JP2007138274A - Sintered ore for starting up operation after repairing blast furnace - Google Patents

Sintered ore for starting up operation after repairing blast furnace Download PDF

Info

Publication number
JP2007138274A
JP2007138274A JP2005337519A JP2005337519A JP2007138274A JP 2007138274 A JP2007138274 A JP 2007138274A JP 2005337519 A JP2005337519 A JP 2005337519A JP 2005337519 A JP2005337519 A JP 2005337519A JP 2007138274 A JP2007138274 A JP 2007138274A
Authority
JP
Japan
Prior art keywords
blast furnace
furnace
sintered ore
starting
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005337519A
Other languages
Japanese (ja)
Inventor
Shingo Furusho
真吾 古莊
Yohei Ito
洋平 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005337519A priority Critical patent/JP2007138274A/en
Publication of JP2007138274A publication Critical patent/JP2007138274A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered ore for starting up the operation after repairing a blast furnace with which in the case of starting up the operation after repairing a blast furnace, the gas permeability in the furnace is kept to good condition by restraining the enlargement of a fusing zone and the liquid permeability in a furnace bottom part is kept to good condition and the furnace condition of the blast furnace is stabilized and the starting-up of the operation at high speed can be achieved. <P>SOLUTION: In the case of starting up the operation in the repaired blast furnace, since the sintered ore alternately charged with coke into the blast furnace has 0.8-1.2 mass% alumina and 1.3-1.65 basicity, the deterioration of the gas permeability in the blast furnace and the liquid permeability in the furnace bottom part at the starting-up time of the blast furnace, is prevented and the blast furnace can stably be started up at high speed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高炉の状況を安定に維持しつつ高速(短日間)に立ち上げることに適した高炉改修後の立上げ用焼結鉱に関する。 The present invention relates to a startup sintered ore after renovation of a blast furnace suitable for starting up at a high speed (short days) while stably maintaining the state of the blast furnace.

従来、高炉改修後の高炉の立上げにおいては、まず、炉底上にコークスを敷き詰め、その上に枕木とコークスを順次充填し、続いて、焼結鉱及びコークスを交互に層状に装入し、この状態で、高炉炉内に熱風を供給して火入れ操業を行っていた。
この焼結鉱としては、例えば、特許文献1に記載されているように、通常操業で使用されている成分構成、即ち、塩基度(CaO/SiO2)が1.25〜2.5、アルミナ(Al23)が1.6〜2.8程度のものを使用していた。
Conventionally, in starting up a blast furnace after refurbishing the blast furnace, first, coke is laid on the bottom of the furnace, and then sleepers and coke are sequentially filled, and then the sinter and coke are alternately charged in layers. In this state, hot air was supplied into the blast furnace furnace and the operation was started.
As this sintered ore, for example, as described in Patent Document 1, the component structure used in normal operation, that is, the basicity (CaO / SiO 2 ) is 1.25 to 2.5, alumina (Al 2 O 3 ) having about 1.6 to 2.8 was used.

特開平9−13107号公報JP-A-9-13107

しかしながら、上記した火入れ立上げ時においては、高炉炉内にコークスが多量(通常操業のおよそ10倍)に装入されているため、このコークスが燃焼することによって、炉内に多量のアッシュが残る。このアッシュに含まれるアルミナとシリカにより、高炉炉内に形成される融着帯が通常操業時よりも肥大化し、炉内の圧損が大きくなってその通気性が悪化すると共に、炉底部に溜まった溶銑の通液性が悪化し、高炉を安定かつ高速に立上げることが困難であった。 However, at the time of starting up the above-mentioned fire, since a large amount of coke is charged in the blast furnace furnace (approximately 10 times the normal operation), a large amount of ash remains in the furnace when the coke burns. . Due to the alumina and silica contained in this ash, the cohesive zone formed in the blast furnace furnace becomes larger than in normal operation, the pressure loss in the furnace increases, the air permeability deteriorates, and it accumulates at the bottom of the furnace. The liquid permeability of the hot metal deteriorated and it was difficult to start up the blast furnace stably and at high speed.

