JP2006291421A - Nonwoven fabric for bag for recovering feather - Google Patents

Nonwoven fabric for bag for recovering feather Download PDF

Info

Publication number
JP2006291421A
JP2006291421A JP2005117158A JP2005117158A JP2006291421A JP 2006291421 A JP2006291421 A JP 2006291421A JP 2005117158 A JP2005117158 A JP 2005117158A JP 2005117158 A JP2005117158 A JP 2005117158A JP 2006291421 A JP2006291421 A JP 2006291421A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
feather
fiber
fabric layer
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005117158A
Other languages
Japanese (ja)
Other versions
JP4705401B2 (en
Inventor
Rumina Koo
留美名 小尾
Tomoyuki Hosokawa
智之 細川
Tomoyuki Takasaki
智之 高崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2005117158A priority Critical patent/JP4705401B2/en
Publication of JP2006291421A publication Critical patent/JP2006291421A/en
Application granted granted Critical
Publication of JP4705401B2 publication Critical patent/JP4705401B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonwoven fabric for recovering feather, free from blowing-out of feather, having adequate air permeability and capable of shortening operation time for recovering feather when used as the bag for recovering feather and to provide a bag for recovering feather by using the nonwoven fabric. <P>SOLUTION: The nonwoven fabric for bag for recovering feather is composed of a laminated nonwoven fabric obtained by joining and integrating thermoplastic synthetic filament nonwoven fabric layer with ultrafine fiber nonwoven fabric layer having 0.5-5 μm fiber diameter and 1-25 g/m<SP>2</SP>basis weight, and having 0.5-50 μm opening diameter distribution of the laminated nonwoven fabric. The bag for recovering feather is obtained by using the nonwoven fabric. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、羽毛回収袋に用いられる不織布及びそれを用いた羽毛回収袋に関する。   The present invention relates to a nonwoven fabric used for a feather collection bag and a feather collection bag using the same.

通常、羽毛製品を製造する際に、羽毛を袋に詰めて回収し、搬送する工程がある。羽毛回収装置においては、羽毛と空気と混ぜて、ダクトを通して羽毛と空気を羽毛回収袋内に導き、回収袋の外部空間を真空脱気して、回収袋から空気のみを抜くことにより羽毛を袋に充填する。この時、袋に用いられる布地は、羽毛が抜け出ないこと、すなわち、羽毛の吹き出しが無いことが求められる。   Usually, when manufacturing a feather product, there is a process of collecting and transporting feathers packed in a bag. In the feather collection device, the feather and air are mixed, guided through the duct into the feather collection bag, the vacuum outside the collection bag is evacuated, and the air is removed from the collection bag. To fill. At this time, the fabric used for the bag is required to have no feathers coming out, that is, no feathers are blown out.

一般に、羽毛の吹き出しを防止するためには、布地の通気性を下げる方法がよく用いられる。例えば、財団法人・日本化学繊維検査協会のクレーム事例集(http://www.kaken.or.jp/complaint/index.html)では、羽毛製品を構成する布地がクレームを受ける指標として、通気度の上限が、綿の平織りで3cm/cm・秒、合繊生地で2cm/cm・秒とされている。 In general, in order to prevent the feathers from blowing out, a method of reducing the air permeability of the fabric is often used. For example, in the complaint case collection (http://www.kaken.or.jp/complaint/index.html) of the Japan Chemical Fiber Inspection Association, the air permeability is used as an index for the fabrics that make up feather products to receive complaints. upper limit of, 3cm 3 / cm 2 · sec in plain weave of cotton, there is a 2cm 3 / cm 2 · sec in the synthetic fiber fabric.

通気性を低くする手段として、布地にダウンプルーフ加工(目つぶし加工)を行うことや、高密度織物を用いることが知られている。   As means for lowering the air permeability, it is known to perform a down-proof process (crushing process) on a fabric or to use a high-density fabric.

特許文献1には、通気度が4cm/cm・秒以下になるように設計した織物が記載されている。しかしながら、通気度を下げると、羽毛が袋地から吹き出さないという効果はあるものの、羽毛回収装置で袋内に羽毛を充填する際に、空気の通気性が悪く、空気が袋を通過する速度が遅いので、充填に時間がかかるという問題がある。 Patent Document 1 describes a woven fabric designed to have an air permeability of 4 cm 3 / cm 2 · sec or less. However, lowering the air permeability has the effect that the feathers do not blow out from the bag, but when filling the feathers in the bag with the feather collection device, the air permeability is poor and the speed at which the air passes through the bag However, there is a problem that filling takes time.

通気性を保持して且つ羽毛の吹き出しを抑える方法として、例えば、特許文献2には、布地に発泡エマルジョン樹脂を塗布する方法が記載されている。しかしながら、この方法は、布地を塗布工程に通さなければならないのでコストが高くなり、羽毛回収袋用の布地としては現実的ではない。また、この方法は、通気度は17〜19cm/cm・秒と、それほど高く出来ない等の問題がある。 For example, Patent Document 2 describes a method of applying a foamed emulsion resin to a fabric as a method for maintaining air permeability and suppressing feather blowing. However, this method is costly because the fabric must be passed through the coating process, and is not practical as a fabric for feather collection bags. In addition, this method has a problem that the air permeability is 17 to 19 cm 3 / cm 2 · sec and cannot be so high.

特許文献3には、不織布を利用した例として、加工布の内面側に、極細の短繊維を密に絡合させて形成した不織布を当接させ、前記加工布と前記不織布とを点貼着で一体的に接合したシュラフ構成材が記載されている。しかしながら、このようなシュラフ構成材は、不織布の繊毛間に羽毛の毛先が挿入されやすい。したがって、羽毛を搬送後、羽毛を取り出す必要のある回収袋では、羽毛の取り出し性が悪く、羽毛の回収率が下がってしまうという問題がある。   In Patent Document 3, as an example using a non-woven fabric, a non-woven fabric formed by closely intertwining ultrafine short fibers is brought into contact with the inner surface side of the work cloth, and the work cloth and the non-woven fabric are spot-attached. The Schruff constituent material joined together is described. However, in such a Schruff component, feather tips are easily inserted between the cilia of the nonwoven fabric. Therefore, in the collection bag in which the feathers need to be taken out after transporting the feathers, there is a problem that the feathers are not easily taken out and the feather collection rate is lowered.

以上の様に、従来、羽毛回収袋として、羽毛回収操作に必要な通気性を有し、かつ、羽毛の吹き出しを有効に防止しうる羽毛回収袋はなかった。   As described above, conventionally, there has been no feather collection bag as a feather collection bag that has air permeability necessary for feather collection operation and can effectively prevent the feathers from blowing out.

特開2004−225179号公報JP 2004-225179 A 特開2002−69856号公報JP 2002-69856 A 特許第3169906号公報Japanese Patent No. 3169906

本発明は、羽毛回収袋として用いた場合、羽毛の吹き出しが無く、しかも、適度な通気性を有し、羽毛回収の作業時間を短く出来る羽毛回収袋用不織布、及びそれを用いた羽毛回収袋を提供することを目的とする。   The present invention, when used as a feather collection bag, has no feather blowout, has a moderate air permeability, and can shorten the feather collection work time, and a feather collection bag using the same The purpose is to provide.

本発明者らは、上記目的を達成するために鋭意検討した結果、特定の繊度及び目付を有する極細繊維不織布層と熱可塑性合成長繊維不織布層とが積層一体化されている積層不織布であって、その積層不織布の開孔径分布が特定の範囲であると、空気を適度に通過させ、且つ羽毛の吹き出しが防止されて、羽毛回収作業の時間が短縮できることを見いだした。
本発明は、上記の知見に基づいて完成したものであり、下記のとおりである。
As a result of intensive studies to achieve the above object, the inventors of the present invention are laminated nonwoven fabrics in which an ultrafine fiber nonwoven fabric layer having a specific fineness and basis weight and a thermoplastic synthetic continuous fiber nonwoven fabric layer are laminated and integrated. It has been found that when the pore size distribution of the laminated nonwoven fabric is within a specific range, air can be passed through moderately and feathers can be prevented from being blown out, thereby reducing the time for feather collection work.
The present invention has been completed based on the above findings and is as follows.

1.熱可塑性合成長繊維不織布層と、繊維径が0.5〜5μm且つ目付が1〜25g/mの極細繊維不織布層とが接合一体化してなる積層不織布からなり、該積層不織布の開孔径分布が0.5〜50μmの範囲であることを特徴とする羽毛回収袋用不織布。 1. It consists of a laminated nonwoven fabric in which a thermoplastic synthetic long-fiber nonwoven fabric layer and an ultrafine fiber nonwoven fabric layer having a fiber diameter of 0.5 to 5 μm and a basis weight of 1 to 25 g / m 2 are joined and integrated, and the pore size distribution of the laminated nonwoven fabric Is in the range of 0.5 to 50 μm.

2.前記積層不織布の通気度が20cm/cm・秒以上であることを特徴とする上記1に記載の羽毛回収袋用不織布。
3.前記極細繊維不織布層がメルトブロー不織布層であることを特徴とする上記1または2に記載の羽毛回収袋用不織布。
2. 2. The nonwoven fabric for feather collection bag according to 1 above, wherein the laminated nonwoven fabric has an air permeability of 20 cm 3 / cm 2 · sec or more.
3. 3. The feather recovery bag nonwoven fabric according to 1 or 2, wherein the ultrafine fiber nonwoven fabric layer is a melt blown nonwoven fabric layer.

4.前記熱可塑性合成長繊維不織布層がスパンボンド不織布層であって、極細繊維不織布層の両面に存在することを特徴とする上記1〜3のいずれかに記載の羽毛回収袋用不織布。   4). The nonwoven fabric for feather collection bags according to any one of the above items 1 to 3, wherein the thermoplastic synthetic long-fiber nonwoven fabric layer is a spunbond nonwoven fabric layer and is present on both sides of the ultrafine fiber nonwoven fabric layer.

