JP2006292506A - 加速度・角速度検出装置および加速度・角速度検出方法 - Google Patents

加速度・角速度検出装置および加速度・角速度検出方法 Download PDF

Info

Publication number
JP2006292506A
JP2006292506A JP2005112210A JP2005112210A JP2006292506A JP 2006292506 A JP2006292506 A JP 2006292506A JP 2005112210 A JP2005112210 A JP 2005112210A JP 2005112210 A JP2005112210 A JP 2005112210A JP 2006292506 A JP2006292506 A JP 2006292506A
Authority
JP
Japan
Prior art keywords
acceleration
angular velocity
unit
timing
weight body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005112210A
Other languages
English (en)
Inventor
Toshihisa Matsuo
順向 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005112210A priority Critical patent/JP2006292506A/ja
Publication of JP2006292506A publication Critical patent/JP2006292506A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)
  • Pressure Sensors (AREA)

Abstract

【課題】 一つの装置で、加速度と角速度を検出する加速度・角速度検出装置では、まず、加速度による力と角速度による力の合力を求め、その合力から加速度と角速度を求めるが、加速度による力と角速度による力を分離するのに複雑な処理が必要であった。
【解決手段】 タイミング部17により出力する周波数波形を示す駆動信号の出力値が零近傍になったときに、変位検出部40の検出結果を抽出するためのタイミング信号をサンプリング部13に出力するとともに、該駆動信号の位相を略180度遅らせたタイミングでも、タイミング信号をサンプリング部13に出力する。そして、駆動信号が零近傍になったときに出力されるタイミング信号に基づいて検出された変位検出部40の検出結果と、該駆動信号の位相を略180度遅らせたタイミングで出力されるタイミング信号に基づいて検出された変位検出部40の検出結果を用いて、重錘体3に作用する加速度と角速度を求めるものである。
【選択図】 図3

Description

本発明は、加速度及び角速度を検出する加速度・角速度検出装置および加速度・角速度検出方法に関する。詳しくは、XYZ3次元直交座標系の少なくとも1座標軸方向の加速度と、XY平面に含まれる1軸まわりの角速度を検出する加速度・角速度検出装置および加速度・角速度検出方法に関するものである。
近年、半導体微細加工技術を用いて、基板上に機械構造体を作成するマイクロマシニング技術による機械量センサの開発が進んでいる。その機械量センサの中でも、加速度センサ及び角速度センサは、車両運動制御、カ−ナビゲ−ション、ロボット姿勢制御等の幅広い用途に使用されている。
従来、加速度センサ及び角速度センサなどの機械量センサは、多種多様な部品がメカニカルに組み立てられていることから、小型化が難しい、量産性に乏しい、低価格化しにくい等の欠点を抱えていたが、前述したマイクロマシニング技術を用いることにより、センサ本体の小型化が可能になった。特に、Siを材料とすることにより、周辺回路との集積化が可能となり、機械量センサ全体の小型化が飛躍的に進んでいる。
最近では、加速度センサ及び角速度センサの小型化が進んでいることから、コンパクトカメラに手振れ補正用センサとして搭載され始めており、今後も応用分野の拡大が期待される。
加速度センサは、一般に、慣性体と、その慣性体を支持する弾性体から構成されている。加速度センサに加速度が加わると、加速後センサの慣性体に慣性力が働き、その慣性力により慣性体を支持している弾性体が機械的に変形する。この変形量を検出することにより、加えられた加速度を検出することができる。
また、角速度センサは、図6に示すような原理により角速度を検出する。図6(a)は、角速度の検出原理を説明するための図である。図6(a)に示すように、質量mの質点100を原点とし、図示するように互いに直行する方向にX軸、Y軸、Z軸を設定する。
このようなXYZ3次元直交座標系において、質点100がZ軸上を負の方向に速度vで運動している状態で、Y軸を回転軸としてZ軸からX軸に向かう方向(図6(a)参照)に角速度ωで回転を与えた場合には、この質点100にコリオリ力FcがX軸上の正の方向に発生する。
このコリオリ力Fcの大きさは、Fc=2m・v・ω で求めることができる。また、当然ながら、質点100の運動方向、或いは角速度ωの回転方向が逆の場合は、コリオリ力Fcの向きも逆になる。
このコリオリ力Fcを求める式からもわかるように、質点100の質量mと速度vが既知であれば、コリオリ力Fcの大きさと向きを検出すれば、Y軸を回転軸とする角速度ωと回転方向を求めることができる。
また、質点100は、コリオリ力FcによってX軸方向に変位するので、このコリオリ力Fcと変位量の関係が分かっていれば、質点100のX軸方向の変位量を検出することによりコリオリ力Fcを求めることができる。
このような原理を応用した振動型角速度センサを図6(b)を用いて説明する。図6(b)に示す振動型角速度センサにおいても、図6(a)と同様に、質量mの質点100を原点とし、図示するように互いに直行するX軸、Y軸、Z軸により3次元直交座標系を構成している。
このような3次元直交座標系において、質点100をZ軸上に往復運動させるように振動を与える。そして、この状態で図6(a)と同様に角速度ωの回転を与えると、質点100には図6(b)に示すような振動方向に同期したコリオリ力Fcが生じる。
ここで、角速度センサの質点100を慣性体として用いることにより、1つの装置で、加速度と角速度とを検出することができる(たとえば、特許文献1、特許文献2)。
特許文献1、または特許文献2に記載されている加速度・角速度検出装置では、加速度と角速度が同時に作用することから、加速度による値と角速度による値が加えられた値として検出される。
このために、この加速度の値と角速度の値をそれぞれ求めるためには、上記の加速度による値と角速度による値が加えられた値から加速度による値と角速度による値をそれぞれ分離する必要がある。
この分離方法が、特許文献1、特許文献2により提案されている。
まず、特許文献1において提案されている加速度・角速度検出装置により検出された加速度による値と角速度による値との分離方法について図7を用いて説明する。図7は、加速度・角速度検出装置において検出した加速度による値と角速度による値を分離する方法の説明図である。
図7は、質量mの質点100にZ軸方向に振動が与えられている状態で、Y軸を回転軸とするZ軸からX軸に向かう回転方向の回転が角速度ωで与えられた場合(図6(b)参照)のものである。図7(a)〜(e)の横軸はいずれも時間tである。
図7(a)は、質点のZ軸方向の変位の推移を示す図である。図7(a)の質点100のZ軸方向の変位の推移をみると、正弦波の波形を示していることから、質点100が往復運動していることがわかる。ここで、図7(a)の縦軸は質点100のZ軸方向の変位を示している。
つぎに、質点100に加えられた角速度ωは、Y軸を回転軸とするZ軸からX軸に向かう回転方向を正の方向とする角速度ωであり、その角速度ωの推移が図7(b)に示されている。図7(b)は、質点に作用する角速度の推移を示す図である。図7(b)からわかるように、角速度ωは時間とともに増加している。
そして、この状態で、X軸方向に生じるコリオリ力Fcは、前述したように、Fc=2m・v・ωの式により求めることができる。図7(c)は、質点に作用するコリオリ力の推移を示す図である。ここで、mは質点100の質量であり、vは質点100の速度(振動速度)であり、ωは質点100の角速度である。
この式からわかるように、コリオリ力Fcは、質点100の振動による速度vに比例するので、角速度ωが一定ならば、振動変位が0の点で振動速度vが最大となり、その点で最大のコリオリ力Fcが働く。逆に、振動速度0である上下死点ではコリオリ力Fcも0となる。
この図7(a)と図7(c)とを比較すればわかるように、質点100に作用するコリオリ力Fcは、質点100の変位に同期した振動をなしている(コリオリ力Fcの位相は、変位の位相より(π/2)だげずれている)。ここで、図7(b)の縦軸は角速度ωであり、図7(c)の縦軸はコリオリ力Fcである。
この状態において、X軸方向に加速度aが加わった場合について図7(d)を用いて説明する。
X方向に加速度aが加われば、その加速度aによる慣性力Faが働くことになる。この慣性力Faの方向は加えられた加速度aとは逆方向となるので、その出力波形は図7(e)のようになる。
ここで、質点100に角速度ωと加速度aがともに作用しているので、図7(e)の出力波形は、図7(c)に示す角速度ωによるコリオリ力Fcと図7(d)に示す加速度aによる慣性力Faの合力の波形ということができる。この合力から、加速度aによる慣性力Fa及び角速度ωによるコリオリ力Fcを求めるためには、慣性力Faとコリオリ力Fcとをそれぞれ分離する必要がある。
その慣性力Faとコリオリ力Fcとを分離する方法としては、図8に示すような出力波形の変極点P1〜P7を求め、そして、各変極点P1〜P7の時間軸上の位置を示す区画線Q1〜Q7を定め、その隣接する各区画線の中間位置を通る参照線Q12〜Q67を定める。そして、各参照線上に、その両側にある変極点の平均値をもった参照点mをプロットする。この参照点mを結んだ線が加速度aによる慣性力Faを示している。このようにして加速度aによる慣性力Faを求めることができる。
次に、コリオリ力Fcを求めるには、図7(e)に示すコリオリ力Fcと加速度aによる慣性力Faの合力から上記で求められた加速度aによる慣性力Faを差し引くことで求めることができる。
このように、コリオリ力Fcと加速度aによる慣性力Faを求めることができれば、前述したFc=2m・v・ωの式から角速度ωが求められ、Fa=m・aより加速度aを求めることができる(特許文献1)。
次に、特許文献2に記載された、加速度aによる慣性力Faと角速度ωによるコリオリ力Fcとを分離する方法について説明する。
特許文献2には、コリオリ力Fcの振動周波数を加速度aの周波数より十分高くすることを利用して、加速度a及び角速度ωを求める方法について記載されている。
すなわち、加速度aによる力Faを求めるためには、コリオリ力Fcの振動周波数を加速度aの周波数より十分高くした状態で、コリオリ力Fcの振動周波数をカットするロ−パスフィルタ(LPF)を通すことにより求めることができる。一方、コリオリ力Fcを求めるには、加速度aによる慣性力Faの力成分をカットするハイパスフィルタ(HPF)を通すことにより求めることができる(たとえば、特許文献2)。
特開平8−68636号公報 特開平8−136265号公報
しかしながら、特許文献1に記載された加速度・角速度検出装置では、出力波形の変極点P及び変極点間の中間位置を通る参照線を求め、その参照線上の参照点mを求める必要があることから、制御系の構成及び処理が複雑になるという問題があった。また、加速度aによる慣性力Faを求めるためには、その求めたい時点の慣性力Faのみならず、それ以降の慣性力Faをも求める必要があり、リアルタイムに慣性力Faを検出することができないという問題もあった。
また、特許文献2に記載された加速度・角速度検出装置では、ロ−パスフィルタ(LPF)の設定の如何によっては、検出できない加速度aの帯域があった。また同様に、ハイパスフィルタ(HPF)の設定の如何によっても、高周波の加速度aが影響して、正確に角速度ωを検出できないという問題があった。さらに、フィルタというアナログ部品を別個に準備しなければならず、加速度・角速度検出装置の構成が複雑になるという問題もあった。
本発明は上記課題を解決するためになされたものであり、簡単な構成で、かつ高精度に加速度と角速度を検出可能な加速度・角速度検出装置および加速度・角速度検出方法を提供することを目的とする。
本発明は、質量をもった重錘体と、該重錘体の一端に接続され、可撓性をもった材料から構成され、重鎮体の振動により撓みが生じる梁と、該梁を支持する支持部と、重錘体の重心をZ軸方向にそって往復運動させるように振動させる励振部と、梁の撓みを電気信号として検出する変位検出部と、該変位検出部の検出結果を所定のタイミングで抽出するサンプリング部と、励振部を駆動させるための駆動信号を出力するとともに、変位検出部の検出結果を抽出するタイミングを示すタイミング信号をサンプリング部に出力するタイミング部と、サンプリング部により抽出された変位検出部の検出結果を記憶する記憶手段と、該記憶手段に記憶された変位検出部の検出結果を用いて、重錘体に作用する加速度と角速度を算出する演算部と、を有し、タイミング部は、周波数波形を示す駆動信号の出力値が零近傍になったときに、変位検出部の検出結果を抽出するためのタイミング信号をサンプリング部に出力するとともに、該駆動信号の位相を略90度遅らせた信号の値が零近傍になったときでもタイミング信号をサンプリング部に出力し、演算部は、駆動信号の出力値が零近傍になったときに出力されるタイミング信号に基づいて検出された変位検出部の検出結果と、該駆動信号の位相を略90度遅らせた信号の値が零近傍になったときに出力されるタイミング信号に基づいて検出された変位検出部の検出結果を用いて、重錘体に作用する加速度と角速度を算出するものである。
また、本発明は、質量をもった重錘体と、該重錘体の一端に接続され、可撓性をもった材料から構成され、重鎮体の振動により撓みが生じる梁と、該梁を支持する支持部と、重錘体の重心をZ軸方向にそって往復運動させるように振動させる励振部と、梁の撓みを電気信号として検出する変位検出部と、該変位検出部の検出結果を所定のタイミングで抽出するサンプリング部と、励振部を駆動させるための駆動信号を出力するとともに、変位検出部の検出結果を抽出するタイミングを示すタイミング信号をサンプリング部に出力するタイミング部と、サンプリング部により抽出された変位検出部の検出結果を記憶する記憶手段と、該記憶手段に記憶された変位検出部の検出結果を用いて、重錘体に作用する加速度と角速度を算出する演算部と、を有し、タイミング部は、重錘体の振動中心位置である振動変位が零近傍になったときに、変位検出部の検出結果を抽出するためのタイミング信号をサンプリング部に出力するとともに、該振動変位の位相を略90度遅らせた値が零近傍になったときでもタイミング信号をサンプリング部に出力し、演算部は、重錘体の振動変位が零近傍になったときに出力されるタイミング信号に基づいて検出された変位検出部の検出結果と、該振動変位の位相を略90度遅らせた値が零近傍になったときに出力されるタイミング信号に基づいて検出された変位検出部の検出結果を用いて、重錘体に作用する加速度と角速度を算出するものである。
さらに、記憶手段は、第1の記憶手段と、第2の記憶手段とからなり、第1の記憶手段は、駆動信号の出力値が零近傍になったときに出力されるタイミング信号に基づいて検出された変位検出部の検出結果を記憶し、第2の記憶手段は、該駆動信号の位相を略90度遅らせた信号の値が零近傍になったときに出力されるタイミング信号に基づいて検出された変位検出部の検出結果を記憶するものである。
また、記憶手段は、第1の記憶手段と、第2の記憶手段とからなり、第1の記憶手段は、重錘体の振動変位が零近傍になったときに出力されるタイミング信号に基づいて検出された変位検出部の検出結果を記憶し、第2の記憶手段は、該振動変位の位相を略90度遅らせた値が零近傍になったときに出力されるタイミング信号に基づいて検出された変位検出部の検出結果を記憶するものである。
また、質量をもった重錘体と、該重錘体の一端に接続され、可撓性をもった材料から構成され、重鎮体の振動により撓みが生じる梁と、該梁を支持する支持部と、を有する装置を用いて、XYZ3次元直交座標系の少なくとも1座標軸方向の加速度と、XY平面に含まれる1軸まわりの角速度を検出する加速度・角速度検出方法であって、重錘体の重心をZ軸方向にそって振動させるための駆動信号を出力する駆動信号出力ステップと、駆動信号を入力して重錘体の重心をZ軸方向にそって振動させる励振ステップと、振動による梁の撓みを電気信号として検出する振動検出ステップと、電気信号の検出結果を抽出するためのタイミング信号を出力するタイミング信号出力ステップと、タイミング信号を入力して検出結果を所定のタイミングで抽出するサンプリングステップと、所定のタイミングで抽出された検出結果を記憶する記憶ステップと、記憶ステップにより記憶された検出結果を用いて、重錘体に作用する加速度と角速度を算出する演算ステップと、を有し、タイミング信号出力ステップは、駆動信号出力ステップによる周波数波形を示す駆動信号の出力値が零近傍になったときに、電気信号の検出結果を抽出するためのタイミング信号を出力するとともに、該駆動信号の位相を略90度遅らせた信号の値が零近傍になったときでも、タイミング信号を出力し、演算ステップは、駆動信号の出力値が零近傍になったときに出力されるタイミング信号に基づいて検出された検出結果と、該駆動信号の位相を略90度遅らせた値が零近傍になったときに出力されるタイミング信号に基づいて検出された検出結果を用いて、重錘体に作用する加速度と角速度を算出するものである。
本発明は、タイミング部により、周波数波形を示す駆動信号の出力値が零近傍になったときに、変位検出部の検出結果を抽出するためのタイミング信号をサンプリング部に出力するとともに、該駆動信号の位相を略90度遅らせた信号の値が零近傍になったときでも、タイミング信号をサンプリング部に出力し、演算部により、駆動信号の出力値が零近傍になったときに出力されるタイミング信号に基づいて検出された変位検出部の検出結果と、該駆動信号の位相を略90度遅らせた値が零近傍になったときに出力されるタイミング信号に基づいて検出された変位検出部の検出結果を用いて、重錘体に作用する加速度と角速度を算出するので、たとえば、センサ出力の変極点を求めるという複雑な処理を必要とせず、簡単な方法で加速度による力と角速度によるコリオリ力を分離することができる。また、アナログフィルタを用いないので、加速度による力と角速度によるコリオリ力のそれぞれの力の帯域を制限することなく、加速度による力と角速度によるコリオリ力を精度の良く検出することができる。
また、本発明は、タイミング部により、重錘体の振動中心位置である振動変位が零近傍になったときに、変位検出部の検出結果を抽出するためのタイミング信号をサンプリング部に出力するとともに、該振動変位の位相を略90度遅らせた値が零近傍になったときでも、タイミング信号をサンプリング部に出力し、演算部により、重錘体の振動変位が零近傍になったときに出力されるタイミング信号に基づいて検出された変位検出部の検出結果と、該振動変位の位相を略90度遅らせた値が零近傍になったときに出力されるタイミング信号に基づいて検出された変位検出部の検出結果を用いて、重錘体に作用する加速度と角速度を算出することにより、たとえば、センサ出力の変極点を求めるという複雑な処理を必要とせず、簡単な方法で加速度による力と角速度によるコリオリ力を精度よく分離することができる。また、アナログフィルタを用いないので、加速度による力と角速度によるコリオリ力のそれぞれの力の帯域を制限することなく、加速度による力と角速度によるコリオリ力をより精度の良く検出することができる。
本発明は、駆動信号出力ステップによる周波数波形を示す駆動信号の出力値が零近傍になったときに、電気信号の検出結果を抽出するためのタイミング信号を出力するとともに、該駆動信号の位相を略90度遅らせた信号の値が零近傍になったときでも、タイミング信号を出力し、演算ステップは、駆動信号の出力値が零近傍になったときに出力されるタイミング信号に基づいて検出された検出結果と、該駆動信号の位相を略90度遅らせた値が零近傍になったときに出力されるタイミング信号に基づいて検出された検出結果を用いて、重錘体に作用する加速度と角速度を算出するので、たとえば、センサ出力の変極点を求めるという複雑な処理を必要とせず、簡単な方法で加速度による力と角速度によるコリオリ力を分離することができる。また、アナログフィルタを用いないので、加速度による力と角速度によるコリオリ力のそれぞれの力の帯域を制限することなく、加速度による力と角速度によるコリオリ力を精度の良く検出することができる。
(第1の実施形態)
以下、本発明の加速度・角速度検出装置および加速度・角速度検出方法を図面を参照にしながら説明する。
図1(a)は、本発明の一実施形態における加速度・角速度検出装置の上面図である。
図1(a)に示すように、加速度・角速度検出装置1を上面から見れば正方形の形状をしている。図1では、後述する加速度・角速度検出装置1の重錘体3の重心を座標系の原点Oとし、図1(a)の左右方向をY軸、上下方向をX軸、後述する図1(b)の上下方向をZ軸したXYZ3次元直交座標系を構成している。
加速度・角速度検出装置1は、支持部2と、重錘体3と、梁4とから構造されている。
梁4は、可撓性をもった材料からなる基板で構成され、梁4にはピエゾ抵抗素子(半導体ピエゾ抵抗素子)5−1〜5−12がそれぞれ取り付けてられている。このピエゾ抵抗素子5−1〜5−12は、重錘体3(加速度・角速度検出装置1)に作用する加速度及び角速度を検出するためのもので、結晶に機械的外力を加えると結晶格子に歪を生じ、半導体中のキャリア数や移動度が変化して抵抗が変化する現象を利用した素子である。
図1(b)は、図1(a)のA−A’断面を示す断面図である。図1(b)に示すように、梁4の下面中央部には、重錘体3が接合されており、梁4の下面外周部には、支持部2が接合されている。
支持部2は、前述したように梁4の外周を構成する四辺に沿って配置され、梁4を支持している。
重錘体3は、図1(b)に示すように円柱形状をしており、梁4の下面中央部に接合されている。重錘体3は、前述した支持部2と梁4とにより囲まれた空間に宙吊りの状態で吊るされている。
なお、本実施形態では、重錘体3が円柱形状をしていると説明したが、角柱形状であってもよい。
励振部18(励振手段)は、重錘体3をZ軸方向に振動させるためのもので、例えば、圧電素子、静電素子、電磁素子を用いたアクチュエ−タで構成される。この励振部18により、重錘体3の重心は図1(b)に示すZ軸方向に振動することとなり、重錘体3は、梁4の下面に接合していることから、重錘体3が振動すると、その重錘体3の振動により、梁4も振動することとなる(図1(c)参照)。
この加速度・角速度検出装置1は、加速度aによる力Fa及び角速度ωよるコリオリ力Fcが生じると、重錘体3が変位し、その重鎮体3の変位により梁4が変形し(撓みが生じ)、ピエゾ抵抗素子5−1〜5−12に歪が発生するものである。
ピエゾ抵抗素子5−1〜5−12は、梁4上の最も応力集中する位置に1軸あたり4素子が設けられ、図1に示す3軸(X軸、Y軸、Z軸)で合計12素子が配置されている。そして、各軸(X軸、Y軸、Z軸)の4つのピエゾ抵抗素子により、図2を用いて後述するブリッジ回路を構成している。
加速度aによる力Fa及び角速度ωによるコリオリ力Fcが加速度・角速度検出装置1に作用すると、いずれかのピエゾ抵抗素子5−1〜5−12に歪が生じ、ピエゾ抵抗素子5−1〜5−12に歪が生じることにより後述するブリッジ回路に抵抗変化が生じる。本実施形態では、その抵抗変化による電圧変化を検出している。
この検出方法を図2を用いて詳細に説明する。図2(a)は、加速度・角速度検出装置に加速度による力及び角速度よるコリオリ力が作用した場合のY軸方向の梁の変形状態を示す図である。また、図2(b)は、図2(a)の変形状態でのY軸方向に設置している各ピエゾ抵抗素子に発生する抵抗変化による出力電圧の検出方法を説明する図である。
加速度・角速度検出装置1にY軸方向の加速度aによる力Fa及び角速度ωによるコリオリ力Fcが作用することにより、加速度・角速度検出装置1の梁4が図2(a)に示すように変形し(撓み)、梁4上のピエゾ抵抗素子5−1〜5−4も図2(a)に示すような歪が生じる。そして、それぞれのピエゾ抵抗素子5−1〜5−4の抵抗値(R1〜R4)が変化する。
図2(a)では、ピエゾ抵抗素子5−1とピエゾ抵抗素子5−3には引張応力が働き、ピエゾ抵抗素子5−2とピエゾ抵抗素子5−4には圧縮応力が働いている。
ピエゾ抵抗素子に引張応力が生じることにより抵抗が増加し、ピエゾ抵抗素子に圧縮応力が生じることにより抵抗が減少することから、このブリッジ回路に点電圧Vccを印加した場合の出力電圧Voutは以下の式で求めることができる。
Vout = ( R4 / (R1+R4) −R3 / (R2+R3) )・Vcc ・・(1)
また、X軸についても、前述したY軸方向の加速度aによる力Fa及び角速度ωによるコリオリ力Fcが加速度・角速度検出装置1の重錘体3に作用した場合と同様に出力電圧を求めることができる。すなわち、X軸方向の加速度aによる力Fa及び角速度ωによるコリオリ力Fcが加速度・角速度検出装置1に作用することにより、ピエゾ抵抗素子5−5〜5−8に歪が生じ、その歪によって生じる抵抗値(R5〜R8)の変化による出力電圧を上記した(1)式と同様にして求めることができる。
次に、図2(c)と図2(d)を用いて、Z軸方向の加速度aによる力Fa及び角速度ωによるコリオリ力Fcが作用した場合について説明する。図2(c)は、加速度・角速度検出装置に加速度による力及び角速度よるコリオリ力が作用した場合のZ軸方向の梁の変形状態を示す図であり、また。図2(d)は、図2(c)の変形状態でのZ軸方向に設置している各ピエゾ抵抗素子に発生する出力電圧の検出方法を説明する図である。
加速度・角速度検出装置1の重錘体3にZ軸方向の加速度aによる力Fa及びコリオリ力Fcが作用することにより、加速度・角速度検出装置1の梁4が図2(c)に示すように変形し、梁4上のピエゾ抵抗素子5−9〜5−12も図2(c)に示すように歪が生じる。そして、それぞれのピエゾ抵抗素子の抵抗値(R9〜R12)が変化する。
図2(c)では、ピエゾ抵抗素子5−10とピエゾ抵抗素子5−11には引張応力が働き、ピエゾ抵抗素子5−9とピエゾ抵抗素子5−12には圧縮応力が働いている。
前述したように、ピエゾ抵抗素子に引張応力が生じることにより抵抗が増加し、ピエゾ抵抗素子に圧縮応力が生じることにより抵抗が減少することから、このZ軸のブリッジ回路に電圧Vccを印加した場合の出力電圧Voutは以下の式で求めることができる。
Vout= ( R11 / (R9+R11) −R12 / (R10+R12) )・Vcc ・・(2)
このようなブリッジ回路を構成することにより、X軸、Y軸方向の梁4の変形に対して、Z軸のブリッジ回路には電圧変化は生じず、また、Z軸方向の梁4の変形に対して、X軸,Y軸のブリッジ回路には電圧変化は生じない。このようにして、重錘体3に加わった力による梁4の変形による電圧変化を各軸について独立に検出することができる。
次に、この加速度・角速度検出装置1を用いて、加速度aによる力Fa及び角速度ωによるコリオリ力Fcの検出方法について説明する。図3は、本発明の一実施形態を示す加速度・角速度検出装置のブロック図である。
励振部18(励振手段)は、前述したように振動部30である重錘体3をZ軸方向に振動させるためのもので、例えば、圧電素子、静電素子、電磁素子を用いたアクチュエ−タで構成される。この励振部18により、重錘体3の重心は図1(b)に示すZ軸方向に振動することとなる。
変位検出部40は、振動部30である重錘体3の振動により生じる梁4の撓みを出力電圧Voutして検出するものである。すなわち、前述したように、重錘体3に外力が生じると、重錘体3が振動し、その重錘体3の振動により梁4が撓み、その梁4の撓みにより、ピエゾ抵抗素子5−1〜5−12の抵抗値が変化する。変位検出部40は、その抵抗値が変化したピエゾ抵抗素子5−1〜5−12に構成されるブリッジ回路(図2参照)の出力電圧Voutを検出するものである。
なお、この励振部18と変位検出部40によりセンサ部101を構成するようにしてもよい。
増幅部12は、変位検出部40で検出された出力電圧Voutを適当な値まで増幅するものである。すなわち、変位検出部40により検出された出力電圧Voutの値は、微小値であることが多いことから、その出力値Voutを増幅することにより、その後の処理を円滑にするものである。以下説明の便宜上、増幅部12からの出力を「センサ出力」ということにする。
なお、本実施形態では、増幅部12を設けて説明したが、これに限らず、増幅部12を設けないで構成してもよい。この場合は、出力電圧Vout自体をセンサ出力して扱い、本実施形態で説明する処理を行なえばよい。
タイミング部17は、重錘体3を振動させる励振部18を制御するための駆動信号Soを生成するとともに、励振部18に出力する駆動信号Soと略同期したタイミング信号を生成し、そのタイミング信号を後述するサンプリング部13に出力することにより、増幅部12から出力されるセンサ出力をサンプリング部13が抽出(サンプリング)するタイミングを制御するものである。
なお、タイミング部17からサンプリング部13に出力されるタイミング信号には、後述する加速度aによる力Faと角速度ωによるコリオリ力Fcの合力を検出するための合力検出用タイミング信号と、加速度aによる力Faを検出するための加速度力検出用タイミング信号の2種類のタイミング信号があり、これらのタイミング信号がタイミング部17により生成される。
以上より、励振部18は、タイミング部17からの駆動信号Soによって駆動制御(ON/OFF制御、もしくは励振周波数の制御)される。
なお、前述したように、重錘体3は、励振部18によりZ軸方向に振動することとなるが、この励振部18により直接駆動される重錘体3の振動変位zの位相と、タイミング部17から励振部18に出力される駆動信号Soとの位相を略同一としていることから、励振部18に出力される駆動信号Soの振動周波数は、本加速度・角速度検出装置1おける重錘体3の共振周波数以下であることが望ましい。
サンプリング部13は、前述したようにタイミング部17から出力されるタイミング信号にしたがって、増幅部12からのセンサ出力を抽出(サンプリング)するものである。
第1の記憶手段であるバッファA14は、タイミング部17から出力される合力検出用タイミング信号のタイミングで、サンプリング部13により抽出(サンプリング)されるセンサ出力の値を格納するものである。
また、第2の記憶手段であるバッファB15は、タイミング部17から出力される加速度力検出用タイミング信号のタイミングで、サンプリング部13により抽出(サンプリング)されるセンサ出力の値を格納するものである。
なお、本実施形態では、第1の記憶手段と第2の記憶手段の2つの記憶手段を設けたが、これに限らず、第1の記憶手段と第2の記憶手段を、1つの記憶手段として構成してもよい。
演算部16は、バッファA14に格納されたセンサ出力の値とバッファB15に格納されたセンサ出力の値を用いて、重錘体3に作用する加速度aと角速度ωを求めるために、あらかじめ定められた演算を行なうものである。
なお、図3に示すタイミング部17から、バッファA14、バッファB15および演算部16への矢印は、タイミング部17からサンプリング部13へのタイミング信号と、バッファA14およびバッファB15のバッファリングのタイミングおよび演算部16の演算のタイミングを同期されるための同期信号である。
次に、図4(a)〜(g)を用いて、重錘体3に作用する加速度aによる慣性力Faと角速度ωによるコリオリ力Fcを求める方法について説明する。
図4(a)は、タイミング部から出力される駆動信号Soの推移を示す図である。この励振部18を駆動する駆動信号Soは、前述したようにタイミング部17により制御されている。
また、図4(a)は、励振部18により直接駆動される重錘体3の振動変位zが、タイミング部17から出力される駆動信号Soの位相と略同一であることから、重錘体3のZ軸方向の変位zの推移でもある。ただ、当然のことながら、駆動信号Soのときの縦軸の目盛りと、重錘体3のZ軸方向の変位zの推移をときの縦軸の目盛りは異なる。
つぎに、重錘体3がZ軸方向に振動している状態で、Y軸を回転軸とし、Z軸からX軸に向かう回転方向を正として(図6の回転方向と同様)、図4(b)に示すような角速度ωの回転を与えると、重錘体3には図6を用いて説明したようなコリオリ力Fc(X軸方向)が働く。このコリオリ力Fcを図4(c)に示す。
ここで、図4(b)は、重錘体に作用する角速度の推移を示す図であり、図4(c)は、重錘体に作用するコリオリ力の推移を示す図である。
このコリオリ力Fcによって重錘体3が変位し、この重錘体3の変位により梁4が変形する(撓む)。そして、梁4が変形することにより、ピエゾ抵抗素子5−1〜5−12に応力が発生することになる。本実施形態では、このピエゾ抵抗素子5−1〜5−12に生じる応力をX軸方向のセンサ出力Vxとして検出する。
このセンサ出力Vxの位相は、図4(c)と図4(e)とを比較するとわかるように、コリオリ力Fcの位相と同じである。
つぎにこの状態で、さらに、X軸方向に加速度aが加わった場合について説明する。
図4(d)は、重錘体に作用するX軸方向の加速度の推移を示す図である。加速度・角速度検出装置1にX軸方向の加速度aが加わると、加速度・角速度検出装置1に加速度aによる慣性力Faが働く。この状態での加速度・角速度検出装置1に働く力をセンサ出力Vxとして検出すると図4(e)のようになる。図4(e)は、加速度・角速度検出装置1(重錘体3)に角速度ωと加速度aが作用した場合の増幅部12から出力されるセンサ出力Vxの推移を示す図である。
次に、増幅部12から出力されたセンサ出力Vxから加速度aによる力Faの成分と角速度ωによるコリオリ力Fcの成分を分離する方法について説明する。
前述したように、励振部18に出力される駆動信号Soは図4(a)に示すようになり、また、増幅部12から出力されるセンサ出力Vxは図4(e)のようになる。
本実施形態では、この駆動信号Soを用いて、図4(f)および図4(g)に示すタイミング信号を生成する。
図4(f)のタイミング信号は、図4(a)に示す駆動信号Soのゼロクロス点(So=0の点)で立ち上がるパルスとして、タイミング部17より生成される。このゼロクロス点で立ち上がるタイミング信号を本実施形態ではタイミングクロック(タイミングCLK)Aと呼んでいる。
つぎに、図4(a)に示す駆動信号Soの位相を略90度遅らせた信号の値が零近傍になったときでも、タイミングクロックAと同様にタイミング信号を生成している。このタイミング信号を本実施形態ではタイミングクロックBと呼んでいる。
なお、本実施形態では、タイミングクロックBを、駆動信号Soの位相を略90度遅らせた信号の値が零近傍になったときに立ち上がるパルスとして生成しているが、これに限らず、タイミングクロックAの位相を180度遅らせたパルスとして直接生成してもよい。
この場合、タイミング部17から励振部18に出力される駆動振動Soの出力タイミングがあらかじめ定められているので、駆動信号Soのゼロクロス点でタイミングクロックAを立ち上げ、そして、そのタイミングクロックAを立ち上げたゼロクロス点とその次のゼロクロス点の中間点でタイミングクロックAを立ち下げるようにする。
そうすることにより、タイミングクロックAを立ち上げたゼロクロス点とその次のゼロクロス点の中間点でタイミングクロックBが立ち上がることとなる。
図4(f)は、タイミングクロックAの立ち上がり、立ち下がりタイミングを示す図であり、図4(g)は、タイミングクロックBの立ち上がり、立ち下がりタイミングを示す図である。
センサ出力Vxは、増幅部12からサンプリング部13に出力されるが、サンプリング部13では、このセンサ出力Vxをタイミング部17で生成されたタイミングクロックA及びタイミングクロックBの立ち上がりタイミングに基づいて抽出(サンプリング)している。
タイミングクロックAの立ち上がりタイミングでは、重錘体3の振動変位zのゼロクロス点であり、重錘体3の振動速度が最も速い点であることから、この点では、重錘体3が振動中に受けるコリオリ力Fcが最大となり、さらに、この点では加速度aによる力Faも受けている。すなわち、この点では、コリオリ力Fcと加速度aによる力Faの合力が作用している。
つぎに、タイミングクロックBでサンプリングするタイミングでは、重錘体3の振動速度が0である上下死点であり、この点では、重錘体3に働くコリオリ力Fcが0となる。
すなわち、この点では、加速度aによる力Faのみを受けていることとなり、この点で得られる力は加速度aによる力Faのみとなる。
このように、タイミングクロックBで得られるセンサ出力Vxを抽出することにより加速度aによる力Faを検出することができる。
つぎに、タイミングクロックAの立ち上がりタイミングで抽出されたセンサ出力Vxと、タイミングクロックBの立ち上がりタイミングで抽出されたセンサ出力Vxを用いて、コリオリ力Fcを求める。
すなわち、タイミングクロックAの立ち上がりタイミングでサンプリング部13により抽出(サンプリング)されたセンサ出力Vxは、バッファA14(第1の記憶手段)に出力され記憶される。また、同様に、タイミングクロックBの立ち上がりタイミングでサンプリング部13により抽出(サンプリング)されたセンサ出力Vxは、バッファB15(第2の記憶手段)に出力され記憶される。
このバッファA14に記憶されているセンサ出力Vxは、前述したようにコリオリ力Fcと加速度aによる力Faの合力が作用しているときのセンサ出力である。また、バッファB15に記憶されているセンサ出力Vxは、前述したように、加速度により力Faのみが作用しているときのセンサ出力である。
このことから、コリオリ力Fcは、バッファA14に記憶されているセンサ出力Vxから、バッファB15に記憶されているセンサ出力Vxを差分をとることにより求めることができる。
すなわち、コリオリ力Fcは、演算部16により、タイミングクロックAで得られるセンサ出力Vxから、その直前のタイミングクロックBで得られたセンサ出力Vxを差し引くことにより求めることができる。
つぎに、この加速度・角速度検出装置1に作用するコリオリ力Fcと加速度aによる力Faから、前述した式により加速度・角速度検出装置1に作用する角速度ωと加速度aを求める。
すなわち、角速度ωについては、前述したように、Fc=2m・v・ωの式を用いることにより求めることができ、また、加速度aについては、Fa=m・aの式を用いることにより求めることができる。ここで、mは重錘体3の質量であり、vは重錘体3の速度である。
このようにして、本発明の角速度・加速度検出装置に作用する加速度aと角速度ωを求めることができる。
(第2の実施形態)
次に、本発明の第2の実施形態における加速度・角速度検出装置について説明する。
なお、本実施形態では、第1の実施形態と同一の符号を付した構成要素については、、同一の作用効果を奏するものとし、説明は省略する。
図5は、本発明の第2の実施形態における加速度・角速度検出装置のブロック図である。
すなわち、第1の実施形態では、周波数波形を示す駆動信号Soの出力値が零近傍になったときに、変位検出部40の検出結果を抽出するためのタイミング信号をサンプリング部13に出力するとともに、該駆動信号Soの位相を略90度遅らせた信号の値が零近傍になったときに、タイミング信号をサンプリング部13に出力することとしたが、第2の実施形態では、タイミングクロックを生成する際に、励振部18に出力する駆動信号Soと略同期したタイミング信号を用いるのでなく、変位検出部40により、重錘体3の振動中心位置である振動変位zが零近傍になったときに、変位検出部40の検出結果を抽出するためのタイミング信号(タイミングクロックC)をサンプリング部に出力するとともに、該振動変位zの位相を略90度遅らせた値が零近傍になったときに、タイミング信号(タイミングクロックD)をサンプリング部13に出力することとしたものである。
なお、第2の実施形態では、タイミングクロックDを、振動変位zの位相を略90度遅らせた値が零近傍になったときに立ち上がるパルスとして生成しているが、これに限らず、タイミングクロックCの位相を180度遅らせたパルスとして直接生成してもよい。
この場合においても、タイミング部17から励振部18に出力される駆動振動Soの出力タイミングがあらかじめ定められているので、タイミングクロックCは、重錘体3の振動中心位置である振動変位zが零近傍になったときに立ち上がり、そして、タイミングクロックCを立ち上げた点とその次の駆動信号Soのゼロクロス点との中間点でタイミングクロックCを立ち下げるようにする。
そうすることにより、タイミングクロックCを立ち上げた点とその次のゼロクロス点の中間点でタイミングクロックDが立ち上がることとなる。
すなわち、第1の実施形態において、タイミング部17が出力する駆動信号Soの位相と、重錘体3の振動変位zの位相が、厳密には一致していない場合がある。この駆動信号Soの位相と、重錘体3の振動変位zの位相とが一致していない場合には、タイミング部17により出力されるタイミング信号(タイミングクロックAとタイミングクロックB)も、重錘体3の変位0の点及び上下死点と一致しなくなる。
そのような状態で、コリオリ力Fcと加速度aによる力Faを前述した方法で分離しても、精度良く分離できなくなる。
そこで、角速度ωによるコリオリ力Fcと加速度aによる力Faを精度良く分離するために、タイミングクロックを生成する際に、励振部18に出力する駆動信号(駆動周波数)に略同期したタイミング信号を用いるのでなく、変位検出部40により直接検出された振動変位の検出信号S1を用いるようにしている。
すなわち、変位検出部40は、重錘体3の振動中心位置である振動変位が零近傍になったところを検出し、その検出信号S1をタイミング部17に出力する。そして、タイミング部17が該検出信号S1を受信した後に、変位検出部40の検出結果を抽出するためのタイミング信号(タイミングクロックC)をサンプリング部13に出力する。
また、変位検出部40は、上記した重錘体3の振動変位の位相を略90度遅らせた値が零近傍になったところを検出し、その検出信号S1をタイミング部17に出力する。そして、タイミング部17が該検出信号を受信した後に、変位検出部40の検出結果を抽出するためのタイミング信号(タイミングクロックD)をサンプリング部13に出力する。このようにして、タイミング部17がサンプリング部13に出力するタイミング信号を生成することができる。
そして、タイミングクロックCとタイミングクロックDがサンプリング部13へ出力された後は、第1の実施形態と同様であるので説明は省略する。
これにより、本発明の角速度・加速度検出装置1に作用する加速度aと角速度ωを求めることができる。
次に、本発明の変形例について説明する。
(1)第2の実施形態では、タイミング部により、重錘体3の振動中心位置である振動変位zが零近傍になったときに、変位検出部40の検出結果を抽出するためのタイミング信号をサンプリング部13に出力するとともに、該振動変位の位相を略90度遅らせた値が零近傍になったときでも、タイミング信号をサンプリング部13に出力したが、これに限らず、重錘体3の振動速度を検出する速度検出部(図示略)を設け、重錘体3が振動中心位置である振動変位zが零近傍なったときに、変位検出部40の検出結果を抽出するためのタイミング信号をサンプリング部13に出力するとともに、重錘体3の振動速度が零近傍になったときでも、タイミング信号をサンプリング部13に出力するようにしてもよい。
この場合、演算部16は、重錘体3の振動変位が零近傍になったときに出力されるタイミング信号に基づいて検出された変位検出部の検出結果と、重錘体3の振動速度が零近傍になったときに出力されるタイミング信号に基づいて検出された速度検出部の検出結果を用いて、重錘体に作用する加速度と角速度を算出することとなる。
これによれば、コリオリ力Fcと加速度aによる力Faをより正確に求めることができる。
(2)本実施形態では、重錘部3が「振動」すると説明したが、この重錘部3の「振動」は、必ずしも、規則正しい往復運動のような振動でなくてもよく、重錘部3が不規則に「振動」するようなものであってもよい。
本実施形態で説明した「振動」の字句を「変位」に置き換えたものでもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
(a)は、本発明の一実施形態における加速度・角速度検出装置の上面図であり、(b)は、(a)のA−A’断面を示す断面図であり、(c)は、重錘体のZ軸方法の梁の変形状態を示す図である。 (a)は、加速度・角速度検出装置1に加速度による力と角速度よるコリオリ力が作用した場合のY軸方向の梁の変形状態を示す図であり、(b)は、(a)の変形状態でのY軸方向に設置している各ピエゾ抵抗素子に発生する出力電圧の検出方法を説明する図であり、(c)は、加速度・角速度検出装置1に加速度による力及び角速度よるコリオリ力が作用した場合のZ軸方向の梁の変形状態を示す図であり。(d)は、(c)の変形状態でのZ軸方向に設置している各ピエゾ抵抗素子に発生する出力電圧の検出方法を説明する図である。 本発明の一実施形態を示す加速度・角速度検出装置のブロック図である。 (a)は、タイミング部から出力される駆動信号Soの推移を示す図であり、(b)は、重錘体に作用する角速度の推移を示す図であり、(c)は、重錘体に作用するコリオリ力の推移を示す図であり、(d)は、重錘体に作用するX軸方向の加速度の推移を示す図であり、(e)は、重錘体に角速度と加速度が作用した場合の増幅部から出力されるセンサ出力Vxの推移を示す図であり、(f)は、タイミングクロックAの立ち上がり、立ち下がりタイミングを示す図であり、(g)は、タイミングクロックBの立ち上がり、立ち下がりタイミングを示す図である。 本発明の第2の実施形態を示す加速度・角速度検出装置のブロック図である。 (a)は角速度の検出原理を説明するための図であり、(b)は振動型角速度センサの角速度の検出原理を示す図である。 (a)は質点のZ軸方向の変位の推移を示す図であり、(b)は質点に作用する角速度の推移を示す図であり、(c)は質点に作用するコリオリ力の推移を示す図であり、(d)は質点に作用する加速度の推移を示す図であり、(e)は質点に作用する加速度による力とコリオリ力の合力を示す図である。 慣性力とコリオリ力を分離する方法を示す図である。
符号の説明
1 加速度・角速度検出装置、2 支持部、3 重錘体、4 梁、5−1〜5−12 ピエゾ抵抗素子、12 増幅部、13 サンプリング部、16 演算部、17 タイミング部。

