacturing method
JP2006299319A (en) Steel for machine structure
JP4348163B2 (en) Steel excellent in machinability and manufacturing method thereof
JP5282547B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP5282546B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP4323778B2 (en) Manufacturing method of steel with excellent machinability
JPH07278743A (en) Precipitation hardening type high hardness mold material
JP2005307241A (en) High-sulfur free-cutting steel
JP2004292929A (en) Steel for machine structural use
JP4264175B2 (en) Free-cutting steel bar with excellent machinability and its manufacturing method
JP4417149B2 (en) Composite roll for rolling made by centrifugal casting
JP2006002237A (en) Steel for plastic mold excellent in texturability and machinability
JP4348164B2 (en) Steel with excellent machinability