JP2006292310A - Geothermal heat pump device, geothermal unit having it, and control method of geothermal heat pump device - Google Patents

Geothermal heat pump device, geothermal unit having it, and control method of geothermal heat pump device Download PDF

Info

Publication number
JP2006292310A
JP2006292310A JP2005115868A JP2005115868A JP2006292310A JP 2006292310 A JP2006292310 A JP 2006292310A JP 2005115868 A JP2005115868 A JP 2005115868A JP 2005115868 A JP2005115868 A JP 2005115868A JP 2006292310 A JP2006292310 A JP 2006292310A
Authority
JP
Japan
Prior art keywords
heat
ground
heat pump
underground
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005115868A
Other languages
Japanese (ja)
Other versions
JP4782462B2 (en
Inventor
Yasushi Nakamura
靖 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2005115868A priority Critical patent/JP4782462B2/en
Publication of JP2006292310A publication Critical patent/JP2006292310A/en
Application granted granted Critical
Publication of JP4782462B2 publication Critical patent/JP4782462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/56Control arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a geothermal heat pump device stably operable over a long time adaptedly to a thermal situation of the ground, and to provide its control method. <P>SOLUTION: A limit value of heat collection and heat radiation is set based on the outlet temperature of heat medium water from a heat pump 3 to an underground heat exchanger 2 measured with a temperature sensor 14, and the operation of the heat pump 3 is controlled not to exceed the set limit value of the heat collection and heat radiation. Thus, the underground temperature can be prevented from becoming too high (or low) to extremely decrease the heat collection/radiation efficiency during the operation of an air conditioner, the underground temperature can be prevented from gradually increasing (or decreasing) over a long time and disabling the heat collection/radiation, and hence stable operation can be achieved over a long time adaptedly to the thermal situation of the ground 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地中熱利用ヒートポンプ装置、これを備えた地中熱利用装置、および地中熱利用ヒートポンプ装置の制御方法に関し、詳しくは、地中に埋設された地中熱交換器に接続されたヒートポンプ本体を備え、地中熱交換器を介して地中から採熱または地中へ放熱する地中熱利用ヒートポンプ、これを備えた地中熱利用装置、および地中熱利用ヒートポンプ装置の制御方法装置に関する。   The present invention relates to a geothermal heat pump device, a geothermal heat device provided with the same, and a control method for the geothermal heat pump device, and more specifically, connected to a geothermal heat exchanger embedded in the ground. A heat pump that uses a geothermal heat that collects heat from the ground or dissipates heat to the ground via a geothermal heat exchanger, a geothermal heat utilization device that includes the heat pump, and a control of the geothermal heat pump device The present invention relates to a method apparatus.

地中に埋設された地中熱交換器と、この地中熱交換器に接続されたヒートポンプ本体と、このヒートポンプ本体に接続された空調機器等の二次側(負荷側)熱交換器とを備えた地中熱利用装置が知られている(例えば、特許文献1参照)。
このような地中熱利用のヒートポンプを備えた空調装置等は、安定した温度を有する大地の地中熱を熱源として利用し、この熱源に対して採放熱するものであり、外気に対して採放熱する空気熱源方式のシステムと比較しても、年間を通して変化が小さく安定した地中温度を利用することで、冷房および暖房の両方について高効率に運転できるシステムである。従って、地中熱利用のヒートポンプシステムでは、省エネルギー化や、低ランニングコスト化、二酸化炭素の排出抑制等の効果に加えて、大気に排熱しないことでヒートアイランド現象の抑制効果も期待されている。
An underground heat exchanger buried in the ground, a heat pump body connected to the underground heat exchanger, and a secondary side (load side) heat exchanger such as an air conditioner connected to the heat pump body A geothermal heat utilization device provided is known (for example, see Patent Document 1).
An air conditioner or the like equipped with such a heat pump that uses geothermal heat uses the ground heat of the ground having a stable temperature as a heat source, and collects and dissipates heat from this heat source. Compared to a system of air heat source system that dissipates heat, it is a system that can be operated with high efficiency for both cooling and heating by utilizing a stable underground temperature with little change throughout the year. Therefore, in the heat pump system using geothermal heat, in addition to effects such as energy saving, low running cost, and carbon dioxide emission suppression, the heat island phenomenon is also expected to be suppressed by not exhausting heat to the atmosphere.

特開2003−302122号公報JP 2003-302122 A

しかしながら、特許文献1に記載されたような従来の地中熱利用装置では、その運転が二次側の負荷に追従して実施されるのみであり、地盤の熱的状況に応じて運転が制御されるものではないため、長期間に渡る継続的な運転が困難になってしまう可能性があり、問題である。
すなわち、二次側の負荷(例えば、冷房負荷や暖房負荷)が計画値を超えて運転された場合には、ヒートポンプが効率よく運転できる許容値を超えた高温または低温に地中温度がなってしまうことがある。また、二次側の負荷の偏りが大きくなって、地中へ放熱し過ぎたり地中から採熱し過ぎたりした場合には、年間を通した地中温度が徐々に上昇するあるいは低下してしまい、数年後には、採放熱効率が著しく低下してしまうことや、放熱不能あるいは採熱不能になってしまうことがある。さらには、地下水位の変動や地下水の流動状況の変動等を原因として地盤の熱伝導率が変化し、計画当初の採熱、放熱能力よりも低下してしまった場合には、負荷処理に十分な採放熱が実施不能になってしまう可能性もある。
However, in the conventional geothermal heat utilization apparatus as described in Patent Document 1, the operation is only performed following the load on the secondary side, and the operation is controlled according to the thermal condition of the ground. Therefore, there is a possibility that continuous operation over a long period of time becomes difficult, which is a problem.
That is, when the load on the secondary side (for example, a cooling load or a heating load) is operated exceeding the planned value, the underground temperature becomes a high temperature or a low temperature exceeding the allowable value at which the heat pump can be operated efficiently. It may end up. Also, if the load on the secondary side becomes large and the heat is dissipated too much into the ground or if too much heat is taken from the ground, the underground temperature throughout the year will gradually increase or decrease. After a few years, the heat-dissipating efficiency may be significantly reduced, or heat dissipation may be impossible or heat extraction may not be possible. Furthermore, if the ground thermal conductivity changes due to fluctuations in groundwater level or groundwater flow conditions, etc., and the heat collection and heat radiation capacity at the initial stage of the plan have fallen, it is sufficient for load treatment. There is a possibility that it will be impossible to carry out heat radiation.

本発明の目的は、地盤の熱的状況に適応し長期間に渡って安定した運転が実現できる地中熱利用ヒートポンプ装置、これを備えた地中熱利用装置、および地中熱利用ヒートポンプ装置の制御方法を提供することにある。   An object of the present invention is to provide a geothermal heat pump device that can adapt to the thermal condition of the ground and realize stable operation over a long period of time, a geothermal heat utilization device including the same, and a geothermal heat utilization heat pump device. It is to provide a control method.

本発明の地中熱利用ヒートポンプ装置は、地中に埋設された地中熱交換器と、この地中熱交換器に接続されたヒートポンプ本体と、前記地中熱交換器と前記ヒートポンプとを接続して熱媒水を循環させる配管とを備え、前記地中熱交換器を介して地中から採熱または地中へ放熱する地中熱利用ヒートポンプ装置であって、地盤の熱的状況を測定する測定手段と、測定した地盤の熱的状況に基づいて採放熱の限界値を設定する限界値設定手段と、設定した採放熱の限界値を超えないようにヒートポンプ本体の運転を制御する運転制御手段とを備えたことを特徴とする。   The ground heat utilization heat pump device of the present invention connects a ground heat exchanger embedded in the ground, a heat pump body connected to the ground heat exchanger, and the ground heat exchanger and the heat pump. A heat pump device that circulates heat transfer water and uses the underground heat exchanger to collect heat from the ground or radiate heat to the ground, and measures the thermal condition of the ground Measuring means to perform, limit value setting means for setting the limit value of heat extraction / radiation based on the measured thermal condition of the ground, and operation control for controlling the operation of the heat pump body so as not to exceed the set limit value of heat extraction / radiation Means.

ここで、測定手段で測定する地盤の熱的状況としては、初期地盤温度や運転期間中の地盤温度、地盤の熱伝導率などの地盤の熱特性、地下水位や地下水の流動状況などの地盤の熱特性に影響する情報等が例示できる。このうち地盤温度は、地盤中に設けた温度センサ等で直接測定されてもよく、また地中熱交換器とヒートポンプ本体との間に循環される熱媒水の温度やその配管の表面温度等から推定された温度であってもよい。
また、限界値設定手段にて設定される採放熱の限界値としては、当該ヒートポンプ装置が設置された設置位置近傍の地盤で負担可能な採放熱量のみならず、周辺地盤からの熱伝達や地下水の流動によって運ばれる熱を考慮した負担採放熱量に基づいて設定されるものである。すなわち、数年〜十年程度の中、長期的に見た場合に、地盤が熱的に自然回復することを考慮した解析等に基づいて採放熱の限界値が設定されるようになっている。
Here, the thermal condition of the ground measured by the measuring means includes the initial ground temperature, the ground temperature during the operation period, the thermal characteristics of the ground such as the thermal conductivity of the ground, the groundwater level and the groundwater flow status, etc. Examples include information that affects thermal characteristics. Of these, the ground temperature may be directly measured by a temperature sensor or the like provided in the ground, the temperature of the heat transfer water circulated between the underground heat exchanger and the heat pump body, the surface temperature of the piping, etc. The temperature estimated from
In addition, the heat collection / dissipation limit value set by the limit value setting means includes not only the heat collection / discharging amount that can be borne by the ground near the installation position where the heat pump device is installed, but also heat transfer from the surrounding ground and groundwater. It is set based on the burden heat radiation amount in consideration of the heat carried by the flow. In other words, the limit value of heat extraction is set based on analysis that takes into account the natural recovery of the ground when it is viewed over the long term in a few years to a decade. .