Claims (5)

  1. XYZ3次元直交座標系の少なくとも1座標軸方向の加速度と、XY平面に含まれる1軸まわりの角速度を検出する加速度・角速度検出装置であって、
    質量をもった重錘体と、
    該重錘体の一端に接続され、可撓性をもった材料から構成され、前記重鎮体の振動により撓みが生じる梁と、
    該梁を支持する支持部と、
    前記重錘体の重心をZ軸方向にそって振動させる励振部と、
    前記梁の撓みを電気信号として検出する変位検出部と、
    該変位検出部の検出結果を所定のタイミングで抽出するサンプリング部と、
    前記励振部を駆動させるための駆動信号を出力するとともに、前記変位検出部の検出結果を抽出するためのタイミング信号を出力するタイミング部と、
    前記サンプリング部により抽出された前記変位検出部の検出結果を記憶する記憶手段と、
    該記憶手段に記憶された前記変位検出部の検出結果を用いて、前記重錘体に作用する加速度と角速度を算出する演算部と、を有し、
    前記タイミング部は、周波数波形を示す駆動信号の出力値が零近傍になったときに、前記変位検出部の検出結果を抽出するためのタイミング信号を前記サンプリング部に出力するとともに、該駆動信号の位相を略90度遅らせた信号の値が零近傍になったときでも、タイミング信号を前記サンプリング部に出力し、
    前記演算部は、駆動信号の出力値が零近傍になったときに出力されるタイミング信号に基づいて検出された前記変位検出部の検出結果と、該駆動信号の位相を略90度遅らせた値が零近傍になったときに出力されるタイミング信号に基づいて検出された前記変位検出部の検出結果を用いて、前記重錘体に作用する加速度と角速度を算出することを特徴とする加速度・角速度検出装置。
  2. XYZ3次元直交座標系の少なくとも1座標軸方向の加速度と、XY平面に含まれる1軸まわりの角速度を検出する加速度・角速度検出装置であって、
    質量をもった重錘体と、
    該重錘体の一端に接続され、可撓性をもった材料から構成され、前記重鎮体の振動により撓みが生じる梁と、
    該梁を支持する支持部と、
    前記重錘体の重心をZ軸方向にそって振動させる励振部と、
    前記梁の撓みを電気信号として検出する変位検出部と、
    該変位検出部の検出結果を所定のタイミングで抽出するサンプリング部と、
    前記励振部を駆動させるための駆動信号を出力するとともに、前記変位検出部の検出結果を抽出するためのタイミング信号を出力するタイミング部と、
    前記サンプリング部により抽出された前記変位検出部の検出結果を記憶する記憶手段と、
    該記憶手段に記憶された前記変位検出部の検出結果を用いて、前記重錘体に作用する加速度と角速度を算出する演算部と、を有し、
    前記タイミング部は、前記重錘体の振動中心位置である振動変位が零近傍になったときに、前記変位検出部の検出結果を抽出するためのタイミング信号を前記サンプリング部に出力するとともに、該振動変位の位相を略90度遅らせた値が零近傍になったときでも、タイミング信号を前記サンプリング部に出力し、
    前記演算部は、前記重錘体の振動変位が零近傍になったときに出力されるタイミング信号に基づいて検出された前記変位検出部の検出結果と、該振動変位の位相を略90度遅らせた値が零近傍になったときに出力されるタイミング信号に基づいて検出された前記変位検出部の検出結果を用いて、前記重錘体に作用する加速度と角速度を算出することを特徴とする加速度・角速度検出装置。
  3. 前記記憶手段は、第1の記憶手段と、第2の記憶手段とからなり、
    前記第1の記憶手段は、駆動信号の出力値が零近傍になったときに出力されるタイミング信号に基づいて検出された前記変位検出部の検出結果を記憶し、
    前記第2の記憶手段は、該駆動信号の位相を略90度遅らせた信号の値が零近傍になったときに出力されるタイミング信号に基づいて検出された前記変位検出部の検出結果を記憶することを特徴とする請求項1記載の加速度・角速度検出装置。
  4. 前記記憶手段は、第1の記憶手段と、第2の記憶手段からなり、
    前記第1の記憶手段は、前記重錘体の振動変位が零近傍になったときに出力されるタイミング信号に基づいて検出された前記変位検出部の検出結果を記憶し、
    前記第2の記憶手段は、該振動変位の位相を略90度遅らせた値が零近傍になったときに出力されるタイミング信号に基づいて検出された前記変位検出部の検出結果を記憶することを特徴とする請求項2記載の加速度・角速度検出装置。
  5. 質量をもった重錘体と、該重錘体の一端に接続され、可撓性をもった材料から構成され、前記重鎮体の振動により撓みが生じる梁と、該梁を支持する支持部と、を有する装置を用いて、XYZ3次元直交座標系の少なくとも1座標軸方向の加速度と、XY平面に含まれる1軸まわりの角速度を検出する加速度・角速度検出方法であって、
    前記重錘体の重心をZ軸方向にそって振動させるための駆動信号を出力する駆動信号出力ステップと、
    前記駆動信号を入力して前記重錘体の重心をZ軸方向にそって振動させる励振ステップと、
    前記振動による前記梁の撓みを電気信号として検出する振動検出ステップと、
    前記電気信号の検出結果を抽出するためのタイミング信号を出力するタイミング信号出力ステップと、
    前記タイミング信号を入力して前記検出結果を所定のタイミングで抽出するサンプリングステップと、
    前記所定のタイミングで抽出された前記検出結果を記憶する記憶ステップと、
    前記記憶ステップにより記憶された前記検出結果を用いて、前記重錘体に作用する加速度と角速度を算出する演算ステップと、を有し、
    前記タイミング信号出力ステップは、前記駆動信号出力ステップによる周波数波形を示す駆動信号の出力値が零近傍になったときに、前記電気信号の検出結果を抽出するためのタイミング信号を出力するとともに、該駆動信号の位相を略90度遅らせた信号の値が零近傍になったときでも、タイミング信号を出力し、
    前記演算ステップは、前記駆動信号の出力値が零近傍になったときに出力されるタイミング信号に基づいて検出された前記検出結果と、該駆動信号の位相を略90度遅らせた値が零近傍になったときに出力されるタイミング信号に基づいて検出された前記検出結果を用いて、前記重錘体に作用する加速度と角速度を算出することを特徴とする加速度・角速度検出方法。
JP2005112210A 2005-04-08 2005-04-08 加速度・角速度検出装置および加速度・角速度検出方法 Pending JP2006292506A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005112210A JP2006292506A (ja) 2005-04-08 2005-04-08 加速度・角速度検出装置および加速度・角速度検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005112210A JP2006292506A (ja) 2005-04-08 2005-04-08 加速度・角速度検出装置および加速度・角速度検出方法

Publications (1)

Publication Number Publication Date
JP2006292506A true JP2006292506A (ja) 2006-10-26

Family

ID=37413236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005112210A Pending JP2006292506A (ja) 2005-04-08 2005-04-08 加速度・角速度検出装置および加速度・角速度検出方法

Country Status (1)

Country Link
JP (1) JP2006292506A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162645A (ja) * 2008-01-08 2009-07-23 Panasonic Corp 慣性速度センサ信号処理回路およびそれを備える慣性速度センサ装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312578A (ja) * 1992-05-08 1993-11-22 Murata Mfg Co Ltd ジャイロ
JPH06147901A (ja) * 1992-11-02 1994-05-27 Murata Mfg Co Ltd 圧電振動ジャイロ
JP2001188011A (ja) * 1999-10-20 2001-07-10 Murata Mfg Co Ltd 振動ジャイロ
JP2002350138A (ja) * 2001-05-28 2002-12-04 Wacoh Corp 加速度と角速度との双方を検出する装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312578A (ja) * 1992-05-08 1993-11-22 Murata Mfg Co Ltd ジャイロ
JPH06147901A (ja) * 1992-11-02 1994-05-27 Murata Mfg Co Ltd 圧電振動ジャイロ
JP2001188011A (ja) * 1999-10-20 2001-07-10 Murata Mfg Co Ltd 振動ジャイロ
JP2002350138A (ja) * 2001-05-28 2002-12-04 Wacoh Corp 加速度と角速度との双方を検出する装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162645A (ja) * 2008-01-08 2009-07-23 Panasonic Corp 慣性速度センサ信号処理回路およびそれを備える慣性速度センサ装置

Similar Documents

Publication Publication Date Title
US11079229B2 (en) Microelectromechanical structure with enhanced rejection of acceleration noise
JP4508230B2 (ja) 慣性センサ及びその検出装置
US9683844B2 (en) Extension-mode angular velocity sensor
JP5205725B2 (ja) 角速度センサ
WO2010055871A1 (ja) 姿勢検出装置の補正パラメーター作成方法、姿勢検出装置の補正パラメーター作成用装置及び姿勢検出装置
Zeimpekis et al. Characterization of a mechanical motion amplifier applied to a MEMS accelerometer
JP2010071793A (ja) 多軸加速度センサ及び角速度センサ
JP2007530918A (ja) 可撓性振動型微小電気機械デバイス
JP2006525514A (ja) 1軸の加速度検知及び2軸の角速度検知を与える微細加工マルチセンサ
JP2009025283A (ja) 一体型加速度計・角速度計システム
US20230314469A1 (en) Mems tri-axial accelerometer with one or more decoupling elements
US6598455B1 (en) Non-inertial calibration of vibratory gyroscopes
CN112747731B (zh) 一种基于面外振动的五质量块双轴检测硅微谐振式陀螺
JP2000206141A (ja) 運動量センサ
JP2014134549A (ja) 振動型微小機械角速度センサおよび振動型角速度センサの作製方法
EP2762893A1 (en) Mems resonant accelerometer
JP2010117371A (ja) 姿勢検出装置
EP3237844B1 (en) Method for suppresion of g-sensitivity of mems gyroscope
JP2006292506A (ja) 加速度・角速度検出装置および加速度・角速度検出方法
TW201706566A (zh) 三軸型陀螺儀
Jeon et al. Design and development of a 3-axis micro gyroscope with vibratory ring springs
JP5599128B2 (ja) 振動梁の節点位置修正方法
Che et al. A novel electrostatic-driven tuning fork micromachined gyroscope with a bar structure operating at atmospheric pressure
Dutta et al. Effect of residual stress on modal patterns of MEMS vibratory gyroscope
Lee et al. Design and implementation of a fully-decoupled tuning fork (FDTF) MEMS vibratory gyroscope for robustness improvement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914