本発明はかかる事情に鑑みてなされたもので、高炉改修後の立上げに際して、融着帯の肥大化を抑制して炉内の通気性を良好に維持すると共に、炉底部における通液性を良好に維持して、高炉の炉況を安定して高速に立上げることを可能とする高炉改修後の立上げ用焼結鉱を提供することを目的とする。 The present invention has been made in view of such circumstances, and at the time of start-up after blast furnace renovation, the enlargement of the cohesive zone is suppressed to maintain good air permeability in the furnace, and the liquid permeability at the bottom of the furnace is improved. An object of the present invention is to provide a sinter for start-up after renovation of a blast furnace, which can maintain a good condition and stably start the blast furnace at a high speed.

本発明は上記課題を解決するためのものであり、その手段(1)は、改修した高炉を立上げるに際し、該高炉炉内にコークスと交互に装入する焼結鉱は、アルミナが0.8質量%以上1.2質量%以下、塩基度が1.3以上1.65以下である。 The present invention is for solving the above-mentioned problems, and means (1) is that when a modified blast furnace is started up, the sintered ore alternately charged with coke in the blast furnace is 0.1% alumina. It is 8 mass% or more and 1.2 mass% or less, and basicity is 1.3 or more and 1.65 or less.

本発明の高炉改修後の立上げ用焼結鉱は、高炉改修後の高炉の立上げに際し、アルミナと塩基度を所定範囲に規定した焼結鉱を使用するので、高炉炉内に形成される融着帯の肥大化を抑制すると共に、この融着帯による圧損を従来よりも抑制でき、高炉の立上げ時における炉内の通気性及び炉底部の通液性の悪化を防止して、高炉を安定かつ高速に立上げることが可能になる。 The start-up sintered ore after the blast furnace refurbishment of the present invention is formed in the blast furnace because alumina and basicity are defined within a predetermined range when the blast furnace after the blast furnace renovation is started. While suppressing the enlargement of the cohesive zone, the pressure loss due to this cohesive zone can be suppressed more than before, preventing the deterioration of the air permeability in the furnace and the liquid permeability at the bottom of the furnace when the blast furnace is started up. Can be started stably and at high speed.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
本発明の一実施の形態に係る高炉改修後の立上げ用焼結鉱(以下、単に焼結鉱ともいう)は、改修した高炉を立上げるに際し、高炉炉内にコークスと交互に装入するものであり、アルミナが0.8質量%以上1.2質量%以下、塩基度が1.3以上1.65以下のものである。以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
The sinter for start-up after the blast furnace repair according to an embodiment of the present invention (hereinafter also simply referred to as sinter) is alternately charged with coke in the blast furnace when the repaired blast furnace is started up. Alumina is 0.8 mass% or more and 1.2 mass% or less, and basicity is 1.3 or more and 1.65 or less. This will be described in detail below.

高炉の立上げ時における操業は、炉内に熱風を供給して炉内に充填した枕木及びコークスを燃焼し、炉内を昇温させる過程において、炉上部に融着帯を形成させると共に、炉下部に炉芯を形成させ、通常の高炉操業へと移行させる操業である。
この立上げ時において、炉内容積が5000m3 を超える超大型高炉を使用する場合、炉床径が15m程度まで及ぶようになる。このため、前記したように、炉内に熱風を供給して枕木及びコークスを燃焼したとしても、炉床に形成されている炉芯の炉径方向中央部まで充分に高温にできていない状態で、形成された融着帯から溶融物(溶銑とスラグの混合物)が滴下し始める。
このため、滴下する溶融物の温度が低いと炉芯内で凝固する。
When starting up the blast furnace, hot air is supplied to the furnace to burn sleepers and coke filled in the furnace, and in the process of raising the temperature inside the furnace, a cohesive zone is formed at the top of the furnace, In this operation, a core is formed in the lower part and the operation is shifted to normal blast furnace operation.
At the time of start-up, when using a very large blast furnace with a furnace internal volume exceeding 5000 m 3 , the hearth diameter reaches about 15 m. For this reason, as described above, even if hot air is supplied into the furnace and the sleepers and coke are burned, the temperature is not sufficiently high up to the center in the furnace radial direction of the furnace core formed on the hearth. Then, the melt (mixture of molten iron and slag) begins to drip from the formed cohesive zone.
For this reason, when the temperature of the melt to be dripped is low, it solidifies in the furnace core.