5.前記積層不織布がポリエステル系樹脂またはポリアミド系樹脂からなることを特徴とする上記1〜4のいずれかに記載の羽毛回収袋用不織布。
6.上記1〜5のいずれかに記載の羽毛回収袋用不織布を用い、熱可塑性合成長繊維不織布層が外側になるように袋状にしてなる羽毛回収袋。
5. 5. The nonwoven fabric for feather collection bag according to any one of 1 to 4, wherein the laminated nonwoven fabric is made of a polyester resin or a polyamide resin.
6). The feather collection bag which uses the nonwoven fabric for feather collection bags in any one of said 1-5, and is made into a bag shape so that a thermoplastic synthetic long fiber nonwoven fabric layer may become an outer side.

以下、本発明について詳細に説明する。
本発明の特徴は、積層不織布の開孔径分布が特定の範囲であり、かつ、極細繊維不織布層が特定の繊維径及び目付であると、極細繊維不織布層が少量であっても、羽毛の吹き出し防止性能を維持しつつ、通気性を高くすることが出来るので、羽毛回収作業時間を従来より大幅に短縮出来るという点である。
Hereinafter, the present invention will be described in detail.
The feature of the present invention is that, when the pore size distribution of the laminated nonwoven fabric is in a specific range, and the ultrafine fiber nonwoven fabric layer has a specific fiber diameter and basis weight, even if the ultrafine fiber nonwoven fabric layer is a small amount, feather blowing Since the air permeability can be increased while maintaining the prevention performance, the feather collection work time can be greatly shortened compared to the conventional technique.

本発明において、積層不織布の開孔径分布は0.5〜50μmである。開孔径分布が50μmを超えると、孔径の大きな部分から羽毛が吹き出す恐れがあり、0.5μm未満であると、通気性が低くなり、羽毛回収袋として用いた場合、袋の外側を減圧しても空気の流速が上がらず、羽毛の充填に時間がかかってしまう。開孔径分布は、好ましくは0.7〜40μmであり、より好ましくは1〜35μmである。   In the present invention, the pore size distribution of the laminated nonwoven fabric is 0.5 to 50 μm. If the pore size distribution exceeds 50 μm, the feathers may blow out from the large pore size. If the pore size distribution is less than 0.5 μm, the air permeability decreases, and when used as a feather collection bag, the outside of the bag is decompressed. However, the air flow rate does not increase, and it takes time to fill the feathers. The pore size distribution is preferably 0.7 to 40 μm, more preferably 1 to 35 μm.

なお、開孔径のバラツキが大きすぎて、積層不織布の一部に孔径の大きすぎる部分があると、羽毛回収袋として用いた場合に、孔径の小さい部分は通気抵抗が大きいので、通気しない死に面積となる。したがって、専ら孔径の大きな部分のみが通気に寄与し、気流の速度が上がり、羽毛が吹き出す恐れがある。   If the hole diameter variation is too large and there is a part of the laminated nonwoven fabric that has a too large hole diameter, when used as a feather collection bag, the small hole diameter part has a large resistance to ventilation, so that the area where death does not occur It becomes. Therefore, only the portion having a large hole diameter contributes to the ventilation, and the speed of the airflow increases and the feathers may blow out.

本発明において、極細繊維不織布層の繊維径は0.5〜5μmである。繊維径が0.5μm未満であると、安定した紡糸は事実上困難であると同時に、剛性が低くなり、繊維層が潰れてしまい、通気性が低くなり、羽毛の充填に時間がかかってしまう。また、繊維径が5μmを超えると、羽毛の吹き出しを防止する為には、目付を厚くして極細繊維不織布シートを熱圧で潰し、繊維をフィルム化せざるを得なくなり、その結果、通気性が低くなるので、羽毛の回収に長時間を要し、本発明の目的が達成されない。繊維径は、好ましくは0.7〜4μmであり、より好ましくは1.0〜3μmである。   In the present invention, the fiber diameter of the ultrafine fiber nonwoven fabric layer is 0.5 to 5 μm. When the fiber diameter is less than 0.5 μm, stable spinning is practically difficult, and at the same time, the rigidity is lowered, the fiber layer is crushed, the air permeability is lowered, and it takes time to fill the feathers. . In addition, when the fiber diameter exceeds 5 μm, in order to prevent the feathers from blowing out, it is necessary to thicken the basis weight and crush the ultra-fine fiber nonwoven fabric sheet with heat pressure to form a fiber film. Therefore, it takes a long time to collect the feathers, and the object of the present invention is not achieved. The fiber diameter is preferably 0.7 to 4 μm, more preferably 1.0 to 3 μm.

本発明において、極細繊維不織布層の目付は1〜25g/mである。目付が1g/m未満であると、繊維量が少なすぎて、繊維間隙を均一に小さくすることが出来ず、羽毛が吹き出す。また、目付が25g/mを超えると、通気性が低くなり、羽毛の回収に長時間を要する。目付は、好ましくは2〜20g/mであり、より好ましくは3〜15g/mである。 In the present invention, the basis weight of the microfibrous non-woven fabric layer is 1 to 25 g / m 2. If the basis weight is less than 1 g / m 2 , the amount of fibers is too small and the fiber gap cannot be reduced uniformly, and feathers blow out. On the other hand, if the basis weight exceeds 25 g / m 2 , the air permeability becomes low and it takes a long time to collect the feathers. The basis weight is preferably 2 to 20 g / m 2 , more preferably 3 to 15 g / m 2 .

本発明において、積層不織布における極細繊維不織布層の量は、3〜70wt%が好ましく、5〜50wt%がより好ましい。この範囲であると、十分な通気度を有し、強度の優れた羽毛回収袋が得られる。   In the present invention, the amount of the ultrafine fiber nonwoven fabric layer in the laminated nonwoven fabric is preferably 3 to 70 wt%, and more preferably 5 to 50 wt%. Within this range, a feather collection bag having sufficient air permeability and excellent strength can be obtained.

本発明において、積層不織布の通気度は、20cm/cm・秒以上であることが好ましく、30cm/cm・秒以上であることがより好ましい。通気度は大きいほど羽毛の回収を短時間で行うことができるが、極端に大きすぎると羽毛の吹き出し防止性能が低下するので、上限としては100cm/cm・秒程度が好ましい。 In the present invention, the air permeability of the laminated nonwoven fabric is preferably 20 cm 3 / cm 2 · sec or more, and more preferably 30 cm 3 / cm 2 · sec or more. As the air permeability increases, feathers can be collected in a short time. However, if the air permeability is excessively high, the ability to prevent feathers from blowing out deteriorates. Therefore, the upper limit is preferably about 100 cm 3 / cm 2 · sec.

本発明において、積層不織布は、ポリエステル系樹脂またはポリアミド系樹脂からなることが好ましい。   In the present invention, the laminated nonwoven fabric is preferably made of a polyester resin or a polyamide resin.

本発明において、極細繊維不織布層には、公知の製造方法により得られる極細繊維不織布を用いることが出来るが、熱可塑性樹脂からなるメルトブロー不織布が、熱融着によって毛羽立ちを防止し易く、また溶剤や溶液を使用しないので環境負荷が小さいという点で好ましく使用される。   In the present invention, an ultrafine fiber nonwoven fabric obtained by a known production method can be used for the ultrafine fiber nonwoven fabric layer, but the melt blown nonwoven fabric made of a thermoplastic resin is easy to prevent fuzz by heat fusion, Since a solution is not used, it is preferably used in that the environmental load is small.

極細繊維不織布層を構成する樹脂は、既存のどのような樹脂であっても良いが、極細繊維不織布がメルトブロー不織布であって、これとスパンボンド不織布層とを積層する場合は、スパンボンド不織布層と共通の樹脂成分を含むことが、接着性を上げることができるという観点から好ましい。   The resin constituting the ultrafine fiber nonwoven fabric layer may be any existing resin, but when the ultrafine fiber nonwoven fabric is a melt blown nonwoven fabric and this is laminated with a spunbond nonwoven fabric layer, the spunbond nonwoven fabric layer It is preferable from a viewpoint that adhesiveness can be improved to contain a common resin component.

極細繊維不織布層を構成する樹脂としては、融点180℃以上と耐熱性が高く、乾燥時に強度が高いという点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートなどのポリエステル系樹脂、ナイロン6、ナイロン66、ナイロン610、ナイロン612などのポリアミド系樹脂、及び、これらを主体とする共重合体もしくは混合物が好ましく使用される。中でも、ポリエステル系樹脂は強度や寸法安定性が高いため、より好ましく使用される。また、実用強度に影響の無い範囲においては、少量のポリオレフィンなど低融点成分を加えて改質を行ってもかまわない。   As the resin constituting the ultrafine fiber nonwoven fabric layer, polyester resin such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, nylon 6, Polyamide resins such as nylon 66, nylon 610, and nylon 612, and copolymers or mixtures mainly composed of these are preferably used. Of these, polyester resins are more preferably used because of their high strength and dimensional stability. Further, in a range where the practical strength is not affected, the modification may be performed by adding a low melting point component such as a small amount of polyolefin.

本発明において、熱可塑性合成長繊維不織布層には、公知の製造方法により得られる熱可塑性合成長繊維不織布を用いることが出来る。なかでも、スパンボンド不織布が、薄い目付でも強度が強く、通気性を損なうことがないという点で好ましく使用される。   In this invention, the thermoplastic synthetic long fiber nonwoven fabric layer obtained by a well-known manufacturing method can be used for a thermoplastic synthetic long fiber nonwoven fabric layer. Among them, the spunbonded nonwoven fabric is preferably used in that it has a high strength even with a thin basis weight and does not impair the air permeability.