以上の本発明によれば、測定手段で測定した地盤の熱的状況に基づいて採放熱の限界値を設定し、設定した採放熱の限界値を超えないようにヒートポンプ本体の運転を制御することで、運転中において地中温度が高く(または低く)なり過ぎて採放熱効率が著しく低下したり、長期的に地中温度が徐々に上昇(または低下)して採放熱不能になったりすることが防止でき、地盤の熱的状況に適応して長期間に渡って安定した運転が実現できる。この際、地盤の熱的な自然回復要素を考慮して採放熱の限界値を設定するように限界値設定手段を構成すれば、採放熱の限界値を低く設定しすぎることがなく、合理的な装置の設計が可能となって設置コストを低減させることができる。   According to the present invention described above, the limit value of heat extraction / radiation is set based on the thermal condition of the ground measured by the measuring means, and the operation of the heat pump body is controlled so as not to exceed the set limit value of heat extraction / radiation. During operation, the underground temperature becomes too high (or low) and the heat extraction efficiency decreases significantly, or the underground temperature gradually rises (or decreases) over the long term, making it impossible to extract heat. Can be prevented, and stable operation can be realized over a long period of time by adapting to the thermal condition of the ground. At this time, if the limit value setting means is configured to set the limit value of heat extraction / radiation in consideration of the thermal natural recovery factor of the ground, the limit value of heat extraction / radiation will not be set too low. The device can be designed and the installation cost can be reduced.

また、請求項2に記載の地中熱利用ヒートポンプ装置は、請求項1に記載の地中熱利用ヒートポンプ装置において、前記限界値設定手段は、前記測定手段にて測定した前年分または前数年分の地盤の熱的状況に基づいて前記限界値を再設定するように構成されていることを特徴とする。
このような構成によれば、運転期間中における過去の地盤の熱的状況を考慮して採放熱の限界値を再設定することで、地盤状況の変化に応じたより合理的な限界値の設定が可能になり、装置の運転効率を向上させる、あるいは地盤への負担を軽減させることができる。すなわち、地盤の自然回復能力が当初の想定よりも高ければ、採放熱の限界値を上げるように再設定してもよく、このようにすれば装置の運転効率を高めることができる。一方、地盤の自然回復能力が当初の想定よりも低ければ、採放熱の限界値を下げるように再設定することで、地中温度の過度な変動や長期的な変動が防止でき、地盤の採放熱能力を維持することができる。
The geothermal heat pump device according to claim 2 is the geothermal heat pump device according to claim 1, wherein the limit value setting means is the previous year or several years before measured by the measurement means. It is configured to reset the limit value based on the thermal condition of the ground.
According to such a configuration, it is possible to set a more reasonable limit value according to changes in the ground condition by resetting the limit value of heat extraction and heat dissipation considering the thermal condition of the past ground during the operation period. It becomes possible to improve the operation efficiency of the apparatus or reduce the burden on the ground. That is, if the natural recovery ability of the ground is higher than originally assumed, it may be reset so as to increase the limit value of heat extraction, and in this way, the operation efficiency of the apparatus can be increased. On the other hand, if the natural recovery ability of the ground is lower than originally assumed, resetting to lower the heat dissipation limit value will prevent excessive or long-term fluctuations in the underground temperature, and ground sampling. Heat dissipation capability can be maintained.

さらに、請求項3に記載の地中熱利用ヒートポンプ装置は、請求項1または請求項2に記載の地中熱利用ヒートポンプ装置において、前記測定手段は、前記配管における前記ヒートポンプ本体からの出口または前記ヒートポンプ本体への入口位置の前記熱媒水の温度を測定する温度センサを有していることを特徴とする。
このような構成によれば、ヒートポンプ本体の出口または入口位置の温度センサによって熱媒水の温度を測定することで、測定した出口温度または入口温度から地盤温度を推定できるので、地盤中や地中熱交換器等に温度センサを設置する場合と比較して温度センサの設置個所数を低減することができ、初期コストおよびメンテナンスに要するコストが抑制できる。
Furthermore, the underground heat utilization heat pump device according to claim 3 is the underground heat utilization heat pump device according to claim 1 or 2, wherein the measuring means is an outlet from the heat pump main body in the pipe or the It has the temperature sensor which measures the temperature of the said heat-medium water of the inlet_port | entrance position to a heat pump main body, It is characterized by the above-mentioned.
According to such a configuration, the ground temperature can be estimated from the measured outlet temperature or inlet temperature by measuring the temperature of the heat transfer water using the temperature sensor at the outlet or inlet position of the heat pump main body. Compared with the case where a temperature sensor is installed in a heat exchanger or the like, the number of locations where the temperature sensor is installed can be reduced, and the initial cost and the cost required for maintenance can be suppressed.

また、請求項4に記載の地中熱利用ヒートポンプ装置は、請求項1から請求項3のいずれかに記載の地中熱利用ヒートポンプ装置において、前記ヒートポンプ本体には、前記地中熱交換器と相違する補助熱源が接続されており、前記地中熱交換器における採放熱が前記設定された限界値に達した場合には、前記補助熱源を利用するように前記ヒートポンプ本体が運転制御手段で制御されることを特徴とする。
ここで、補助熱源としては、空気を熱源として採放熱する冷却塔や空気熱交換機、排熱回収器などが例示できる。
このような構成によれば、ヒートポンプ本体に補助熱源が接続され、地中熱交換器の採放熱が限界値に達した場合に補助熱源が利用されるので、二次側の負荷が大きくなって地中熱交換器からの採放熱を停止したとしても、補助熱源からの熱を利用してヒートポンプ本体の運転を継続させることができる。従って、例えば、二次側が空調室内機である場合には、その負荷が大きくなる夏期や冬期においても地盤へ過大な負担をかけることなく、冷房運転や暖房運転を継続させることができる。
Moreover, the underground heat utilization heat pump apparatus of Claim 4 WHEREIN: The underground heat utilization heat pump apparatus in any one of Claims 1-3 WHEREIN: The said underground heat exchanger is provided in the said heat pump main body. When a different auxiliary heat source is connected and the heat extraction / radiation in the underground heat exchanger reaches the set limit value, the heat pump body is controlled by the operation control means so as to use the auxiliary heat source. It is characterized by being.
Here, examples of the auxiliary heat source include a cooling tower, an air heat exchanger, an exhaust heat recovery device, and the like that collect and dissipate heat using air as a heat source.
According to such a configuration, the auxiliary heat source is connected to the heat pump main body, and the auxiliary heat source is used when the heat radiation of the underground heat exchanger reaches the limit value, so the load on the secondary side becomes large. Even if the heat radiation from the underground heat exchanger is stopped, the operation of the heat pump main body can be continued using the heat from the auxiliary heat source. Therefore, for example, when the secondary side is an air-conditioning indoor unit, the cooling operation and the heating operation can be continued without imposing an excessive burden on the ground even in the summer and winter when the load increases.

一方、本発明の地中熱利用装置は、請求項1から請求項4のいずれかに記載の地中熱利用ヒートポンプ装置と、この地中熱利用ヒートポンプ装置のヒートポンプ本体に接続された負荷機とを備えた地中熱利用装置であって、前記負荷機には、前記ヒートポンプ本体と相違する他の熱源機器が接続され、前記地中熱交換器における採放熱が前記設定された限界値に達した場合には、前記他の熱源機器を用いて前記負荷機に熱が供給されまたは前記負荷機から熱が吸収されることを特徴とする。
ここで、負荷機としては、室内の冷房、暖房、または冷暖房を行う空調室内機や、冷蔵(冷凍)温蔵機、給湯器、冷水器など、ヒートポンプ本体から供給される(またはヒートポンプ本体で吸収される)熱を利用した各種の機器が例示できる。
また、ヒートポンプ本体と相違する他の熱源機器としては、冷凍機やボイラー、冷温水発生機等が例示できる。
On the other hand, a geothermal heat utilization device of the present invention includes a ground heat utilization heat pump device according to any one of claims 1 to 4, and a load machine connected to a heat pump body of the geothermal heat utilization heat pump device. The heat load device is connected to another heat source device that is different from the heat pump main body, and the heat extraction / radiation in the ground heat exchanger reaches the set limit value. In this case, heat is supplied to or absorbed from the load machine using the other heat source device.
Here, the load machine is supplied from the heat pump main body (or absorbed by the heat pump main body) such as an air conditioner indoor unit that performs indoor cooling, heating, or air conditioning, a refrigeration (refrigeration) warmer, a water heater, or a water heater. And various types of equipment using heat.
Moreover, as another heat source apparatus different from the heat pump main body, a refrigerator, a boiler, a cold / hot water generator etc. can be illustrated.