従来のように、高炉の立上げを長期間(3〜4日程度)かけて行う場合には、熱風量が徐々に増加することから、その凝固した溶融物が再溶解するため、さほど問題になるものではなかった。
しかし、炉内に供給する熱風量を急速に増加して高速(1日程度)に立ち上げる場合には、それが通気阻害を引き起こして、炉況を悪化させる原因になることが、本発明者らのシミュレーションから判明した。
そこで、本発明者らが更に検討を進めた結果、溶融物の滴下が始まる時期と炉芯の中央部の温度との関係があるとしても、溶融物の温度が1400℃以上であれば、炉芯部で溶融物が凝固して炉下部での通液性障害を引き起こすことが無いことを見出した。
When the blast furnace is started up over a long period of time (about 3 to 4 days) as in the past, the amount of hot air gradually increases, so the solidified melt is re-dissolved. It wasn't.
However, when the amount of hot air supplied into the furnace is rapidly increased to start up at a high speed (about 1 day), the present inventor may cause a hindrance to air flow and deteriorate the furnace condition. It became clear from these simulations.
Therefore, as a result of further investigation by the present inventors, even if there is a relationship between the timing at which the melt starts dropping and the temperature at the center of the furnace core, if the temperature of the melt is 1400 ° C. or higher, the furnace It has been found that the melt does not solidify at the core and cause a liquid permeability failure at the bottom of the furnace.

これを基にして、溶融物の発生原因となる焼結鉱の滴下開始温度を高温化することを検討した。この結果、焼結鉱の滴下開始温度を高くしていくと、図1に示すように、1420℃を超える場合に溶融物の滴下率が80%から急激に低下することから、この温度以下にする必要があることが判明した。なお、滴下率とは、加熱する焼結鉱に対する滴下した溶融物の割合を意味する。
即ち、この滴下率が急激に低下すると、融着帯で焼結鉱が軟化し溶融しているにも関わらず滴下しないため、高炉炉内に形成される融着帯が肥大化して垂れ下がり、炉下部の通気性が悪化する。ここで、羽口から炉内に供給する熱風を急速に増大すると炉況が不安定になるため、滴下開始温度を1420℃以下にする。
以上のことから、高炉立上げ時に使用する焼結鉱は、その滴下開始温度が1400〜1420℃の範囲になる組成とする必要がある。
Based on this, it was studied to increase the temperature at which the dropping of the sintered ore, which is the cause of the melt, was dropped. As a result, when the dropping start temperature of the sintered ore is increased, as shown in FIG. 1, when the temperature exceeds 1420 ° C., the dropping rate of the melt rapidly decreases from 80%. It turns out that there is a need to do. In addition, a dripping rate means the ratio of the dripped melt with respect to the sintered ore to heat.
That is, when the dripping rate is drastically lowered, the sintered ore is softened and melted in the cohesive zone so that it does not drip. Therefore, the cohesive zone formed in the blast furnace is enlarged and droops, Lower air permeability. Here, if the hot air supplied from the tuyere into the furnace is rapidly increased, the furnace condition becomes unstable, so the dropping start temperature is set to 1420 ° C. or lower.
From the above, the sintered ore used when starting up the blast furnace needs to have a composition in which the dripping start temperature is in the range of 1400 to 1420 ° C.

次に、この滴下開始温度に関係する焼結鉱の組成について検討する。
焼結鉱の滴下開始温度、即ち、融点を左右するものとしては、焼結鉱中のアルミナ(Al23)と塩基度(CaO/SiO2)があり、この関係について調査した。なお、図2は、焼結鉱の滴下開始温度とアルミナ量の関係を示し、図3は、焼結鉱の滴下開始温度と塩基度の関係を示している。
図2から明らかなように、滴下開始温度を1400〜1420℃の範囲に設定するには、焼結鉱中のアルミナ量を0.8〜1.2質量%とする必要がある。これは、焼結鉱中のアルミナ量が0.8質量%未満になると、焼結鉱の滴下開始温度が1420℃超となり、一方、1.2質量%超となると滴下開始温度が1400℃未満になることによる。従って、焼結鉱中のアルミナ量の下限値を0.9質量%とすることが好ましく、一方上限値を1.1質量%とすることが好ましい。
Next, the composition of the sintered ore related to this dripping start temperature will be examined.
There are alumina (Al 2 O 3 ) and basicity (CaO / SiO 2 ) in the sintered ore as the starting temperature of the sintered ore, ie, the melting point, and this relationship was investigated. 2 shows the relationship between the sinter ore start temperature and the amount of alumina, and FIG. 3 shows the relationship between the sinter start temperature and basicity.
As apparent from FIG. 2, in order to set the dropping start temperature in the range of 1400 to 1420 ° C., the amount of alumina in the sintered ore needs to be 0.8 to 1.2 mass%. This is because when the amount of alumina in the sintered ore is less than 0.8% by mass, the dropping start temperature of the sintered ore exceeds 1420 ° C., whereas when it exceeds 1.2% by mass, the dropping start temperature is less than 1400 ° C. By becoming. Therefore, the lower limit of the amount of alumina in the sintered ore is preferably 0.9% by mass, and the upper limit is preferably 1.1% by mass.

また、図3に示すように、焼結鉱中のアルミナ量が0.8〜1.2質量%のもとで、焼結鉱の滴下開始温度を1400〜1420℃の範囲にするには、塩基度を1.3〜1.65にする必要がある。これは、焼結鉱中のアルミナ量が1.2質量%の場合に塩基度が1.3未満になると、焼結鉱の滴下開始温度が1400℃未満となり、一方、アルミナ量が0.8質量%の場合に塩基度が1.65超となると、滴下開始温度が1420℃を超えることによる。従って、塩基度の下限値を1.4とすることが好ましく、一方上限値を1.6とすることが好ましい。 Moreover, as shown in FIG. 3, in order to make the dripping start temperature of a sintered ore into the range of 1400-1420 degreeC under the alumina amount in a sintered ore 0.8-1.2 mass%, The basicity needs to be 1.3 to 1.65. When the basicity is less than 1.3 when the amount of alumina in the sintered ore is 1.2% by mass, the dropping start temperature of the sintered ore is less than 1400 ° C., while the amount of alumina is 0.8 When the basicity exceeds 1.65 in the case of mass%, the dropping start temperature exceeds 1420 ° C. Therefore, it is preferable to set the lower limit of basicity to 1.4, while the upper limit is preferably set to 1.6.

以上に示した焼結鉱を製造するに際しては、焼結鉱の原料となる鉄鉱石として、その鉱石中で、例えば、アルミナ量が1.0質量%以下の低Al23鉱石(例えば、カラジャス)を使用し、しかも焼結鉱石中の低Al23鉱石の配合割合を高くする。そして、焼結原料中の鉄鉱石量を、高炉の通常操業時に使用する鉄鉱石量よりも増加させ、かつ、焼結原料に配合するCaO量を減少させて、焼結鉱の塩基度を調整する。
これにより、Al23量と塩基度を、前記した範囲に調整した焼結鉱を製造できる。
In producing the sintered ore shown above, as iron ore as a raw material of the sintered ore, in the ore, for example, a low Al 2 O 3 ore having an alumina amount of 1.0 mass% or less (for example, Carajas) and the proportion of low Al 2 O 3 ore in the sintered ore is increased. The amount of iron ore in the sintered raw material is increased from the amount of iron ore used during normal operation of the blast furnace, and the amount of CaO added to the sintered raw material is decreased to adjust the basicity of the sintered ore. To do.
Thus, the amount of Al 2 O 3 and basicity can be produced sintered ore adjusted to the range described above.

次に、実施例に係る高炉改修後の立上げ用焼結鉱を、実際の高炉の立ち上げに使用するため、図4に示す試験装置10を用いて焼結鉱の滴下開始温度を確認した結果について説明する。
この試験装置10は、直径10mm程度の孔(図示せず)が等間隔に開けられた試料台11を内部に備える反応管12と、この反応管12を内部に垂直方向に配置した電気炉13とを有している。反応管12は、電気炉13の下方に配置された受皿14上に載置され、しかも試料台11上に配置した試料を、電気炉13の上方に配置されたエアーシリンダー15により、シリンダーロッド16を介して押圧可能になっている。また、電気炉13の下部には、反応管12内に還元ガスを導入する導入管17が設けられ、上部には還元ガスを排出する排出管18が設けられている。なお、導入管17及び排出管18には、ガス圧を測定する圧力計19、20がそれぞれ設けられ、しかも電気炉13には、反応管12内を流通する還元ガス温度を測定するための温度計21が設けられている。
Next, in order to use the startup sinter after the blast furnace repair according to the example for the actual blast furnace startup, the dropping start temperature of the sinter was confirmed using the test apparatus 10 shown in FIG. The results will be described.
The test apparatus 10 includes a reaction tube 12 having a sample stage 11 in which holes (not shown) having a diameter of about 10 mm are formed at equal intervals, and an electric furnace 13 in which the reaction tube 12 is arranged vertically. And have. The reaction tube 12 is placed on a receiving tray 14 disposed below the electric furnace 13, and the sample disposed on the sample stage 11 is transferred to a cylinder rod 16 by an air cylinder 15 disposed above the electric furnace 13. It is possible to press through. An introduction pipe 17 for introducing a reducing gas into the reaction tube 12 is provided at the lower part of the electric furnace 13, and a discharge pipe 18 for discharging the reducing gas is provided at the upper part. The introduction pipe 17 and the discharge pipe 18 are respectively provided with pressure gauges 19 and 20 for measuring the gas pressure, and the electric furnace 13 has a temperature for measuring the temperature of the reducing gas flowing through the reaction tube 12. A total of 21 is provided.

この試験装置10の試料台11上に、粒径10〜15mmの焼結鉱22を粒径40〜50mmのコークス23でサンドイッチ状態に挟んだ試料を載置した後、エアーシリンダー15を作動させ、シリンダーロッド16を介して、試料に荷重を加えた。
この状態で、電気炉13内の温度を上昇すると共に、導入管17によって反応管12内へ還元ガスを導入し、試料台11の孔を通過して試料と接触した還元ガスを排出管18から外部へ排出した。なお、この試料と接触する還元ガスの温度は、図5に示す昇温パターンで昇温されるように、温度計21を監視しつつ、電気炉13を制御している。
この試験結果を表1に示す。
On the sample stage 11 of the test apparatus 10, after placing a sample in which a sintered ore 22 having a particle size of 10 to 15 mm is sandwiched between coke 23 having a particle size of 40 to 50 mm, the air cylinder 15 is operated, A load was applied to the sample via the cylinder rod 16.
In this state, the temperature in the electric furnace 13 is raised, a reducing gas is introduced into the reaction tube 12 by the introduction pipe 17, and the reducing gas that has contacted the sample through the hole of the sample stage 11 is discharged from the discharge pipe 18. Discharged to the outside. Note that the temperature of the reducing gas in contact with the sample is controlled by the electric furnace 13 while monitoring the thermometer 21 so that the temperature of the reducing gas is raised according to the temperature rising pattern shown in FIG.
The test results are shown in Table 1.

Figure 2007138274
Figure 2007138274

表1において、滴下開始温度とは、試料台11上の焼結鉱22が溶融して、受皿14に滴下する溶融物の温度を、受皿14近傍の反応管12に取付けた温度計24で測定した値である。
また、軟化開始温度とは、還元ガスの温度が上昇していく過程で、焼結鉱22の軟化に伴って、シリンダーロッド16が下方に移動した際の温度計21の測定値である。
また、合計圧損とは、焼結鉱22が軟化を開始した時点から、電気炉13を通過する還元ガスが1500℃になるまでにおける合計圧損であり、圧力計19と圧力計20との圧力差である。なお、この合計圧損は、試料層の圧力差を、軟化開始から滴下開始を経て、還元ガスが1500℃となるまでを15秒間隔で積分した値である。
In Table 1, the dripping start temperature is measured by a thermometer 24 attached to the reaction tube 12 in the vicinity of the saucer 14, by melting the sintered ore 22 on the sample stage 11 and dropping it on the saucer 14. It is the value.
The softening start temperature is a measured value of the thermometer 21 when the cylinder rod 16 moves downward in accordance with the softening of the sintered ore 22 in the process of increasing the temperature of the reducing gas.
The total pressure loss is the total pressure loss from the time when the sintered ore 22 starts to soften until the reducing gas passing through the electric furnace 13 reaches 1500 ° C. The pressure difference between the pressure gauge 19 and the pressure gauge 20 It is. The total pressure loss is a value obtained by integrating the pressure difference of the sample layer from the start of softening to the start of dropping until the reducing gas reaches 1500 ° C. at intervals of 15 seconds.

アルミナ量及び塩基度が本発明の範囲内にある実施例1〜3の焼結鉱は、滴下開始温度が目標の1400〜1420℃の範囲内になることを確認できた。一方、アルミナ量が1.2質量%を超える従来例1の焼結鉱の滴下開始温度は、目標下限の1400℃に到達せず、また塩基度が1.65を超える従来例2の焼結鉱の滴下開始温度は、目標上限の1420℃を超えるものであった。
また、実施例1〜3は従来例1 、2 と比較して、合計圧損も小さくなり通気性も良好であることが確認できた。
更に、実施例1〜3は従来例1、2と比較して、焼結鉱の圧損も少なくなり通気性も良好になることが確認できた。これは、焼結鉱の軟化開始温度と滴下開始温度との差が狭くなったためであると思われる。
It was confirmed that the sinters of Examples 1 to 3 in which the alumina amount and the basicity are within the range of the present invention have the dropping start temperature within the target range of 1400 to 1420 ° C. On the other hand, the dropping start temperature of the sintered ore of Conventional Example 1 in which the alumina amount exceeds 1.2% by mass does not reach the target lower limit of 1400 ° C., and the sintering of Conventional Example 2 in which the basicity exceeds 1.65. The ore dropping start temperature exceeded the target upper limit of 1420 ° C.
In addition, it was confirmed that Examples 1 to 3 had a smaller total pressure loss and better air permeability than Conventional Examples 1 and 2.
Further, it was confirmed that Examples 1 to 3 had less pressure loss of sintered ore and better air permeability than Conventional Examples 1 and 2. This seems to be because the difference between the softening start temperature and the dripping start temperature of the sintered ore became narrow.

次に、製造した焼結鉱を、内容積5700m3の高炉の火入れ操業に使用した実施例について説明する。
従来の高炉の立上げと同様、火入れ前に、表1の実施例3に示す成分を有する焼結鉱を炉内に充填し、高炉炉内に熱風の供給を開始して火入れ操業を行った。この結果、トラブルもなく安定した状態で、火入開始から3日目に通常操業と同等の送風量レベルに移行することが可能となった。
以上のことから、高炉の立上げ時においては、本発明の焼結鉱を使用することで、高炉炉内に形成される融着帯の肥大化を抑制し、高炉炉内での通気性及び通液性を確保して、高炉を安定かつ高速に立ち上げることができることを確認できた。
Next, the Example which used the manufactured sintered ore for the burning operation of the blast furnace with an internal volume of 5700 m < 3 > is described.
As with the conventional blast furnace start-up, prior to firing, sintered ore having the components shown in Example 3 in Table 1 was filled into the furnace, and supply of hot air into the blast furnace furnace was started to perform the firing operation. . As a result, in a stable state without any trouble, it became possible to shift to a blast volume level equivalent to normal operation on the third day from the start of the ignition.
From the above, at the time of start-up of the blast furnace, by using the sintered ore of the present invention, the enlargement of the cohesive zone formed in the blast furnace furnace is suppressed, the air permeability in the blast furnace furnace and It was confirmed that liquid permeability was secured and the blast furnace could be started up stably and at high speed.

以上、本発明を、一実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の高炉改修後の立上げ用焼結鉱を構成する場合も本発明の権利範囲に含まれる。 As described above, the present invention has been described with reference to one embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and is described in the claims. Other embodiments and modifications conceivable within the scope of the above are also included. For example, a case where the start-up sintered ore after the blast furnace repair of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the present invention.

焼結鉱の使用による溶融物の滴下率と滴下開始温度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the dripping rate of the melt by use of a sintered ore, and dripping start temperature. 焼結鉱の含有アルミナ量と滴下開始温度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the amount of alumina of a sintered ore, and dripping start temperature. 焼結鉱の塩基度と滴下開始温度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the basicity of a sintered ore, and dripping start temperature. 実施例に係る焼結鉱の滴下開始温度を測定するための試験装置の説明図である。It is explanatory drawing of the test apparatus for measuring the dripping start temperature of the sintered ore which concerns on an Example. 同試験装置の還元ガスの昇温パターンを示す説明図である。It is explanatory drawing which shows the temperature rising pattern of the reducing gas of the test apparatus.

符号の説明Explanation of symbols

10:試験装置、11:試料台、12:反応管、13:電気炉、14:受皿、15:エアーシリンダー、16:シリンダーロッド、17:導入管、18:排出管、19、20:圧力計、21:温度計、22:焼結鉱、23:コークス、24:温度計 10: test apparatus, 11: sample stage, 12: reaction tube, 13: electric furnace, 14: pan, 15: air cylinder, 16: cylinder rod, 17: introduction tube, 18: discharge tube, 19, 20: pressure gauge , 21: thermometer, 22: sintered ore, 23: coke, 24: thermometer

Claims (1)

改修した高炉を立上げるに際し、該高炉炉内にコークスと交互に装入する焼結鉱は、アルミナが0.8質量%以上1.2質量%以下、塩基度が1.3以上1.65以下であることを特徴とする高炉改修後の立上げ用焼結鉱。 When the modified blast furnace is started up, the sintered ore alternately charged with coke in the blast furnace is composed of 0.8 mass% or more and 1.2 mass% or less of alumina, and a basicity of 1.3 or more and 1.65. Start-up sintered ore after blast furnace refurbishment, characterized by:
JP2005337519A 2005-11-22 2005-11-22 Sintered ore for starting up operation after repairing blast furnace Withdrawn JP2007138274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337519A JP2007138274A (en) 2005-11-22 2005-11-22 Sintered ore for starting up operation after repairing blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337519A JP2007138274A (en) 2005-11-22 2005-11-22 Sintered ore for starting up operation after repairing blast furnace

Publications (1)

Publication Number Publication Date
JP2007138274A true JP2007138274A (en) 2007-06-07

Family

ID=38201506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337519A Withdrawn JP2007138274A (en) 2005-11-22 2005-11-22 Sintered ore for starting up operation after repairing blast furnace

Country Status (1)

Country Link
JP (1) JP2007138274A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087337A (en) * 2010-10-18 2012-05-10 Nippon Steel Corp Method for operating blast furnace at initial firing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087337A (en) * 2010-10-18 2012-05-10 Nippon Steel Corp Method for operating blast furnace at initial firing

Similar Documents

Publication Publication Date Title
JP5626418B1 (en) Recycling raw material processing method
JP6357104B2 (en) Starting the smelting process
RU2009122473A (en) METHOD AND DEVICE FOR OBTAINING A GRANULAR METAL IRON
JP5359012B2 (en) Sintering machine and operation method thereof
JP2007138274A (en) Sintered ore for starting up operation after repairing blast furnace
CN208187094U (en) Novel cokeless furnace cupola
JPH04263003A (en) Method for operating blast furnace
JP7306421B2 (en) How to start up a blast furnace
JP2023553275A (en) Melt production method for the production of artificial mineral fibers
US6748882B2 (en) Process for influencing the properties of incineration residues from an incineration plant
JP5180504B2 (en) Method for manufacturing precast block for metal melting furnace ceiling and precast block for metal melting furnace ceiling
JP4551266B2 (en) Blast furnace operation method
CN108413767A (en) Novel cokeless furnace cupola and the method for utilizing the device molten iron
JP5855785B1 (en) Operation method of waste gasification melting furnace
JP2019019347A (en) Method of operating blast furnace
JP5801752B2 (en) Sintered ore
JP5565260B2 (en) Blast furnace operation method
JP5012596B2 (en) Reduced blast furnace operation method
JP2010248558A (en) Method for igniting raw material in top-blowing type sintering machine
JP6665443B2 (en) Operating method of flash smelting furnace
JP5909584B1 (en) Operation method of waste gasification melting furnace
KR101746987B1 (en) Method for managing and using shroud nozzle
JP5909583B1 (en) Operation method of waste gasification melting furnace
JP2018151096A (en) Baking repairing material
SU998839A1 (en) Induction furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090203