熱可塑性合成長繊維不織布層を構成する樹脂は、ポリエステル系またはポリアミド系,ポリオレフィン系の樹脂を用いることが出来る。なかでも、耐熱性に優れ、強力が高く、表面が毛羽立ちし難いという点から、ポリエステル系樹脂またはポリアミド系樹脂が好ましい。ポリエステル系樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートなどが挙げられ、ポリアミド系樹脂としては、ナイロン6、ナイロン66、ナイロン610、ナイロン612などが挙げられる。   As the resin constituting the thermoplastic synthetic long-fiber nonwoven fabric layer, polyester-based, polyamide-based, or polyolefin-based resins can be used. Of these, polyester resins or polyamide resins are preferred because they are excellent in heat resistance, have high strength, and are less likely to fluff. Examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, and examples of the polyamide resin include nylon 6, nylon 66, nylon 610, nylon 612, and the like.

また、これらの樹脂を主体とする共重合体もしくは混合物を用いることも好ましい。中でも、ポリエステル系樹脂は強度や寸法安定性が高いため、より好ましく使用される。また、実用強度に影響の無い範囲においては、少量のポリオレフィンなど低融点成分を加えて改質を行ってもかまわない。   It is also preferable to use a copolymer or a mixture mainly composed of these resins. Of these, polyester resins are more preferably used because of their high strength and dimensional stability. Further, in a range where the practical strength is not affected, the modification may be performed by adding a low melting point component such as a small amount of polyolefin.

本発明の羽毛回収袋用不織布は、極細繊維不織布層と熱可塑性合成長繊維不織布層を積層することにより構成される。極細繊維不織布層と熱可塑性合成長繊維不織布層とを積層一体化することにより、極細繊維不織布層中の極細繊維が強固に固定されて目開きすることが無く、羽毛回収袋として用いる場合に、羽毛の吹き出しを抑制することができる。   The nonwoven fabric for feather collection bags of this invention is comprised by laminating | stacking an ultrafine fiber nonwoven fabric layer and a thermoplastic synthetic long fiber nonwoven fabric layer. When the ultrafine fiber nonwoven fabric layer and the thermoplastic synthetic long fiber nonwoven fabric layer are laminated and integrated, the ultrafine fibers in the ultrafine fiber nonwoven fabric layer are firmly fixed and do not open, and when used as a feather collection bag, Feather blowing can be suppressed.

また、羽毛回収袋として用いる場合に、熱可塑性合成長繊維不織布層を外側にすると、羽毛を詰めた袋がベルトコンベアで運ばれたり積み上げられたりする際に、外側が摩耗して表面が毛羽立ったり孔が開いたりする恐れが少なくなるので、好ましい。
一方、極細繊維不織布層を外側にすると、摩耗に対して弱く、毛羽立ちが生じやすい。強度を上げるために、極細繊維不織布層を高目付にすると、通気性が低下する恐れがある。
Also, when used as a feather collection bag, if the thermoplastic synthetic long-fiber nonwoven fabric layer is on the outside, when the bag filled with feathers is carried on a belt conveyor or stacked, the outside wears and the surface becomes fluffy. This is preferable because the possibility of opening a hole is reduced.
On the other hand, when the ultrafine fiber nonwoven fabric layer is on the outside, it is weak against abrasion and fuzz is likely to occur. In order to increase the strength, if the ultra fine fiber nonwoven fabric layer is made high in weight, the air permeability may be lowered.

熱可塑性合成長繊維不織布層を最内層にして製袋すると、該不織布は、長繊維で繊維端が極めて少ないので、羽毛を取り出す際に、羽毛が袋内側の表面層にからまりにくく、羽毛の回収率が低下することを防ぐことが出来るので好ましい。以上の点を考慮すると、両面が熱可塑性合成長繊維不織布である積層不織布が、羽毛回収袋として更に好ましい。   When a bag is made with the thermoplastic synthetic non-woven fabric layer as the innermost layer, the non-woven fabric is a long fiber and has very few fiber ends, so when removing the feathers, the feathers are less likely to get entangled in the surface layer inside the bag, Since it can prevent that a recovery rate falls, it is preferable. In consideration of the above points, a laminated nonwoven fabric in which both surfaces are thermoplastic synthetic long-fiber nonwoven fabrics is more preferable as a feather collection bag.

極細繊維不織布層と熱可塑性合成長繊維不織布層を積層する方法は、既存のどのような方法を用いても良いが、例えば、高速水流を噴射して三次元交絡させる方法や、粒子状または繊維状の接着剤により一体化させる方法の様に、極細繊維不織布層の表面でフィルム状物が介在しない積層方法が、不織布全体の通気性を低下させないという点で好ましい。   As a method of laminating the ultrafine fiber nonwoven fabric layer and the thermoplastic synthetic long fiber nonwoven fabric layer, any existing method may be used. For example, a method of jetting a high-speed water stream to make a three-dimensional entanglement, or a particulate or fiber A lamination method in which a film-like material does not intervene on the surface of the ultrafine fiber nonwoven fabric layer is preferable in that the air permeability of the whole nonwoven fabric is not lowered, such as a method of integrating with an adhesive.

また、メルトブロー不織布の上下にスパンボンド不織布を積層して熱融着した積層不織布は、極めて強固にメルトブロー繊維の自由度が制限されるため、目ずれがなく、羽毛の吹き出し防止効果がより高くなり、結果として、メルトブロー不織布の繊維の使用量を下げることができ、且つ、通気性を高く保つことが可能なので、より好ましく使用される。   In addition, laminated nonwoven fabrics that are heat-sealed by laminating spunbond nonwoven fabrics above and below the melt-blown nonwoven fabric are extremely tightly limited in the degree of freedom of the melt-blown fibers, so there is no misalignment and the effect of preventing feather blowout is higher. As a result, the amount of fibers used in the melt-blown nonwoven fabric can be reduced, and the air permeability can be kept high.

最も好ましいのは、スパンボンド不織布層、メルトブロー不織布層、スパンボンド不織布層を順次製造し、積層してエンボスロールまたは熱プレスロールで圧着する方法である。即ち、熱可塑性合成樹脂を用いて少なくとも1層以上のスパンボンド不織布層をコンベア上に紡糸し、その上に熱可塑性合成樹脂を用いてメルトブロー法で、繊維径0.5〜5μmの極細繊維不織布層を少なくとも1層以上吹き付け、その後、熱可塑性合成樹脂を用いた熱可塑性合成長繊維不織布を少なくとも1層以上積層し、次いで、エンボスロールまたはフラットロールを用いて圧着することにより一体化する方法が好ましい。   The most preferable method is a method in which a spunbonded nonwoven fabric layer, a meltblown nonwoven fabric layer, and a spunbonded nonwoven fabric layer are sequentially produced and laminated and pressure-bonded with an embossing roll or a hot press roll. That is, at least one spunbonded nonwoven fabric layer is spun on a conveyor using a thermoplastic synthetic resin, and an ultrafine fiber nonwoven fabric having a fiber diameter of 0.5 to 5 μm is melt blown using a thermoplastic synthetic resin thereon. There is a method in which at least one layer is sprayed, and then at least one thermoplastic synthetic long-fiber nonwoven fabric using a thermoplastic synthetic resin is laminated, and then integrated by pressure bonding using an embossing roll or a flat roll. preferable.

上記の製造方法を用いると、熱可塑性合成長繊維不織布層の上に、メルトブロー法による極細繊維不織布層が直接吹き付けられるので、メルトブロー法による極細繊維を熱可塑性合成長繊維不織布層内に侵入させることが出来る。このようにして、メルトブロー法による極細繊維が熱可塑性合成長繊維不織布内に侵入して固定されることにより、積層不織布の構造自体の強度が向上するだけでなく、極細繊維不織布層の外力による移動が生じにくくなるので、極細繊維不織布層を薄くして通気性を高く保つことが出来る。   When the above manufacturing method is used, the ultrafine fiber nonwoven fabric layer by the melt-blowing method is directly sprayed on the thermoplastic synthetic long-fiber nonwoven fabric layer, so that the ultrafine fiber by the melt-blowing method is allowed to enter the thermoplastic synthetic long-fiber nonwoven fabric layer. I can do it. In this way, the ultrafine fibers by the melt-blowing method penetrate into the thermoplastic synthetic long fiber nonwoven fabric and are fixed, so that not only the strength of the laminated nonwoven fabric structure itself is improved, but also the movement of the ultrafine fiber nonwoven fabric layer due to external force Therefore, the ultrafine fiber nonwoven fabric layer can be made thin and air permeability can be kept high.

また、熱可塑性合成樹脂の自己接着のみを接合力としているため、不純物が混入せず、羽毛を汚染することが無い。   Further, since only the self-adhesion of the thermoplastic synthetic resin is used as the bonding force, impurities are not mixed in and the feathers are not contaminated.

上記の製造方法で、熱可塑性合成長繊維不織布層の上に、メルトブロー法による極細繊維を直接吹き付けて積層不織布とすることにより、メルトブロー法による極細繊維を熱可塑性合成長繊維不織布層内に侵入させることができ、さらに、熱圧着で接合一体化させることにより、極細繊維の侵入と、固定化が促進される。この様に、極細繊維が、熱可塑性合成長繊維不織布の繊維間隙を埋めるような作用をし、この構造を熱圧着によって固定化することにより、極めて特異な、繊維間隙を利用した開孔状態を有する本発明の積層不織布が得られる。本発明における特定の開孔径分布は、上記のような構造的な要因によるものと推定される。   In the production method described above, ultrafine fibers obtained by the melt-blowing method are directly blown onto the thermoplastic synthetic long-fiber nonwoven fabric layer to form a laminated nonwoven fabric, thereby allowing the ultrafine fibers obtained by the melt-blowing method to enter the thermoplastic synthetic long-fiber nonwoven fabric layer. In addition, by joining and integrating by thermocompression bonding, penetration of ultrafine fibers and fixation are promoted. In this way, the ultrafine fibers act to fill the fiber gap of the thermoplastic synthetic long-fiber nonwoven fabric, and by fixing this structure by thermocompression bonding, a very unique open state utilizing the fiber gap is obtained. The laminated nonwoven fabric of the present invention is obtained. The specific pore size distribution in the present invention is presumed to be due to the above structural factors.

このような、スパンボンド不織布層に対するメルトブロー繊維層の侵入を制御するには、メルトブロー紡糸ノズルと熱可塑性合成長繊維の堆積ウェブの捕集面との相対位置を12cm前後に設定する方法、あるいは、前記捕集面に作用する吸引力を高める方法によることが有効である。   In order to control the penetration of the meltblown fiber layer into the spunbond nonwoven fabric layer, a method of setting the relative position between the meltblown spinning nozzle and the collection surface of the thermoplastic synthetic fiber deposition web to be around 12 cm, or It is effective to use a method of increasing the suction force acting on the collection surface.

更に、意外なことに、理由は明確ではないが、極細繊維であるメルトブロー繊維を構成する熱可塑性合成樹脂として、融点の高い樹脂を用いるほうが、熱可塑性合成長繊維不織布層により侵入し易いことが判明している。即ち、極細繊維不織布層に用いる樹脂として、ポリエチレンテレフタレート、ポリアミドなどの180℃以上の融点を有する樹脂が、本発明に適している。これは、高融点樹脂が、メルトブローの繊維化過程で、十分に結晶化しない状態で繊維間隙に流動的に侵入するためと思われる。   Furthermore, surprisingly, although the reason is not clear, it is easier to penetrate the thermoplastic synthetic long-fiber nonwoven fabric layer by using a resin having a high melting point as the thermoplastic synthetic resin constituting the meltblown fiber that is an ultrafine fiber. It turns out. That is, as the resin used for the ultrafine fiber nonwoven fabric layer, a resin having a melting point of 180 ° C. or higher, such as polyethylene terephthalate and polyamide, is suitable for the present invention. This is presumably because the high melting point resin fluidly enters the fiber gap in the melt blown fiberization process without being sufficiently crystallized.

また、メルトブロー繊維の結晶化度が15〜40%の場合に、接着性や侵入性が良好となり好ましい。このような、結晶化度にするには、ポリエステル樹脂の場合、溶液粘度(ηsp/c)が、好ましくは0.2〜0.8、より好ましくは0.2〜0.5であれば、一般的なメルトブロー紡糸条件で結晶化度を調整することが可能である。また、ポリアミド樹脂の場合は、溶液比粘度(ηrel)が、好ましくは1.8〜2.7、より好ましくは1.8〜2.2であれば、同様に調整可能である。   Moreover, when the crystallinity of the meltblown fiber is 15 to 40%, the adhesiveness and penetration are good, which is preferable. In order to achieve such crystallinity, in the case of a polyester resin, if the solution viscosity (ηsp / c) is preferably 0.2 to 0.8, more preferably 0.2 to 0.5, It is possible to adjust the crystallinity under general melt blow spinning conditions. In the case of a polyamide resin, it can be similarly adjusted if the solution specific viscosity (ηrel) is preferably 1.8 to 2.7, more preferably 1.8 to 2.2.

一般的なポリプロピレンのメルトブロー繊維の結晶化度は約50%程度であり、ポリエステルやポリアミドに比較し高い値を示す。これは、冷却過程による効果が大きいと考えることが出来、融点の高い樹脂の方が軟化し易く、侵入もし易いと推定される。   The crystallinity of a general polypropylene meltblown fiber is about 50%, which is higher than that of polyester or polyamide. This can be considered that the effect of the cooling process is large, and it is estimated that the resin having a high melting point is easily softened and easily penetrated.

本発明においては、寸法安定性(特に、湿潤時)に優れ、強度が高いことからポリエステル樹脂が好ましく使用され、メルトブロー繊維を構成する樹脂は、溶液粘度(ηsp/c)が0.2〜0.8のポリエステル樹脂が好ましく使用され、メルトブロー繊維の結晶化度は15〜40%とすることがより好ましい。   In the present invention, a polyester resin is preferably used because of excellent dimensional stability (particularly when wet) and high strength, and the resin constituting the meltblown fiber has a solution viscosity (ηsp / c) of 0.2 to 0. .8 polyester resin is preferably used, and the crystallinity of the meltblown fiber is more preferably 15 to 40%.

メルトブロー繊維の具体的な侵入の形態は、繊維単独でひげ状や絡みついた様な形状ではなく、複数の繊維の集合体として侵入している部分が形成されており、侵入した極細繊維不織布層が熱可塑性合成長繊維の一部を取り囲むように包埋、または交絡した配置をとり、また、その侵入したメルトブロー繊維の一部が熱可塑性合成長繊維を接着している構造を、メルトブロー繊維と熱可塑性合成長繊維の混和層として全面に有する状態となっている。   The specific form of intrusion of the meltblown fiber is not a shape like a whisker or entanglement of the fiber alone, but a part invading as an aggregate of a plurality of fibers is formed, and the infiltrated ultrafine fiber nonwoven fabric layer A structure in which a part of the thermoplastic synthetic long fiber is embedded or entangled so as to surround a part of the thermoplastic synthetic long fiber, and a part of the melt blown fiber that has penetrated is bonded to the thermoplastic synthetic long fiber, It is in the state which has as a mixed layer of a plastic synthetic long fiber in the whole surface.

羽毛が袋内側表面に貼りつくことを防止する為に、製袋した際の内側となる面に摩擦抵抗を低減する加工剤を塗布することも、好ましい態様である。加工剤としては、界面活性剤またはシリコン系柔軟剤等が使用できる。   In order to prevent the feathers from sticking to the inner surface of the bag, it is also preferable to apply a processing agent that reduces frictional resistance to the inner surface when the bag is made. As the processing agent, a surfactant or a silicon softener can be used.

また、羽毛が袋内側表面に貼りつくことを防止する為に、製袋した際の内側となる面に静電加工を行うことも、好ましい態様である。静電加工剤としては、親水系界面活性剤であれば、アニオン系、カチオン系、非イオン系のいずれでもよく、市販品を特に限定なく使用できる。例えば、日華化学(株)のアルキルホスフェート系静電防止剤のデートロンN等が使用できる。   In order to prevent the feathers from sticking to the inner surface of the bag, it is also a preferable aspect to perform electrostatic processing on the inner surface when the bag is made. The electrostatic processing agent may be any of anionic, cationic and nonionic as long as it is a hydrophilic surfactant, and a commercially available product can be used without particular limitation. For example, an alkyl phosphate antistatic agent Daytron N manufactured by Nikka Chemical Co., Ltd. can be used.

本発明において、積層不織布を製袋した際に、袋の最内層がヒートシール性の不織布であると、ヒートシールで製袋加工が出来るので、好ましい。例えば、スパンボンド不織布層、メルトブロー不織布層、スパンボンド不織布層を順次製造して積層し、エンボスロールで圧着する場合、片面のスパンボンド不織布層を他面のスパンボンド不織布層より低融点の樹脂を含む素材で製造すると、片面がヒートシール性の不織布を得ることが出来る。   In the present invention, it is preferable that the innermost layer of the bag is a heat-sealable non-woven fabric when the laminated non-woven fabric is made, since the bag making process can be performed by heat sealing. For example, when a spunbond nonwoven fabric layer, a melt blown nonwoven fabric layer, and a spunbond nonwoven fabric layer are manufactured and laminated in order, and then crimped with an embossing roll, a single-sided spunbond nonwoven fabric layer has a lower melting point resin than the other spunbond nonwoven fabric layer. If it manufactures with the raw material containing, a single-sided heat sealable nonwoven fabric can be obtained.

この方法により、同系列の樹脂を用いて製造すると、結晶性の低いメルトブロー繊維が熱可塑性合成長繊維不織布層のバインダーとしても機能するため、高強度の積層不織布が得られる。特に、紡糸されたメルトブロー繊維を熱可塑性合成長繊維層不織布上に直接打ち込むように捕集する製造方法によって、顕著に高い強力を有する積層不織布を得ることが可能となる。   When this method is used to produce the same series of resins, a melt-blown fiber having low crystallinity also functions as a binder for the thermoplastic synthetic long-fiber nonwoven fabric layer, so that a high-strength laminated nonwoven fabric can be obtained. In particular, it is possible to obtain a laminated nonwoven fabric having a remarkably high strength by a production method in which spun meltblown fibers are collected so as to be directly driven onto a thermoplastic synthetic long fiber layer nonwoven fabric.

本発明により、羽毛の吹き出し防止性能と通気性に優れ、回収作業時間を大幅に短縮出来る羽毛回収袋を得ることが可能となる。   According to the present invention, it is possible to obtain a feather collection bag that has excellent feather blowing prevention performance and air permeability and can significantly shorten the collection work time.

以下、実施例を挙げて本発明を更に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、測定方法および評価方法は次の通りである。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further, this invention is not limited to these Examples at all. The measurement method and evaluation method are as follows.

(1)目付(g/m
JIS L−1906に規定の方法に従い、縦20cm×横25cmの試験片を、試料の幅1m当たり3箇採取して質量を測定し、その平均値を単位面積当たりの質量に換算して求めた。
(1) Weight per unit area (g / m 2 )
In accordance with the method prescribed in JIS L-1906, three test pieces measuring 20 cm in length and 25 cm in width were sampled per 1 m width of the sample, the mass was measured, and the average value was calculated by converting to the mass per unit area. .

(2)厚み(mm)
JIS L−1906に規定の方法に従い、幅1m当たり10箇所の厚みを測定し、その平均値を求めた。荷重は9.8kPaで行った。
(2) Thickness (mm)
According to the method prescribed in JIS L-1906, the thickness of 10 locations per 1 m width was measured, and the average value was obtained. The load was 9.8 kPa.

(3)開孔径分布
PMI社のパームポロメーター(型式:CFP−1200AEX)を用いた。測定には、浸液にPMI社製のシルウィックを用い、試料を浸液に浸して充分に脱気し、測定した。
(3) Opening Diameter Distribution A palm porometer (model: CFP-1200AEX) manufactured by PMI was used. For the measurement, Sylwick made by PMI was used as the immersion liquid, and the sample was immersed in the immersion liquid and sufficiently deaerated to measure.

本測定装置は、フィルターを、あらかじめ表面張力が既知の液体に浸し、フィルターの全ての細孔を液体の膜で覆った状態からフィルターに圧力をかけ、液膜の破壊される圧力と液体の表面張力から計算された細孔の孔径を測定する。計算には下記の数式(1)を用いる。
d=C・r/P ……(1)
式中、dはフィルターの孔径、rは液体の表面張力、Pはその孔径の液膜が破壊される圧力、Cは定数である。
In this measuring device, the filter is immersed in a liquid with a known surface tension in advance, and pressure is applied to the filter from a state in which all pores of the filter are covered with a liquid film. The pore diameter calculated from the tension is measured. The following formula (1) is used for the calculation.
d = C · r / P (1)
In the formula, d is the pore diameter of the filter, r is the surface tension of the liquid, P is the pressure at which the liquid film having the pore diameter is broken, and C is a constant.

数式(1)より、液体に浸したフィルターにかける圧力Pを低圧から高圧に連続的に変化させた場合の流量(濡れ流量)を測定すると、初期の圧力は最も大きな細孔の液膜でも破壊されないので、流量は0である。圧力を上げていくと、最も大きな細孔の液膜が破壊され、流量が発生する(バブルポイント)。さらに圧力を上げていくと、各圧力に応じて流量は増加し、最も小さな細孔の液膜が破壊され、乾いた状態の流量(乾き流量)と一致する。   From Equation (1), when the flow rate (wetting flow rate) when the pressure P applied to the filter immersed in the liquid is continuously changed from low pressure to high pressure is measured, the initial pressure is broken even with the liquid film with the largest pores. The flow rate is zero. As the pressure is increased, the liquid film with the largest pores is destroyed and a flow rate is generated (bubble point). When the pressure is further increased, the flow rate increases in accordance with each pressure, and the liquid film with the smallest pores is destroyed, which coincides with the dry flow rate (dry flow rate).

本測定装置では、ある圧力における濡れ流量を、同圧力での乾き流量で割った値を累積フィルター流量(単位:%)と呼ぶ。累積フィルター流量が50%となる圧力で破壊される液膜の孔径を、平均流量孔径と呼ぶ。
本発明での開孔径分布の範囲は、累積フィルター流量が50%の±2σの範囲、すなわち、累積フィルター流量が97.7〜2.3%の範囲の孔径とした。
In this measuring device, the value obtained by dividing the wet flow rate at a certain pressure by the dry flow rate at the same pressure is called the cumulative filter flow rate (unit:%). The pore size of the liquid film that is broken at a pressure at which the cumulative filter flow rate is 50% is referred to as the average flow pore size.
The range of the pore size distribution in the present invention was a range of ± 2σ with a cumulative filter flow rate of 50%, that is, a pore size with a cumulative filter flow rate of 97.7 to 2.3%.

上記より、累積フィルター流量が2.3%となる圧力は、97.7%となる圧力より小さい。従って数式(1)より、あるフィルターの2.3%開孔径は、97.7%開孔径より大きい。2.3%開孔径と97.7%開孔径の差が大きい程、そのフィルターの持つ細孔の大きさの分布は広いと言える。
表1において、97.7%開孔径を下限開孔径とし、2.3%開孔径を上限開孔径として表記した。
From the above, the pressure at which the cumulative filter flow rate is 2.3% is smaller than the pressure at which 97.7%. Therefore, from the formula (1), the 2.3% aperture diameter of a certain filter is larger than the 97.7% aperture diameter. It can be said that the larger the difference between the 2.3% pore size and the 97.7% pore size, the wider the pore size distribution of the filter.
In Table 1, the 97.7% aperture diameter was expressed as the lower limit aperture diameter, and the 2.3% aperture diameter was expressed as the upper limit aperture diameter.

(4)繊維径(μm)
繊維ウェブ、不織布などの布帛の両端部10cmを除き、幅20cm毎の区域からそれぞれ1cm角の試験片を切り取って試料とした。各試料について、マイクロスコープで繊維の直径を30点測定し、測定値の平均値(小数点第2位を四捨五入)を算出して、試料を構成する繊維の繊維径とした。
(4) Fiber diameter (μm)
Except for 10 cm at both ends of a fabric such as a fiber web and a non-woven fabric, 1 cm square test pieces were cut out from areas of every 20 cm width to prepare samples. For each sample, the diameter of the fiber was measured with a microscope at 30 points, and the average value of the measured values (rounded to the first decimal place) was calculated as the fiber diameter of the fibers constituting the sample.

(5)羽毛の吹き出し性
40×40cmの大きさで、周辺部をヒートシールした平袋を作製し、羽毛150gを入れて羽毛入り口をシールし、タンブラー乾燥機にて1時間処理し、外観を観察した。次いでシール部を切り取り、袋の内側を観察した。判定基準は下記の通りである。
(5) Feather blowing ability A flat bag with a size of 40 × 40 cm and a heat-sealed peripheral part is prepared, 150 g of feathers is put in, the entrance of the feathers is sealed, and it is treated with a tumbler dryer for 1 hour, Observed. Subsequently, the seal part was cut off and the inside of the bag was observed. The judgment criteria are as follows.

◎:外観に羽毛は全く見えず、内側の羽毛付着も全く無い。
○:外観に羽毛は見えず、内側の羽毛付着は少ない。
△:外観に羽毛の吹き出しが一部に見え、内側の羽毛付着が散見される。
×:外観に羽毛の吹き出しが多く見え、内側一面に羽毛が付着している。
A: No feathers are visible on the appearance, and no inner feathers are attached.
○: Feathers are not visible in the appearance, and there is little adhesion of inner feathers.
(Triangle | delta): The feather | blowing balloon appears in part on an external appearance, and inner feather adhesion is scattered.
X: Many feather balloons are visible in the appearance, and feathers are attached to the entire inner surface.

(6)通気度(cm/cm・秒)
JIS L−1906「一般長繊維不織布試験方法」に記載されているフラジール形法で測定した。
(6) Air permeability (cm 3 / cm 2 · sec)
It was measured by the fragile method described in JIS L-1906 “General Long Fiber Nonwoven Fabric Test Method”.

[実施例1]
汎用的なポリエチレンテレフタレート樹脂を用いて、スパンボンド法により、紡糸温度300℃でフィラメント長繊維群を移動捕集面に向けて押し出し、紡糸速度3500m/分で紡糸し、コロナ帯電で3μC/g程度帯電させて充分に開繊させ、平均繊維経16μmのフィラメントからなり、5cm角の目付変動率が15%以下の均一性を有し、目付20.8g/mの未結合長繊維ウェブを、捕集ネット面上で調整した(「合成長繊維不織布層A」とする)。
[Example 1]
Using a general-purpose polyethylene terephthalate resin, the filament long fiber group is extruded toward the moving collection surface at a spinning temperature of 300 ° C. by the spunbond method, and is spun at a spinning speed of 3500 m / min, and is about 3 μC / g by corona charging. An unbonded continuous fiber web consisting of filaments having an average fiber diameter of 16 μm, having a uniformity of 5 cm square basis weight variation of 15% or less, and a basis weight of 20.8 g / m 2 It adjusted on the collection net | network surface (it is set as "the synthetic long-fiber nonwoven fabric layer A").

一方、ポリエチレンテレフタレート(溶融粘度(ηsp/c):0.50)を、紡糸温度300℃、加熱エアー温度320℃、吐出エアー1000Nm/hr/mの条件下で、メルトブロー法にて紡糸し、平均繊維径1.6μmの極細繊維を目付8.4g/mのランダムウエブとして、上記により形成された未結合長繊維ウェブに向けて、直接に噴出させた(「極細繊維不織布層B」とする)。この際、メルトブローノズルから未結合長繊維ウェブ上面までの距離は100mmとし、メルトブローノズル直下の捕集面における吸引圧を0.2kPa、風速約7m/秒に設定した。 On the other hand, polyethylene terephthalate (melt viscosity (ηsp / c): 0.50) was spun by a melt blow method under conditions of a spinning temperature of 300 ° C., a heating air temperature of 320 ° C., and a discharge air of 1000 Nm 3 / hr / m, Ultrafine fibers having an average fiber diameter of 1.6 μm were directly spouted as a random web having a basis weight of 8.4 g / m 2 toward the unbonded long fiber web formed as described above (“Ultrafine fiber nonwoven fabric layer B”) To do). At this time, the distance from the melt blow nozzle to the upper surface of the unbonded long fiber web was set to 100 mm, and the suction pressure at the collecting surface immediately below the melt blow nozzle was set to 0.2 kPa and the wind speed was about 7 m / sec.

次いで、更に、ポリエチレンテレフタレートの長繊維ウェブを、最初に調整した長繊維ウェブと同様にして開繊し、「合成長繊維不織布層C」として、前記A、Bと積層し、合成長繊維不織布層A/極細繊維不織布層B/合成長繊維不織布層Cからなる三層の積層ウェブを作製した。   Subsequently, a long fiber web of polyethylene terephthalate is further opened in the same manner as the first prepared long fiber web, and is laminated with the above-mentioned A and B as a “synthetic long fiber non-woven fabric layer C”. A three-layer laminated web composed of A / extra fine fiber nonwoven fabric layer B / synthetic long fiber nonwoven fabric layer C was produced.

次いで、該積層ウェブを、エンボスロールとフラットロールの間に通して熱圧着させ、表1に示す積層不織布を得た。熱圧着加工は、エンボスロールの面積率が11%であった。
得られた積層不織布を用いて羽毛回収袋を作製し、その評価結果を表2に示す。表1及び2に示す通り、開孔径の下限は1μm、上限は15μmであり、羽毛吹き出しが無く、通気度は35cm/cm・秒であり、通気性の高い羽毛回収袋であった。
Next, the laminated web was passed between an embossing roll and a flat roll and thermocompression bonded, and laminated nonwoven fabrics shown in Table 1 were obtained. In the thermocompression bonding, the area ratio of the embossing roll was 11%.
A feather collection bag was produced using the laminated nonwoven fabric obtained, and the evaluation results are shown in Table 2. As shown in Tables 1 and 2, the lower limit of the aperture diameter was 1 μm, the upper limit was 15 μm, there was no feather blowing, the air permeability was 35 cm 3 / cm 2 · sec, and the feather collection bag was highly breathable.

[実施例2〜7]
積層不織布の開孔径、極細繊維層の繊維径、目付を表1に示す通りとした以外は、実施例1と同様にして、積層不織布を得た。得られた積層不織布用いて羽毛回収袋を作製し、その評価結果を表2に示す。
実施例2では、開孔径の下限が0.5μmであり、通気性はやや低いが、吹き出し防止性に優れ、実用上問題ない羽毛回収袋であった。
[Examples 2 to 7]
A laminated nonwoven fabric was obtained in the same manner as in Example 1 except that the aperture diameter of the laminated nonwoven fabric, the fiber diameter of the ultrafine fiber layer, and the basis weight were as shown in Table 1. A feather collection bag was produced using the obtained laminated nonwoven fabric, and the evaluation results are shown in Table 2.
In Example 2, the lower limit of the aperture diameter was 0.5 μm and the air permeability was somewhat low, but the feather collection bag had excellent blowing prevention properties and had no practical problems.

実施例3では、開孔径の上限が50μmであり、通気性は良好であるが、羽毛の吹き出しにおいて、袋の内面にやや羽毛の付着があったが、実用上問題はなかった。
実施例4〜7では、羽毛の吹き出しが無く、通気度が高く、回収時間の早い羽毛回収袋であった。
In Example 3, the upper limit of the opening diameter was 50 μm and the air permeability was good. However, there was no problem in practical use although feathers were slightly attached to the inner surface of the bag when the feathers were blown out.
In Examples 4 to 7, the feather collection bag had no feather blowing, high air permeability, and quick collection time.

[実施例8]
繊維径3μm、長さ5mmにカットした極細ポリエステル短繊維を水中に均一分散させ、濃度1%のスラリー溶液に調整した。このスラリー溶液を用い、傾斜型長網抄造機により、目付20g/mのシートを表層として作製すると同時に、目付15g/mのポリエステルスパンボンド(合成長繊維不織布層A)を下層として連続抄造し、次いで、表層と下層を積層して、短繊維と長繊維からなる積層シートを作製した。
[Example 8]
Ultrafine polyester short fibers cut to a fiber diameter of 3 μm and a length of 5 mm were uniformly dispersed in water to prepare a slurry solution having a concentration of 1%. Using this slurry solution, a sheet with a basis weight of 20 g / m 2 is produced as a surface layer with a slanted long web paper machine, and at the same time, a continuous paper making with a polyester spunbond (synthetic long fiber nonwoven fabric layer A) having a basis weight of 15 g / m 2 as the lower layer is made. Then, the surface layer and the lower layer were laminated to produce a laminated sheet composed of short fibers and long fibers.

次いで、孔径0.1mmの直進流噴射ノズルを用いて、表層から4.0MPaの圧力で高圧水流処理を行い、繊維を互いに三次元交絡させた。ピンテンターで乾燥し、表1に記載の積層不織布を得た。
得られた積層不織布を用いて羽毛回収袋を作製し、その評価結果を表2に示す。得られた羽毛回収袋は、20〜37μmの開孔径分布を有し、羽毛の吹き出しが無く、通気度が高く、回収時間の早いものであった。
Next, using a straight flow jet nozzle having a hole diameter of 0.1 mm, high pressure water flow treatment was performed from the surface layer at a pressure of 4.0 MPa, and the fibers were entangled three-dimensionally. It dried with the pin tenter and the laminated nonwoven fabric of Table 1 was obtained.
A feather collection bag was produced using the laminated nonwoven fabric obtained, and the evaluation results are shown in Table 2. The obtained feather collection bag had a pore size distribution of 20 to 37 μm, no feathers were blown out, the air permeability was high, and the collection time was fast.

[実施例9]
汎用的なポリエチレンテレフタレートをスパンボンド法により、紡糸温度300℃でフィラメントの長繊維群を移動捕集面に向けて押し出し、紡糸速度3500m/分で紡糸し、コロナ帯電で3μC/g程度帯電させて充分に開繊させ、平均繊維経16μmのフィラメントからなり、5cm角の目付変動率が15%以下の均一性を有し、目付20g/mの未結合長繊維ウェブを、捕集ネット面上で調整した(「合成長繊維不織布層A」とする)。
[Example 9]
A general-purpose polyethylene terephthalate is extruded by spunbonding at a spinning temperature of 300 ° C. and a filament group of filaments is extruded toward the moving collection surface, and is spun at a spinning speed of 3500 m / min. sufficiently was opened, made of filaments having an average fiber through 16 [mu] m, basis weight variation rate of 5cm square has the following uniformity 15% unbound long fiber web having a mass per unit area of 20 g / m 2, the collecting net plane ("Synthetic long fiber nonwoven fabric layer A").

一方、ポリエチレンテレフタレート(溶融粘度(ηsp/c):0.50)を、紡糸温度300℃、加熱エア温度320℃、吐出エア1000Nm/hr/mの条件下でメルトブロー法にて紡糸し、平均繊維径1.6μmの極細繊維を目付20g/mのランダムウエブとして、上記により形成された未結合長繊維ウェブに向けて、直接に噴出させた(「極細繊維不織布層B」とする)。この際、メルトブローノズルから未結合長繊維ウェブ上面までの距離は100mmとし、メルトブローノズル直下の捕集面における吸引を0.2kPa、風速を約7m/秒に設定した。次いで、前記A、Bを積層し、合成長繊維不織布層A/極細繊維不織布層Bからなる二層の積層ウェブを作製した。 On the other hand, polyethylene terephthalate (melt viscosity (ηsp / c): 0.50) was spun by a melt blow method under the conditions of a spinning temperature of 300 ° C., a heating air temperature of 320 ° C., and a discharge air of 1000 Nm 3 / hr / m. Ultrafine fibers having a fiber diameter of 1.6 μm were directly ejected as a random web having a basis weight of 20 g / m 2 toward the unbonded long fiber web formed as described above (referred to as “ultrafine fiber nonwoven fabric layer B”). At this time, the distance from the melt blow nozzle to the upper surface of the unbonded long fiber web was set to 100 mm, the suction on the collecting surface immediately below the melt blow nozzle was set to 0.2 kPa, and the wind speed was set to about 7 m / sec. Subsequently, the A and B were laminated to prepare a two-layer laminated web composed of the synthetic long fiber nonwoven fabric layer A / the extra fine fiber nonwoven fabric layer B.

次いで、該積層ウェブを、エンボスロールとフラットロールの間に通して熱圧着させ、積層不織布を得た。熱圧着加工は、エンボスロールの面積率が23%であった。
得られた積層不織布を用いて羽毛回収袋を作製し、その評価結果を表2に示す。得られた羽毛回収袋は、羽毛の吹き出しが無く、通気度が高いものであった。
Next, the laminated web was thermocompression bonded between an embossing roll and a flat roll to obtain a laminated nonwoven fabric. In the thermocompression bonding, the area ratio of the embossing roll was 23%.
A feather collection bag was produced using the laminated nonwoven fabric obtained, and the evaluation results are shown in Table 2. The obtained feather collection bag had no air blowing and had high air permeability.

[実施例10]
汎用的なポリプロピレン樹脂をスパンボンド法により、紡糸温度240℃でフィラメント長繊維群を移動捕集面に向けて押し出し、紡糸速度3500m/分で紡糸し、平均繊経18μmフィラメントからなり、目付18g/mの未結合長繊維ウェブを、捕集ネット面上で調整した(「合成長繊維不織布層A」という)。
[Example 10]
A general-purpose polypropylene resin is extruded by a spunbond method at a spinning temperature of 240 ° C. toward the moving collection surface, the filament long fiber group is spun at a spinning speed of 3500 m / min. An unbound long fiber web of m 2 was prepared on the collection net surface (referred to as “synthetic long fiber nonwoven fabric layer A”).

一方、ポリプロピレン(MFR=1200)を、紡糸温度290℃、加熱エア温度300℃の条件下でメルトブロー法にて紡糸して、平均繊維径1.6μmの極細繊維を目付4g/mのランダムウエブとして、上記により形成された未結合長繊維ウェブに向けて、直接に噴出させた(「極細繊維不織布層B」という)。 On the other hand, polypropylene (MFR = 1200) was spun by a melt blow method under conditions of a spinning temperature of 290 ° C. and a heated air temperature of 300 ° C., and ultrafine fibers having an average fiber diameter of 1.6 μm were random webs having a basis weight of 4 g / m 2 . As above, it was ejected directly toward the unbonded long fiber web formed as described above (referred to as “extra fine fiber nonwoven fabric layer B”).

次いで、更に、ポリプロピレンの長繊維ウェブを、最初に調整した未結合長繊維ウェブと同様にして紡糸して「合成長繊維不織布層C」とし、前記A、Bと積層して、合成長繊維不織布層A/極細繊維不織布層B/合成長繊維不織布層Cからなる三層の積層ウェブを作製した。   Next, a polypropylene long fiber web is further spun in the same manner as the first prepared unbonded long fiber web to obtain a “synthetic long fiber nonwoven fabric layer C”, which is laminated with the above A and B, and a synthetic long fiber nonwoven fabric. A three-layer laminated web composed of layer A / ultrafine fiber nonwoven fabric layer B / synthetic long fiber nonwoven fabric layer C was prepared.

次いで、該積層ウェブを、エンボスロールとフラットロールの間に通して熱圧着させ、積層不織布を得た。熱圧着加工は、エンボスロールの面積率が14%であった。   Next, the laminated web was thermocompression bonded between an embossing roll and a flat roll to obtain a laminated nonwoven fabric. In the thermocompression bonding, the area ratio of the embossing roll was 14%.

得られた積層不織布用いて羽毛回収袋を作製し、その評価結果を表2に示す。得られた羽毛回収袋は、20〜37μmの開孔径分布を有し、羽毛の吹き出しが無く、通気度が高く、回収時間の早いものであった。また、表面の毛羽立ちは、スパンボンド層がポリエステルからなる実施例1〜9よりはやや劣るものの、実用範囲内であり、柔軟な風合いであった。   A feather collection bag was produced using the obtained laminated nonwoven fabric, and the evaluation results are shown in Table 2. The obtained feather collection bag had a pore size distribution of 20 to 37 μm, no feathers were blown out, the air permeability was high, and the collection time was fast. Moreover, although the surface fuzz was slightly inferior to Examples 1-9 in which the spunbond layer was made of polyester, it was within the practical range and had a soft texture.

[実施例11]
汎用的なナイロン6をスパンボンド法により、紡糸温度265℃でフィラメントの長繊維群を移動捕集面に向けて押し出し紡糸し、コロナ帯電で6μc/g程度の帯電をさせて充分に開繊させ、平均繊維径15μmのフィラメントからなり、5cm目付変動率が15%以下の均一性を有し、目付17g/mの未結合長繊維ウェブを、捕集ネット上で調整した(「合成長繊維不織布層A」とする)。
[Example 11]
General-purpose nylon 6 is spunbonded at a spinning temperature of 265 ° C, and the filament filaments are extruded and spun toward the moving collection surface. The corona is charged to about 6 µc / g and fully opened. A non-bonded long fiber web having a uniform fiber diameter of 15% or less and having an average fiber diameter of 15 μm and a basis weight of 17 g / m 2 was prepared on a collection net (“synthetic long fiber”). Non-woven fabric layer A ”).

一方、ナイロン6(溶液相対粘度(ηrel):2.1)を用い、公知のメルトブロー法により、紡糸温度270℃、加熱エア320℃、1100nm/hr/mで、平均繊維径が1.6μm、目付が6g/mになるように吐出した(「極細繊維不織布層B」とする)。 On the other hand, nylon 6 (solution relative viscosity (ηrel): 2.1) is used, and the average fiber diameter is 1.6 μm at a spinning temperature of 270 ° C., heated air of 320 ° C., 1100 nm 3 / hr / m by a known melt blow method. And was discharged so that the basis weight was 6 g / m 2 (referred to as “extra fine fiber nonwoven fabric layer B”).

更に、ナイロン6を上記の未結合長繊維ウェブと同様にして紡糸し、目付17g/mのスパンボンドウェブを作製し(「合成長繊維不織布層C」とする)、これを前記A、Bと積層して、合成長繊維不織布層A/極細繊維不織布層B/合成長繊維不織布層Cからなる三層の積層ウェブを作製した。 Further, nylon 6 is spun in the same manner as the above-mentioned unbonded long fiber web to produce a spunbond web having a basis weight of 17 g / m 2 (referred to as “synthetic long fiber nonwoven fabric layer C”). And a three-layer laminated web composed of synthetic long fiber nonwoven fabric layer A / extra fine fiber nonwoven fabric layer B / synthetic long fiber nonwoven fabric layer C was produced.

次いで、該積層ウェブを、エンボスロールとフラットロールの間に通して熱圧着させ、積層不織布を得た。熱圧着加工は、エンボスロールはマイナス柄、面積率11%であった。   Next, the laminated web was thermocompression bonded between an embossing roll and a flat roll to obtain a laminated nonwoven fabric. In the thermocompression bonding, the embossing roll had a negative pattern and an area ratio of 11%.

得られた積層不織布用いて羽毛回収袋を作製し、その評価結果を表2に示す。得られた羽毛回収袋は、羽毛の吹き出しが無く、通気度が高いものであり、風合いは実施例中最も柔軟であった。   A feather collection bag was produced using the obtained laminated nonwoven fabric, and the evaluation results are shown in Table 2. The obtained feather collection bag had no feather blowing, high air permeability, and the texture was the most flexible in the examples.

[比較例1]
不織布の開孔径、極細繊維不織布層の繊維径、目付を表1に示す通りとした以外は、実施例1と同様にして積層不織布を得た。得られた積層不織布用いて羽毛回収袋を作製し、その評価結果を表2に示す。
得られた羽毛回収袋は、開孔径の下限が0.3μmと小さいので、通気度が低く、羽毛の充填に時間がかかるものであった。
[Comparative Example 1]
A laminated nonwoven fabric was obtained in the same manner as in Example 1 except that the pore diameter of the nonwoven fabric, the fiber diameter of the ultrafine fiber nonwoven fabric layer, and the basis weight were as shown in Table 1. A feather collection bag was produced using the obtained laminated nonwoven fabric, and the evaluation results are shown in Table 2.
The obtained feather collection bag had a low opening diameter as small as 0.3 μm, so the air permeability was low and it took time to fill the feathers.

[比較例2]
不織布の開孔径、極細繊維不織布層の繊維径、目付を表1に示す通りとした以外は、実施例1と同様にして積層不織布を得た。得られた積層不織布用いて羽毛回収袋を作製し、その評価結果を表2に示す。
得られた羽毛回収袋は、開孔径の上限が70μmと大きいので、孔径の大きな部分から羽毛が吹き出して、外観に羽毛の吹き出しが多く見え、内側一面に羽毛が付着していた。
[Comparative Example 2]
A laminated nonwoven fabric was obtained in the same manner as in Example 1 except that the pore diameter of the nonwoven fabric, the fiber diameter of the ultrafine fiber nonwoven fabric layer, and the basis weight were as shown in Table 1. A feather collection bag was produced using the obtained laminated nonwoven fabric, and the evaluation results are shown in Table 2.
Since the upper limit of the opening diameter of the obtained feather collection bag was as large as 70 μm, the feathers were blown out from the portion with the large hole diameter, and many feathers were seen on the appearance, and the feathers were attached to the entire inner surface.

[比較例3]
不織布の開孔径、極細繊維不織布層の繊維径、目付を表1に示す通りとした以外は、実施例1と同様にして積層不織布を得た。得られた積層不織布用いて羽毛回収袋を作製し、その評価結果を表2に示す。
[Comparative Example 3]
A laminated nonwoven fabric was obtained in the same manner as in Example 1 except that the pore diameter of the nonwoven fabric, the fiber diameter of the ultrafine fiber nonwoven fabric layer, and the basis weight were as shown in Table 1. A feather collection bag was produced using the obtained laminated nonwoven fabric, and the evaluation results are shown in Table 2.

極細繊維不織布層の繊維径を0.3μmとしたので、安定して生産できず、極細繊維不織布層が密な部分と疎な部分が出来てしまい、開孔径,通気度が著しくばらつく結果となった。羽毛の吹き出し性を見ると、外側に羽毛の吹き出しが一部に見え、内側の羽毛付着が散見された。   Since the fiber diameter of the ultrafine fiber nonwoven fabric layer is 0.3 μm, it cannot be stably produced, and the ultrafine fiber nonwoven fabric layer has a dense part and a sparse part, resulting in a remarkable variation in pore diameter and air permeability. It was. When we looked at the ability of the feathers to blow out, some of the feathers were seen on the outside and some of the inner feathers were attached.

[比較例4]
不織布の開孔径、極細繊維不織布層の繊維径、目付を表1に示す通りとした以外は、実施例1と同様にして積層不織布を得た。得られた積層不織布用いて羽毛回収袋を作製し、その評価結果を表2に示す。
[Comparative Example 4]
A laminated nonwoven fabric was obtained in the same manner as in Example 1 except that the pore diameter of the nonwoven fabric, the fiber diameter of the ultrafine fiber nonwoven fabric layer, and the basis weight were as shown in Table 1. A feather collection bag was produced using the obtained laminated nonwoven fabric, and the evaluation results are shown in Table 2.

極細繊維不織布層の繊維径が1.0μmと大きいので、羽毛の吹き出しを防止する為には目付を厚くしてシートを熱圧で潰し、繊維をフィルム化せざるを得なくなり、通気度が低くなって、羽毛の回収に長時間を要するものであった。   Since the fiber diameter of the extra-fine fiber nonwoven fabric layer is as large as 1.0 μm, in order to prevent the feathers from blowing out, the sheet must be thickened and the sheet must be crushed with hot pressure to form a fiber, and the air permeability is low. Thus, it took a long time to collect the feathers.

[比較例5]
不織布の開孔径、極細繊維不織布層の繊維径、目付を表1に示す通りとした以外は、実施例1と同様にして積層不織布を得た。得られた積層不織布用いて羽毛回収袋を作製し、その評価結果を表2に示す。
極細繊維不織布層の目付を0.5g/mとしたので、極細繊維不織布層の薄い部分が出来、羽毛の吹き出し性を見ると、外側に羽毛の吹き出しが一部に見え、内側の羽毛付着が散見された。
[Comparative Example 5]
A laminated nonwoven fabric was obtained in the same manner as in Example 1 except that the pore diameter of the nonwoven fabric, the fiber diameter of the ultrafine fiber nonwoven fabric layer, and the basis weight were as shown in Table 1. A feather collection bag was produced using the obtained laminated nonwoven fabric, and the evaluation results are shown in Table 2.
Since the basis weight of the extra-fine fiber nonwoven fabric layer was 0.5 g / m 2 , a thin part of the extra-fine fiber nonwoven fabric layer was created. Was scattered.

[比較例6]
不織布の開孔径、極細繊維不織布層の繊維径、目付を表1に示す通りとした以外は、実施例1と同様にして積層不織布を得た。得られた積層不織布用いて羽毛回収袋を作製し、その評価結果を表2に示す。
極細繊維不織布層の目付を90g/mとしたので、通気度が低くなり、羽毛の回収に長時間を要するものであった。
[Comparative Example 6]
A laminated nonwoven fabric was obtained in the same manner as in Example 1 except that the pore diameter of the nonwoven fabric, the fiber diameter of the ultrafine fiber nonwoven fabric layer, and the basis weight were as shown in Table 1. A feather collection bag was produced using the obtained laminated nonwoven fabric, and the evaluation results are shown in Table 2.
Since the basis weight of the ultrafine fiber nonwoven fabric layer was 90 g / m 2 , the air permeability was low, and it took a long time to collect feathers.

Figure 2006291421
Figure 2006291421

Figure 2006291421
Figure 2006291421

Claims (6)

熱可塑性合成長繊維不織布層と、繊維径が0.5〜5μm且つ目付が1〜25g/mの極細繊維不織布層とが接合一体化してなる積層不織布からなり、該積層不織布の開孔径分布が0.5〜50μmの範囲であることを特徴とする羽毛回収袋用不織布。 It consists of a laminated nonwoven fabric in which a thermoplastic synthetic long-fiber nonwoven fabric layer and an ultrafine fiber nonwoven fabric layer having a fiber diameter of 0.5 to 5 μm and a basis weight of 1 to 25 g / m 2 are joined and integrated, and the pore size distribution of the laminated nonwoven fabric Is in the range of 0.5 to 50 μm. 前記積層不織布の通気度が20cm/cm・秒以上であることを特徴とする請求項1に記載の羽毛回収袋用不織布。 The nonwoven fabric for feather recovery bags according to claim 1, wherein the laminated nonwoven fabric has an air permeability of 20 cm 3 / cm 2 · sec or more. 前記極細繊維不織布層がメルトブロー不織布層であることを特徴とする請求項1または2に記載の羽毛回収袋用不織布。   The feather recovery bag nonwoven fabric according to claim 1 or 2, wherein the ultrafine fiber nonwoven fabric layer is a melt blown nonwoven fabric layer. 前記熱可塑性合成長繊維不織布層がスパンボンド不織布層であって、極細繊維不織布層の両面に存在することを特徴とする請求項1〜3のいずれかに記載の羽毛回収袋用不織布。   The nonwoven fabric for feather collection bags according to any one of claims 1 to 3, wherein the thermoplastic synthetic long-fiber nonwoven fabric layer is a spunbond nonwoven fabric layer and is present on both sides of the ultrafine fiber nonwoven fabric layer. 前記積層不織布がポリエステル系樹脂またはポリアミド系樹脂からなることを特徴とする請求項1〜4のいずれかに記載の羽毛回収袋用不織布。   The nonwoven fabric for feather collection bags according to any one of claims 1 to 4, wherein the laminated nonwoven fabric is made of a polyester resin or a polyamide resin. 請求項1〜5のいずれかに記載の羽毛回収袋用不織布を用い、熱可塑性合成長繊維不織布層が外側になるように袋状にしてなる羽毛回収袋。   The feather collection bag which uses the nonwoven fabric for feather collection bags in any one of Claims 1-5, and makes it a bag shape so that a thermoplastic synthetic long fiber nonwoven fabric layer may become an outer side.
JP2005117158A 2005-04-14 2005-04-14 Nonwoven fabric for feather collection bags Expired - Fee Related JP4705401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117158A JP4705401B2 (en) 2005-04-14 2005-04-14 Nonwoven fabric for feather collection bags

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117158A JP4705401B2 (en) 2005-04-14 2005-04-14 Nonwoven fabric for feather collection bags

Publications (2)

Publication Number Publication Date
JP2006291421A true JP2006291421A (en) 2006-10-26
JP4705401B2 JP4705401B2 (en) 2011-06-22

Family

ID=37412278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117158A Expired - Fee Related JP4705401B2 (en) 2005-04-14 2005-04-14 Nonwoven fabric for feather collection bags

Country Status (1)

Country Link
JP (1) JP4705401B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303479A (en) * 2007-06-06 2008-12-18 Japan Vilene Co Ltd Inner fabric for down, inner bag for down, and down-proof structure using the same
JP2010001576A (en) * 2008-06-19 2010-01-07 Japan Vilene Co Ltd Nonwoven fabric for down bag and clothing using the same
JP2010047871A (en) * 2008-08-22 2010-03-04 Japan Vilene Co Ltd Nonwoven fabric for down bag, and down-proof structure using the nonwoven fabric
EP3165654A1 (en) 2015-11-09 2017-05-10 Carl Freudenberg KG Use of endless filament non-woven fabrics for preventing the escape of down in down- filled textile products
DE102017001102A1 (en) 2017-02-07 2018-08-09 Carl Freudenberg Kg Bi-elastic down density nonwoven insert

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480329A (en) * 1987-09-18 1989-03-27 Matsushita Electric Ind Co Ltd Electric cleaner
JPH0369903U (en) * 1989-10-31 1991-07-12
JPH07246144A (en) * 1994-03-09 1995-09-26 Unitika Ltd Antiallergenic bedding cover
JPH0871269A (en) * 1994-09-06 1996-03-19 Hiro Internatl:Kk Blowout-preventing structure for filler from fiber product
JPH10127455A (en) * 1996-10-29 1998-05-19 Koshiro Hagiwara Down quilt
JPH10183457A (en) * 1996-12-24 1998-07-14 Kao Corp Mite-proof sheet
JP2001017754A (en) * 1999-07-02 2001-01-23 Iwase Prince Kk Method and apparatus for processing downs
JP2004202100A (en) * 2002-12-26 2004-07-22 Toyobo Co Ltd Bedding excellent in comfort
JP2004208982A (en) * 2002-12-27 2004-07-29 Yoshikawa Kami Shoji Kk Bed mat containing charcoal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444356Y2 (en) * 1987-11-13 1992-10-20
JPH0369903A (en) * 1989-08-09 1991-03-26 Nippon Sheet Glass Co Ltd Optical guide aligned body
US5482765A (en) * 1994-04-05 1996-01-09 Kimberly-Clark Corporation Nonwoven fabric laminate with enhanced barrier properties

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480329A (en) * 1987-09-18 1989-03-27 Matsushita Electric Ind Co Ltd Electric cleaner
JPH0369903U (en) * 1989-10-31 1991-07-12
JPH07246144A (en) * 1994-03-09 1995-09-26 Unitika Ltd Antiallergenic bedding cover
JPH0871269A (en) * 1994-09-06 1996-03-19 Hiro Internatl:Kk Blowout-preventing structure for filler from fiber product
JPH10127455A (en) * 1996-10-29 1998-05-19 Koshiro Hagiwara Down quilt
JPH10183457A (en) * 1996-12-24 1998-07-14 Kao Corp Mite-proof sheet
JP2001017754A (en) * 1999-07-02 2001-01-23 Iwase Prince Kk Method and apparatus for processing downs
JP2004202100A (en) * 2002-12-26 2004-07-22 Toyobo Co Ltd Bedding excellent in comfort
JP2004208982A (en) * 2002-12-27 2004-07-29 Yoshikawa Kami Shoji Kk Bed mat containing charcoal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303479A (en) * 2007-06-06 2008-12-18 Japan Vilene Co Ltd Inner fabric for down, inner bag for down, and down-proof structure using the same
JP2010001576A (en) * 2008-06-19 2010-01-07 Japan Vilene Co Ltd Nonwoven fabric for down bag and clothing using the same
JP2010047871A (en) * 2008-08-22 2010-03-04 Japan Vilene Co Ltd Nonwoven fabric for down bag, and down-proof structure using the nonwoven fabric
EP3165654A1 (en) 2015-11-09 2017-05-10 Carl Freudenberg KG Use of endless filament non-woven fabrics for preventing the escape of down in down- filled textile products
EP3165655A1 (en) 2015-11-09 2017-05-10 Carl Freudenberg KG Verwendung von endlosfilamentvliesstoffen zum verhindern des austretens von daunen bei mit daunen gefüllten textilprodukten
DE102017001102A1 (en) 2017-02-07 2018-08-09 Carl Freudenberg Kg Bi-elastic down density nonwoven insert
WO2018145935A1 (en) 2017-02-07 2018-08-16 Carl Freudenberg Kg Bi-elastic down-proof non-woven insert

Also Published As

Publication number Publication date
JP4705401B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
KR101197877B1 (en) Nonwoven fabric laminate for expansion molding
US8308833B2 (en) Nonwoven fabric for filters
US8318617B2 (en) Contamination control garments
US10767296B2 (en) Multi-denier hydraulically treated nonwoven fabrics and method of making the same
JPH09209254A (en) Laminated nonwoven fabric and its production
JP4705401B2 (en) Nonwoven fabric for feather collection bags
JP2008238493A (en) Adhesive fiber sheet and its manufacturing method
JP6778308B2 (en) Hydrophilic bulky non-woven fabric
JP2017113670A (en) Filter medium for air filter and air filter
JP4671741B2 (en) Hygroscopic nonwoven fabric
JP2002302861A (en) Raised nonwoven fabric, method of producing the same, and textile product using the same
JP4900675B2 (en) Composite nonwoven fabric for air filter
JPS622060B2 (en)
JP5586408B2 (en) Non-woven filter medium for filter, method for producing the same, and air filter
KR101100018B1 (en) Nonwoven fabric of a mluti-layer for a detergent-sheet and preparing process thereof
WO2014208605A1 (en) Dustproof material and protective clothing using same
JPWO2019026798A1 (en) Laminated sound absorbing material
JPH10251958A (en) Bulky nonwoven fabric
JP4029614B2 (en) Hydrophilic long fiber nonwoven fabric, composite nonwoven fabric and absorbent article using them
KR101805386B1 (en) Polyolefin non-woven fabric manufacturing method of having a rough surface
KR20160075557A (en) Filmless backsheets with good barrier properties
JP3157107U (en) Disposable protective clothing
JP2000271417A (en) Filter medium sheet and pleat filter using the same
TWI834962B (en) Surface material of sanitary material and manufacturing method thereof
JP4906675B2 (en) Non-woven fabric for air filter and air cleaning filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees