JP6665443B2 - Operating method of flash smelting furnace - Google Patents

Operating method of flash smelting furnace Download PDF

Info

Publication number
JP6665443B2
JP6665443B2 JP2015160776A JP2015160776A JP6665443B2 JP 6665443 B2 JP6665443 B2 JP 6665443B2 JP 2015160776 A JP2015160776 A JP 2015160776A JP 2015160776 A JP2015160776 A JP 2015160776A JP 6665443 B2 JP6665443 B2 JP 6665443B2
Authority
JP
Japan
Prior art keywords
silica sand
smelting furnace
melt
raw material
settler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015160776A
Other languages
Japanese (ja)
Other versions
JP2017039961A (en
Inventor
大河 牧野
大河 牧野
純一 小林
純一 小林
恵介 山本
恵介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015160776A priority Critical patent/JP6665443B2/en
Publication of JP2017039961A publication Critical patent/JP2017039961A/en
Application granted granted Critical
Publication of JP6665443B2 publication Critical patent/JP6665443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、自熔製錬炉の操業方法に関する。さらに詳しくは、自熔製錬炉で銅精鉱を燃焼させて熔体とし、熔体をカラミとカワとに比重分離するにあたり、熔体にフォーミングが発生することを抑制できる自熔製錬炉の操業方法に関する。   The present invention relates to a method for operating a flash smelting furnace. More specifically, a self-smelting smelting furnace that can suppress the occurrence of forming in the melt when burning copper concentrate in a self-smelting smelting furnace to form a melt and separating the melt into specific gravity into karami and kava Related to the operation method.

銅製錬に用いられる自熔精錬炉では、銅精鉱およびフラックスからなる原料と、反応用空気とを反応塔内に吹き込み、銅精鉱中の硫黄を燃焼させることで原料を熔融させる。そして、セトラーで熔体をカラミとカワとに比重分離する。   In a flash smelting furnace used for copper smelting, a raw material composed of copper concentrate and a flux and a reaction air are blown into a reaction tower, and the sulfur in the copper concentrate is burned to melt the raw material. Then, the melt is separated into karami and kawa by a settler.

反応塔内で燃焼反応が完了しなかった場合、セトラーでも燃焼反応が継続する。そうすると、二酸化硫黄(SO2)などの製錬ガスが発生する。製錬ガスがセトラー内の熔体で発生すると、熔体が発泡して、ポーラス状で嵩比重が低いカラミが熔体表層に表れる。このように熔体が発泡する現象はフォーミングと称される(特許文献1)。 If the combustion reaction is not completed in the reaction tower, the combustion reaction continues in the settler. Then, a smelting gas such as sulfur dioxide (SO 2 ) is generated. When the smelting gas is generated in the melt in the settler, the melt foams and porous, low bulk specific gravity appears on the melt surface layer. The phenomenon in which the melt foams is called forming (Patent Document 1).

フォーミングが過剰に発生すると、セトラー内の熔体表面の高さが上昇し、セトラーに備えられている保温用のバーナー孔から熔体が漏れ出したり、自熔精錬炉内を負圧に維持できなくなるという問題がある。   If forming occurs excessively, the height of the melt surface in the settler rises, and the melt leaks out of the heat retention burner holes provided in the settler, and the pressure inside the self-melting smelting furnace can be maintained at a negative pressure. There is a problem of disappearing.

セトラー内の熔体表面の高さを低くするために、原料の装入量を低減することが考えられる。しかし、原料の装入量を低減すると、自熔製錬炉の操業効率が低下するという問題がある。   In order to reduce the height of the melt surface in the settler, it is conceivable to reduce the amount of raw material charged. However, there is a problem in that the operation efficiency of the flash smelting furnace is reduced when the charged amount of the raw material is reduced.

特開2006−188738号公報JP 2006-188738 A

本発明は上記事情に鑑み、フォーミングの発生を抑制できる自熔製錬炉の操業方法を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a method for operating a flash smelting furnace capable of suppressing the occurrence of forming.

第1発明の自熔製錬炉の操業方法は、原料として少なくとも銅精鉱と珪砂とを装入する自熔製錬炉の操業方法であって、セトラー内の熔体のフォーミング層の厚みが閾値を超えた場合に、原料中の珪砂の割合を低減することを特徴とする The method for operating a flash smelting furnace according to the first invention is a method for operating a flash smelting furnace in which at least copper concentrate and silica sand are charged as raw materials. When the threshold value is exceeded, the ratio of silica sand in the raw material is reduced .

発明によれば、原料中の珪砂の割合を低減することで、珪砂由来の二酸化ケイ素が減少し、セトラー内のカラミの粘性を低減できる。その結果、フォーミングの発生を抑制できる。 According to the present invention, by reducing the proportion of silica sand in the raw material, silicon dioxide derived from silica sand is reduced, and the viscosity of lumps in the settler can be reduced. As a result, the occurrence of forming can be suppressed.

原料中の珪砂の重量割合に対するフォーミング層の厚みの関係を示すグラフである。It is a graph which shows the relationship of the thickness of a forming layer with respect to the weight ratio of silica sand in a raw material. 原料中の珪砂の重量割合とフォーミング層の厚みの時系列変化を示すグラフである。It is a graph which shows the time series change of the weight ratio of the silica sand in a raw material, and the thickness of a forming layer. 自熔製錬炉FFの説明図である。It is explanatory drawing of the flash smelting furnace FF.

つぎに、本発明の実施形態を図面に基づき説明する。
(自熔精錬炉)
まず、銅製錬に用いられる自熔精錬炉を説明する。
図3に示すように、自熔製錬炉FFは、セトラーSと、セトラーSの上面に立設した反応塔Rおよび排煙道Uと、反応塔Rの上端に設けられた精鉱バーナーBとから構成されている。セトラーSにはカワ抜き口P1およびカラミ抜き口P2が形成されている。
Next, an embodiment of the present invention will be described with reference to the drawings.
(Self-melting furnace)
First, a flash smelting furnace used for copper smelting will be described.
As shown in FIG. 3, the flash smelting furnace FF includes a settler S, a reaction tower R and a flue gas U erected on the upper surface of the settler S, and a concentrate burner B provided at an upper end of the reaction tower R. It is composed of The settler S is provided with a cutout opening P1 and a lint removal opening P2.

自熔製錬炉FFを用いた銅製錬は以下のように行なわれる。
精鉱バーナーBから粉状の原料と、反応用空気(酸素富化空気)とが反応塔R内に吹き込まれる。原料には少なくとも銅精鉱と珪砂とが含まれており、必要に応じて冷材などが含まれている。珪砂は良質のカラミを製造するためのフラックスとして用いられる。
Copper smelting using the flash smelting furnace FF is performed as follows.
From the concentrate burner B, a powdery raw material and reaction air (oxygen-enriched air) are blown into the reaction tower R. The raw material contains at least copper concentrate and silica sand, and may contain a cold material as needed. Silica sand is used as a flux to produce good quality karami.

反応塔R内に吹きこまれた原料は、補助バーナーの熱、反応塔Rの炉壁内の輻射熱などにより昇温され、銅精鉱中の硫黄が燃焼して熔体となる。熔体はセトラーS内に溜められる。熔体は、セトラーS内において、比重差によりカラミとカワとに別けられる。そして、カワはカワ抜き口P1から排出され、カラミはカラミ抜き口P2から排出される。反応塔R内で発生する高温排ガスは、セトラーSおよび排煙道Uを通って自熔製錬炉FFから排出される。   The raw material blown into the reaction tower R is heated by the heat of the auxiliary burner, the radiant heat in the furnace wall of the reaction tower R, and the like, and the sulfur in the copper concentrate burns to form a melt. The melt is stored in the settler S. The melt is separated into Karami and Kawa in the settler S due to a difference in specific gravity. Then, the kava is discharged from the cutout port P1, and the lumps are discharged from the cutout port P2. The high-temperature exhaust gas generated in the reaction tower R is discharged from the flash smelting furnace FF through the settler S and the flue gas U.

(フォーミング)
反応塔R内で原料の燃焼反応が完了しなかった場合、セトラーSでも燃焼反応が継続する。そうすると、二酸化硫黄(SO2)などの製錬ガスが発生する。製錬ガスがセトラーS内の熔体で発生すると、熔体が発泡して、ポーラス状で嵩比重が低いカラミが熔体表層に表れる。この現象がいわゆるフォーミングである。
(Forming)
If the combustion reaction of the raw materials is not completed in the reaction tower R, the combustion reaction continues in the settler S. Then, a smelting gas such as sulfur dioxide (SO 2 ) is generated. When the smelting gas is generated in the melt in the settler S, the melt foams, and porous and low bulk specific gravity appears on the surface of the melt. This phenomenon is so-called forming.

自熔製錬炉FFの操業状況を監視するため、セトラーS内の熔体の各層の厚みが測定される。その過程で、フォーミング層の厚みも測定される。   In order to monitor the operation state of the flash smelting furnace FF, the thickness of each layer of the melt in the settler S is measured. In the process, the thickness of the forming layer is also measured.

セトラーS内の熔体の各層の厚みの測定は、例えば以下のように行われる。
セトラーSの天井から検尺棒(長尺の鉄棒)を挿入する。検尺棒の先端がセトラーSの底に達したら、検尺棒を抜き出す。検尺棒がセトラーSに挿入された長さから、セトラーSの底の高さが分かる。また、検尺棒に付着した熔体の長さから、熔体の厚みが分かる。さらに、検尺棒に付着した熔体の性状からカラミとカワとの境界を判別して、カラミとカワの各層の厚みを求める。カラミ層のうち、フォーミング層は泡が含まれておりポーラス状であるのに対して、フォーミングの無いカラミ層は緻密な組成である。この性状の違いからフォーミング層を判別して、フォーミング層の厚みを求める。
The thickness of each layer of the melt in the settler S is measured, for example, as follows.
A measuring bar (a long iron bar) is inserted from the ceiling of the settler S. When the tip of the measuring rod reaches the bottom of the settler S, remove the measuring rod. The height of the bottom of the settler S can be determined from the length of the test bar inserted into the settler S. Further, the thickness of the melt can be determined from the length of the melt attached to the measuring rod. Further, the boundary between the karami and the kawa is determined from the properties of the melt adhered to the measuring rod, and the thickness of each layer of the karami and the kawa is determined. Of the kalami layers, the forming layer contains bubbles and is porous, whereas the kalami layer without forming has a dense composition. The forming layer is determined from the difference in the properties, and the thickness of the forming layer is determined.

検尺棒による各層の厚みの測定には、測定誤差が含まれる。そのため、セトラーSの数十箇所で同様の測定を行い、1日に測定した測定値の平均値を求める。求めた平均値に基づいて、操業状況を判断することが一般的である。   The measurement of the thickness of each layer using a measuring rod includes a measurement error. Therefore, the same measurement is performed at several tens of places of the settler S, and the average value of the measurement values measured in one day is obtained. It is general to determine the operation status based on the obtained average value.

例えば、フォーミング層の厚みが1日の平均値で180mm以上になると、フォーミングが過剰に発生していると判断される。この場合には、セトラーS内の熔体表面の高さの上昇に起因して、セトラーSに備えられている保温用のバーナー孔から熔体が漏れ出したり、自熔精錬炉内を負圧に維持できなくなる恐れがある。   For example, if the average thickness of the forming layer is 180 mm or more per day, it is determined that excessive forming has occurred. In this case, due to an increase in the height of the surface of the melt in the settler S, the melt leaks from the heat retaining burner holes provided in the settler S, or a negative pressure is generated in the self-melting smelting furnace. May not be maintained.

本願発明者は、フォーミングが発生する理由が以下の通りであることを見出した。
すなわち、熔体の粘性が高いと、熔体の内部で発生した製錬ガスが熔体から抜けきらず、熔体内で気泡として残留する。これがフォーミングの原因となる。
The present inventor has found that the reason why forming occurs is as follows.
In other words, if the viscosity of the melt is high, the smelting gas generated inside the melt cannot escape from the melt and remains as bubbles in the melt. This causes forming.

本願発明者は、自熔製錬炉FFから、フォーミングの有るカラミとフォーミングの無いカラミとをサンプリングして、それぞれの組成を測定した。その結果、フォーミングの有るカラミは、フォーミングの無いカラミに比べてFe/SiO2比が低い傾向が見られた。ここで、「Fe/SiO2比」とは、カラミに含まれる二酸化ケイ素(SiO2)に対する鉄(Fe)の重量比を意味する。 The inventor of the present application sampled a lump with forming and a lump without forming from the flash smelting furnace FF, and measured the respective compositions. As a result, there was a tendency that the Karami with the forming had a lower Fe / SiO 2 ratio than the Karami without the forming. Here, the “Fe / SiO 2 ratio” means a weight ratio of iron (Fe) to silicon dioxide (SiO 2 ) contained in karami.

Fe/SiO2比は、カラミの塩基度を示し、自熔製錬炉FFの操業においてカラミの性状を監視するのに用いられるパラメータとして知られている。一般に塩基度が低い酸化物は粘性が高いことから、自熔製錬炉FFのカラミも塩基度が低いと粘性が高くなると考えられる。このことから、カラミのFe/SiO2比が低くなると、カラミの粘性が高くなり、フォーミングが発生しやすくなると考えられる。 The Fe / SiO 2 ratio indicates the basicity of kalami, and is known as a parameter used to monitor the properties of kalami in the operation of the flash smelting furnace FF. Generally, an oxide having a low basicity has a high viscosity. Therefore, it is considered that the leach of the smelting furnace FF has a high viscosity when the basicity is low. From this, it is considered that the lower the Fe / SiO 2 ratio of the lumps, the higher the viscosity of the lumps and the easier the forming to occur.

自熔製錬炉FFに装入される原料は、Fe/SiO2比がある一定の値を維持するように調整される。具体的には、銅精鉱のSiO2品位が高ければ珪砂の装入量を低減し、銅精鉱のSiO2品位が低ければ珪砂の装入量を増加させる。 The raw material charged into the flash smelting furnace FF is adjusted so that the Fe / SiO 2 ratio maintains a certain value. Specifically, if the SiO 2 grade of the copper concentrate is high, the charge of silica sand is reduced, and if the SiO 2 grade of the copper concentrate is low, the charge of silica sand is increased.

銅精鉱の粒径は10〜300μmであるのに対して、珪砂の粒径は50〜2,000μmである。すなわち、珪砂は銅精鉱に比べて粒径が大きい。珪砂は粒径が大きいため、反応塔Rにおいて完全に熔融しない場合がある。未熔融の珪砂はセトラーSにおいて熔融することになる。しかし、珪砂の主成分であるSiO2がカラミ全体に拡散するのには時間がかかるため、熔体の表層はSiO2が多くなり、Fe/SiO2比が低くなる。その結果、カラミの表層の粘性が高くなる。以上の理由から、原料中の珪砂の割合が高いほど、フォーミングが発生しやすくなる。 The particle size of copper concentrate is 10-300 μm, while the particle size of silica sand is 50-2,000 μm. That is, silica sand has a larger particle size than copper concentrate. Since the silica sand has a large particle diameter, it may not completely melt in the reaction tower R. Unmelted silica sand will be melted in the settler S. However, since it takes time for the SiO 2, which is the main component of silica sand, to diffuse throughout the larch, the surface layer of the melt contains a large amount of SiO 2 and the Fe / SiO 2 ratio decreases. As a result, the viscosity of the surface layer of Karami increases. For the above reasons, forming is more likely to occur as the proportion of silica sand in the raw material is higher.

図1に、原料中の珪砂の重量割合に対するフォーミング層の厚みの1日平均値の関係を示す。ここで、原料中の珪砂の重量割合とは、銅精鉱、珪砂、冷材などを含む全ての原料の装入量に対する珪砂の装入量の重量比を意味する。フォーミング層の厚みの1日平均値は、前述のごとく検尺棒で測定されたフォーミング層の厚みの1日の平均値である。   FIG. 1 shows the relationship between the weight percentage of silica sand in the raw material and the average daily value of the thickness of the forming layer. Here, the weight ratio of silica sand in the raw material means the weight ratio of the charged amount of silica sand to the charged amounts of all raw materials including copper concentrate, silica sand, and cold materials. The average daily value of the thickness of the forming layer is an average daily value of the thickness of the forming layer measured with a measuring rod as described above.

図1より、原料中の珪砂の重量割合が高くなるほど、フォーミング層が厚くなることが分かる。これより、原料中の珪砂の割合が高いほど、フォーミングが発生しやすくなることが確認された。また、原料中の珪砂の重量割合を6%以下とすれば、フォーミング層の厚みの1日平均値を180mm以下に抑えられることが分かる。   FIG. 1 shows that the forming layer becomes thicker as the weight ratio of silica sand in the raw material increases. From this, it was confirmed that the higher the proportion of silica sand in the raw material, the easier the forming was to occur. In addition, it can be seen that the average daily thickness of the forming layer can be suppressed to 180 mm or less when the weight ratio of the silica sand in the raw material is 6% or less.

(操業方法)
そこで、以下のように自熔製錬炉FFを操業することで、フォーミングの発生を抑制できる。
まず、セトラーS内の熔体のフォーミング層の厚みを測定する。測定方法は特に限定されないが、例えば前述のごとく検尺棒を用いた測定方法が挙げられる。
(Operation method)
Therefore, by operating the flash smelting furnace FF as described below, it is possible to suppress the occurrence of forming.
First, the thickness of the forming layer of the melt in the settler S is measured. The measuring method is not particularly limited, and includes, for example, a measuring method using a measuring rod as described above.

フォーミング層の厚みの測定は、定期または不定期で継続的に行う。そして、フォーミング層の厚みが予め定めた閾値を超えた場合に、原料中の珪砂の割合を低減する。ここで、閾値として、フォーミング層の厚みの上限値(例えば180mm)を設定してもよいし、上限値までの余裕を設けて、上限値よりも低い値を設定してもよい。   The thickness of the forming layer is measured regularly or irregularly. Then, when the thickness of the forming layer exceeds a predetermined threshold, the ratio of silica sand in the raw material is reduced. Here, the upper limit of the thickness of the forming layer (for example, 180 mm) may be set as the threshold, or a value lower than the upper limit may be set by providing a margin to the upper limit.

なお、原料全体のFe/SiO2比は、所望の値を維持する方が、良質のカラミが得られる点で好ましい。そのため、珪砂の装入量を低減する場合には、原料としてSiO2品位の高い銅精鉱を選択する。こうすることで、原料のFe/SiO2比を所望の値に調整できる。 It is preferable that the Fe / SiO 2 ratio of the entire raw material be maintained at a desired value, since good quality karami can be obtained. Therefore, when reducing the charging amount of silica sand, copper concentrate with high SiO 2 grade is selected as a raw material. By doing so, the Fe / SiO 2 ratio of the raw material can be adjusted to a desired value.

上記の様に、フォーミング層の厚みの測定結果に基づいて原料中の珪砂の割合を調整する方法に代えて、予め、原料中の珪砂の重量割合を所定値以下になるように調整してもよい。原料中の珪砂の重量割合を6%以下とすれば、フォーミング層の厚みを180mm以下とすることができる。   As described above, instead of the method of adjusting the ratio of silica sand in the raw material based on the measurement result of the thickness of the forming layer, in advance, the weight ratio of silica sand in the raw material may be adjusted to be equal to or less than a predetermined value. Good. When the weight ratio of silica sand in the raw material is set to 6% or less, the thickness of the forming layer can be set to 180 mm or less.

この場合にも、原料全体のFe/SiO2比を所望の値に維持するために、SiO2品位の高い銅精鉱を選択することが好ましい。 Also in this case, it is preferable to select a copper concentrate having a high SiO 2 grade in order to maintain the Fe / SiO 2 ratio of the entire raw material at a desired value.

以上の操業方法によれば、原料中の珪砂の割合を低減することで、珪砂由来の二酸化ケイ素が減少し、セトラーS内のカラミの粘性を低減できる。その結果、フォーミングの発生を抑制できる。また、原料の装入量を低減する必要がないので、自熔製錬炉FFの操業効率を高い状態で維持できる。   According to the above-described operation method, by reducing the ratio of silica sand in the raw material, silicon dioxide derived from silica sand is reduced, and the viscosity of the lumps in the settler S can be reduced. As a result, the occurrence of forming can be suppressed. In addition, since it is not necessary to reduce the amount of raw materials charged, the operation efficiency of the flash smelting furnace FF can be maintained at a high level.

つぎに実施例を説明する。
自熔製錬炉FFで銅製錬の操業を行った。自熔製錬炉FFへの銅精鉱の装入量を4,000ton/日とした。操業期間のうち、前半は原料中の珪砂の重量割合を6%以上に調整し、後半は原料中の珪砂の重量割合を6%以下に調整した。また、操業期間中、フォーミング層の厚みを検尺棒を用いて測定した。
Next, an embodiment will be described.
Copper smelting operation was carried out in a flash smelting furnace FF. The charge amount of copper concentrate to the flash smelting furnace FF was 4,000 tons / day. During the operation period, the weight ratio of silica sand in the raw material was adjusted to 6% or more in the first half, and the weight ratio of silica sand in the raw material was adjusted to 6% or less in the second half. Further, during the operation, the thickness of the forming layer was measured using a measuring rod.

その結果を図2に示す。図2から分かるように、原料中の珪砂の重量割合を6%以上に調整した前半は、フォーミング層の厚みが180mmを超えた。これに対して、原料中の珪砂の重量割合を6%以下に調整した後半は、フォーミング層の厚みが180mm未満であった。   The result is shown in FIG. As can be seen from FIG. 2, the thickness of the forming layer exceeded 180 mm in the first half when the weight ratio of silica sand in the raw material was adjusted to 6% or more. On the other hand, the thickness of the forming layer was less than 180 mm in the latter half when the weight ratio of the silica sand in the raw material was adjusted to 6% or less.

以上より、原料中の珪砂の重量割合を6%以下の調整することで、フォーミング層の厚みを180mm以下に抑えられることが確認できた。   From the above, it was confirmed that the thickness of the forming layer could be suppressed to 180 mm or less by adjusting the weight ratio of the silica sand in the raw material to 6% or less.

FF 自熔製錬炉
S セトラー
R 反応塔
U 排煙道
B 精鉱バーナー
FF Self-melting smelting furnace S Settler R Reaction tower U Flue gas B Concentrate burner

Claims (1)

原料として少なくとも銅精鉱と珪砂とを装入する自熔製錬炉の操業方法であって、
セトラー内の熔体のフォーミング層の厚みが閾値を超えた場合に、原料中の珪砂の割合を低減する
ことを特徴とする自熔製錬炉の操業方法。
An operation method of a flash smelting furnace that charges at least copper concentrate and silica sand as raw materials,
A method for operating a self-melting smelting furnace, characterized in that when the thickness of a forming layer of a melt in a settler exceeds a threshold value, the proportion of silica sand in a raw material is reduced.
JP2015160776A 2015-08-18 2015-08-18 Operating method of flash smelting furnace Active JP6665443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015160776A JP6665443B2 (en) 2015-08-18 2015-08-18 Operating method of flash smelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015160776A JP6665443B2 (en) 2015-08-18 2015-08-18 Operating method of flash smelting furnace

Publications (2)

Publication Number Publication Date
JP2017039961A JP2017039961A (en) 2017-02-23
JP6665443B2 true JP6665443B2 (en) 2020-03-13

Family

ID=58206421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015160776A Active JP6665443B2 (en) 2015-08-18 2015-08-18 Operating method of flash smelting furnace

Country Status (1)

Country Link
JP (1) JP6665443B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140554A (en) * 1997-11-10 1999-05-25 Mitsubishi Materials Corp Method for reducing slag loss in copper refining
JP3682166B2 (en) * 1998-08-14 2005-08-10 住友金属鉱山株式会社 Method for smelting copper sulfide concentrate
JP4026299B2 (en) * 2000-05-25 2007-12-26 住友金属鉱山株式会社 Continuous copper smelting furnace and continuous copper smelting method
FI115536B (en) * 2001-09-21 2005-05-31 Outokumpu Oy A process for producing crude copper
JP2003344142A (en) * 2002-05-24 2003-12-03 Jfe Steel Kk Method and apparatus for measuring level of molten metal and thickness of slag layer by means of microwave level gauge
JP4483586B2 (en) * 2005-01-07 2010-06-16 三菱マテリアル株式会社 Method of smelting copper sulfide concentrate
JP2010222693A (en) * 2009-03-25 2010-10-07 Nippon Mining & Metals Co Ltd Converter operation method

Also Published As

Publication number Publication date
JP2017039961A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
CN109852760A (en) A kind of converter preheating scrap improves the smelting process of scrap ratio
JP6041072B1 (en) Raw material charging method to blast furnace
JP5359012B2 (en) Sintering machine and operation method thereof
JP6665443B2 (en) Operating method of flash smelting furnace
JP5862519B2 (en) Blast furnace operation method
JP5381899B2 (en) Blast furnace operation method
JP6260751B2 (en) Raw material charging method to blast furnace
CN109974459A (en) A kind of method that electrode paste repairs furnace eye
JP2011144442A (en) Method for blow-down operation of blast furnace
JP4331879B2 (en) Blast furnace inner wall structure
JP6885238B2 (en) How to operate the blast furnace
JP4739920B2 (en) Blast furnace operation method with small furnace heat fluctuation
JP2009242906A (en) Method for operating blast furnace
JP4926790B2 (en) Blast furnace operation method
JP5012596B2 (en) Reduced blast furnace operation method
JP7107050B2 (en) Blast furnace operation method
JP2010090453A (en) Method of operating vertical melting furnace
JP6615712B2 (en) Ferronickel smelting method
JP6665743B2 (en) Blast furnace bosh section structure and blast furnace design method
JP6743621B2 (en) Blast furnace operation method
JP3879539B2 (en) Blast furnace operation method
JP4941122B2 (en) Blast furnace operation method
JP2023015450A (en) Method for controlling amount of coal charge into coke oven carbonization chamber and method for producing coke
JP2006291301A (en) Method for operating blast furnace at initial firing
JP5984143B2 (en) Electric furnace operating method and electric furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6665443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150