以上の本発明によれば、負荷機に他の熱源機器が接続され、地中熱交換器の採放熱が限界値に達した場合に他の熱源機器を用いて負荷機へ熱が供給されるまたは負荷機から熱が吸収されるので、二次側の負荷が大きくなって地中熱交換器からの採放熱を停止したとしても、他の熱源機器により負荷機の運転を継続させることができる。従って、例えば、負荷機が空調室内機である場合には、その負荷が大きくなる夏期や冬期においても地盤へ過大な負担をかけることなく、冷房運転や暖房運転を継続させることができる。   According to the present invention as described above, when another heat source device is connected to the load machine, and the heat radiation from the underground heat exchanger reaches a limit value, heat is supplied to the load machine using the other heat source device. Or since heat is absorbed from the load machine, even if the load on the secondary side becomes large and heat dissipation from the underground heat exchanger is stopped, the operation of the load machine can be continued by other heat source equipment. . Therefore, for example, when the load machine is an air-conditioning indoor unit, the cooling operation and the heating operation can be continued without imposing an excessive burden on the ground even in summer and winter when the load increases.

また、本発明の地中熱利用ヒートポンプ装置の制御方法は、地中に埋設された地中熱交換器と、この地中熱交換器に接続されたヒートポンプ本体と、前記地中熱交換器と前記ヒートポンプとを接続して熱媒水を循環させる配管とを備え、前記地中熱交換器を介して地中から採熱または地中へ放熱する地中熱利用ヒートポンプ装置の制御方法であって、地盤の熱的状況を測定する測定工程と、測定した地盤の熱的状況に基づいて採放熱の限界値を設定する限界値設定工程と、設定した採放熱の限界値を超えないようにヒートポンプ本体の運転を制御する運転制御工程とを備えたことを特徴とする。
以上の本発明によれば、前述と同様に、地盤の熱的状況に適応して長期間に渡って安定した運転が実現できるとともに、合理的なヒートポンプ装置の設計が可能となって設置コストを低減させることができる。
Further, the control method of the heat pump device using ground heat according to the present invention includes a ground heat exchanger embedded in the ground, a heat pump body connected to the ground heat exchanger, and the ground heat exchanger. A method for controlling a heat pump device using geothermal heat that includes a pipe that connects the heat pump and circulates heat transfer water and collects heat from the ground or radiates heat to the ground via the ground heat exchanger. , A measurement process to measure the thermal condition of the ground, a limit value setting process to set the limit value of heat extraction based on the measured thermal condition of the ground, and a heat pump so as not to exceed the set limit value of heat extraction And an operation control process for controlling the operation of the main body.
According to the present invention described above, as described above, it is possible to realize a stable operation over a long period of time by adapting to the thermal condition of the ground, and it is possible to design a rational heat pump device, thereby reducing the installation cost. Can be reduced.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の実施形態に係る地中熱利用装置としての空気調整装置1を示す概略構成図である。図2は、空気調整装置1の要部であるヒートポンプ装置1Aを示す概略構成図である。
図1および図2において、空気調整装置1は、地盤G中に埋設された地中熱交換器2と、この地中熱交換器2に接続されたヒートポンプ(ヒートポンプ本体)3と、このヒートポンプ3に接続された負荷機としての空調室内機4と、地中熱交換器2とヒートポンプ3とを接続して水または不凍液等の熱媒水を循環させる水配管5と、ヒートポンプ3と空調室内機4とを接続して水または不凍液等の熱媒水を循環させる水配管6とを備えて構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an air conditioner 1 as a geothermal heat utilization device according to an embodiment of the present invention. FIG. 2 is a schematic configuration diagram illustrating a heat pump device 1 </ b> A that is a main part of the air conditioning device 1.
1 and 2, an air conditioner 1 includes an underground heat exchanger 2 embedded in the ground G, a heat pump (heat pump body) 3 connected to the underground heat exchanger 2, and the heat pump 3. An air conditioner indoor unit 4 as a load machine connected to the water, a water pipe 5 for connecting the underground heat exchanger 2 and the heat pump 3 to circulate heat transfer water such as water or antifreeze liquid, the heat pump 3 and the air conditioner indoor unit 4 and a water pipe 6 that circulates heat transfer water such as water or antifreeze liquid.

ヒートポンプ3には、冷媒(ガス)を循環させる冷媒配管11と、冷媒配管11中の冷媒を圧縮する圧縮機7と、冷媒配管11中の冷媒を膨張させる膨張弁8と、水配管5の熱媒水を用いて冷媒を凝縮または蒸発させる一次凝縮・蒸発器9と、圧縮機7で圧縮された高温の冷媒を凝縮させて水配管6の熱媒水に熱を供給する、または膨張弁8で膨張された低温の冷媒を蒸発させて水配管6の熱媒水から熱を吸収する二次凝縮・蒸発器10とが設けられている。
また、水配管5,6には、それぞれの熱媒水を循環させる循環ポンプ12,13が設けられている。
そして、ヒートポンプ装置1Aは、地中熱交換器2から熱媒水を介して採熱(または放熱)した地中熱を利用し、ヒートポンプ3の冷媒配管11中の冷媒を介して水配管6の熱媒水を昇温(冷却)し、この熱媒水により空調室内機4から空調空間Aに熱を供給(または空調空間Aから熱を吸収)するものである。
The heat pump 3 includes a refrigerant pipe 11 that circulates refrigerant (gas), a compressor 7 that compresses the refrigerant in the refrigerant pipe 11, an expansion valve 8 that expands the refrigerant in the refrigerant pipe 11, and the heat of the water pipe 5. A primary condenser / evaporator 9 that condenses or evaporates the refrigerant using the medium water, and condenses the high-temperature refrigerant compressed by the compressor 7 to supply heat to the heat transfer water in the water pipe 6, or the expansion valve 8 A secondary condenser / evaporator 10 is provided that evaporates the low-temperature refrigerant expanded in step, and absorbs heat from the heat transfer water in the water pipe 6.
The water pipes 5 and 6 are provided with circulation pumps 12 and 13 for circulating the respective heat transfer water.
Then, the heat pump device 1A uses the underground heat collected (or radiated) from the underground heat exchanger 2 via the heat transfer water, and the water pipe 6 passes through the refrigerant in the refrigerant pipe 11 of the heat pump 3. The temperature of the heat transfer water is raised (cooled), and heat is supplied from the air conditioning indoor unit 4 to the air conditioned space A (or heat is absorbed from the air conditioned space A) by the heat transfer water.

すなわち、ヒートポンプ装置1Aでは、夏期における冷房運転時において、水配管5,6中の熱媒水および冷媒配管11中の冷媒が、それぞれ図2に矢印で示す方向に循環される。
すなわち、循環ポンプ12は、熱媒水をヒートポンプ3の一次凝縮・蒸発器9から地中熱交換器2に送るとともに、地中熱交換器2での熱交換により地中に放熱して温度の下がった熱媒水を一次凝縮・蒸発器9に戻す。
ヒートポンプ3において、一次凝縮・蒸発器9は、圧縮機7で圧縮された冷媒と水配管5中の熱媒水との間で熱交換を行い、冷媒を凝縮させる。凝縮されて冷却された冷媒は膨張弁8で膨張された後、二次凝縮・蒸発器10へ送られる。二次凝縮・蒸発器10は、膨張弁8から送られた冷媒と水配管6中の熱媒水との間で熱交換を行い、内気を冷却し冷媒を蒸発させる。蒸発して昇温された冷媒は圧縮機7で再度圧縮されて一次凝縮・蒸発器9へ送られ、水配管5中の熱媒水との間で熱交換が行われる。
循環ポンプ12は、二次凝縮・蒸発器10で冷却された水配管6中の熱媒水を空調室内機4へ送るとともに、空調空間Aの内気から熱を吸収して昇温された熱媒水を二次凝縮・蒸発器10に戻す。
以上のようなサイクルを繰り返すことで、冷媒および熱媒水を介して空調空間Aの熱を地中に排熱し、空調空間Aの冷房が実施される。
That is, in the heat pump device 1A, during the cooling operation in summer, the heat transfer water in the water pipes 5 and 6 and the refrigerant in the refrigerant pipe 11 are circulated in the directions indicated by arrows in FIG.
That is, the circulation pump 12 sends the heat transfer water from the primary condenser / evaporator 9 of the heat pump 3 to the underground heat exchanger 2, and radiates heat to the ground by heat exchange in the underground heat exchanger 2. The lowered heat transfer water is returned to the primary condenser / evaporator 9.
In the heat pump 3, the primary condenser / evaporator 9 performs heat exchange between the refrigerant compressed by the compressor 7 and the heat transfer water in the water pipe 5 to condense the refrigerant. The condensed and cooled refrigerant is expanded by the expansion valve 8 and then sent to the secondary condenser / evaporator 10. The secondary condenser / evaporator 10 exchanges heat between the refrigerant sent from the expansion valve 8 and the heat transfer water in the water pipe 6 to cool the inside air and evaporate the refrigerant. The refrigerant whose temperature has been increased by evaporation is compressed again by the compressor 7 and sent to the primary condenser / evaporator 9, and heat exchange is performed with the heat transfer water in the water pipe 5.
The circulation pump 12 sends the heat transfer water in the water pipe 6 cooled by the secondary condenser / evaporator 10 to the air conditioning indoor unit 4 and absorbs heat from the inside air of the air conditioned space A to raise the temperature. The water is returned to the secondary condenser / evaporator 10.
By repeating the cycle as described above, the heat of the air-conditioned space A is discharged into the ground via the refrigerant and the heat transfer water, and the air-conditioned space A is cooled.

一方、冬期における暖房運転時には、上述した冷媒配管11中の冷媒が図2の矢印と逆方向に循環される。なお、水配管5,6中の熱媒水の循環方向は、図2に矢印で示す通りである。
すなわち、ヒートポンプ3において、一次凝縮・蒸発器9は、膨張弁8で膨張された冷媒と水配管5中の熱媒水との間で熱交換を行い、冷媒を蒸発させる。蒸発されて昇温された冷媒は圧縮機7で圧縮された後、二次凝縮・蒸発器10へ送られる。二次凝縮・蒸発器10は、圧縮機7から送られた冷媒と水配管6中の熱媒水との間で熱交換を行い、内気を加熱し冷媒を凝縮させる。凝縮されて冷却された冷媒は膨張弁8で再度膨張されて一次凝縮・蒸発器9へ送られ、水配管5中の熱媒水との間で熱交換が行われる。
以上のようなサイクルを繰り返すことで、冷媒および熱媒水を介して地中から採熱した熱を空調空間Aに供給し、空調空間Aの暖房が実施される。
On the other hand, during the heating operation in winter, the refrigerant in the refrigerant pipe 11 is circulated in the direction opposite to the arrow in FIG. The circulation direction of the heat transfer water in the water pipes 5 and 6 is as shown by arrows in FIG.
That is, in the heat pump 3, the primary condenser / evaporator 9 performs heat exchange between the refrigerant expanded by the expansion valve 8 and the heat transfer water in the water pipe 5 to evaporate the refrigerant. The refrigerant that has been evaporated and heated is compressed by the compressor 7 and then sent to the secondary condenser / evaporator 10. The secondary condenser / evaporator 10 exchanges heat between the refrigerant sent from the compressor 7 and the heat transfer water in the water pipe 6 to heat the inside air and condense the refrigerant. The condensed and cooled refrigerant is expanded again by the expansion valve 8 and sent to the primary condenser / evaporator 9, and heat exchange is performed with the heat transfer water in the water pipe 5.
By repeating the above cycle, the heat collected from the ground via the refrigerant and the heat transfer water is supplied to the air-conditioned space A, and the air-conditioned space A is heated.

また、空気調整装置1は、図1に示すように、複数の地中熱交換器2が互いに並列に接続され、これら複数の地中熱交換器2を接続した一系統の水配管5に配管ヘッダー5Aを介して複数(2台)のヒートポンプ3が接続されている。これら複数のヒートポンプ3は、同時にまたはヒートポンプ3ごとに、運転および停止が切替制御可能に構成されている。また、複数(2台)のヒートポンプ3から延びる水配管6は、配管ヘッダー6Aを介してまとめられて空調室内機4に接続されている。なお、以上のヒートポンプ3には、複数の空調室内機4が接続されていてもよく、これら複数の空調室内機4を同時に、または複数の空調室内機4ごとに、運転および停止が切替制御可能に構成されていてもよい。   As shown in FIG. 1, the air conditioner 1 is connected to a single water pipe 5 in which a plurality of underground heat exchangers 2 are connected in parallel to each other, and the plurality of underground heat exchangers 2 are connected. A plurality (two) of heat pumps 3 are connected via the header 5A. The plurality of heat pumps 3 are configured to be capable of switching control of operation and stop at the same time or for each heat pump 3. In addition, water pipes 6 extending from a plurality (two) of heat pumps 3 are gathered through a pipe header 6 </ b> A and connected to the air conditioning indoor unit 4. Note that a plurality of air conditioning indoor units 4 may be connected to the heat pump 3 described above, and the operation and stop of the plurality of air conditioning indoor units 4 can be switched and controlled simultaneously or for each of the plurality of air conditioning indoor units 4. It may be configured.

さらに、空気調整装置1には、補助熱源としての冷却塔21、および他の熱源機器としての冷凍機(チラー)23およびボイラ30とを有して構成されている。
冷却塔21は、空気を熱源として気化熱を利用して循環水(熱媒水)を冷却するものであって、循環水を循環させる水配管22によって配管ヘッダー5Aに接続され、この配管ヘッダー5Aを介してヒートポンプ3に接続されている。すなわち、夏期においてヒートポンプ3が高負荷運転され、後述するように地中熱交換器2による地盤Gの採放熱が限界値に達した場合に、地中熱交換器2側への熱媒水の循環が停止または抑制され、冷却塔21側へ熱媒水が循環され、これによりヒートポンプ3の冷房運転が継続されるようになっている。
Furthermore, the air conditioner 1 includes a cooling tower 21 as an auxiliary heat source, and a refrigerator (chiller) 23 and a boiler 30 as other heat source devices.
The cooling tower 21 cools circulating water (heat transfer water) using air as a heat source, and is connected to the pipe header 5A by a water pipe 22 for circulating the circulating water. Is connected to the heat pump 3. That is, when the heat pump 3 is operated at a high load in the summer and the heat extraction / dissipation of the ground G by the underground heat exchanger 2 reaches a limit value as will be described later, the heat transfer water to the underground heat exchanger 2 side is reached. The circulation is stopped or suppressed, and the heat transfer water is circulated to the cooling tower 21 side, whereby the cooling operation of the heat pump 3 is continued.

冷凍機23は、前記水配管6と同様に熱媒水を循環させる水配管24で配管ヘッダー6Aに接続され、ヒートポンプ3と同様に圧縮機25と、膨張弁26と、蒸発器27と、冷媒配管28とを有し、蒸発器27における熱交換により水配管24中の熱媒水を冷却するものである。水配管24には、循環ポンプ29が設けられており、この循環ポンプ29により水配管24中の熱媒水が配管ヘッダー6Aを介して空調室内機4と冷凍機23の蒸発器27との間を循環されるようになっている。このような冷凍機23は、夏期においてヒートポンプ3が高負荷運転されて地中熱交換器2による地盤Gへの放熱が限界値に達し、ヒートポンプ3の運転が停止または抑制された場合に運転され、この冷凍機23の運転により空調室内機4の冷房運転が継続されるようになっている。   The refrigerator 23 is connected to the pipe header 6 </ b> A by a water pipe 24 that circulates heat transfer water in the same manner as the water pipe 6, and similarly to the heat pump 3, a compressor 25, an expansion valve 26, an evaporator 27, and a refrigerant The heating medium water in the water pipe 24 is cooled by heat exchange in the evaporator 27. The water pipe 24 is provided with a circulation pump 29. The circulation pump 29 causes heat transfer water in the water pipe 24 to pass between the air conditioning indoor unit 4 and the evaporator 27 of the refrigerator 23 via the pipe header 6A. Is supposed to be circulated. Such a refrigerator 23 is operated when the heat pump 3 is operated at a high load in summer, and the heat radiation to the ground G by the underground heat exchanger 2 reaches a limit value, and the operation of the heat pump 3 is stopped or suppressed. The cooling operation of the air conditioner indoor unit 4 is continued by the operation of the refrigerator 23.

ボイラ30は、前記水配管6,24と同様に熱媒水を循環させる水配管31で配管ヘッダー6Aに接続され、軽油等の化石燃料を燃焼させて熱を発生し、この熱により熱媒水を昇温するものである。そして、水配管31には、循環ポンプ32が設けられており、この循環ポンプ32により水配管31中の熱媒水が配管ヘッダー6Aを介して空調室内機4とボイラ30との間を循環されるようになっている。このようなボイラ30は、冬期においてヒートポンプ3が高負荷運転されて地中熱交換器2による地盤Gからの採熱が限界値に達し、ヒートポンプ3の運転が停止または抑制された場合に運転され、このボイラ30の運転により空調室内機4の暖房運転が継続されるようになっている。   The boiler 30 is connected to the pipe header 6A by a water pipe 31 that circulates heat transfer water similarly to the water pipes 6 and 24, and generates heat by burning fossil fuel such as light oil. The temperature is raised. The water pipe 31 is provided with a circulation pump 32, and the heat pump water in the water pipe 31 is circulated between the air conditioning indoor unit 4 and the boiler 30 via the pipe header 6A. It has become so. Such a boiler 30 is operated when the heat pump 3 is operated at a high load in the winter, the heat collection from the ground G by the underground heat exchanger 2 reaches a limit value, and the operation of the heat pump 3 is stopped or suppressed. The heating operation of the air conditioning indoor unit 4 is continued by the operation of the boiler 30.

以上のような空気調整装置1におけるヒートポンプ装置1Aには、図2に示すように、ヒートポンプ3から地中熱交換器2へ向かう水配管5の出口位置に設けられて熱媒水の出口温度を測定する測定手段としての温度センサ14と、この温度センサ14で測定した熱媒水の出口温度に基づいて地盤Gの熱的状況を判断する制御装置15とが設けられている。制御装置15は、例えば、コンピュータから構成され、予め入力されたデータや組み込まれたプログラムによって、熱媒水の出口温度から地盤Gの熱的状況である地中温度(地中熱交換器2の表面温度)を算出するようになっている。そして、制御装置15は、算出した地中温度に基づいて地中熱交換器2による採放熱の限界値を設定する限界値設定手段として機能するとともに、設定した採放熱の限界値を超えないようにヒートポンプ3の運転を制御する運転制御手段としても機能するようになっている。   As shown in FIG. 2, the heat pump device 1 </ b> A in the air conditioning device 1 as described above is provided at the outlet position of the water pipe 5 from the heat pump 3 to the underground heat exchanger 2 to set the outlet temperature of the heat transfer water. There are provided a temperature sensor 14 as measurement means for measuring, and a control device 15 for determining the thermal condition of the ground G based on the outlet temperature of the heat transfer water measured by the temperature sensor 14. The control device 15 is composed of, for example, a computer, and the ground temperature that is the thermal condition of the ground G from the outlet temperature of the heat transfer water (in the ground heat exchanger 2) according to pre-input data or a built-in program. Surface temperature) is calculated. The control device 15 functions as limit value setting means for setting the limit value of heat extraction / dissipation by the underground heat exchanger 2 based on the calculated underground temperature, and does not exceed the set limit value of heat extraction / discharging. Also, it functions as an operation control means for controlling the operation of the heat pump 3.

すなわち、空気調整装置1において、図3のグラフに曲線L1で示されるような年間の負荷変動が生じる場合に、図4のグラフに細実線で示される曲線L2が想定される年間の熱媒水の出口温度の変動曲線(基準変動曲線)を示している。そして、図4のグラフに細一点鎖線で示される曲線L3は、熱媒水の出口温度から算出される年間の地中熱交換器2の表面温度の変動曲線である。ここで、曲線L2’(図中、太実線)は、冬期の暖房負荷が過大になって地中熱交換器2による地盤Gからの採熱が過剰になった場合の熱媒水の出口温度の変動曲線を示し、曲線L3’(図中、太一点鎖線)は、その際の地中熱交換器2の表面温度の変動曲線を示している。つまり、地盤Gからの採熱が過剰になると、地中温度が前年の地中温度よりも下がってしまい、地盤Gの採熱能力が低下していってしまうことを示している。これに対して、曲線L2,L3では、一年後の地中温度が前年と略同一であり、地盤Gの採放熱能力が維持されている。従って、このような年間の熱媒水の出口温度の変動曲線(基準変動曲線)L2に基づいて、制御装置15が採放熱の限界値を設定するようになっている。   That is, in the air conditioner 1, when the annual load fluctuation as shown by the curve L1 in the graph of FIG. 3 occurs, the annual heat transfer water in which the curve L2 shown by the thin solid line in the graph of FIG. 4 is assumed. The outlet temperature fluctuation curve (reference fluctuation curve) is shown. And the curve L3 shown by the fine dashed-dotted line in the graph of FIG. 4 is a fluctuation curve of the surface temperature of the underground heat exchanger 2 for a year calculated from the outlet temperature of the heat transfer water. Here, the curve L2 ′ (thick solid line in the figure) indicates the outlet temperature of the heat transfer water when the heating load in the winter season becomes excessive and the heat collection from the ground G by the underground heat exchanger 2 becomes excessive. The curve L3 ′ (in the figure, a thick one-dot chain line) shows the curve of the surface temperature of the underground heat exchanger 2 at that time. That is, when the heat collection from the ground G becomes excessive, the underground temperature falls below the previous year's underground temperature, which indicates that the heat collection ability of the ground G is lowered. On the other hand, in the curves L2 and L3, the underground temperature after one year is substantially the same as the previous year, and the heat-dissipating ability of the ground G is maintained. Therefore, the control device 15 sets a limit value for heat extraction based on the fluctuation curve (reference fluctuation curve) L2 of the outlet temperature of the heat transfer water for the year.

採放熱の限界値(限界出口温度)は、図5のグラフに一点鎖線で示される曲線L4のように設定され、熱媒水の出口温度の変動曲線L2に対して、暖房負荷の期間については、曲線L2よりも所定温度だけ低い温度となるように設定され、冷房負荷の期間については、曲線L2よりも所定温度だけ高い温度となるように設定されている(限界値設定工程)。この際、曲線L2との差である所定温度は、周辺地盤からの熱伝達等により地盤Gが熱的に自然回復することを考慮した解析や実験に基づいて設定されている。そして、設定された限界出口温度に応じてヒートポンプ装置1Aは、図5の丸囲み部の曲線L5のように温度センサ14で測定した(測定工程)熱媒水の出口温度が限界出口温度(曲線L4)に達したときには、制御装置15によりヒートポンプ3の運転が停止または抑制される。このようにヒートポンプ3の運転を停止または抑制することで、熱媒水の出口温度が曲線L2に達するまで回復すれば、制御装置15によりヒートポンプ3の運転が再開される(運転制御工程)。このようなヒートポンプ3の運転制御を実施することで、地中温度が低下しすぎないあるいは上昇しすぎないようにできる。   The limit value (limit outlet temperature) of heat extraction / radiation is set as a curve L4 indicated by a one-dot chain line in the graph of FIG. 5, and the heating load period with respect to the variation curve L2 of the outlet temperature of the heat transfer water. The cooling load period is set to be higher by a predetermined temperature than the curve L2 (limit value setting step). At this time, the predetermined temperature, which is a difference from the curve L2, is set based on analysis and experiment considering that the ground G naturally recovers thermally by heat transfer from the surrounding ground. Then, according to the set limit outlet temperature, the heat pump apparatus 1A measured with the temperature sensor 14 as indicated by a curved line L5 in FIG. 5 (measurement step). When reaching L4), the operation of the heat pump 3 is stopped or suppressed by the control device 15. By stopping or suppressing the operation of the heat pump 3 as described above, the operation of the heat pump 3 is resumed by the control device 15 if the outlet temperature of the heat transfer water recovers until reaching the curve L2 (operation control process). By carrying out such operation control of the heat pump 3, the underground temperature can be prevented from being excessively lowered or increased.

一方、地盤Gの熱的状況は、空気調整装置1の運転開始から数年(例えば、5年程度)の間は比較的安定せず、図6のグラフに示される曲線L6(1年目の熱媒水の出口温度の変動曲線、細実線)および曲線L7(1年目の地中熱交換器2の表面温度の変動曲線、細一点鎖線)のように、前年の地中温度よりも低くなってしまう(あるいは高くなってしまう)ことがある。そして、運転開始から数年以降になると、図6のグラフに示される曲線L6’(5年目の熱媒水の出口温度の変動曲線、太実線)や曲線L7’(5年目の地中熱交換器2の表面温度の変動曲線、太一点鎖線)のように、前年との地中温度の差が小さくなり安定する。このため、本実施形態のヒートポンプ装置1Aでは、運転開始から数年間においては、前年の熱媒水の出口温度の測定結果に基づいて、制御装置15が基準変動曲線(L6,L6’)を毎年再設定し、この基準変動曲線に基づいて、制御装置15が採放熱の限界値を設定するようになっている。   On the other hand, the thermal condition of the ground G is not relatively stable for several years (for example, about 5 years) from the start of operation of the air conditioner 1, and the curve L6 (first year) shown in the graph of FIG. It is lower than the previous year's underground temperature, as shown in the fluctuation curve of the outlet temperature of the heat transfer water, thin solid line) and the curve L7 (the fluctuation curve of the surface temperature of the underground heat exchanger 2 in the first year, fine dotted line). May become (or become expensive). Then, after several years from the start of operation, the curve L6 ′ (fluctuation curve of the outlet temperature of the heat transfer water in the fifth year, thick solid line) and the curve L7 ′ (the underground in the fifth year) shown in the graph of FIG. As shown in the fluctuation curve of the surface temperature of the heat exchanger 2, the thick one-dot chain line), the difference in the underground temperature from the previous year becomes smaller and stable. For this reason, in the heat pump device 1A of the present embodiment, the control device 15 generates the reference fluctuation curve (L6, L6 ′) every year based on the measurement result of the outlet temperature of the heat transfer water of the previous year for several years from the start of operation. The control device 15 sets the limit value of heat extraction / radiation based on the reference fluctuation curve.

このような本実施形態によれば、以下のような効果がある。
(1)すなわち、温度センサ14で測定したヒートポンプ3から地中熱交換器2への熱媒水の出口温度に基づいて採放熱の限界値(曲線L4)を設定し、設定した採放熱の限界値を超えないようにヒートポンプ3の運転を制御することで、空気調整装置1の運転中において地中温度が高く(または低く)なり過ぎて採放熱効率が著しく低下したり、長期的に地中温度が徐々に上昇(または低下)して採放熱不能になったりすることが防止でき、地盤3の熱的状況に適応して長期間に渡って安定した運転が実現できる。
According to this embodiment, there are the following effects.
(1) That is, based on the outlet temperature of the heat transfer water from the heat pump 3 to the underground heat exchanger 2 measured by the temperature sensor 14, the limit value (curve L4) of heat extraction / radiation is set, and the set limit of heat extraction / radiation By controlling the operation of the heat pump 3 so as not to exceed the value, the underground temperature becomes too high (or low) during the operation of the air conditioning device 1, and the heat radiation efficiency is significantly reduced, It is possible to prevent the temperature from gradually increasing (or decreasing) and dissipating heat, and adapting to the thermal condition of the ground 3 to achieve stable operation over a long period of time.

(2)さらに、地盤Gの熱的な自然回復要素を考慮して採放熱の限界値を設定するようにしたので、採放熱の限界値を低く設定しすぎることがなく、合理的なヒートポンプ装置1Aの設計が可能となって空気調整装置1の設置コストを低減させることができる。 (2) Furthermore, since the limit value of heat extraction / radiation is set in consideration of the thermal natural recovery factor of the ground G, the limit value of heat extraction / radiation is not set too low, and a reasonable heat pump device. 1A can be designed, and the installation cost of the air conditioning apparatus 1 can be reduced.

(3)また、運転期間中における過去の地盤Gの熱的状況を考慮して基準変動曲線(L6,L6’)および採放熱の限界値を再設定することで、地盤状況の変化に応じたより合理的な限界値の設定が可能になり、ヒートポンプ装置1Aの運転効率を向上させる、あるいは地盤Gへの負担を軽減させることができる。 (3) In addition, the reference fluctuation curve (L6, L6 ′) and the limit value of heat extraction are re-set in consideration of the past thermal condition of the ground G during the operation period. A reasonable limit value can be set, and the operating efficiency of the heat pump apparatus 1A can be improved, or the burden on the ground G can be reduced.

(4)さらに、ヒートポンプ3から地中熱交換器2への熱媒水の出口温度を測定する温度センサ14を設けたことで、測定した出口温度から地中温度を推定できるので、地盤中や地中熱交換器2等に温度センサを設置する場合と比較して温度センサ14の設置個所数を低減することができ、初期コストおよびメンテナンスに要するコストが抑制できる。 (4) Furthermore, since the temperature sensor 14 for measuring the outlet temperature of the heat transfer water from the heat pump 3 to the underground heat exchanger 2 is provided, the underground temperature can be estimated from the measured outlet temperature. Compared with the case where a temperature sensor is installed in the underground heat exchanger 2 or the like, the number of installation locations of the temperature sensor 14 can be reduced, and the initial cost and the cost required for maintenance can be suppressed.

(5)また、ヒートポンプ3に冷却塔(補助熱源)21が接続され、地中熱交換器2の採放熱が限界値に達した場合に冷却塔21が利用されるので、空調負荷が大きくなって地中熱交換器2からの採放熱を停止または抑制したとしても、冷却塔21からの熱を利用してヒートポンプ3の運転を継続させることができる。従って、地盤Gへ過大な負担をかけることなく、空調室内機4の冷房運転を継続させることができる。 (5) Moreover, since the cooling tower (auxiliary heat source) 21 is connected to the heat pump 3 and the cooling tower 21 is used when the heat radiation of the underground heat exchanger 2 reaches the limit value, the air conditioning load increases. Even if the heat extraction from the underground heat exchanger 2 is stopped or suppressed, the operation of the heat pump 3 can be continued using the heat from the cooling tower 21. Therefore, the cooling operation of the air conditioning indoor unit 4 can be continued without imposing an excessive burden on the ground G.

(6)さらに、空調室内機4に他の熱源機器である冷凍機23やボイラ30が接続され、地中熱交換器2の採放熱が限界値に達した場合に冷凍機23やボイラ30を用いて空調室内機4へ熱が供給されるまたは空調室内機4から熱が吸収されるので、空調負荷が大きくなって地中熱交換器2からの採放熱を停止または抑制したとしても、冷凍機23やボイラ30により空調室内機4の運転を継続させることができる。 (6) Furthermore, when the refrigerator 23 and the boiler 30 which are other heat source devices are connected to the air conditioning indoor unit 4 and the heat extraction / radiation of the underground heat exchanger 2 reaches the limit value, the refrigerator 23 and the boiler 30 are connected. Since heat is supplied to the air conditioning indoor unit 4 or absorbed from the air conditioning indoor unit 4, the refrigeration can be performed even if the air conditioning load becomes large and heat radiation from the underground heat exchanger 2 is stopped or suppressed. The operation of the air conditioning indoor unit 4 can be continued by the machine 23 and the boiler 30.

なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的を達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。
例えば、前記実施形態においては、空気調整装置1について説明したが、本発明の地中熱利用装置としては、冷暖房可能な空気調整装置に限らず、冷房のみ可能な冷房装置や暖房のみ可能な暖房装置でもよく、また冷蔵庫(冷凍庫)や温蔵機、給湯器、冷水器などであってもよい。
In addition, this invention is not limited to the said embodiment, Including other structures etc. which can achieve the objective of this invention, the deformation | transformation etc. which are shown below are also contained in this invention.
For example, in the above-described embodiment, the air conditioner 1 has been described. However, the geothermal heat utilization apparatus of the present invention is not limited to an air conditioner capable of cooling and heating, and is a cooling apparatus capable of only cooling or heating capable of heating only. An apparatus may be sufficient and a refrigerator (freezer), a warm storage machine, a water heater, a water heater, etc. may be sufficient.

また、前記実施形態では、測定手段としてヒートポンプ3から地中熱交換器2への熱媒水の出口温度を測定する温度センサ14を用いたが、温度センサ14で入口温度を測定してもよく、また測定手段は、このような温度センサ14に限らず、地盤Gの地中温度を直接測定するセンサでもよく、地中熱交換器2の表面温度を測定するセンサでもよく、さらには地盤Gの熱伝導率を測定する測定装置でもよく、各種の地盤の熱特性を測定可能な装置が適用可能である。   Moreover, in the said embodiment, although the temperature sensor 14 which measures the exit temperature of the heat transfer water from the heat pump 3 to the underground heat exchanger 2 was used as a measurement means, you may measure an entrance temperature with the temperature sensor 14. The measuring means is not limited to such a temperature sensor 14, but may be a sensor that directly measures the underground temperature of the ground G, a sensor that measures the surface temperature of the underground heat exchanger 2, and the ground G A measuring device that measures the thermal conductivity of the ground may be used, and a device that can measure the thermal characteristics of various grounds is applicable.

その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。
従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。
In addition, the best configuration, method and the like for carrying out the present invention have been disclosed in the above description, but the present invention is not limited to this. That is, the invention has been illustrated and described with particular reference to certain specific embodiments, but without departing from the spirit and scope of the invention, Various modifications can be made by those skilled in the art in terms of material, quantity, and other detailed configurations.
Therefore, the description limiting the shape, material, etc. disclosed above is an example for easy understanding of the present invention, and does not limit the present invention. The description by the name of the member which remove | excluded the limitation of one part or all of such restrictions is included in this invention.

本発明の実施形態に係る地中熱利用装置を示す概略構成図である。It is a schematic block diagram which shows the underground heat utilization apparatus which concerns on embodiment of this invention. 前記地中熱利用装置の要部であるヒートポンプ装置を示す概略構成図である。It is a schematic block diagram which shows the heat pump apparatus which is the principal part of the said underground heat utilization apparatus. 前記地中熱利用装置における年間の負荷変動を示すグラフである。It is a graph which shows the annual load fluctuation | variation in the said geothermal heat utilization apparatus. 前記ヒートポンプ装置における熱源側熱媒水の出口温度および地中熱交換器の表面温度の変動を示すグラフである。It is a graph which shows the fluctuation | variation of the exit temperature of the heat-source side heat transfer water in the said heat pump apparatus, and the surface temperature of an underground heat exchanger. 前記ヒートポンプ装置における運転制御方法を示すグラフである。It is a graph which shows the operation control method in the said heat pump apparatus. 前記ヒートポンプ装置における運転開始後1年目および5年目の前記出口温度および前記表面温度の変動を示すグラフである。It is a graph which shows the fluctuation | variation of the said exit temperature and the said surface temperature of the 1st year and the 5th year after the operation start in the said heat pump apparatus.

符号の説明Explanation of symbols

1A…ヒートポンプ装置、2…地中熱交換器、3…ヒートポンプ(ヒートポンプ本体)、5…水配管、14…温度センサ(測定手段)、15…制御装置(限界値設定手段および運転制御手段))、21…冷却塔(補助熱源)、23…冷凍機(他の熱源機器)、30…ボイラ(他の熱源機器)、G…地盤。   1A ... heat pump device, 2 ... underground heat exchanger, 3 ... heat pump (heat pump main body), 5 ... water piping, 14 ... temperature sensor (measuring means), 15 ... control device (limit value setting means and operation control means)) , 21 ... Cooling tower (auxiliary heat source), 23 ... Refrigerator (other heat source equipment), 30 ... Boiler (other heat source equipment), G ... Ground.

Claims (6)

地中に埋設された地中熱交換器と、この地中熱交換器に接続されたヒートポンプ本体と、前記地中熱交換器と前記ヒートポンプとを接続して熱媒水を循環させる配管とを備え、前記地中熱交換器を介して地中から採熱または地中へ放熱する地中熱利用ヒートポンプ装置であって、
地盤の熱的状況を測定する測定手段と、測定した地盤の熱的状況に基づいて採放熱の限界値を設定する限界値設定手段と、設定した採放熱の限界値を超えないようにヒートポンプ本体の運転を制御する運転制御手段とを備えたことを特徴とする地中熱利用ヒートポンプ装置。
An underground heat exchanger embedded in the ground, a heat pump main body connected to the underground heat exchanger, and a pipe for circulating the heat transfer water by connecting the underground heat exchanger and the heat pump. A heat pump device that uses ground heat to collect heat from the ground or dissipate heat to the ground via the ground heat exchanger,
Measuring means to measure the thermal condition of the ground, limit value setting means to set the limit value of heat extraction based on the measured thermal condition of the ground, and the heat pump body so as not to exceed the set limit value of heat extraction An operation control means for controlling the operation of the heat pump apparatus using geothermal heat.
請求項1に記載の地中熱利用ヒートポンプ装置において、
前記限界値設定手段は、前記測定手段にて測定した前年分または前数年分の地盤の熱的状況に基づいて前記限界値を再設定するように構成されていることを特徴とする地中熱利用ヒートポンプ装置。
In the geothermal heat pump device according to claim 1,
The limit value setting means is configured to reset the limit value based on the thermal condition of the ground for the previous year or the previous several years measured by the measurement means. Heat utilization heat pump device.
請求項1または請求項2に記載の地中熱利用ヒートポンプ装置において、
前記測定手段は、前記配管における前記ヒートポンプ本体からの出口または前記ヒートポンプ本体への入口位置の前記熱媒水の温度を測定する温度センサを有していることを特徴とする地中熱利用ヒートポンプ装置。
In the heat pump apparatus using geothermal heat according to claim 1 or claim 2,
The measurement means has a temperature sensor for measuring the temperature of the heat transfer water at the outlet from the heat pump main body or at the inlet position to the heat pump main body in the pipe. .
請求項1から請求項3のいずれかに記載の地中熱利用ヒートポンプ装置において、
前記ヒートポンプ本体には、前記地中熱交換器と相違する補助熱源が接続されており、
前記地中熱交換器における採放熱が前記設定された限界値に達した場合には、前記補助熱源を利用するように前記ヒートポンプ本体が運転制御手段で制御されることを特徴とする地中熱利用ヒートポンプ装置。
In the geothermal heat utilization heat pump device according to any one of claims 1 to 3,
An auxiliary heat source different from the underground heat exchanger is connected to the heat pump body,
When the heat extraction / radiation in the underground heat exchanger reaches the set limit value, the heat pump main body is controlled by operation control means so as to use the auxiliary heat source. Use heat pump device.
請求項1から請求項4のいずれかに記載の地中熱利用ヒートポンプ装置と、この地中熱利用ヒートポンプ装置のヒートポンプ本体に接続された負荷機とを備えた地中熱利用装置であって、
前記負荷機には、前記ヒートポンプ本体と相違する他の熱源機器が接続され、前記地中熱交換器における採放熱が前記設定された限界値に達した場合には、前記他の熱源機器を用いて前記負荷機に熱が供給されまたは前記負荷機から熱が吸収されることを特徴とする地中熱利用装置。
A geothermal heat utilization device comprising the underground heat utilization heat pump device according to any one of claims 1 to 4 and a load machine connected to a heat pump body of the geothermal heat utilization heat pump device,
The load machine is connected to another heat source device different from the heat pump main body, and when the heat extraction / radiation in the underground heat exchanger reaches the set limit value, the other heat source device is used. The geothermal heat utilization apparatus is characterized in that heat is supplied to the load machine or heat is absorbed from the load machine.
地中に埋設された地中熱交換器と、この地中熱交換器に接続されたヒートポンプ本体と、前記地中熱交換器と前記ヒートポンプとを接続して熱媒水を循環させる配管とを備え、前記地中熱交換器を介して地中から採熱または地中へ放熱する地中熱利用ヒートポンプ装置の制御方法であって、
地盤の熱的状況を測定する測定工程と、測定した地盤の熱的状況に基づいて採放熱の限界値を設定する限界値設定工程と、設定した採放熱の限界値を超えないようにヒートポンプ本体の運転を制御する運転制御工程とを備えたことを特徴とする地中熱利用ヒートポンプ装置の制御方法。
An underground heat exchanger embedded in the ground, a heat pump main body connected to the underground heat exchanger, and a pipe for circulating the heat transfer water by connecting the underground heat exchanger and the heat pump. Comprising, a control method of a heat pump device using geothermal heat that collects heat from the ground or dissipates heat to the ground via the ground heat exchanger,
The measurement process to measure the thermal condition of the ground, the limit value setting process to set the limit value of heat extraction based on the measured thermal condition of the ground, and the heat pump body so as not to exceed the set limit value of heat extraction A control method for a heat pump device using geothermal heat, comprising an operation control step for controlling the operation of the ground heat.
JP2005115868A 2005-04-13 2005-04-13 Geothermal heat pump device, geothermal heat device equipped with the same, and control method for geothermal heat pump device Active JP4782462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005115868A JP4782462B2 (en) 2005-04-13 2005-04-13 Geothermal heat pump device, geothermal heat device equipped with the same, and control method for geothermal heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115868A JP4782462B2 (en) 2005-04-13 2005-04-13 Geothermal heat pump device, geothermal heat device equipped with the same, and control method for geothermal heat pump device

Publications (2)

Publication Number Publication Date
JP2006292310A true JP2006292310A (en) 2006-10-26
JP4782462B2 JP4782462B2 (en) 2011-09-28

Family

ID=37413056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115868A Active JP4782462B2 (en) 2005-04-13 2005-04-13 Geothermal heat pump device, geothermal heat device equipped with the same, and control method for geothermal heat pump device

Country Status (1)

Country Link
JP (1) JP4782462B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100776583B1 (en) 2006-11-30 2007-11-15 한밭대학교 산학협력단 Optimizing method of ground source heat pump and portable electric device programming the same
ES2326573A1 (en) * 2006-11-24 2009-10-14 Ortronic Technology, S.L. System of climatization of buildings. (Machine-translation by Google Translate, not legally binding)
JP2010019462A (en) * 2008-07-09 2010-01-28 Shimizu Corp Geothermal utilization air conditioning system
EP2159496A1 (en) 2008-08-29 2010-03-03 Vito NV Controller for energy supply systems
JP2010060247A (en) * 2008-09-05 2010-03-18 Mitsubishi Materials Techno Corp Soil heat exchanger of heat pump system using soil heat
CN101858671A (en) * 2010-06-12 2010-10-13 哈尔滨工业大学 Heat pump system of soil resource having function of regulating soil temperature
JP2010249468A (en) * 2009-04-20 2010-11-04 Corona Corp Geothermal heat pump device
JP2011007343A (en) * 2009-06-23 2011-01-13 Corona Corp Geothermal heat utilization heat pump type water heater
JP2011524967A (en) * 2008-06-16 2011-09-08 グリーンフィールド エネジー リミテッド Thermal energy system and operating method thereof
KR101092110B1 (en) * 2009-05-29 2011-12-12 코오롱건설주식회사 An individual geothermal heating and cooling system in an apartment house
CN102331053A (en) * 2011-05-03 2012-01-25 神华集团有限责任公司 Heat pump system
JP2012233669A (en) * 2011-05-09 2012-11-29 Nippon Steel Engineering Co Ltd Method and device for analyzing ground heat characteristic in soil heat source heat pump system, method and device for adjusting operation of soil heat source heat pump system, and program
KR101227751B1 (en) 2010-11-24 2013-01-29 주식회사 귀뚜라미 범양냉방 Heat pump type hot water supply system using waste heat
CN102967018A (en) * 2012-12-14 2013-03-13 肖剑仁 Ground source heat pump coupling water cool storage air-conditioning system based on independent temperature and humidity control
JP2013160435A (en) * 2012-02-03 2013-08-19 Mitsubishi Heavy Ind Ltd Heat source selection assisting device, method thereof, and heat source system
JP2013190202A (en) * 2013-05-22 2013-09-26 Kajima Corp Geothermal heat utilizing device
JP2014020655A (en) * 2012-07-17 2014-02-03 Jfe Engineering Corp Heat pump system and controlling method thereof
JP2014035109A (en) * 2012-08-08 2014-02-24 Corona Corp Heat pump apparatus
WO2014156895A1 (en) * 2013-03-27 2014-10-02 三菱重工業株式会社 Heat source system, and device and method for controlling same
JP2014228238A (en) * 2013-05-24 2014-12-08 株式会社日立製作所 Heat source system
CN104265242A (en) * 2014-08-09 2015-01-07 周成杰 Terrestrial heat extraction method of geothermal well
JP2015028418A (en) * 2013-07-03 2015-02-12 東日本旅客鉄道株式会社 Geothermal heat pump system
CN104567105A (en) * 2015-01-28 2015-04-29 中国科学院沈阳应用生态研究所 Energy efficiency optimization method and system for ground-source heat pump system
JP2015124918A (en) * 2013-12-26 2015-07-06 エア・ウォーター株式会社 Geothermal heat pump device
JP6007455B1 (en) * 2015-03-30 2016-10-12 中村物産有限会社 Cold heat supply apparatus and cold heat supply method
US9556856B2 (en) 2007-07-06 2017-01-31 Greenfield Master Ipco Limited Geothermal energy system and method of operation
JP2017142054A (en) * 2017-04-10 2017-08-17 株式会社コロナ Heat pump device
US9915247B2 (en) 2007-07-06 2018-03-13 Erda Master Ipco Limited Geothermal energy system and method of operation
WO2018163347A1 (en) 2017-03-09 2018-09-13 三菱電機株式会社 Geothermal heat pump device
US10309693B2 (en) 2011-03-08 2019-06-04 Erda Master Ipco Limited Thermal energy system and method of operation
KR102346408B1 (en) * 2020-07-10 2022-01-03 주식회사 지앤지테크놀러지 Geothermal System with Cooling Tower Hybrid Function and Method for constructing this same
JP7136965B1 (en) 2021-05-06 2022-09-13 三菱重工サーマルシステムズ株式会社 Calculation device, calculation method, program, control device, control method, control program
CN115451619A (en) * 2022-09-23 2022-12-09 北京金茂人居环境科技有限公司 Ground source field heat pump control method, storage medium and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213469B (en) * 2010-04-01 2013-07-31 上海建冶科技工程股份有限公司 Pure water circulation terrestrial heat and auxiliary heat pump air conditioning system

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2326573A1 (en) * 2006-11-24 2009-10-14 Ortronic Technology, S.L. System of climatization of buildings. (Machine-translation by Google Translate, not legally binding)
ES2326573B1 (en) * 2006-11-24 2010-07-21 Ortronic Technology, S.L. CLIMATE CONTROL SYSTEM OF BUILDINGS.
KR100776583B1 (en) 2006-11-30 2007-11-15 한밭대학교 산학협력단 Optimizing method of ground source heat pump and portable electric device programming the same
US9915247B2 (en) 2007-07-06 2018-03-13 Erda Master Ipco Limited Geothermal energy system and method of operation
US9556856B2 (en) 2007-07-06 2017-01-31 Greenfield Master Ipco Limited Geothermal energy system and method of operation
US9360236B2 (en) 2008-06-16 2016-06-07 Greenfield Master Ipco Limited Thermal energy system and method of operation
JP2011524967A (en) * 2008-06-16 2011-09-08 グリーンフィールド エネジー リミテッド Thermal energy system and operating method thereof
JP2010019462A (en) * 2008-07-09 2010-01-28 Shimizu Corp Geothermal utilization air conditioning system
EP2159496A1 (en) 2008-08-29 2010-03-03 Vito NV Controller for energy supply systems
US9618215B2 (en) 2008-08-29 2017-04-11 Vito Nv Controller for energy supply systems
JP2010060247A (en) * 2008-09-05 2010-03-18 Mitsubishi Materials Techno Corp Soil heat exchanger of heat pump system using soil heat
JP2010249468A (en) * 2009-04-20 2010-11-04 Corona Corp Geothermal heat pump device
KR101092110B1 (en) * 2009-05-29 2011-12-12 코오롱건설주식회사 An individual geothermal heating and cooling system in an apartment house
JP2011007343A (en) * 2009-06-23 2011-01-13 Corona Corp Geothermal heat utilization heat pump type water heater
CN101858671B (en) * 2010-06-12 2012-11-14 哈尔滨工业大学 Heat pump system of soil resource having function of regulating soil temperature
CN101858671A (en) * 2010-06-12 2010-10-13 哈尔滨工业大学 Heat pump system of soil resource having function of regulating soil temperature
KR101227751B1 (en) 2010-11-24 2013-01-29 주식회사 귀뚜라미 범양냉방 Heat pump type hot water supply system using waste heat
US10921030B2 (en) 2011-03-08 2021-02-16 Erda Master Ipco Limited Thermal energy system and method of operation
US10309693B2 (en) 2011-03-08 2019-06-04 Erda Master Ipco Limited Thermal energy system and method of operation
CN102331053A (en) * 2011-05-03 2012-01-25 神华集团有限责任公司 Heat pump system
JP2012233669A (en) * 2011-05-09 2012-11-29 Nippon Steel Engineering Co Ltd Method and device for analyzing ground heat characteristic in soil heat source heat pump system, method and device for adjusting operation of soil heat source heat pump system, and program
JP2013160435A (en) * 2012-02-03 2013-08-19 Mitsubishi Heavy Ind Ltd Heat source selection assisting device, method thereof, and heat source system
JP2014020655A (en) * 2012-07-17 2014-02-03 Jfe Engineering Corp Heat pump system and controlling method thereof
JP2014035109A (en) * 2012-08-08 2014-02-24 Corona Corp Heat pump apparatus
CN102967018A (en) * 2012-12-14 2013-03-13 肖剑仁 Ground source heat pump coupling water cool storage air-conditioning system based on independent temperature and humidity control
WO2014156895A1 (en) * 2013-03-27 2014-10-02 三菱重工業株式会社 Heat source system, and device and method for controlling same
JP2014190619A (en) * 2013-03-27 2014-10-06 Mitsubishi Heavy Ind Ltd Heat source system, control device thereof and control method therefor
JP2013190202A (en) * 2013-05-22 2013-09-26 Kajima Corp Geothermal heat utilizing device
JP2014228238A (en) * 2013-05-24 2014-12-08 株式会社日立製作所 Heat source system
JP2015028418A (en) * 2013-07-03 2015-02-12 東日本旅客鉄道株式会社 Geothermal heat pump system
JP2015124918A (en) * 2013-12-26 2015-07-06 エア・ウォーター株式会社 Geothermal heat pump device
CN104265242A (en) * 2014-08-09 2015-01-07 周成杰 Terrestrial heat extraction method of geothermal well
CN104567105A (en) * 2015-01-28 2015-04-29 中国科学院沈阳应用生态研究所 Energy efficiency optimization method and system for ground-source heat pump system
JP6007455B1 (en) * 2015-03-30 2016-10-12 中村物産有限会社 Cold heat supply apparatus and cold heat supply method
JP2016191480A (en) * 2015-03-30 2016-11-10 中村物産有限会社 Cold heat supply device and cold heat supply method
WO2018163347A1 (en) 2017-03-09 2018-09-13 三菱電機株式会社 Geothermal heat pump device
JPWO2018163347A1 (en) * 2017-03-09 2019-11-07 三菱電機株式会社 Geothermal heat pump device
JP2017142054A (en) * 2017-04-10 2017-08-17 株式会社コロナ Heat pump device
KR102346408B1 (en) * 2020-07-10 2022-01-03 주식회사 지앤지테크놀러지 Geothermal System with Cooling Tower Hybrid Function and Method for constructing this same
JP7136965B1 (en) 2021-05-06 2022-09-13 三菱重工サーマルシステムズ株式会社 Calculation device, calculation method, program, control device, control method, control program
WO2022234706A1 (en) * 2021-05-06 2022-11-10 三菱重工サーマルシステムズ株式会社 Computation device, computation method, program, control device, control method, and control program
JP2022172642A (en) * 2021-05-06 2022-11-17 三菱重工サーマルシステムズ株式会社 Calculation device, calculation method, program, control device, control method, and control program
CN115451619A (en) * 2022-09-23 2022-12-09 北京金茂人居环境科技有限公司 Ground source field heat pump control method, storage medium and electronic device

Also Published As

Publication number Publication date
JP4782462B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4782462B2 (en) Geothermal heat pump device, geothermal heat device equipped with the same, and control method for geothermal heat pump device
US8245948B2 (en) Co-generation and control method of the same
KR100563306B1 (en) Ground source heat pump type heating and cooing system haviang means for feeding assistant heat source
JP2006313034A (en) Geothermal unit
JP6568938B2 (en) Heat pump air conditioning system using composite heat source and control method thereof
JP2008275214A (en) Compression type heat pump device
KR100867619B1 (en) Cooling/Heating and hot water supply system by using heat pump
KR100734904B1 (en) Heat pump system for cooling and heating
JP2019163892A (en) Geothermal heat pump device
JP2008170015A (en) Refrigeration cycle device with warm water container
KR100622604B1 (en) Gas engine heat pump with an enhanced accumulator
KR100496895B1 (en) Heat pump type cooling and heating by subterranean heat
JP5503167B2 (en) Air conditioning system
JP2006010137A (en) Heat pump system
KR20100035740A (en) A indoor air conditioner using induction working coil
KR101288884B1 (en) Heat pump type cool and hot water supply device
KR100945452B1 (en) Heat pump system
KR100367176B1 (en) Heat pump type air conditioning apparatus
JP5633002B2 (en) Air conditioning system
JPWO2016170616A1 (en) Air conditioner
KR200366307Y1 (en) Ground source heat pump type heating and cooing system haviang means for feeding assistant heat source
WO2018163347A1 (en) Geothermal heat pump device
KR101649447B1 (en) Geothermal heat pump system using gas
JP2008209038A (en) Engine-driven heat pump system
KR100965114B1 (en) Heating and cooling system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070703

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4782462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250