JP2006297235A - MANUFACTURING METHOD OF CATALYST HAVING NOx OCCLUDING MATERIAL - Google Patents

MANUFACTURING METHOD OF CATALYST HAVING NOx OCCLUDING MATERIAL Download PDF

Info

Publication number
JP2006297235A
JP2006297235A JP2005120334A JP2005120334A JP2006297235A JP 2006297235 A JP2006297235 A JP 2006297235A JP 2005120334 A JP2005120334 A JP 2005120334A JP 2005120334 A JP2005120334 A JP 2005120334A JP 2006297235 A JP2006297235 A JP 2006297235A
Authority
JP
Japan
Prior art keywords
carrier
catalyst
nox
occluding material
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005120334A
Other languages
Japanese (ja)
Other versions
JP4595644B2 (en
Inventor
Shinichi Takeshima
伸一 竹島
Akio Koyama
晃生 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005120334A priority Critical patent/JP4595644B2/en
Publication of JP2006297235A publication Critical patent/JP2006297235A/en
Application granted granted Critical
Publication of JP4595644B2 publication Critical patent/JP4595644B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture an NOx removing catalyst having good regeneration performance from SOx poisoning. <P>SOLUTION: The method is used in manufacturing a catalyst having an NOx occluding material in which at least one compound selected from alkali, alkaline earth and rare earth metals is carried on a carrier as an NOx occluding material and comprises the steps of converting, with an organic acid, the compound of the metal element to serve as the NOx occluding material into a complex ion of a potential opposite to that of the carrier, causing the carrier to carry the complex ion and drying and baking the resultant carrier. The organic acid may be succinic, malic, tartaric or citric acid. The method keeps the NOx occluding material to be kept in a highly dispersed state in the form of particulate throughout the process from the synthesis of the NOx occluding material to the carrying on the carrier, resulting in improvement in regeneration performance from SOx poisoning of the resultant catalyst and thus providing a catalyst of an excellent NOx removing capacity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、酸化物や複合酸化物などからなる所定の担体粒子の上に、NOx吸蔵材を担持した触媒を製造する方法に関するものである。   The present invention relates to a method for producing a catalyst in which a NOx occlusion material is supported on predetermined carrier particles made of an oxide or a composite oxide.

燃焼排ガスを浄化するための触媒としてNOx吸蔵材を担持した触媒が知られている。例えばガソリンエンジンやディーゼルエンジンなどの内燃機関からは、COやHC(炭化水素)およびNOx(窒素酸化物)を含む排ガスが生じ、これを大気に放出する前に触媒によって浄化することがおこなわれている。その一例が特許文献1に記載されており、その方法は、酸素過剰雰囲気下で排ガスを浄化するにあたり、多孔質担体にバリウム、カルシウム、マグネシウムのうちのいずれかの酸化物と白金とを担持し、かつその酸化物の担持量を担体の1リットルに対して0.05〜10モルとした触媒に排ガスを接触させる方法である。そして、その触媒の製造方法として、特許文献1には、白金を担持させた多孔質担体を、上記のアルカリ土類金属の酢酸塩水溶液に浸漬して吸水させ、その後、乾燥して焼成する方法が記載されている。
特許第3328318号公報
As a catalyst for purifying combustion exhaust gas, a catalyst carrying a NOx storage material is known. For example, an internal combustion engine such as a gasoline engine or a diesel engine produces exhaust gas containing CO, HC (hydrocarbon) and NOx (nitrogen oxide), which is purified by a catalyst before being released to the atmosphere. Yes. An example thereof is described in Patent Document 1, and in this method, when purifying exhaust gas in an oxygen-excess atmosphere, a porous carrier carries one of oxides of barium, calcium, and magnesium and platinum. In addition, the exhaust gas is brought into contact with a catalyst in which the supported amount of the oxide is 0.05 to 10 mol with respect to 1 liter of the support. As a method for producing the catalyst, Patent Document 1 discloses a method in which a porous carrier carrying platinum is immersed in the above alkaline earth metal acetate aqueous solution to absorb water, and then dried and fired. Is described.
Japanese Patent No. 3328318

上記の担体としては、その表面積を増大させるために多数の細孔を有する多孔質体が通常使用されており、上記のアルカリ土類金属の酢酸塩水溶液がその多孔質体に吸水されて浸透することにより、そのアルカリ土類金属が広く分散させられる。これを乾燥させる場合、水の蒸発は、担体の表面で生じるが、担体を構成している細孔の開口端部で生じる毛細管圧力が強いので、前記水溶液が、乾燥の過程でその毛細管圧力によって表面側に移動する。そのために、担体の表面側で酢酸塩の濃度が高くなり、その状態で水が蒸発するので、析出したNOx吸蔵材の粒径が、担体の表面側で大きくなってしまう。   As the carrier, a porous body having a large number of pores is usually used in order to increase the surface area, and the alkaline earth metal acetate aqueous solution is absorbed into the porous body and penetrates. As a result, the alkaline earth metal is widely dispersed. When this is dried, water evaporation occurs on the surface of the carrier, but the capillary pressure generated at the open end of the pores constituting the carrier is strong, so that the aqueous solution is caused by the capillary pressure during the drying process. Move to the surface side. For this reason, the concentration of acetate increases on the surface side of the carrier, and water evaporates in this state, so that the particle size of the deposited NOx storage material becomes larger on the surface side of the carrier.

この触媒に接触させる排ガスには、多少なりともSO(ソックス)などの硫黄酸化物が含まれているので、これが白金などの触媒活性物質のみならず、NOx吸蔵材の表面にも付着し、NOx吸蔵材を構成しているアルカリ土類金属の硫酸化合物を作り、イオウ被毒が生じることがある。その硫酸化合物は、粒径が小さければ、相対的に不安定であり、高温の還元雰囲気で分解してイオウ被毒再生することも可能である。しかしながら、NOx吸蔵材の粒径が大きければ、これに付着して生成された硫酸化合物の粒径も大きくなりやすく、このようにして大型化した硫酸化合物は安定しているので、最早、分解して除去することが困難であり、特に低温での被毒再生は不可能に近く、その結果、NOxの吸蔵機能や排ガスの浄化機能が損なわれる可能性がある。 Since the exhaust gas brought into contact with the catalyst contains sulfur oxides such as SO X (sox), it adheres not only to catalytically active materials such as platinum but also to the surface of the NOx storage material, Sulfur poisoning may occur due to the alkaline earth metal sulfate compound that forms the NOx storage material. If the particle size of the sulfuric acid compound is small, it is relatively unstable and can be decomposed in a high temperature reducing atmosphere to regenerate sulfur poisoning. However, if the particle size of the NOx occlusion material is large, the particle size of the sulfate compound produced by adhering to it tends to be large, and the sulfate compound thus enlarged is stable. In particular, it is almost impossible to regenerate poisoning at low temperatures. As a result, the NOx storage function and the exhaust gas purification function may be impaired.

この発明は上記の技術的課題に着目してなされたものであり、NOx吸蔵材を微粒子のまま高分散状態で担体に担持させ、その粒径の粗大化を防止もしくは抑制することのできる触媒の製造方法を提供することを目的とするものである。   The present invention has been made by paying attention to the above technical problem, and is a catalyst that can support NOx occlusion material in a highly dispersed state in a finely dispersed state and prevent or suppress the coarsening of the particle size. The object is to provide a manufacturing method.

この発明は、上記の目的を達成するために、アルカリ金属とアルカリ土類と希土類とのうちの一種以上の元素の化合物がNOx吸蔵材として担体上に担持されたNOx吸蔵材を有する触媒の製造方法において、前記NOx吸蔵材とされる前記元素の化合物を有機酸によって、前記担体とは逆電位の錯イオンとし、その錯イオンを前記担体に吸着させ、その担体を乾燥および焼成することを特徴とする方法である。なお、その有機酸は、請求項2に記載のとおり、コハク酸とリンゴ酸と酒石酸とクエン酸とのいずれかであってよい。   In order to achieve the above object, the present invention provides a catalyst having a NOx occlusion material in which a compound of one or more elements of alkali metal, alkaline earth and rare earth is supported on a carrier as an NOx occlusion material In the method, the compound of the element used as the NOx storage material is converted into a complex ion having a reverse potential to the carrier with an organic acid, the complex ion is adsorbed on the carrier, and the carrier is dried and calcined. It is a method. The organic acid may be any one of succinic acid, malic acid, tartaric acid and citric acid as described in claim 2.

この発明によれば、アルカリ金属とアルカリ土類と希土類とのうちの一種以上の元素の化合物が有機酸によって、所定の溶液中で錯イオンとされる。したがってこの状態では、前記元素の化合物が固体化していないので、相互に結合して粗大化するなどのことはない。その錯イオンは、担体とは逆の電位となっているので、その溶液を多孔質の担体に吸水させると、両者の電気的な相互作用によって錯イオンが担体上に広く分散して吸着される。これを乾燥して焼成する場合、水分が担体の細孔の内部から表面側に移動するとしても、前記元素の化合物は、担体との間の電気的な相互作用によって強く吸着されているためにその移動が阻止もしくは抑制され、イオンのまま乾燥させられて担体上に担持される。その結果、NOx吸蔵材の高分散状態が維持されるので、乾燥過程での濃化やそれに伴う粗大化が抑制もしくは防止される。すなわち、NOx吸蔵材を微粒子の状態で高分散状態に担持し、イオウ被毒再生性に優れた触媒を得ることができる。   According to the present invention, a compound of one or more elements of alkali metal, alkaline earth, and rare earth is converted into a complex ion in a predetermined solution by the organic acid. Therefore, in this state, since the compound of the element is not solidified, it is not bonded and coarsened. Since the complex ion has a potential opposite to that of the carrier, when the solution is absorbed by the porous carrier, the complex ion is widely dispersed and adsorbed on the carrier due to electrical interaction between the two. . When this is dried and fired, even though moisture moves from the inside of the pores of the carrier to the surface side, the compound of the element is strongly adsorbed by electrical interaction with the carrier. The movement is prevented or suppressed, and the ions are dried as they are and supported on the carrier. As a result, since the highly dispersed state of the NOx occlusion material is maintained, concentration during the drying process and coarsening associated therewith are suppressed or prevented. That is, the NOx occlusion material is supported in a highly dispersed state in the form of fine particles, and a catalyst excellent in sulfur poisoning regeneration can be obtained.

この発明は、担体上にNOx吸蔵材を担持させた触媒を製造する方法である。その担体となる酸化物は、所定の径の細孔を有する耐熱性もしくは耐火性の多孔質体であり、その細孔径が、10〜100nm程度のいわゆるメゾ領域に入るメゾ細孔であることが好ましい。具体的には、ジルコニア、アルミナ、シリカアルミナ、ランタンイットリアジルコニア複合酸化物、イットリアジルコニア複合酸化物、ランタンジルコニア複合酸化物、セリアジルコニア複合酸化物などを採用することができる。この酸化物からなる担体粒子は、一例として、加水分解によって生成する一次粒子の凝集した二次粒子同士を更に凝集させることにより得られる多孔構造体である。   The present invention is a method for producing a catalyst in which a NOx storage material is supported on a carrier. The oxide serving as the carrier is a heat-resistant or refractory porous body having pores of a predetermined diameter, and the pore diameter is mesopores that enter a so-called meso region of about 10 to 100 nm. preferable. Specifically, zirconia, alumina, silica alumina, lanthanum yttria zirconia composite oxide, yttria zirconia composite oxide, lanthanum zirconia composite oxide, ceria zirconia composite oxide, and the like can be employed. As an example, the carrier particles made of the oxide are porous structures obtained by further aggregating the aggregated secondary particles of the primary particles generated by hydrolysis.

一方、上記の担体に担持されるNOx吸蔵材は、上記の担体粒子より更に微細な粒子であって、一例として数nm程度のいわゆる超微粒子である。具体的には、NOx吸蔵機能のあるアルカリ金属、アルカリ土類金属、希土類などの酸化物の微粒子である。   On the other hand, the NOx occlusion material supported on the carrier is a finer particle than the carrier particle, and is, for example, a so-called ultrafine particle of about several nm. Specifically, fine particles of oxides of alkali metals, alkaline earth metals, rare earths and the like having a NOx occlusion function.

この発明の方法では、NOx吸蔵材となる元素を含む化合物の錯イオンを予め合成しておく。その表面電位は、これを担持させるべき担体もしくはその前駆体とは逆の電位に調整しておく。そこで先ず、NOx吸蔵材の錯イオンを合成する方法について説明すると、NOx吸蔵材とされるアルカリ金属、アルカリ土類金属、希土類金属のいずれかの塩を水に溶解して水溶液を用意する。その水溶液は、例えば酢酸バリウム水溶液や硝酸カルシウム水溶液である。その水溶液に有機酸を加えて錯イオンを形成する。この発明で錯イオンを形成するために使用することのできる有機酸を例示すると、コハク酸、リンゴ酸、酒石酸、クエン酸などの多価の有機酸を挙げることができる。   In the method of the present invention, a complex ion of a compound containing an element that becomes a NOx storage material is synthesized in advance. The surface potential is adjusted to a potential opposite to that of the carrier on which it is to be supported or its precursor. First, a method for synthesizing complex ions of the NOx occlusion material will be described. An aqueous solution is prepared by dissolving an alkali metal, alkaline earth metal or rare earth metal salt used as the NOx occlusion material in water. The aqueous solution is, for example, a barium acetate aqueous solution or a calcium nitrate aqueous solution. An organic acid is added to the aqueous solution to form complex ions. Examples of organic acids that can be used to form complex ions in the present invention include polyvalent organic acids such as succinic acid, malic acid, tartaric acid, and citric acid.

このようにして形成される錯イオンは、水溶液のpHによって安定度が異なるので、可及的に安定するpHに調整する。その錯イオンの安定性を判定するための手法を説明すると、図1は、硝酸カルシウム水溶液と酢酸バリウム水溶液とにクエン酸を滴下してそのpHの変化を測定した結果を示す曲線である。これは具体的には、アルカリ土類金属イオン濃度を0.0827モル、クエン酸0.248モル、溶液量50ミリリットルに対して、14.8モル/リットルのアンモニア水(原液)を10倍に希釈した溶液を滴下し、その過程でのpHを逐次測定して線図に表したものである。   Since the stability of the complex ions formed in this manner varies depending on the pH of the aqueous solution, it is adjusted to a pH that is as stable as possible. A method for determining the stability of the complex ions will be described. FIG. 1 is a curve showing the results of measuring the change in pH of citric acid dropped into a calcium nitrate aqueous solution and a barium acetate aqueous solution. Specifically, the alkaline earth metal ion concentration is 0.0827 mol, citric acid 0.248 mol, and the solution volume is 50 ml. The diluted solution is dropped, and the pH in the process is sequentially measured and expressed in a diagram.

低pH領域(酢酸バリウムについては4.2程度以下、硝酸カルシウムについては3.5程度以下)では、錯イオンは溶解せずに沈殿となって、液相とは分離されるから、液相に残った酸によりpHが低下する。また、中間のpH領域(酢酸バリウムについては4.2〜5.4程度、硝酸カルシウムについては3.5〜4.8程度)では、錯イオンの緩衝作用、すなわちpHが高いほど乖離度が大きくなることにより、pH滴定曲線の傾きが小さくなる。さらに高pH領域(酢酸バリウムについては5.4程度以上、硝酸カルシウムについては4.8程度以上)では、塩基を加えることにより錯イオンが分解し、強塩基のアルカリ土類の(2+)イオンが遊離し始めるので、急激にpHが上昇する。すなわちpH滴定曲線の傾きが大きくなる。このようなpH滴定曲線は、NOx吸蔵材とされる各元素の塩について得られるので、その傾きの小さい領域を錯イオンの安定領域として、有機酸を添加した水溶液のpHを調整すればよい。なお、錯イオンの形成領域(すなわち錯イオンを形成できるpHの範囲)に対して錯イオンの安定領域は幾分狭くなっている。 In the low pH region (about 4.2 or less for barium acetate and about 3.5 or less for calcium nitrate), complex ions are not dissolved but precipitate and are separated from the liquid phase. The remaining acid lowers the pH. In the intermediate pH range (about 4.2 to 5.4 for barium acetate and about 3.5 to 4.8 for calcium nitrate), the buffering action of complex ions, that is, the higher the pH, the greater the degree of divergence. As a result, the slope of the pH titration curve is reduced. Furthermore, in the high pH range (about 5.4 or more for barium acetate and about 4.8 or more for calcium nitrate), complex ions are decomposed by adding a base, and alkaline earth ( 2+ ) ions of strong bases are added. Begins to liberate, so the pH rises abruptly. That is, the slope of the pH titration curve increases. Since such a pH titration curve is obtained for the salt of each element used as the NOx storage material, the pH of the aqueous solution to which the organic acid is added may be adjusted with the region having a small slope as the stable region of complex ions. Note that the stable region of complex ions is somewhat narrower than the complex ion formation region (that is, the pH range in which complex ions can be formed).

上記のようにして得られる錯イオンと担体との表面電位について説明すると、上述した有機酸によって形成された錯イオンは、マイナスに帯電しており、これに対して上述したいずれかの酸化物もしくは複合酸化物からなる担体の表面電位(ゼータ電位)はプラスになっている。その一例を図2に示してあり、酢酸バリウム水溶液にクエン酸を加えて安定な錯イオンを形成するpH4.0〜5.5程度の領域では、アルミナなどの担体はプラスに帯電する。このような傾向は、他の担体やNOx吸蔵材の錯イオンについても同様であり、したがってこの発明では、有機酸によって、担体とは逆の電位の錯イオンを形成することになる。   The surface potential of the complex ion and the carrier obtained as described above will be described. The complex ion formed by the organic acid described above is negatively charged. The surface potential (zeta potential) of the carrier made of the complex oxide is positive. An example thereof is shown in FIG. 2, and in a region of pH around 4.0 to 5.5 where citric acid is added to an aqueous barium acetate solution to form a stable complex ion, a carrier such as alumina is positively charged. Such a tendency is the same for the complex ions of other carriers and NOx occlusion materials. Therefore, in the present invention, complex ions having a potential opposite to that of the carrier are formed by the organic acid.

pHの調整によって安定化された上記の錯イオンは、水溶液中にイオンとして存在しているのであるから、NOx吸蔵材となる元素化合物(Baクエン酸塩やCaクエン酸塩など)が沈殿することはない。したがってNOx吸蔵材となる元素化合物の合成の後に直ちに担体に対する担持操作をおこなう必要性が低く、その取り扱いが容易になる。   Since the complex ions stabilized by adjusting the pH exist as ions in the aqueous solution, elemental compounds (Ba citrate, Ca citrate, etc.) that become NOx storage materials precipitate. There is no. Therefore, it is not necessary to carry out the supporting operation on the carrier immediately after the synthesis of the elemental compound that becomes the NOx storage material, and the handling becomes easy.

つぎに、担体に対してNOx吸蔵材を担持する方法について説明すると、従来知られているいわゆる吸水法あるいは含浸法など適宜の方法を採用することができる。具体的には、上記の錯イオンの水溶液に、予め用意した多孔質担体を浸漬し、その後に引き上げるとともに余分な水溶液を吹き払って、錯イオンの水溶液を十分に吸水もしくは含浸させる。その担体はモノリス型あるいはペレット型のいずれであってもよい。   Next, a method for supporting the NOx occlusion material on the carrier will be described. An appropriate method such as a so-called water absorption method or impregnation method known in the art can be employed. Specifically, a porous carrier prepared in advance is immersed in the above complex ion aqueous solution, and then pulled up, and the excess aqueous solution is blown off to sufficiently absorb or impregnate the complex ion aqueous solution. The carrier may be either a monolith type or a pellet type.

このようにして担持する場合、前述したように、錯イオンがマイナスに帯電し、担体がこれとは反対のプラスに帯電しているので、両者の電気的な相互作用によって担体上にNOx吸蔵材の錯イオンが吸着される。これは、電気的な作用によるものであって、担体上のプラスの点に錯イオンが吸着されるので、錯イオンは広く分散した状態で、また均一に担体上に吸着されることになる。   In the case of carrying in this way, as described above, the complex ions are negatively charged, and the carrier is charged positively opposite to this, so that the NOx occlusion material on the carrier due to the electrical interaction between them. Are adsorbed. This is due to an electrical action, and the complex ions are adsorbed at positive points on the carrier, so that the complex ions are adsorbed on the carrier in a widely dispersed state.

NOx吸蔵材を錯イオンの形で吸着させた担体は、つぎに乾燥および焼成の過程を経て触媒とされる。その乾燥の過程では、水分が担体の表面から蒸発するのに対して担体は多孔構造であるから、担体の表面側で毛細管圧力が生じ、内部の水分が表面側に次第に移動する。しかしながら、水溶液に含まれているNOx吸蔵材の錯イオンは、担体との間の電気的な相互作用によって担体に吸着されているから、担体の表面側に向けた水の移動であっても錯イオンの移動が阻止もしくは抑制される。そのため、NOx吸蔵材の集合や濃化による粗大化が防止もしくは抑制されるとともに、微細な粒径のままでの高分散状態が維持される。   The carrier on which the NOx occlusion material is adsorbed in the form of complex ions is then used as a catalyst after being dried and calcined. In the drying process, moisture evaporates from the surface of the carrier, whereas the carrier has a porous structure. Therefore, capillary pressure is generated on the surface side of the carrier, and moisture inside gradually moves to the surface side. However, since the complex ions of the NOx storage material contained in the aqueous solution are adsorbed on the carrier due to the electrical interaction with the carrier, even if the water moves toward the surface of the carrier, it is complex. Ion migration is blocked or suppressed. Therefore, coarsening due to aggregation or concentration of NOx occlusion material is prevented or suppressed, and a highly dispersed state with a fine particle size is maintained.

なお、上記のNOx吸蔵材は、白金などの貴金属からなる触媒活性物質と併せて担体上に担持されるが、触媒活性物質を先に担持し、ついでNOx吸蔵材を担持してもよく、あるいはその反対の順序であってもよい。触媒活性物質を先に担持する場合、この発明の方法におけるNOx吸蔵材もしくはその前駆体が、錯イオンの形で分散させられていて超微粒子と称することのできる程度に微細であるから、これよりも遙かに大きい貴金属粒子の露出に対する影響が小さい。   The NOx storage material is supported on a carrier together with a catalytically active material made of a noble metal such as platinum. Alternatively, the catalytically active material may be supported first, and then the NOx storage material may be supported. The reverse order may be used. When the catalytically active substance is first supported, the NOx occlusion material or precursor thereof in the method of the present invention is fine enough to be dispersed in the form of complex ions and referred to as ultrafine particles. The effect on the exposure of much larger noble metal particles is small.

上記のNOx吸蔵材は、錯イオンの形で担体上に吸着され、その状態で乾燥させられて水分を失うことにより固体(すなわち粒子)の形で担体上に固定され、また酸化物となる。すなわち担持される。その過程で錯イオンあるいは粒子の移動が上述したように阻止もしくは抑制されているので、担持されたNOx吸蔵材は錯イオンの状態での分散状態に近い高分散状態を維持する。また、そのために粒子の集合による粗大化が防止もしくは抑制される。したがって得られた触媒におけるNOx吸蔵材の粒径が小さく、また高分散状態に分散しており、その担持量(触媒の単位量当たりの担持量)を従来になく多くすることができる。また、NOx吸蔵材が貴金属などの触媒活性物質粒子の露出を阻害することが少なく、その活性が損なわれない。   The NOx storage material is adsorbed on the support in the form of complex ions, dried in that state, loses moisture, and is fixed on the support in the form of solids (ie particles), and becomes an oxide. That is, it is carried. Since the movement of complex ions or particles is prevented or suppressed in the process as described above, the supported NOx storage material maintains a highly dispersed state close to the dispersed state in the complex ion state. For this reason, coarsening due to aggregation of particles is prevented or suppressed. Therefore, the particle size of the NOx occlusion material in the obtained catalyst is small and dispersed in a highly dispersed state, and the supported amount (the supported amount per unit amount of the catalyst) can be increased more than ever. Further, the NOx occlusion material rarely inhibits exposure of catalytically active substance particles such as noble metals, and the activity is not impaired.

このように、この発明の方法によれば、NOx吸蔵材の担持量を増大させることができるので、NOx吸蔵量の多い排ガス浄化触媒を得ることができる。また、そのNOx吸蔵材を超微粒子状態に維持できるので、イオウ被毒を受けても、生じた硫酸化合物が不安定であって、容易にイオウ被毒から再生することができ、この点でもNOx浄化性能の高い触媒を得ることができる。   Thus, according to the method of the present invention, the amount of the NOx occlusion material supported can be increased, so that an exhaust gas purification catalyst having a large NOx occlusion amount can be obtained. Further, since the NOx occlusion material can be maintained in an ultrafine particle state, even if it is subjected to sulfur poisoning, the generated sulfate compound is unstable and can be easily regenerated from sulfur poisoning. A catalyst with high purification performance can be obtained.

つぎにこの発明の効果を確認するためにおこなった実施例と比較例とを示す。   Next, examples and comparative examples performed for confirming the effects of the present invention will be described.

〔実施例〕
酢酸バリウム水溶液に3倍モルのクエン酸水素2アンモニウム水溶液を添加し、これに少量のアンモニア水を加えてpHを4.0〜5.5に微調整し、マイナスに帯電したバリウムクエン酸錯イオンを形成する。このpH領域では、バリウムクエン酸塩として沈殿することはなく、イオンとして存在することがpH滴定曲線から同定された。この液に、従来知られている一般的な方法で作成し、かつ白金を担持させたモノリス担体を浸漬した。錯イオンは、モノリス担体上に比較的均一に吸着された。250℃で乾燥後、空気中、500℃で1時間焼成し、触媒とした。この時の担持効率は、焼成後の錯イオンが炭酸塩に変化するために炭酸塩と仮定すると、重量変化からほぼ100%であることが確認された。なお、バリウムの担持量は、触媒の1リットルに対して0.2モル(0.2mol/L)であり、白金(Pt)の担持量は1.5g/Lであった。
〔Example〕
Add 3 times molar aqueous diammonium hydrogen citrate solution to barium acetate aqueous solution, add a small amount of ammonia water to adjust pH to 4.0-5.5, and negatively charged barium citrate complex ion. Form. In this pH region, it was identified from the pH titration curve that it does not precipitate as barium citrate and exists as an ion. A monolithic carrier prepared by a general method known in the art and carrying platinum was immersed in this liquid. The complex ions were adsorbed relatively uniformly on the monolith support. After drying at 250 ° C., the catalyst was calcined in air at 500 ° C. for 1 hour to obtain a catalyst. It was confirmed that the loading efficiency at this time was almost 100% from the weight change, assuming that the complex ion after calcination is changed to carbonate, so that carbonate is assumed. The supported amount of barium was 0.2 mol (0.2 mol / L) with respect to 1 liter of the catalyst, and the supported amount of platinum (Pt) was 1.5 g / L.

〔比較例1〕
従来の吸水担持法によってバリウムを担持した。すなわち所定の濃度の酢酸バリウム水溶液に、白金を予め担持した担体を浸漬して、酢酸バリウム水溶液を担体に吸水させ、その後、余分な水溶液を吹き払い、これを上記の実施例と同様の条件で乾燥・焼成して触媒を得た。そのバリウムの担持量は0.1mol/L、白金(Pt)の担持量は3g/Lとした。これは、従来の標準的なディーゼルエンジン用NOx触媒であり、低温活性を高めるためにバリウムの担持量を少なくし、白金の担持量を多くした触媒である。
[Comparative Example 1]
Barium was supported by a conventional water absorption support method. That is, a carrier previously supported with platinum is immersed in an aqueous barium acetate solution having a predetermined concentration, and the aqueous barium acetate solution is absorbed by the carrier, and then the excess aqueous solution is blown off under the same conditions as in the above examples. The catalyst was obtained by drying and calcining. The supported amount of barium was 0.1 mol / L, and the supported amount of platinum (Pt) was 3 g / L. This is a conventional standard NOx catalyst for diesel engines, in which the supported amount of barium is reduced and the supported amount of platinum is increased in order to increase the low temperature activity.

〔比較例2〕
炭酸バリウムを合成した後、これとは反対の電位に帯電させた担体に炭酸バリウム水溶液を混合することにより、担持させた。いわゆる微粒子吸着法である。先ず、予め白金を担持させた担体(アルミナ担体)とピロメリト酸飽和溶液とを混合してアルミナ担体の表面電位(ゼータ電位)をマイナスに反転させる。一方、所定の濃度の酢酸バリウム水溶液と炭酸水素アンモニウム水溶液とを混合し、pHを6.5に調整し、表面電位がプラスの炭酸バリウム粒子を生成する。その後、これらの溶液を混合して所定時間撹拌し、担体上に炭酸バリウム粒子を吸着させる。その後に、炭酸バリウム粒子を吸着した担体を濾別し、上記の実施例と同様にして乾燥および焼成をおこない、触媒を得た。バリウムの担持量は、実施例と同様に、0.2mol/L、白金(Pt)の担持量は1.5g/Lとした。
[Comparative Example 2]
After synthesizing barium carbonate, it was supported by mixing an aqueous barium carbonate solution with a carrier charged to the opposite potential. This is a so-called fine particle adsorption method. First, a carrier on which platinum is previously supported (alumina carrier) and a pyromellitic acid saturated solution are mixed to invert the surface potential (zeta potential) of the alumina carrier to minus. On the other hand, a barium acetate aqueous solution having a predetermined concentration and an aqueous ammonium hydrogen carbonate solution are mixed to adjust the pH to 6.5, thereby generating barium carbonate particles having a positive surface potential. Thereafter, these solutions are mixed and stirred for a predetermined time to adsorb barium carbonate particles on the carrier. Thereafter, the carrier on which the barium carbonate particles were adsorbed was filtered off, and dried and calcined in the same manner as in the above example to obtain a catalyst. The amount of barium supported was 0.2 mol / L and the amount of platinum (Pt) supported was 1.5 g / L, as in the examples.

〔比較例3〕
従来の吸水担持法によってバリウムを担持した。担持量が上記の比較例1と異なるのみであって、他の条件は、比較例1と同じにした。すなわち、バリウムの担持量は0.2mol/L、白金(Pt)の担持量は1.5g/Lとした。
[Comparative Example 3]
Barium was supported by a conventional water absorption support method. The carrying amount was only different from that of Comparative Example 1 described above, and the other conditions were the same as those of Comparative Example 1. That is, the supported amount of barium was 0.2 mol / L, and the supported amount of platinum (Pt) was 1.5 g / L.

〔評価〕
実施例で得られた触媒と比較例1および2で得られた各触媒についてSO(ソックス)による被毒および被毒からの再生の評価をおこなった。内燃機関の排ガスとして希薄燃焼(リーン)時の排ガスと、ストイキもしくはそれより空燃比の小さいリッチ時の排ガスとを流した。空間速度SV=50000h-1、リーン運転を1分継続し、その後にリッチ運転を30秒おこなう運転を所定時間継続した。リーン運転時の排ガスの組成は、NOx:250ppm、O2:6%、H2O:8%、CO2:10%である。リッチ運転時の排ガスの組成は、O2:0%、CO:6000ppm、その他はリーン運転と同じである。
イオウ被毒条件は、温度を250〜550℃、通過イオウ量を触媒1リットルに対して6g(6g/L)とした。また、イオウ再生条件は、温度を650℃、空燃比(A/F)が“14”相当の排ガスを10分間、流通させた。得られた結果は、表1のとおりである。

Figure 2006297235
[Evaluation]
The catalysts obtained in Examples and the catalysts obtained in Comparative Examples 1 and 2 were evaluated for poisoning by SO X (sock) and regeneration from poisoning. As exhaust gas of the internal combustion engine, exhaust gas at the time of lean combustion (lean) and exhaust gas at the time of rich or stoichiometric or an air / fuel ratio smaller than that were flowed. The space velocity SV = 50000 h −1 , the lean operation was continued for 1 minute, and then the operation in which the rich operation was performed for 30 seconds was continued for a predetermined time. The composition of the exhaust gas during the lean operation is NOx: 250 ppm, O 2 : 6%, H 2 O: 8%, CO 2 : 10%. The composition of the exhaust gas during the rich operation is the same as that of the lean operation except for O 2 : 0%, CO: 6000 ppm.
The sulfur poisoning conditions were a temperature of 250 to 550 ° C. and a passing sulfur amount of 6 g (6 g / L) with respect to 1 liter of catalyst. The sulfur regeneration conditions were such that an exhaust gas corresponding to a temperature of 650 ° C. and an air-fuel ratio (A / F) of “14” was circulated for 10 minutes. The obtained results are shown in Table 1.
Figure 2006297235

表1は、ソックス被毒再生繰り返し時のNOx浄化率を示しており、本発明の実施例で得られた触媒では、新品時とソックス被毒再生繰り返し後とで、各温度範囲のNOx浄化率に大きな相違がなく、NOx吸蔵材のイオウ被毒が生じにくく、あるいはまたイオウ被毒からの再生が容易であることが認められた。これは、NOx吸蔵材であるバリウムが微細化されていることによるものと思われ、またそれに伴って白金あるいはロジウムなどの貴金属が、NOx吸蔵材によって覆われずに露出している度合が大きいことによるものと思われる。   Table 1 shows the NOx purification rate at repeated sox poisoning regeneration. With the catalyst obtained in the example of the present invention, the NOx purification rate at each temperature range when new and after repeated sox poisoning regeneration. It was found that the NOx occlusion material was not easily poisoned by sulfur, or that it was easy to regenerate from sulfur poisoning. This is thought to be due to the refinement of barium, which is a NOx storage material, and the degree to which precious metals such as platinum and rhodium are exposed without being covered by the NOx storage material is high. It seems to be due to.

これに対して従来の吸水担持法での比較例1による触媒では、ソックス被毒再生繰り返し後のNOx浄化率が低下することが認められ、その傾向は温度が高いほど顕著になり、550℃では1/8程度に低下し、イオウ被毒し易く、またその再生が困難であることが認められた。これは、NOx吸蔵材であるが大径化していることによるものと思われる。   On the other hand, in the catalyst according to Comparative Example 1 in the conventional water-absorbing support method, it is recognized that the NOx purification rate after repeated sox poisoning regeneration decreases, and this tendency becomes more prominent as the temperature increases, and at 550 ° C. It was found that it decreased to about 1/8, was easily poisoned by sulfur, and its regeneration was difficult. This seems to be due to the fact that the diameter is increased although it is a NOx storage material.

さらに、いわゆる微粒子吸着担持法での比較例2の触媒では、比較例1による触媒と同様に、ソックス被毒再生繰り返し後のNOx浄化率が低下することが認められ、その傾向は温度が高いほど顕著になり、イオウ被毒し易く、またその再生が困難であることが認められた。比較例2では、炭酸バリウム粒子と担体とを逆電位に調整して、両者の電気的な相互作用で担持させているが、NOx吸蔵材の前駆体である炭酸バリウム粒子を合成した後、これを担体に担持させる間に、炭酸バリウム粒子同士が接触して結合することにより粗大化し、その状態で担体に担持され、その結果、NOx吸蔵材が大径化していることによるものと思われる。   Further, in the catalyst of Comparative Example 2 in the so-called fine particle adsorption supporting method, it is recognized that the NOx purification rate after repeated sox poisoning regeneration decreases as in the catalyst of Comparative Example 1, and the tendency is higher as the temperature is higher. It was noticeable that it was easily poisoned by sulfur and its regeneration was difficult. In Comparative Example 2, the barium carbonate particles and the carrier are adjusted to the reverse potential and supported by the electrical interaction between them, but after synthesizing the barium carbonate particles that are precursors of the NOx storage material, This is presumably due to the fact that the barium carbonate particles are brought into contact with each other and bonded to each other while being supported on the carrier and are coarsened and supported on the carrier in this state, and as a result, the NOx occlusion material is enlarged.

つぎに、この発明の実施例による触媒と、上記の比較例1および3による各触媒とについて、熱耐久試験後の低温でのNOx浄化率を評価した。内燃機関の排ガスとして希薄燃焼(リーン)時の排ガスと、空燃比の小さいリッチ時の排ガスとを流した。空間速度SV=20000h-1、リーン運転を20秒継続し、その後にリッチ運転(いわゆるリッチスパイク)を5秒おこなう運転を所定時間継続した。リーン運転時の排ガスの組成は、NOx:50ppm、O2:10%、H2O:5%、CO2:6%である。リッチ運転時の排ガスの組成は、O2:0%、炭素換算の炭化水素:3000ppmC、その他はリーン運転と同じである。さらに、熱耐久条件は、750℃、2時間、リーン空燃比(A/F)が“40”、リッチ空燃比(A/F)が“14”の繰り返しとした。得られた結果は、表2のとおりである。

Figure 2006297235
Next, the NOx purification rate at low temperatures after the thermal endurance test was evaluated for the catalyst according to the embodiment of the present invention and the catalysts according to Comparative Examples 1 and 3 described above. Exhaust gas at the time of lean combustion (lean) and exhaust gas at the time of rich with a small air-fuel ratio were flowed as exhaust gas of the internal combustion engine. The space velocity SV = 20000h −1 , the lean operation was continued for 20 seconds, and then the operation in which the rich operation (so-called rich spike) was performed for 5 seconds was continued for a predetermined time. The composition of the exhaust gas during lean operation is NOx: 50 ppm, O 2 : 10%, H 2 O: 5%, CO 2 : 6%. The composition of the exhaust gas during the rich operation is the same as that of the lean operation except for O 2 : 0%, hydrocarbon in terms of carbon: 3000 ppmC. Further, the heat durability was 750 ° C. for 2 hours, the lean air-fuel ratio (A / F) was “40”, and the rich air-fuel ratio (A / F) was “14”. The obtained results are shown in Table 2.
Figure 2006297235

この発明の方法で作成した触媒によれば、低温活性を向上させるためにNOx吸蔵材の量を少なくかつ白金の量を多くしてNOx吸蔵材の吸水担持をおこなった比較例1の触媒と同程度のNOx浄化率を示した。これに対して、バリウムおよび白金の担持量をこの発明の方法による触媒と同様にして、かつ担持方法として吸水担持法を採用した比較例3では、250℃および200℃の低温でのNOx浄化率が低下した。すなわち、この発明の方法によれば、白金などの貴金属からなる触媒活性物質の量を少なくしても低温活性が良好になることが認められた。   The catalyst prepared by the method of the present invention is the same as the catalyst of Comparative Example 1 in which the amount of NOx occlusion material is decreased and the amount of platinum is increased to support the water absorption of the NOx occlusion material in order to improve low temperature activity. The degree of NOx purification was shown. In contrast, in Comparative Example 3 in which the supported amount of barium and platinum was the same as that of the catalyst according to the method of the present invention and the water absorption supporting method was adopted as the supporting method, the NOx purification rate at low temperatures of 250 ° C. and 200 ° C. Decreased. That is, according to the method of the present invention, it was recognized that the low-temperature activity was improved even if the amount of the catalytically active substance composed of a noble metal such as platinum was reduced.

硝酸カルシウム水溶液と酢酸バリウム水溶液とにクエン酸を滴下してそのpHの変化を測定した結果を示す曲線である。It is a curve which shows the result of having dripped citric acid to calcium nitrate aqueous solution and barium acetate aqueous solution, and measuring the change of the pH. この発明の方法における担体と錯イオンとの表面電位の関係を示す線図である。It is a diagram which shows the relationship of the surface potential of the support | carrier and complex ion in the method of this invention.

Claims (2)

アルカリ金属とアルカリ土類と希土類とのうちの一種以上の元素の化合物がNOx吸蔵材として担体上に担持されたNOx吸蔵材を有する触媒の製造方法において、
前記NOx吸蔵材とされる前記元素の化合物を有機酸によって、前記担体とは逆電位の錯イオンとし、その錯イオンを前記担体に吸着させ、その担体を乾燥および焼成することを特徴とするNOx吸蔵材を有する触媒の製造方法。
In a method for producing a catalyst having a NOx occlusion material in which a compound of one or more elements of alkali metal, alkaline earth and rare earth is supported on a carrier as an NOx occlusion material,
The NOx storage material is made of NOx, characterized in that the elemental compound is converted into a complex ion having a reverse potential to the carrier by an organic acid, the complex ion is adsorbed on the carrier, and the carrier is dried and calcined. A method for producing a catalyst having an occlusion material.
前記有機酸が、コハク酸とリンゴ酸と酒石酸とクエン酸とのいずれかであることを特徴とする請求項1に記載のNOx吸蔵材を有する触媒の製造方法。   The method for producing a catalyst having a NOx storage material according to claim 1, wherein the organic acid is any one of succinic acid, malic acid, tartaric acid, and citric acid.
JP2005120334A 2005-04-18 2005-04-18 Method for producing catalyst having NOx storage material Expired - Fee Related JP4595644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005120334A JP4595644B2 (en) 2005-04-18 2005-04-18 Method for producing catalyst having NOx storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005120334A JP4595644B2 (en) 2005-04-18 2005-04-18 Method for producing catalyst having NOx storage material

Publications (2)

Publication Number Publication Date
JP2006297235A true JP2006297235A (en) 2006-11-02
JP4595644B2 JP4595644B2 (en) 2010-12-08

Family

ID=37465969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005120334A Expired - Fee Related JP4595644B2 (en) 2005-04-18 2005-04-18 Method for producing catalyst having NOx storage material

Country Status (1)

Country Link
JP (1) JP4595644B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317652A (en) * 1992-05-22 1993-12-03 Toyota Motor Corp Method for purifying exhaust gas
JP2000051697A (en) * 1998-08-10 2000-02-22 Toyota Motor Corp Production of exhaust emission purifying catalyst
JP2001321680A (en) * 2000-05-15 2001-11-20 Toyota Motor Corp Manufacturing method of catalyst for purifying exhaust gas
WO2003004438A2 (en) * 2001-07-06 2003-01-16 3M Innovative Properties Company Inorganic fiber substrates for exhaust systems and methods of making same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317652A (en) * 1992-05-22 1993-12-03 Toyota Motor Corp Method for purifying exhaust gas
JP2000051697A (en) * 1998-08-10 2000-02-22 Toyota Motor Corp Production of exhaust emission purifying catalyst
JP2001321680A (en) * 2000-05-15 2001-11-20 Toyota Motor Corp Manufacturing method of catalyst for purifying exhaust gas
WO2003004438A2 (en) * 2001-07-06 2003-01-16 3M Innovative Properties Company Inorganic fiber substrates for exhaust systems and methods of making same

Also Published As

Publication number Publication date
JP4595644B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP3741303B2 (en) Exhaust gas purification catalyst
US7220702B2 (en) Exhaust gas purification catalyst
JP5327048B2 (en) Exhaust gas purification catalyst carrier manufacturing method and exhaust gas purification catalyst carrier
JPWO2007145152A1 (en) Exhaust gas purification catalyst
JP5217072B2 (en) Exhaust gas purification catalyst and process for producing the same
WO2012161091A1 (en) Exhaust gas purifying catalyst and carrier
JP2009273986A (en) Exhaust gas cleaning catalyst
US6906002B2 (en) Absorption reduction-type NOx purifying catalyst
JP3589383B2 (en) Exhaust gas purification catalyst
JP4240250B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP5094049B2 (en) Exhaust gas purification catalyst
JP2007301471A (en) Catalyst for cleaning exhaust gas
JP2001170487A (en) Catalyst for purifying exhaust gas and method for purifying exhaust gas
JPH08281116A (en) Catalyst for purifying exhaust gas
JP4595644B2 (en) Method for producing catalyst having NOx storage material
JP2006297234A (en) Method of manufacturing composite material
JP2000246107A (en) Catalyst for cleaning exhaust gas, its production and method for cleaning exhaust gas
JP2013072334A (en) Exhaust gas purifying device and exhaust gas purifying catalyst unit
JP2006043637A (en) Catalyst for cleaning exhaust gas
JP3897483B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP4103407B2 (en) NOx storage reduction catalyst
JPH10174868A (en) Catalyst for cleaning of exhaust gas
JP2000325787A (en) Manufacture of exhaust gas cleaning catalyst
JP3743597B2 (en) Method for producing exhaust gas purification catalyst
JP2000157865A (en) Gas purifying catalyst carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees