JP2006291301A - Method for operating blast furnace at initial firing - Google Patents

Method for operating blast furnace at initial firing Download PDF

Info

Publication number
JP2006291301A
JP2006291301A JP2005114486A JP2005114486A JP2006291301A JP 2006291301 A JP2006291301 A JP 2006291301A JP 2005114486 A JP2005114486 A JP 2005114486A JP 2005114486 A JP2005114486 A JP 2005114486A JP 2006291301 A JP2006291301 A JP 2006291301A
Authority
JP
Japan
Prior art keywords
coke
blast furnace
furnace
mass
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005114486A
Other languages
Japanese (ja)
Other versions
JP4551266B2 (en
Inventor
Toshio Majima
俊雄 間嶋
Makoto Isobe
誠 磯部
Yasuhiko Yamamoto
保彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005114486A priority Critical patent/JP4551266B2/en
Publication of JP2006291301A publication Critical patent/JP2006291301A/en
Application granted granted Critical
Publication of JP4551266B2 publication Critical patent/JP4551266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a blast furnace at the initial firing with which at the initial stage of firing in the blast furnace, the formation of a local portion with a high basicity at the upper part of the furnace (in the furnace) caused by lime stone as auxiliary raw material charged before firing thereof, is prevented and the good gas permeability is kept by restraining the consumption of the auxiliary raw material. <P>SOLUTION: In the method for operating the blast furnace at the initial firing, with which the firing is performed under state of filling up cross tie and coke in order and alternately, filling up sintered ore and the coke on the above layer, particularly, lime stone is mixed in the coke alternately charged with the sintered ore; as the coke, the coke containing ≤11.0 mass% ash is used, and the basicity of a slag at the lower part of the blast furnace, is kept to 1.2-0.9. As the other way, the coke containing ≤3.2 mass% alumina, is used and the alumina in the slag at the lower part of the blast furnace is kept to ≤16 mass%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高炉の火入れ操業において、炉内の通気性を良好に維持する方法に関するものである。   The present invention relates to a method for maintaining good air permeability in a furnace in a blast furnace operation.

高炉の火入れを行う場合には、例えば特許文献1にも記載されるように、最初に装入する焼結鉱を加熱・溶解させるために、先ず枕木、コークス、副原料(石灰石、バラス、珪石等)を填充しておき、続いてこの焼結鉱とコークスを交互に装入した状態で火入れを行っている。
この火入れ時においては、コークスの装入量が非常に多いために、高炉下部に溜まったスラグは低塩基度で、且つアルミナ含有量が高いためにスラグの融点、粘性が高くてスラグの抽出性が悪く、火入れ操業初期に通気性の悪化を招いてしまうことがあった。
When firing a blast furnace, as described in, for example, Patent Document 1, in order to heat and dissolve the sintered ore initially charged, first, sleepers, coke, auxiliary materials (limestone, ballast, silica stone) Etc.), and then fired with the sinter and coke alternately charged.
At the time of this firing, the amount of coke charged is very large, so the slag collected at the bottom of the blast furnace has a low basicity and a high alumina content. However, the air permeability sometimes deteriorated at the beginning of the burning operation.

この対策として、スラグの融点低下させ粘性を良好にするために、石灰石、珪石、バラス等の副原料を焼結鉱と混合して多量に装入している。
しかし、火入れ後、この焼結鉱が炉内を降下する途中において順次温度上昇し、ついには溶融して融液を生成する。この融液により石灰石の融点が低下して該石灰石も溶融することになり、局所的に融着帯の肥大部を形成して通気性の悪化を招いてしまう等の問題を生じる。
また副原料の多量装入は、炉下部でのスラグ量の増大につながるため、このスラグの抽出をかなり的確に行わないと、通気性を悪化させる原因となって出銑量を増加させていく上で障害となる。
特公昭61−6122号公報
As a countermeasure, in order to lower the melting point of the slag and improve the viscosity, auxiliary materials such as limestone, silica, and ballast are mixed with the sintered ore and charged in large quantities.
However, after firing, the temperature of the sintered ore gradually increases in the middle of descending the furnace, and finally melts to form a melt. The melting point of the limestone is lowered by this melt and the limestone is also melted, thereby causing problems such as locally forming an enlarged portion of the cohesive zone and inducing deterioration of air permeability.
In addition, a large amount of secondary raw material leads to an increase in the amount of slag at the lower part of the furnace, so if this slag is not extracted accurately, the amount of output will be increased, causing the air permeability to deteriorate. This is an obstacle.
Japanese Examined Patent Publication No. 61-6122

本発明は、高炉の火入れ操業初期において、火入れ前に装入する副原料である石灰石に起因する炉上部(炉内)での局所的高塩基度部位の形成を防止すると共に副原料の使用量を抑制して、炉内の通気性を良好に維持する高炉の火入れ操業方法を提供するものである。   The present invention prevents the formation of local high basicity sites in the upper part of the furnace (inside the furnace) caused by limestone, which is an auxiliary material to be charged before the blast furnace, in the initial stage of the blast furnace firing operation, and the amount of the auxiliary material used It is intended to provide a blast furnace firing operation method that suppresses the above and maintains good air permeability in the furnace.

本発明は、上記課題を有利に解決するためになされたものであり、その手段(1)は、高炉炉内に枕木、コークスを順次填充し、その上に焼結鉱とコークスを交互に装入填充した状態で火入れを行う高炉の火入れ操業方法において、前記焼結鉱と交互に装入填充するコークス中に石灰石を混合することを特徴とする高炉の火入れ操業方法である。
コークスと石灰石の混合方法としては、ベル式高炉の場合には、大ベル上にコークスを装入した後に石灰石を装入して、大ベル上で一時的に貯留、混合してから、大ベルから炉内に装入することにより、炉内でコークスと石灰石を混合することが好ましい。またベルレス式高炉の場合には、コークスと石灰石を装入ホッパー内に混合した状態で貯留し、その後、旋回シュートを介して装入することが好ましい。
The present invention has been made in order to advantageously solve the above-mentioned problems. The means (1) is to sequentially fill sleepers and coke in a blast furnace furnace, and alternately load sintered ore and coke thereon. In the blast furnace operation method of performing blasting in a charged state, limestone is mixed in coke charged and charged alternately with the sintered ore.
As for the mixing method of coke and limestone, in the case of a bell-type blast furnace, after charging coke on a large bell, charging limestone, temporarily storing and mixing on the large bell, It is preferable to mix coke and limestone in the furnace by charging into the furnace. In the case of a bell-less blast furnace, it is preferable that coke and limestone are stored in a mixed state in a charging hopper and then charged via a turning chute.

手段(2)は、前記コークスとして、含有アッシュが11.0質量%以下のものを使用して、高炉炉下部のスラグの塩基度を1.2〜0.9に維持することを特徴とする前記手段(1)に記載の高炉の火入れ操業方法である。   Means (2) is characterized in that the basic slag at the lower part of the blast furnace is maintained at 1.2 to 0.9 by using the coke having a ash content of 11.0% by mass or less. It is the blast furnace burning operation method as described in said means (1).

手段(3)は、前記コークスとして、含有アルミナが3.2質量%以下のものを使用して、高炉炉下部のスラグ中のアルミナを16質量%以下に維持することを特徴とする前記手段(1)または(2)に記載の高炉の火入れ操業方法である。   Means (3) is characterized in that the alumina in the slag at the lower part of the blast furnace furnace is maintained at 16% by mass or less by using, as the coke, containing alumina of 3.2% by mass or less. It is a blast furnace burning operation method described in 1) or (2).

本発明によれば、高炉の火入れ前に焼結鉱と交互に装入填充するコークス中に石灰石を混合することにより、石灰石に起因する火入れ後の融着帯の局部的肥大を防止して、炉内の通気を良好に維持することが可能となる。
また、装入するコークス中の含有アッシュを11.0質量%以下、含有アルミナを3.2質量%以下としたので、生成するスラグの塩基度、アルミナ量を適正に維持することが可能となり、石灰石、珪石、バラス等の副原料の装入量を抑制でき、炉下部でのスラグ量を減少させて通気性を改善できる等の多大の効果を奏するものである。
According to the present invention, by mixing limestone in the coke alternately charged with sinter before blast furnace firing, local enlargement of the cohesive zone after firing due to limestone is prevented, It is possible to maintain good ventilation in the furnace.
In addition, since the contained ash in the coke to be charged is 11.0% by mass or less and the contained alumina is 3.2% by mass or less, it becomes possible to maintain the basicity of the slag to be produced and the amount of alumina appropriately. The amount of auxiliary materials such as limestone, silica, and ballast can be suppressed, and the air permeability can be improved by reducing the amount of slag in the lower part of the furnace.

本発明者等は、炉下部のスラグの塩基度を調整するために火入れ前に装入填充する石灰石を、火入れ後に炉内の通気性を阻害することのないように装入する方法について検討した。
火入れ前に、図3に示すように、高炉BF内に置いた枕木M上にコークスC1 を装入し、更にその上に、コークスC1 と、コークスC1 と副原料の混合物(珪石+石灰石+バラス)Fを高炉高さ方向で50〜60%まで装入し、その後、焼結鉱OとコークスC2 を交互に層状にストックラインLまで装入填充する場合において、石灰石を焼結鉱石Oに混合して装入した場合と、石灰石をコークスC2 に混合して装入した場合の火入れ後の通気性の指標になる圧損の差異について、高温性状試験装置を用いて調査した。
The present inventors examined a method of charging limestone charged and charged before firing in order to adjust the basicity of the slag at the bottom of the furnace so as not to impair the air permeability in the furnace after the firing. .
Before firing, as shown in FIG. 3, coke C1 is charged onto sleepers M placed in a blast furnace BF, and further, coke C1, a mixture of coke C1 and auxiliary materials (silica stone + limestone + ballast) ) When F is charged to 50-60% in the blast furnace height direction, and then sinter ore and coke C2 are alternately charged into the stock line L in layers, the limestone is mixed into the sintered ore O. The difference in pressure loss, which is an index of air permeability after firing, when limestone was mixed with coke C2 and charged was investigated using a high-temperature property testing apparatus.

この高温性状試験装置による試験では、コークスと石灰石を質量割合で1:1で混合した混合物と、焼結鉱を交互に、高さ80mm充填し、その周囲より加熱器により加熱して順次、混合物の温度を上昇させる。そして、この昇温中に混合物の下部より1500℃に加熱した還元ガスを供給し、混合物の上下における還元ガスの圧力差を測定して圧損を測定するものである。この圧損の測定結果を図1に示す。
また、焼結鉱と石灰石の混合物とコークスを交互に装入して、前記と同様に、圧損を測定した。この際における焼結鉱と石灰石の混合質量の割合は、いずれも5:1とした。この圧損の測定結果を図2に示す。
In the test using this high-temperature property testing apparatus, a mixture in which coke and limestone were mixed at a mass ratio of 1: 1 and a sintered ore were alternately filled with a height of 80 mm, and the mixture was sequentially heated by a heater from its surroundings. Increase the temperature. Then, during this temperature increase, reducing gas heated to 1500 ° C. is supplied from the lower part of the mixture, and the pressure difference is measured by measuring the pressure difference between the reducing gas above and below the mixture. The measurement result of this pressure loss is shown in FIG.
Further, a mixture of sintered ore and limestone and coke were alternately charged, and the pressure loss was measured in the same manner as described above. In this case, the ratio of the mixed mass of the sintered ore and limestone was 5: 1. The measurement result of this pressure loss is shown in FIG.

この図1と図2を比較すると、石灰石をコークスと混合した場合の方が、焼結鉱に混合した場合に比べて、圧損が高い(例えば2000mmAq以上)状態での温度幅が狭いことが判る。
つまり、高炉炉内においては石灰石をコークスに混合した場合の方が焼結鉱に混合した場合より融着帯(通気抵抗帯)の厚さが薄くなり、通気性が良好になることが推察される。
これは、コークスが炉内を降下しても石灰石が溶融せずに融着帯においても固形状態を維持していることから、石灰石の融点を下げることはせず、且つ、コークスで囲まれているために焼結鉱と接触する機会が少ないために、焼結鉱が溶融してもその影響を排除できることによるものと推察される。
Comparing FIG. 1 and FIG. 2, it can be seen that the temperature range in the state where pressure loss is high (for example, 2000 mmAq or more) is narrower when limestone is mixed with coke than when mixed with sintered ore. .
In other words, in the blast furnace furnace, it is presumed that when limestone is mixed with coke, the thickness of the cohesive zone (ventilation resistance zone) is thinner and the air permeability is better than when it is mixed with sintered ore. The
This is because even if the coke descends in the furnace, the limestone does not melt and maintains a solid state in the cohesive zone, so the melting point of limestone is not lowered and is surrounded by coke. Therefore, it is presumed that the influence of the sintered ore can be eliminated even if it melts because there are few opportunities to contact the sintered ore.

コークスと混合する石灰石としては、平均粒径が17mm程度(30〜10mm程度)のものが混合性、溶融性ともに良好である。この石灰石は、コークスの各チャージ毎にその約1〜15%程度混合することが好ましい。また、他の副原料(珪石、バラス)は、従来と同様に焼結鉱とともに別途装入することが好ましい。   As limestone mixed with coke, those having an average particle size of about 17 mm (about 30 to 10 mm) are good in both mixing and melting. About 1 to 15% of the limestone is preferably mixed for each charge of coke. Moreover, it is preferable to charge another auxiliary | assistant raw material (silica stone, ballast) separately with a sintered ore like the past.

また、高炉火入れ時に装入(填充)されているコークスは全体の30〜50質量%と非常に多いことから、コークスのアッシュ含有量およびアルミナ含有量を低減することにより副原料の装入量を低減(20〜30質量%程度低減)することが可能となり、炉下部に溜まるスラグの塩基度、アルミナ量を適正に保持するために有効である。
コークスとして、アッシュ含有量が11.0質量%以下のものを使用して、炉下部に溜まるスラグの塩基度を1.2〜0.9に維持することが好ましい。
なお、スラグの塩基度1.2〜0.9の範囲は、スラグの温度が若干変動してもスラグの抽出性を良好に維持できる範囲である。
In addition, since the amount of coke charged (filled) at the time of blast furnace firing is very large, 30-50% by mass, reducing the ash content and alumina content of the coke can reduce the amount of auxiliary material charged. It becomes possible to reduce (about 20-30 mass% reduction), and it is effective in maintaining appropriately the basicity of the slag collected in the furnace lower part, and the amount of alumina.
It is preferable to use a coke having an ash content of 11.0% by mass or less to maintain the basicity of the slag accumulated in the lower part of the furnace at 1.2 to 0.9.
The slag basicity in the range of 1.2 to 0.9 is a range in which the slag extractability can be satisfactorily maintained even when the slag temperature varies slightly.

また、コークスとして、アルミナ含有量が3.2質量%以下のものを使用することにより、高炉炉下部のスラグのアルミナ量を16質量%以下に容易に維持することが可能である。
なお、スラグのアルミナ量16質量%以下は、スラグの抽出性を良好に維持できる範囲である。
更に、焼結鉱についても含有アルミナを1.1質量%以下のものを使用することが、更に副原料の投入量を低減することができ好ましい。
Further, by using a coke having an alumina content of 3.2% by mass or less, it is possible to easily maintain the alumina content of the slag at the lower part of the blast furnace furnace to 16% by mass or less.
In addition, the alumina amount of 16 mass% or less of slag is a range in which the extractability of slag can be maintained satisfactorily.
Furthermore, it is preferable to use a sintered ore containing 1.1% by mass or less of the sintered ore because the amount of the auxiliary raw material can be further reduced.

本発明の高炉の火入れ操業例について図3を参照して説明する。この操業例は、5700m3 級で、炉内底部からストックラインLまでの高さが40mの超大型ベル式高炉の火入れ操業に適用した場合のものである。 An example of the blast furnace operation of the present invention will be described with reference to FIG. This operation example is a case where it is applied to the burning operation of a super large bell type blast furnace of 5700 m 3 class and the height from the bottom of the furnace to the stock line L is 40 m.

この火入れを行うに際し、事前にアッシュ、Al2 3 (アルミナ)の少ない石炭を選択してアッシュ含有量が10.7質量%で、アルミナ含有量が3.1質量%のコークスをコークス炉で製造してストックした。
該高炉の改修後における火入れ前に、枕木Mを1300m3 使用して炉内底部から高さ8.0m積み上げ、その後、コークスを750t程度充填してコークス層C1 を形成し、更にその上に石灰石、珪石、バラスの副原料を混合したコークスC1 を1392t使用して高さ9.5m積み上げた(図3のC1 +Fに相当)。なお、コークスC1 に対する副原料の混合割合は、10.2質量%で、該副原料である石灰石:珪石:バラスの配合比は、40:30:30であった。
When performing this firing, ash and coal with low Al 2 O 3 (alumina) are selected in advance and coke with an ash content of 10.7% by mass and an alumina content of 3.1% by mass in a coke oven. Manufactured and stocked.
Prior to firing after the blast furnace refurbishment, 1300 m 3 of sleepers M were stacked from the bottom of the furnace to a height of 8.0 m, and then coke was filled to about 750 t to form a coke layer C 1, and limestone was further formed thereon. Coke C1 mixed with silica, ballast auxiliary materials was stacked up to 9.5 m in height using 1392 t (corresponding to C1 + F in FIG. 3). The mixing ratio of the auxiliary material to the coke C1 was 10.2% by mass, and the mixing ratio of the auxiliary material, limestone: silica stone: ballast, was 40:30:30.

副原料とコークスの混合物Fの上に、焼結鉱Oと、石灰石を混合したコークスC2 を交互に積層した最下部位置のO/C(O:焼結鉱、C:コークス)は0.20で、上層部になる程、焼結鉱Oの量を増加させて、最上層のO/Cを2.20とした。
更に、焼結鉱OとコークスC2 を層状に装入し始めた位置から高炉高さ方向の中間部までの間において、該コークスC2 中に配合する石灰石の割合を上層になる程、順次低減 (最下層:5質量%、最上層:0.5質量%)した。
また、焼結鉱OとコークスC2 を層状に装入し始めた位置から高炉高さ方向の最上部までの間において、焼結鉱Oに配合する珪石、バラス等からなる副原料の割合を順次低減 (最下層:45質量%、最上層:6質量%)した。
O / C (O: sintered ore, C: coke) at the lowest position where the sintered ore O and the coke C2 mixed with limestone were alternately laminated on the mixture F of the auxiliary material and coke was 0.20. In the upper layer portion, the amount of sintered ore O was increased so that the O / C of the uppermost layer was 2.20.
Furthermore, the ratio of the limestone blended in the coke C2 gradually decreases from the position where the sinter O and the coke C2 are started to be layered to the middle part in the blast furnace height direction as the upper layer is increased. Lowermost layer: 5% by mass, uppermost layer: 0.5% by mass).
In addition, the ratio of the auxiliary raw materials composed of quartzite, ballast and the like to be mixed in the sinter O is sequentially increased from the position where the sinter O and the coke C2 are started to be layered to the top in the blast furnace height direction. Reduction (lowermost layer: 45% by mass, uppermost layer: 6% by mass).

この状態で火入れを行った。そして、火入れ後における初出銑(火入れして最初に出銑口から炉下部に溜まった溶融物を排出)を行った。この際の出銑量は、101t、溶銑温度は1472度であった。そして、スラグは、抽出量:109t、推定温度:1606℃で、塩基度:1.15、アルミナ15.7質量%で、融点1379℃、粘性:6.4ポアズ(at1450℃)で良好な抽出性を維持できた。
また、火入れから初出銑までにおける炉内の通気性を示す圧損抵抗は130kPa以下であり、従来法(焼結鉱に石灰石を混合し、焼結鉱のアルミナが高い場合)と比較して34%程度低減したと推定される。
この実施例の結果は、十分に評価できるものである。
The fire was put on in this state. And the first dredging after the burning (fired and the molten material first accumulated in the lower part of the furnace was discharged from the vent). At this time, the amount of slag was 101 t and the hot metal temperature was 1472 degrees. The slag was extracted with an extraction amount of 109 t, an estimated temperature of 1606 ° C., a basicity of 1.15, an alumina of 15.7% by mass, a melting point of 1379 ° C., and a viscosity of 6.4 poise (at 1450 ° C.). I was able to maintain sex.
In addition, the pressure loss resistance indicating the air permeability in the furnace from the first firing to the first dredging is 130 kPa or less, which is 34% compared with the conventional method (when sinter is mixed with limestone and the alumina of the sintered ore is high). It is estimated that the degree has been reduced.
The results of this example can be fully evaluated.

高温性状試験装置における本発明方法での加熱温度と圧損の関係を示す図。The figure which shows the relationship between the heating temperature and pressure loss by the method of this invention in a high-temperature property testing apparatus. 高温性状試験装置における従来方法での加熱温度と圧損の関係を示す図。The figure which shows the relationship between the heating temperature and pressure loss by the conventional method in a high temperature property testing apparatus. 高炉火入れ前における炉内装入物の充填状態を示す概念図。The conceptual diagram which shows the filling state of the furnace interior entry before blast furnace burning.

符号の説明Explanation of symbols

BF:高炉 M:枕木
C1 、C2 :コークス F:コークスと副原料の混合物
O:焼結鉱 L:ストックライン
BF: blast furnace M: sleepers C1, C2: coke F: mixture of coke and auxiliary materials O: sintered ore L: stock line

Claims (3)

高炉炉内に枕木、コークスを順次填充し、その上に焼結鉱とコークスを交互に装入填充した状態で火入れを行う高炉の火入れ操業方法において、前記焼結鉱と交互に装入填充するコークス中に石灰石を混合することを特徴とする高炉の火入れ操業方法。   In the blast furnace burning operation method in which the blast furnace furnace is charged with sleepers and coke sequentially, and then the sinter and coke are alternately charged and charged in this state, the blast furnace is charged alternately with the sintered ore. Blast furnace operation method characterized by mixing limestone in coke. 前記コークスとして、含有アッシュが11.0質量%以下のものを使用して、高炉炉下部のスラグの塩基度を1.2〜0.9に維持することを特徴とする請求項1に記載の高炉の火入れ操業方法。   The said coke is a thing containing 11.0 mass% or less as ash, and maintains the basicity of the slag of a blast furnace lower part to 1.2-0.9, It is characterized by the above-mentioned. Blast furnace operation method. 前記コークスとして、含有アルミナが3.2質量%以下のものを使用して、高炉炉下部のスラグ中のアルミナを16質量%以下に維持することを特徴とする請求項1または2に記載の高炉の火入れ操業方法。
The blast furnace according to claim 1 or 2, wherein the coke contains 3.2% by mass or less of alumina and the alumina in the slag at the lower part of the blast furnace is maintained at 16% by mass or less. How to fire.
JP2005114486A 2005-04-12 2005-04-12 Blast furnace operation method Active JP4551266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005114486A JP4551266B2 (en) 2005-04-12 2005-04-12 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005114486A JP4551266B2 (en) 2005-04-12 2005-04-12 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2006291301A true JP2006291301A (en) 2006-10-26
JP4551266B2 JP4551266B2 (en) 2010-09-22

Family

ID=37412182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005114486A Active JP4551266B2 (en) 2005-04-12 2005-04-12 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP4551266B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087337A (en) * 2010-10-18 2012-05-10 Nippon Steel Corp Method for operating blast furnace at initial firing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829001B1 (en) * 1969-12-16 1973-09-06
JPS5877507A (en) * 1981-10-31 1983-05-10 Sumitomo Metal Ind Ltd Operating method for blowing-in of blast furnace
JPS61153209A (en) * 1984-12-26 1986-07-11 Nippon Kokan Kk <Nkk> Low-s operation method in blast furnace
JPH02285010A (en) * 1989-04-25 1990-11-22 Nkk Corp Method for regulating si in molten pig iron
JP2005002405A (en) * 2003-06-11 2005-01-06 Sumitomo Metal Ind Ltd Blast furnace operating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829001B1 (en) * 1969-12-16 1973-09-06
JPS5877507A (en) * 1981-10-31 1983-05-10 Sumitomo Metal Ind Ltd Operating method for blowing-in of blast furnace
JPS61153209A (en) * 1984-12-26 1986-07-11 Nippon Kokan Kk <Nkk> Low-s operation method in blast furnace
JPH02285010A (en) * 1989-04-25 1990-11-22 Nkk Corp Method for regulating si in molten pig iron
JP2005002405A (en) * 2003-06-11 2005-01-06 Sumitomo Metal Ind Ltd Blast furnace operating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087337A (en) * 2010-10-18 2012-05-10 Nippon Steel Corp Method for operating blast furnace at initial firing

Also Published As

Publication number Publication date
JP4551266B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
CN101743330B (en) Process for producing molten iron
JP4551266B2 (en) Blast furnace operation method
WO1996015277A1 (en) Method of operating blast furnace
KR100578749B1 (en) Removal method of rebound loss
JPH0913107A (en) Operation of blast furnace
JP2006028538A (en) Method for operating blast furnace using sintered ore excellent in high temperature reducibility
JP5565260B2 (en) Blast furnace operation method
JP4392302B2 (en) Method for producing sintered ore
JP5801752B2 (en) Sintered ore
KR100433253B1 (en) Method for manufacturing sintered core by controlling the quantity of the MgO
WO2022201562A1 (en) Pig iron production method
JP2921392B2 (en) Blast furnace operation method
JP2921374B2 (en) Blast furnace operation method
JP2019019347A (en) Method of operating blast furnace
JP2007138274A (en) Sintered ore for starting up operation after repairing blast furnace
JP5400600B2 (en) Blast furnace operation method
KR100851952B1 (en) Method for early-discharging low-reductive material produced in repairing blast furnace wall
JP2024020713A (en) Operation method for blast furnace
KR100435491B1 (en) Operating method for removing scabs in the lower part of the blast furnace
JP6665443B2 (en) Operating method of flash smelting furnace
JP2004010948A (en) Method for operating blast furnace
JPH0765087B2 (en) Blast furnace tap hole closing method
JP2004244681A (en) Method for reducing sulfur in molten iron in blast furnace
JP5074043B2 (en) Method for producing sintered ore
JP2003013122A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100709

R151 Written notification of patent or utility model registration

Ref document number: 4551266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350